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Abstract— Understanding protein sequences can advance
treatments for various diseases. However experimentally
obtaining this information is laborious, time-consuming, and
expensive. Traditional machine learning techniques, like
support vector machine, random forest and logistic
regression, offer potential to fast-track this process but are
sometimes limited by data complexity. Deep learning
algorithms, in contrast, tend to yield higher performance. In
this study, we employed a convolutional neural network to
predict protein phosphoglycerylation. Features were
extracted from pre-trained transformer models and
compared with conventional features, such as evolutionary
information and physicochemical/biochemical properties.
Our results indicate significant performance improvements
across all feature types, with the combination of transformer-
based features and the convolutional neural network being
especially effective. This methodology holds potential for
other protein property prediction tasks. Our software and
datasets used in this study are publicly available at
https://github.com/abelavit/DL-Phosphoglycerylation-
Prediction.git.

Keywords— machine learning, deep learning, transformer
network, convolutional neural network, proteomics,
phosphoglycerylation.

I. INTRODUCTION

Proteomics, the study of all proteins in biological
systems, is evolving into a data-rich science due to modern
biotechnological advancements [1, 2]. Historically, protein
property identification  predominantly relied on
experimental methods, such as liquid chromatography and
mass spectrometry systems. These methods necessitate
intricate bioinformatic analysis pipelines, making them
challenging, expensive, and time-consuming [3-5].
However, the surge in available data has paved the way for
deep learning (DL) technologies, which are increasingly
adopted to predict properties of uncharted protein sequence,
offering immense value to the scientific community [6-9].

DL empowers computer systems to discern patterns
from input data to draw inferences. Unlike traditional
machine learning (ML) techniques like random forests (RF)
and support vector machines (SVM), DL algorithms
inherently learn from data, negating the need for manual
feature engineering. Rooted in representation learning, DL
employs artificial neural networks that emulate human brain
learning processes. Across domains, including computer

979-8-3503-4107-2/23/$31.00 ©2023 |IEEE

vision, natural language processing, and bioinformatics, DL
models consistently outperformed conventional ML
techniques [10].

Recently, DL architectures like transformer networks
[11] (from natural language processing) and convolutional
neural networks (CNNs) [12] have made their mark in
bioinformatics [13-19]. Transformer networks, equipped
with attention mechanisms, grasp inter-positional
information in input sequences and excel in tasks like
language translation, due to its innovative architecture [11,
20]. Moreover, the CNN architecture captures and preserves
spatial hierarchies in sequential data (e.g., protein
sequences) thereby extracting features from data that lead to
superior performance when compared to the traditional ML
methods [21].

Building on this foundation, our study seeks to harness
the potency of CNNs, using them as classifiers on features
extracted from several tools, including pre-trained
transformer models. The goal is to enhance lysine
phosphoglycerylation prediction in protein sequences. This
approach builds upon and extends our previous work [22],
where we utilized these features to train conventional ML
classifiers like RF, SVM, logistic regression (LR), and light
gradient-boosting machine (LightGBM) to determine the
most informative features for phosphoglycerylation
prediction.

A. Literature Review

There has been a rise in the study of
phosphoglycerylation using computational techniques in
the recent years. As a result, a number of predictors have
been developed for the prediction of these sites in the
protein sequences. One of the earliest predictors is called
Phogly-PseAAC [23] which employed pseudo amino acid
composition as features to train a k-nearest neighbours
algorithm. CKSAAP Phoglysite predictor [24] was
introduced next and it utilized the composition of k-spaced
amino acid pairs for feature extraction and trained a fuzzy
SVM. Similar feature extraction as CKSAAP_Phoglysite
was employed by the PhoglyPred method [25] and the SVM
algorithm was trained to build the classifier. Later, iPGK-
PseAAC predictor [26] was proposed based on SVM and it
used amino acid pairwise couplings as the features.
Following these works, Chandra et al developed four
separate methods called PhoglyStruct [27], EvolStruct-
Phogly [28], Bigram-PGK [29], and RAM-PGK [4].
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PhoglyStruct is a multilayer perceptron-based method that
used the protein structural features, while EvolStruct-
Phogly, Bigram-PGK, and RAM-PGK are all SVM-based
methods that used a combination of structural and
evolutionary (sequence alignment) features, evolutionary
features, and sequence-based information, respectively.
iDPGK [30] is a work that was proposed during the same
period, in which a SVM-based predictor was employed and
the composition of amino acids was used as the feature set.

Most recently, there have been three major
phosphoglycerylation predictors proposed. These are
predPhogly-Site [31], PLP_FS [32],and BERT PLPS [33].
The predPhogly-Site method used probabilistic sequence-
coupling information to train the SVM algorithm. The
PLP FS predictor used features generated by sequence-
based feature extraction methods to fit the SVM algorithm.
Finally, the BERT PLPS predictor used the amino acid
sequence features and a transformer-based network (BERT)
as the prediction model. From all these proposed methods
for the phosphoglycerylation prediction, it can be seen that,
except for the most recent method (BERT PLPS), they rely
on traditional ML algorithms. Moreover, the BERT PLPS
method does not incorporate the pipeline to harness the true
potential of DL. As a result, there is a huge scope for further
improvement of the phosphoglycerylation site prediction in
protein sequences.

B. Contributions of the Paper

The major contribution of this paper is to showcase the
potential of DL for predicting protein
phosphoglycerylation. The major objective is to boost the
prediction capability of current methods by the use of pre-
trained transformer-based features with architectures such
as CNN for classification. A summary of the contributions
is as follows:

o Identify a suitable CNN architecture to work with
feature vectors.

e Analyse the result obtained for the combination of
the feature and the CNN architecture.

e Highlight how the protein sequence representations
from the pre-trained transformer models are superior
to the traditional features
(physicochemical/biochemical  properties  and
evolutionary information).

o Point out the CNN’s feature extraction capability for
effective phosphoglycerylation prediction and its
potential for improving the performance of various
protein-related prediction tasks.

C. Paper Organization

The rest of the paper is organized as follows. Section II
gives an overview of what protein phosphoglycerylation is
and its importance. Section III gives the details of the
dataset used in this work, how the features were extracted,
how each sample was constructed, data balancing, the
evaluation metrics used, and the CNN architecture
employed in this work. Section IV provides the results and
discussion, and finally section V concludes this work with
a hint of future work.

II. PHOSPHOGLYCERYLATION

Phosphoglycerylation is a type of post-translational
modification (PTM). Some examples of other types of PTM
include methylation [34], glycation [35], acetylation [36],
crotonylation [37], phosphorylation [38], succinylation
[39], and sumoylation [40]. PTM is the enzymatic change
to protein sequences which takes place after the protein
translation in the ribosome [29]. It plays a crucial role in
biological processes, such as cell functions, to regulate
cellular plasticity and dynamics [23]. Phosphoglycerylation
is a reversible process that deals with the modification of
lysine amino acid residue in the protein sequences. This
modification is linked to glycolytic pathways and glucose
metabolism [41] and is implicated in a variety of human
diseases, such as neurodegenerative disorders [42],
coronary heart disease [43], rheumatoid arthritis [44], and
multiple sclerosis [45]. Hence, the identification of
phosphoglycerylated sites in protein sequences can present
valuable information for biomedical research.

III. EXPERIMENTAL SETUP

A. Dataset

The phosphoglycerylation dataset used in this work is
adopted from [22]. The protein sequences were originally
taken from the Protein Lysine Modification Database
(PLMD) available at http://plmd.biocuckoo.org. The Cd-hit
tool [46] was used to disregard the protein sequences with a
sequence similarity of 40% or higher. As a result, the dataset
comprised 91 sequences which had a total of 3360 lysine
residues. Out of these lysine residues, 111 were found to be
experimentally annotated as phosphoglycerylated sites
(positive samples), while the remaining 3249 were non-
phosphoglycerylated sites (potential negative samples). The
dataset composition is shown in Table 1.

TABLE L. EXECUTIVE SUMMARY OF THE
PHOSPHOGLYCERYLATION DATASET.

Phosphoglycerylation Dataset

No. of proteins 91
No. of lysine residues 3360
No. of phosphoglycerylated sites 111
No. of non-phosphoglycerylated sites 3249

B. Featurization of Protein Sequences

The dataset [22] included four protein sequence
representations: physicochemical/biochemical properties,
evolutionary information from multiple sequence
alignment, and the representations from two different pre-
trained transformer models. These features are referred to
as Phy+Bio, BigramPGK, T5, and ESM-1b, respectively, in
this work.

The breakdown of each type of protein sequence
representations are as follows. The Phy+Bio feature is
composed of 10 commonly used
physicochemical/biochemical properties pertaining to each
amino acid residues in the sequence. These were molecular
weight, melting point, length of side chain, isoelectric point,
free energy of solution in water, hydrostatic pressure
asymmetry index, pK (-COOH), ionization equilibrium
constant (pK-a), net charge, and hydrophobicity index. The
BigramPGK feature is based on the position-specific
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scoring matrices, which were obtained from the PSI-
BLAST tool [47], and then the profile bigrams [48] were
calculated to produce the final features. The TS5 feature was
extracted from the pre-trained ProtT5-XL-UniRef50
transformer, which is the best performing model in
comparison to the other transformer models proposed in
[49]. The ESM-1b feature was extracted from the ESM-1b
pre-trained transformer model proposed in [50]. The ESM-
1b transformer had protein sequence length limitation for
the extraction of the representation, hence the longer
sequences were split into multiple parts, taking the fixed
lengths shifted to the right, one amino acid at a time, until
the end of the sequence had been included in the final part.
The representation for each amino acid residue in the
protein sequence was then obtained by averaging the
overlapping parts. The dimension of the protein sequence
representation corresponding to Phy+Bio, BigramPGK, T3,
and ESM-1b were Lx10, Lx20, Lx1024, and Lx1280,
respectively, where L stands for the length of the protein
sequence.

C. Sample Extraction

To extract the lysine residues from the protein
sequences, a window of 15 upstream and 15 downstream
around the site was employed, which is a commonly used
approach for representing an amino acid sample [51, 52].
Each sample can therefore be denoted as:

S={A_15,4_14 .., A_1,K, Ay, ..., A1, 415} (1)

In (1), A., represents the upstream amino acid residues,
where 1 < n < 15, 4, represents the downstream amino
acid residues, where 1 < n < 15, and K represents the lysine
residue at the centre. The window therefore comprises a
total of 31 amino acid residues. As commonly practiced, the
lysine residues close to the start or finish of the protein
sequence which did not have sufficient amino acids to make
up the window size were excluded [53]. Moreover, a non-
phosphoglycerylated lysine residue was only taken as a
negative sample if its corresponding protein sequence
contained two or more confirmed phosphoglycerylated sites
[54]. As a result, 101 positive samples (label = 1) and 425
negative samples (label = 0) were obtained. The feature
vector of each lysine residue corresponding to Phy+Bio,
BigramPGK, T5, and ESM-1b representations was
therefore 310-dimensional, 400-dimensional (after profile
bigram calculation on the 31x20 feature matrix), 31744-
dimensional and 39680-dimensional, respectively.

D. Data Balancing

The number of positive samples obtained after the
sample extraction stage was less than the number of
negative samples. This led to the class imbalance of 1:4.2
between the positive and negative samples which can bias
the classification process in favour of the majority class.
The random under-sampling technique was adopted where
a subset of the negative samples were randomly selected to
bring the imbalance ratio down to 1:1.5 [55]. The final
number of positive and negative samples were 101 and 152,
respectively, to train and test the classifier.

E. Evaluation Metric

In this work, we have used the AUC (Area Under the
receiver operating characteristic (ROC) Curve) metric to
evaluate the classifier. AUC measures a classifier’s ability

to separate positive and negative samples and therefore is
seen as a useful metric for evaluating the overall
performance of a classifier. It takes on values from 0 to 1,
where 0 indicates the worst separability and 1 indicates a
perfect separability. AUC measure is prevalent in clinical
and computational biology research due to the impediments
of achieving high performance in both sensitivity and
specificity and increase in one occurs at the cost of the other
[56].

F. CNN Classifier

To build the predictor in this study, we employed a 1-
dimensional CNN (1D CNN) network using the Tensorflow
framework [57]. To efficiently train and test the network,
the dataset was split into train (80%) and independent test
(20%) sets. Furthermore, from the training set, 80% of the
samples were used to train the network and the remaining
20% were used for validation. The network has 3
convolutional layers and 2 fully connected layers. The first
convolutional layer has 128 filters of size 5, the second layer
has 128 filters of size 3, and the third layer has 64 filters of
size 3. The stride of 1 was used in the layers and padding
was set to have the layer output size the same as the layer’s
input size. Moreover, dropouts were used after each of the
layers to avoid overfitting. For the fully connected layers,
the first layer has 128 neurons, and the second layer has 32
neurons. The network’s output has a single neuron for
predicting whether the site is phosphoglycerylated or not.
The ReLU activation function is used in all the layers of the
network, except for the output neuron, which has a sigmoid
activation function. The learning rate of the network for the
different features (i.e., Phy+Bio, BigramPGK, TS5, and
ESM-1b) was optimised using the Keras Tuner Bayesian
Optimization algorithm. Finally, the network was trained
using the Adam optimizer with binary cross-entropy loss
and AUC metric and an early stopping with a patience of 5.
The architecture of the 1D CNN used in this work is
depicted in Fig. 1.
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Fig. 1. The 1D CNN architecture employed in this work.

IV. RESULTS AND DISCUSSION

The performances obtained with the use of the DL
method (1D CNN) were compared to the performances
obtained previously [22] on the same set of features using
the traditional machine learning algorithms. For fair
comparisons, the same training and independent test sets
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were used as the previous work. The AUC values are shown

in Table II.

TABLE IL.

USING THE TRADITIONAL ML CLASSIFIERS AND THE 1D CNN CLASSIFIER

THE PERFORMANCE ON AUC METRIC FOR THE
DIFFERENT FEATURES (PHY+BI0, BIGRAMPGK, T5, AND ESM-1B)

ON THE INDEPENDENT TEST SET. THE HIGHEST VALUES OF EACH ROW

ARE HIGHLIGHTED IN BOLD.

characteristics of the residues which demonstrates the
significance of the DL network to the prediction task.

omp-2

omp-2

Phy+Bio training set

Phy-+Bio training set after CNN feature extraction

@mp-2

e 0
1

comp-1 comp-1

BigramPGK training set

BigramPGK training set after CNN feature extraction

@mp-2

o0
1

Classifiers
Features
SVM SVM .
* % *
LR* | ¢ | (rBEys | RF* | LightGBM* | IDCNN

Phy+Bio 0395 | 0552 0371 | 0.489 0.503 0.637
BigramPGK | 0.686 | 0.666 0.676 | 0.742 0.742 0.747
TS 0.726 | 0.726 0.737 | 0.735 0.592 0.761
ESM-1b 0.803 | 0.813 0811 | 0.719 0.748 0.839
Classifier 0.653 | 0.689 0.649 | 0.671 0.646 0.746
Average

*Results obtained from previous work.
As seen in Table II, the performance of the 1D CNN
network surpasses the performance of the traditional ML
classifiers (LR, SVM (poly and RBF kernels), RF, and
LightGBM) on all the feature types based on the AUC
measure. With respect to the best performing traditional ML
method, the AUCs are improved by 15.4% for the Phy+Bio
feature over the SVM (poly) classifier, 0.7% for the
BigramPGK feature over the RF classifier, 3.3% for the TS
feature over the SVM (RBF) classifier, and 3.2% for the
ESM-1b feature over the SVM (poly) classifier. In terms of
the average AUC obtained by each classifier on all the
features, 1D CNN attained an average AUC of 0.746, which
is an increase of 8.3% over the SVM (poly) classifier.
Moreover, it can be observed from the measure that the
features extracted from the transformer models (TS5 and
ESM-1b) performed the best in comparison to the
evolutionary and physicochemical/biochemical features.
This echoes the findings of the previous study [22] that the
transformer based features are much more effective for
distinguishing between the phosphoglycerylated and non-
phosphoglycerylated lysine residues. Out of all the features
with 1D CNN, the ESM-1b transformer-based feature
performed the best with an AUC value of 0.839, while the
Phy+Bio feature performed the worst with an AUC value of
0.637.

Additionally, we investigated the distribution of the
phosphoglycerylated and non-phosphoglycerylated lysine
residues based on their input features and the representation
learned through their respective 1D CNNs. Fig. 2 shows the
t-SNE visualizations [58] of the training samples of the
different features into a two-dimensional space. The sample
distributions on the left plots represents the different input
features and the right plots shows the representation of the
residues from the second-last fully connected layer (32-
dimensional) of the trained 1D CNN. It can be seen that the
distribution of the phosphoglycerylated (in green) and non-
phosphoglycerylated (in red) lysine residues in the left plots
pertaining to the raw input features are relatively clustered
together. ~ However, the  distribution of the
phosphoglycerylated and non-phosphoglycerylated lysine
residues in the right plots, which are the representations
from the 1D CNN, are in more distinguishable clusters. This
shows that the extraction of features from the input features
by the CNN learns patterns relating to the
phosphoglycerylated and non-phosphoglycerylated

-100 -75 -50 -25 00 25 50 75 100
@mp-1 @mp-1

TS training set S training set after CNN feature extraction

61 ] . o0 1001 . T e
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Fig. 2. The t-SNE distribution of the phosphoglycerylated and non-
phosphoglycerylated lysine residues of the training set. Colour green
indicates the phosphoglycerylated residues and the colour red indicates
the non-phosphoglycerylated residues. The plot of the raw input features
Phy+Bio (A), BigramPGK (B), T5 (C), and ESM-1b (D) are located on
the left of the figure and the representation learned through their
respective 1D CNNss are located on the right of the figure.

V. CONCLUSION

In this study, we have extended our previous work by
using a DL network (CNN) for comparing the effectiveness
of the pre-trained transformer-based features against the
evolutionary and physicochemical/biochemical based
features. As a result, it was seen that the CNN network
improved the performances of all the features and
demonstrated that the transformer-based features are much
more effective for detecting the phosphoglycerylated and
non-phosphoglycerylated sites in the protein sequences.
The DL classifier together with the DL features from the
pre-trained transformer models holds huge potential for
improving the performance of various protein-related
prediction tasks. In future, we will investigate the further
enhancing of the phosphoglycerylation prediction
performance by employing 2D CNN architectures after
extracting image representations from feature vectors using
technologies such as Deeplnsight [14].
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