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Abstract— Understanding protein sequences can advance 

treatments for various diseases. However experimentally 

obtaining this information is laborious, time-consuming, and 

expensive. Traditional machine learning techniques, like 

support vector machine, random forest and logistic 

regression, offer potential to fast-track this process but are 

sometimes limited by data complexity. Deep learning 

algorithms, in contrast, tend to yield higher performance. In 

this study, we employed a convolutional neural network to 

predict protein phosphoglycerylation. Features were 

extracted from pre-trained transformer models and 

compared with conventional features, such as evolutionary 

information and physicochemical/biochemical properties. 

Our results indicate significant performance improvements 

across all feature types, with the combination of transformer-

based features and the convolutional neural network being 

especially effective. This methodology holds potential for 

other protein property prediction tasks. Our software and 

datasets used in this study are publicly available at 

https://github.com/abelavit/DL-Phosphoglycerylation-

Prediction.git. 

Keywords— machine learning, deep learning, transformer 

network, convolutional neural network, proteomics, 

phosphoglycerylation. 

I. INTRODUCTION  

Proteomics, the study of all proteins in biological 
systems, is evolving into a data-rich science due to modern 
biotechnological advancements [1, 2]. Historically, protein 
property identification predominantly relied on 
experimental methods, such as liquid chromatography and 
mass spectrometry systems. These methods necessitate 
intricate bioinformatic analysis pipelines, making them 
challenging, expensive, and time-consuming [3-5]. 
However, the surge in available data has paved the way for 
deep learning (DL) technologies, which are increasingly 
adopted to predict properties of uncharted protein sequence, 
offering immense value to the scientific community [6-9]. 

DL empowers computer systems to discern patterns 
from input data to draw inferences. Unlike traditional 
machine learning (ML) techniques like random forests (RF) 
and support vector machines (SVM), DL algorithms 
inherently learn from data, negating the need for manual 
feature engineering. Rooted in representation learning, DL 
employs artificial neural networks that emulate human brain 
learning processes. Across domains, including computer 

vision, natural language processing, and bioinformatics, DL 
models consistently outperformed conventional ML 
techniques [10]. 

Recently, DL architectures like transformer networks 
[11] (from natural language processing) and convolutional 
neural networks (CNNs) [12] have made their mark in 
bioinformatics [13-19]. Transformer networks, equipped 
with attention mechanisms, grasp inter-positional 
information in input sequences and excel in tasks like 
language translation, due to its innovative architecture [11, 
20]. Moreover, the CNN architecture captures and preserves 
spatial hierarchies in sequential data (e.g., protein 
sequences) thereby extracting features from data that lead to 
superior performance when compared to the traditional ML 
methods [21]. 

Building on this foundation, our study seeks to harness 
the potency of CNNs, using them as classifiers on features 
extracted from several tools, including pre-trained 
transformer models. The goal is to enhance lysine 
phosphoglycerylation prediction in protein sequences. This 
approach builds upon and extends our previous work [22], 
where we utilized these features to train conventional ML 
classifiers like RF, SVM, logistic regression (LR), and light 
gradient-boosting machine (LightGBM) to determine the 
most informative features for phosphoglycerylation 
prediction. 

A. Literature Review 

There has been a rise in the study of 
phosphoglycerylation using computational techniques in 
the recent years. As a result, a number of predictors have 
been developed for the prediction of these sites in the 
protein sequences. One of the earliest predictors is called 
Phogly-PseAAC [23] which employed pseudo amino acid 
composition as features to train a k-nearest neighbours 
algorithm. CKSAAP_Phoglysite predictor [24] was 
introduced next and it utilized the composition of k-spaced 
amino acid pairs for feature extraction and trained a fuzzy 
SVM. Similar feature extraction as CKSAAP_Phoglysite 
was employed by the PhoglyPred method [25] and the SVM 
algorithm was trained to build the classifier. Later, iPGK-
PseAAC predictor [26] was proposed based on SVM and it 
used amino acid pairwise couplings as the features. 
Following these works, Chandra et al developed four 
separate methods called PhoglyStruct [27], EvolStruct-
Phogly [28], Bigram-PGK [29], and RAM-PGK [4]. 
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PhoglyStruct is a multilayer perceptron-based method that 
used the protein structural features, while EvolStruct-
Phogly, Bigram-PGK, and RAM-PGK are all SVM-based 
methods that used a combination of structural and 
evolutionary (sequence alignment) features, evolutionary 
features, and sequence-based information, respectively. 
iDPGK [30] is a work that was proposed during the same 
period, in which a SVM-based predictor was employed and 
the composition of amino acids was used as the feature set. 

Most recently, there have been three major 
phosphoglycerylation predictors proposed. These are 
predPhogly-Site [31], PLP_FS [32], and BERT_PLPS [33]. 
The predPhogly-Site method used probabilistic sequence-
coupling information to train the SVM algorithm. The 
PLP_FS predictor used features generated by sequence-
based feature extraction methods to fit the SVM algorithm. 
Finally, the BERT_PLPS predictor used the amino acid 
sequence features and a transformer-based network (BERT) 
as the prediction model. From all these proposed methods 
for the phosphoglycerylation prediction, it can be seen that, 
except for the most recent method (BERT_PLPS), they rely 
on traditional ML algorithms. Moreover, the BERT_PLPS 
method does not incorporate the pipeline to harness the true 
potential of DL. As a result, there is a huge scope for further 
improvement of the phosphoglycerylation site prediction in 
protein sequences. 

B. Contributions of the Paper 

The major contribution of this paper is to showcase the 
potential of DL for predicting protein 
phosphoglycerylation. The major objective is to boost the 
prediction capability of current methods by the use of pre-
trained transformer-based features with architectures such 
as CNN for classification. A summary of the contributions 
is as follows: 

• Identify a suitable CNN architecture to work with 
feature vectors. 

• Analyse the result obtained for the combination of 
the feature and the CNN architecture. 

• Highlight how the protein sequence representations 
from the pre-trained transformer models are superior 
to the traditional features 
(physicochemical/biochemical properties and 
evolutionary information). 

• Point out the CNN’s feature extraction capability for 
effective phosphoglycerylation prediction and its 
potential for improving the performance of various 
protein-related prediction tasks. 

C. Paper Organization 

The rest of the paper is organized as follows. Section II 
gives an overview of what protein phosphoglycerylation is 
and its importance. Section III gives the details of the 
dataset used in this work, how the features were extracted, 
how each sample was constructed, data balancing, the 
evaluation metrics used, and the CNN architecture 
employed in this work. Section IV provides the results and 
discussion, and finally section V concludes this work with 
a hint of future work. 

II. PHOSPHOGLYCERYLATION 

Phosphoglycerylation is a type of post-translational 
modification (PTM). Some examples of other types of PTM 
include methylation [34], glycation [35], acetylation [36], 
crotonylation [37], phosphorylation [38], succinylation 
[39], and sumoylation [40]. PTM is the enzymatic change 
to protein sequences which takes place after the protein 
translation in the ribosome [29]. It plays a crucial role in 
biological processes, such as cell functions, to regulate 
cellular plasticity and dynamics [23]. Phosphoglycerylation 
is a reversible process that deals with the modification of 
lysine amino acid residue in the protein sequences. This 
modification is linked to glycolytic pathways and glucose 
metabolism [41] and is implicated in a variety of human 
diseases, such as neurodegenerative disorders [42], 
coronary heart disease [43], rheumatoid arthritis [44], and 
multiple sclerosis [45]. Hence, the identification of 
phosphoglycerylated sites in protein sequences can present 
valuable information for biomedical research.  

III. EXPERIMENTAL SETUP 

A. Dataset 

The phosphoglycerylation dataset used in this work is 
adopted from [22]. The protein sequences were originally 
taken from the Protein Lysine Modification Database 
(PLMD) available at http://plmd.biocuckoo.org. The Cd-hit 
tool [46] was used to disregard the protein sequences with a 
sequence similarity of 40% or higher. As a result, the dataset 
comprised 91 sequences which had a total of 3360 lysine 
residues. Out of these lysine residues, 111 were found to be 
experimentally annotated as phosphoglycerylated sites 
(positive samples), while the remaining 3249 were non-
phosphoglycerylated sites (potential negative samples). The 
dataset composition is shown in Table I. 

TABLE I.  EXECUTIVE SUMMARY OF THE 

PHOSPHOGLYCERYLATION DATASET. 

Phosphoglycerylation Dataset 

No. of proteins 91 

No. of lysine residues 3360 

No. of phosphoglycerylated sites 111 

No. of non-phosphoglycerylated sites 3249 

B. Featurization of Protein Sequences 

The dataset [22] included four protein sequence 
representations: physicochemical/biochemical properties, 
evolutionary information from multiple sequence 
alignment, and the representations from two different pre-
trained transformer models. These features are referred to 
as Phy+Bio, BigramPGK, T5, and ESM-1b, respectively, in 
this work. 

The breakdown of each type of protein sequence 
representations are as follows. The Phy+Bio feature is 
composed of 10 commonly used 
physicochemical/biochemical properties pertaining to each 
amino acid residues in the sequence. These were molecular 
weight, melting point, length of side chain, isoelectric point, 
free energy of solution in water, hydrostatic pressure 
asymmetry index, pK (-COOH), ionization equilibrium 
constant (pK-a), net charge, and hydrophobicity index. The 
BigramPGK feature is based on the position-specific 
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scoring matrices, which were obtained from the PSI-
BLAST tool [47], and then the profile bigrams [48] were 
calculated to produce the final features. The T5 feature was 
extracted from the pre-trained ProtT5-XL-UniRef50 
transformer, which is the best performing model in 
comparison to the other transformer models proposed in 
[49]. The ESM-1b feature was extracted from the ESM-1b 
pre-trained transformer model proposed in [50]. The ESM-
1b transformer had protein sequence length limitation for 
the extraction of the representation, hence the longer 
sequences were split into multiple parts, taking the fixed 
lengths shifted to the right, one amino acid at a time, until 
the end of the sequence had been included in the final part. 
The representation for each amino acid residue in the 
protein sequence was then obtained by averaging the 
overlapping parts. The dimension of the protein sequence 
representation corresponding to Phy+Bio, BigramPGK, T5, 
and ESM-1b were L×10, L×20, L×1024, and L×1280, 
respectively, where L stands for the length of the protein 
sequence. 

C. Sample Extraction 

To extract the lysine residues from the protein 
sequences, a window of 15 upstream and 15 downstream 
around the site was employed, which is a commonly used 
approach for representing an amino acid sample [51, 52]. 
Each sample can therefore be denoted as: 

 𝑆 = {𝐴−15, 𝐴−14, … , 𝐴−1, 𝐾, 𝐴1, … , 𝐴14, 𝐴15} () 

In (1), A-n represents the upstream amino acid residues, 
where 1 ≤ n ≤ 15, An represents the downstream amino 
acid residues, where 1 ≤ n ≤ 15, and K represents the lysine 
residue at the centre. The window therefore comprises a 
total of 31 amino acid residues. As commonly practiced, the 
lysine residues close to the start or finish of the protein 
sequence which did not have sufficient amino acids to make 
up the window size were excluded [53]. Moreover, a non-
phosphoglycerylated lysine residue was only taken as a 
negative sample if its corresponding protein sequence 
contained two or more confirmed phosphoglycerylated sites 
[54]. As a result, 101 positive samples (label = 1) and 425 
negative samples (label = 0) were obtained. The feature 
vector of each lysine residue corresponding to Phy+Bio, 
BigramPGK, T5, and ESM-1b representations was 
therefore 310-dimensional, 400-dimensional (after profile 
bigram calculation on the 31×20 feature matrix), 31744-
dimensional and 39680-dimensional, respectively. 

D. Data Balancing 

The number of positive samples obtained after the 
sample extraction stage was less than the number of 
negative samples. This led to the class imbalance of 1:4.2 
between the positive and negative samples which can bias 
the classification process in favour of the majority class. 
The random under-sampling technique was adopted where 
a subset of the negative samples were randomly selected to 
bring the imbalance ratio down to 1:1.5 [55]. The final 
number of positive and negative samples were 101 and 152, 
respectively, to train and test the classifier. 

E. Evaluation Metric 

In this work, we have used the AUC (Area Under the 
receiver operating characteristic (ROC) Curve) metric to 
evaluate the classifier. AUC measures a classifier’s ability 

to separate positive and negative samples and therefore is 
seen as a useful metric for evaluating the overall 
performance of a classifier. It takes on values from 0 to 1, 
where 0 indicates the worst separability and 1 indicates a 
perfect separability. AUC measure is prevalent in clinical 
and computational biology research due to the impediments 
of achieving high performance in both sensitivity and 
specificity and increase in one occurs at the cost of the other 
[56]. 

F. CNN Classifier 

To build the predictor in this study, we employed a 1-
dimensional CNN (1D CNN) network using the Tensorflow 
framework [57]. To efficiently train and test the network, 
the dataset was split into train (80%) and independent test 
(20%) sets. Furthermore, from the training set, 80% of the 
samples were used to train the network and the remaining 
20% were used for validation. The network has 3 
convolutional layers and 2 fully connected layers. The first 
convolutional layer has 128 filters of size 5, the second layer 
has 128 filters of size 3, and the third layer has 64 filters of 
size 3. The stride of 1 was used in the layers and padding 
was set to have the layer output size the same as the layer’s 
input size. Moreover, dropouts were used after each of the 
layers to avoid overfitting. For the fully connected layers, 
the first layer has 128 neurons, and the second layer has 32 
neurons. The network’s output has a single neuron for 
predicting whether the site is phosphoglycerylated or not. 
The ReLU activation function is used in all the layers of the 
network, except for the output neuron, which has a sigmoid 
activation function. The learning rate of the network for the 
different features (i.e., Phy+Bio, BigramPGK, T5, and 
ESM-1b) was optimised using the Keras Tuner Bayesian 
Optimization algorithm. Finally, the network was trained 
using the Adam optimizer with binary cross-entropy loss 
and AUC metric and an early stopping with a patience of 5. 
The architecture of the 1D CNN used in this work is 
depicted in Fig. 1. 

Fig. 1. The 1D CNN architecture employed in this work. 

IV. RESULTS AND DISCUSSION 

The performances obtained with the use of the DL 
method (1D CNN) were compared to the performances 
obtained previously [22] on the same set of features using 
the traditional machine learning algorithms. For fair 
comparisons, the same training and independent test sets 
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were used as the previous work. The AUC values are shown 
in Table II. 

TABLE II.  THE PERFORMANCE ON AUC METRIC FOR THE 

DIFFERENT FEATURES (PHY+BIO, BIGRAMPGK, T5, AND ESM-1B) 

USING THE TRADITIONAL ML CLASSIFIERS AND THE 1D CNN CLASSIFIER 

ON THE INDEPENDENT TEST SET. THE HIGHEST VALUES OF EACH ROW 

ARE HIGHLIGHTED IN BOLD.  

Features 

Classifiers 

LR* 
SVM 

(poly)* 

SVM 

(RBF)* 
RF* LightGBM* 1DCNN 

Phy+Bio 0.395 0.552 0.371 0.489 0.503 0.637 

BigramPGK 0.686 0.666 0.676 0.742 0.742 0.747 

T5 0.726 0.726 0.737 0.735 0.592 0.761 

ESM-1b 0.803 0.813 0.811 0.719 0.748 0.839 

Classifier 

Average 
0.653 0.689 0.649 0.671 0.646 0.746 

*Results obtained from previous work. 

As seen in Table II, the performance of the 1D CNN 
network surpasses the performance of the traditional ML 
classifiers (LR, SVM (poly and RBF kernels), RF, and 
LightGBM) on all the feature types based on the AUC 
measure. With respect to the best performing traditional ML 
method, the AUCs are improved by 15.4% for the Phy+Bio 
feature over the SVM (poly) classifier, 0.7% for the 
BigramPGK feature over the RF classifier, 3.3% for the T5 
feature over the SVM (RBF) classifier, and 3.2% for the 
ESM-1b feature over the SVM (poly) classifier. In terms of 
the average AUC obtained by each classifier on all the 
features, 1D CNN attained an average AUC of 0.746, which 
is an increase of 8.3% over the SVM (poly) classifier. 
Moreover, it can be observed from the measure that the 
features extracted from the transformer models (T5 and 
ESM-1b) performed the best in comparison to the 
evolutionary and physicochemical/biochemical features. 
This echoes the findings of the previous study [22] that the 
transformer based features are much more effective for 
distinguishing between the phosphoglycerylated and non-
phosphoglycerylated lysine residues. Out of all the features 
with 1D CNN, the ESM-1b transformer-based feature 
performed the best with an AUC value of 0.839, while the 
Phy+Bio feature performed the worst with an AUC value of 
0.637. 

Additionally, we investigated the distribution of the 
phosphoglycerylated and non-phosphoglycerylated lysine 
residues based on their input features and the representation 
learned through their respective 1D CNNs. Fig. 2 shows the 
t-SNE visualizations [58] of the training samples of the 
different features into a two-dimensional space. The sample 
distributions on the left plots represents the different input 
features and the right plots shows the representation of the 
residues from the second-last fully connected layer (32-
dimensional) of the trained 1D CNN. It can be seen that the 
distribution of the phosphoglycerylated (in green) and non-
phosphoglycerylated (in red) lysine residues in the left plots 
pertaining to the raw input features are relatively clustered 
together. However, the distribution of the 
phosphoglycerylated and non-phosphoglycerylated lysine 
residues in the right plots, which are the representations 
from the 1D CNN, are in more distinguishable clusters. This 
shows that the extraction of features from the input features 
by the CNN learns patterns relating to the 
phosphoglycerylated and non-phosphoglycerylated 

characteristics of the residues which demonstrates the 
significance of the DL network to the prediction task.         

 

Fig. 2. The t-SNE distribution of the phosphoglycerylated and non-

phosphoglycerylated lysine residues of the training set. Colour green 

indicates the phosphoglycerylated residues and the colour red indicates 
the non-phosphoglycerylated residues. The plot of the raw input features 

Phy+Bio (A), BigramPGK (B), T5 (C), and ESM-1b (D) are located on 

the left of the figure and the representation learned through their 

respective 1D CNNs are located on the right of the figure. 

V. CONCLUSION 

In this study, we have extended our previous work by 
using a DL network (CNN) for comparing the effectiveness 
of the pre-trained transformer-based features against the 
evolutionary and physicochemical/biochemical based 
features. As a result, it was seen that the CNN network 
improved the performances of all the features and 
demonstrated that the transformer-based features are much 
more effective for detecting the phosphoglycerylated and 
non-phosphoglycerylated sites in the protein sequences. 
The DL classifier together with the DL features from the 
pre-trained transformer models holds huge potential for 
improving the performance of various protein-related 
prediction tasks. In future, we will investigate the further 
enhancing of the phosphoglycerylation prediction 
performance by employing 2D CNN architectures after 
extracting image representations from feature vectors using 
technologies such as DeepInsight [14]. 
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