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ARTICLE INFO ABSTRACT

Edited by Lakshminarayan M. Iyer Post-translational modification (PTM) is a biological process involving a protein’s enzymatic changes after its
translation by the ribosome. Phosphorylation is one of the most critical PTMs that occurs when a phosphate

Keywords: group interacts with an amino acid residue along protein sequence. It contributes to cell communication, DNA

Post translational modification
Phosphorylation
Evolutionary features

repair, and gene regulation. Predicting microbial phosphorylation sites can provide better understanding of host-
pathogen interaction and the development of anti-microbial agents. Experimental methods such as mass spec-
Structural features trometry are time-consuming, laborious, and expensive. This paper proposes a new approach, called RotPhoPred,
Classification for predicting phospho-serine (pS), phospho-threonine (pT), and phospho-tyrosine (pY) sites in the microbial
Machine learning organism by integrating evolutionary bigram profile with structural information and using Rotation Forest as the
classification technique. To the best of our knowledge, our extracted features and employed classifier have never
been utilized for this task. Comparative results demonstrate that the RotPhoPred surpasses its peers in terms of
different metrics such as sensitivity (90.0%, 75.4% and 78.2%), specificity (92.1%, 97.2% and 94.7%), accuracy
(91.0%, 86.3%, 86.4%), and MCC (0.82, 0.74 and 0.74) for pS, pT, and pY sites predictions, respectively. Rot-
PhoPred as a standalone predictor and all its source codes are publicly available at: https://github.com/faisa-

lahm3d/RotPredPho.

observed to be responsible for tumor development (Loughery and Meek,
2013). Identification of Phosphorylation in prokaryotes cells can pro-
1. Introduction vide crucial information for a better understanding of host-pathogen
interactions and the development of antimicrobial agents (Shi et al.,
Post-translational modification is a biological mechanism in which 2020). Liquid chromatography-tandem mass spectrometry (LC-MS/MS),
one or more amino acids of a protein interact with a specific molecular ~ radioactive chemical labelling, and western blotting are the most com-
group after its translation process by the ribosome (Rashid et al., 2020). mon experimental methods for identifying PTMs, including phosphor-
Phosphorylation is one of the most critical and common PTMs. It occurs ylation. However, experimental approaches for detecting PTMs are
when a phosphate group is added to an amino acid residue. It most time-consuming, tedious, expensive, and require a skilled workforce.
commonly appears in serine (S), threonine(T), and tyrosine(Y). It also Moreover, the number of protein sequences is increasing exponentially
happens in arginine, lysine, and histidine residues to a lesser extent due to advanced sequencing technologies. Therefore, it is unfeasible to
(Jamal et al., 2021). Phosphorylation plays an essential role in a wide  identify phosphorylation sites using experimental methods in the wet
range of cellular functions, including cell communication, DNA repair, lab from such a massive protein database. Hence, there is a crucial de-
and gene regulation in eukaryote and microbial organisms (Trost and mand for developing fast and accurate computational tools to identify

Kusalik, 2011; Chen et al., 2020). Phosphorylation causes dysregulation phosphorylation sites.
of cell signalling mechanisms, which results in the development and During the past few years, several machine learning-based predictors
progress of complex diseases like cancer (Chen and Eschrich, 2014). For have been proposed to predict phosphorylation sites. The most

example, p53 is a protein where multiple phosphorylation sites are
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Abbreviations list

ASA acessible surface area

CNN convolutional neural network
MCC Mathews correlation coefficient
GBT gradient boosting trees

LC-MS/MS Liquid chromatography-tandem mass spectrometry
PTM Post Translational Modifications

pS phospho-serine

pT phospho-threonine

pY phospho-tyrosine

SVM Support vector machines
RF Random Forests

WR Wilcoxon rank-sum test

promising predictors are PhosPred-RF (Wei et al., 2017), PhosphoSVM
(Dou et al., 2014), NetPhos (Blom et al., 1999), PRED (Biswas et al.,
2010), Musite (Gao et al., 2010). These methods have used features
extracted from proteins’ primary sequence or secondary structure. For
example, PhosPred-RF (Wei et al., 2017) and PhosphoSVM (Dou et al.,
2014) use sequence-based features, whereas PPRED (Biswas et al., 2010)
uses evolutionary information to identify phosphorylation sites.
Sequence and structural features are combined in NetPhos (Blom et al.,
1999) for independent and kinase-specific phosphorylation site predic-
tion. PhosphoPredict (Song et al., 2017) integrates sequence-based and
functional features to identify kinase-specific substrates and their cor-
responding phosphorylation sites. They also used different classification
techniques including support vector machines (SVM), Random Forests
(RF), gradient boosting trees (GBT), and AdaBoost to build their models.

More recently, several deep learning-based predictors have been
proposed to predict Phosphorylation sites. Manual feature extraction is
unnecessary for the deep learning-based approaches since they can
automatically retrieve complicated patterns from protein sequences.
MusiteDeep (Wang et al., 2020), DeepPPSite (Ahmed et al., 2021),
DeepPhos (Luo et al., 2019), and Chlamy-EnPhosSite (Thapa and
Chaudhari, 2021) are notable deep learning-based Phosphorylation site
predictors. MusiteDeep uses one-hot encoding of protein sequence and
convolutional neural network (CNN) with attention layer (Wang et al.,
2020). DeepPhos utilizes multi-layer CNN architecture consisting of
densely connected convolutional blocks with different window and filter
sizes (Luo et al., 2019). DeepPPsite is constructed using a stacked long-
short-term memory recurrent network (Ahmed et al., 2021), whereas
Chlamy-EnPhosSite is an ensemble-based organism-specific predictor
developed by combining CNN and LSTM (Thapa and Chaudhari, 2021).
DeepPPSite combines five distinct sequence-encoding approaches
namely, sequence location information, amino acid composition de-
scriptors, grouped-based features, and physicochemical property-based
features. Unlike MisiteDeep and DeepPhos, where binary encoding is
used, the embedding layer is employed in Chlamy-EnPhosSite to encode
protein sequences.

Among all these approaches, only four computational methods for
predicting phosphorylation sites in microbial organisms are available to
date. The initial two methods NetPhosBac (Lee Miller et al., 2009) and
cPhosBac (Li et al., 2015), are bacteria-specific protein phosphorylation
site predictors. The former is created by implementing an artificial
neural network algorithm. The latter utilizes k-spaced amino acid pairs
(KSAAP) composition for sequence encoding and SVM for classification.
The predictors are trained on the same dataset, consisting of 152
experimentally confirmed phosphorylated serine/threonine sites in 119
substrates. The cPhosBac outperforms the NetPhosBac. On the other
hand, prkC-PSP was proposed by Zhang et al. as a prkC-specific phos-
phorylation site predictor (Zhang et al., 2018). It extracts amino acid
location information-based features from the protein sequence and use
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SVM as the classification technique to distinguish probable prkC-specific
phosphorylation sites. The dataset contains experimentally identified 36
phosphorylation and 512 non-phosphorylation sites curated manually
from the literature. In 2019, Mamun et al., developed a general micro-
bial phosphorylation site predictor named MPsite by using enhanced
characteristics of sequence as features and Random Forest as the clas-
sification technique (Md Hasan et al., 2019). To build this model, they
used Wilcoxon rank-sum test (WR) to select the optimal set of features.
The dataset used in this study was collected from the dbPSP, consisting
of 2045 pS sites in 1940 proteins and 2174 pT sites in 1534 proteins.
MPsite shows more promising performance than the existing microbial
phosphorylation site predictors.

Despite all the efforts that have been made so far, there is still room
for improving microbial phosphorylation site prediction accuracy. We
have observed that only composition-based features were used in the
previous studies to predict microbial phosphorylation sites. However,
previous research on protein subcellular localization (Dehzangi et al.,
2015), bacteriophage protein identification (Shatabda et al., 2017), and
protein succinylation and malonylation prediction (Roy Dipta et al.,
2020; Dehzangi et al., 2018) have shown that extracting structural and
evolutionary information greatly improves prediction performance.
Hence, we hypothesize that integrating these features can improve mi-
crobial phosphorylation site prediction as well.

In this study, we propose a new machine learning-based predictor
called RotPhoPred to accurately predict phospho-serine (pS), phospho-
threonine (pT), and phospho-tyrosine (pY) in the protein sequence of
microbial organisms, which integrates both structural and evolutionary
information. Our predictors coalesce predicted structural features and
evolutionary bigram profiles to describe each peptide fragment in the
dataset. We also use the NearMiss-3 undersampling technique to balance
the dataset to avoid bias towards larger class set. Subsequently, we use
Rotation Forest classifier which is an ensemble-based machine learning
classifier to predict microbial phosphorylation on serine (S), threonine
(T), and tyrosine (Y) residues. We then use 5-folds cross-validation and
independent test set to assess the prediction performance of the pre-
dictors. The overall flowchart of the proposed method is shown in Fig. 1.

Our results show that RotPhoPred outperforms the existing pre-
dictors (NetPhosBac and MPsite). It achieves 90.0%, 91.4%, 91.5%, and
0.82, in terms of Sensitivity, Specificity, Accuracy, and Mathews cor-
relation coefficient (MCC) for predicting pS sites, respectively. It also
achieves 75.4%, 99.2%, 86.3%, and 0.74 in terms of sensitivity, speci-
ficity accuracy, and MCC for predicting pT sites, respectively. The
recorded sensitivity, specificity, accuracy, and MCC for the pY site
prediction are 78.2%, 94.7%, 86.4%, and 0.74, respectively. Rot-
PhoPred as a standalone predictor and all its source codes are publicly
available at: https://github.com/faisalahm3d/RotPredPho.

The significant contributions of this paper are as follows:

1. The paper proposes the fusion of the evolutionary bigram profile
with structural information as features and the utilization of Rotation
Forest as the classifier for the first time for microbial phosphoryla-
tion prediction.

2. It is the first study for predicting microbial phospho-tyrosine (pY)
sites. Previous studies focused only on phosphorylation prediction on
serine (S) and threonine (T) residues.

3. Our proposed predictor is generic, which can predict phospho-serine
(pS), phospho-threonine (pT), and phospho-tyrosine (pY) sites
applying the same feature and classifier.

4. We have conducted extensive experiments on the benchmark data-
sets of laboratory-verified phosphorylated sites to validate the
effectiveness and applicability of the proposed predictor.

5. The predictor can maintain an excellent balance between sensitivity
and specificity in a highly imbalanced dataset, as apparent in the
experimental results.

6. We have publicly shared our dataset and model so that researchers
can quickly reproduce the results for further experiments and
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Fig. 1. The overall flowchart of the proposed method.

biologists can easily access the predictor for the initial screening of
phosphorylation sites.

2. Material and methods

In this section, we describe the benchmark dataset that is used in this
study and present our proposed methodology to build RotPhoPred.

2.1. Benchmark datasets

We have collected the protein sequences with experimentally veri-
fied pS, pT, and pY PTMs from the dbPSP database (Shi et al., 2020). The
assembled dataset contains redundant proteins. To remove redundancy,
we use CD-HIT to remove those proteins with over 40% sequential
similarity (Limin et al., 2012; Li and Godzik, 2006; Huang et al., 2010).
The final datasets contain 1483, 1220, and 1161 protein sequences for
pS, pT, and pY PTMs, respectively. The pT dataset consists of a total
36,513 instances with 2024 phosphorylated (positive) and 34489 no-
phosphorylated (negative) sites. There are 26239 samples in the pT
dataset, with 1647 positive and 24592 negative sites. The pY dataset
comprises of total 17476 instances where 1644 are positive and 15832
are negative. A summary of the datasets used in this study is given in

Table 1
The summary of the datasets for pS, pT, and pY identification problems.

Tasks Total Sequences Positive Sites Negative Sites Positive: Negative
pS 1483 2040 34489 1:17
pT 1220 1647 24952 1:15
pY 1161 1644 15832 1:10

Table 1.

To avoid overfitted and assess the generality of our model, 10% of
the datasets are used to form the independent test sets. The remaining
90% of the datasets are used to train the classifiers (training dataset).

2.2. Features

To extract the evolutionary and structural information, the protein
sequences from the benchmark dataset are fed to PSI-BLAST (Altschul
et al., 1997) and SPIDER2 (Yang et al., 2017; Heffernan et al., 2015).
Using PSI-BLAST, we generate position-specific scoring matrix (PSSM)
file, and using SPIDER2, we generate an SPD file. The PSSM calculates
the likelihood of replacing each protein’s amino acid with the other 20
amino acids based on their location. On the other hand, the predicted
secondary structure probabilities, accessible surface area (ASA), and
torsion angles for each amino acid residue are described in the SPD file
in matrix format. The evolutionary bigram profile and structural fea-
tures are then constructed from the PSSM and SPD files. Later, the
different feature groups extracted from PSSM and SPD files are com-
bined to form a feature vector. After feature vectorization, we split the
data into training and test sets. A NearMiss-3 under-sampling technique
is then applied to the training set to address the imbalance issue while
keeping the test data untouched (Mani and Zhang, 2003).

2.3. Formulation of peptide fragments for each site

In this study, we used a window-based approach to represent each
positive or negative site. Each phosphorylation or non-phosphorylation
site is described by a peptide fragment P of 2n + 1 residues with a S/T/Y
in the center, n upstream residues at the right, and n downstream
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residues at the left as follows:

P={A A (1), A0, A1, S/T/Y, A1 Ay s Auot)s A} @
where A_; and A ; represent the upstream and downstream amino acids
respectively, and S, T, Y represents serine, threonine, and tyrosine,
respectively. If n upstream or downstream residues are not available in
the protein to describe the S/T/Y sites, the mirroring technique is used
to fill the gap of missing amino acids as shown in Fig. 2.

After analyzing the performance of different window sizes, we
choose n = 10 since it exhibits the best performance. Fig. 2 demonstrates
the overall windowing process for serine residue.

2.4. Evolutionary feature extraction

As it was mentioned earlier, we use PSSM to extract evolutionary
information. We generated the PSSM for each protein sequence in our
benchmark dataset by running the PSI-BLAST algorithm for three iter-
ations on the non-redundant (nr) database provided by NCBI with a
cutoff (E) value of 0.001. The PSSM is an Lx20 matrix, where L is the
protein sequence’s length, and the 20 columns denote different amino
acids of the genetic code.

It was shown in previous studies that using bigram, we can extract
important disciriminatory information for the classification task from
PSSM for similar problems (Sharma et al., 2013; Roy Dipta et al., 2020;
Dehzangi et al.,, 2018; Chandra et al., 2019; Ahmad et al., 2020).
Moreover, bigram feature size is independent from the window. It ex-
tracts a 400-dimensional feature vector to capture evolutionary infor-
mation regardless of the number of upstream and downstream residues.
As aresult, we may expand the number of residues surrounding the S/T/
Y site without increasing the number of features. This study generates
bigram probabilities for each protein segment to apprehend its evolu-
tionary profile. To generate the bigram profile from the evolutionary
information, the submatrix M for the peptide fragment P that describes a
phosphorylated or non-phosphorylated site is segmented from the PSSM
matrix. M is a W % 20 dimensional matrix where W is the window size
(W = 21 consisting of 10 upstream, 10 downstream, and one central S/
T/Y residue), as mentioned in Section 2.3. Each element m;; of the
matrix M represents the transitional probability of jth amino acid at the
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ith position in the peptide fragment P. Then the bigram profile of the
submatrix is calculated using the following equation:

20
B,, = ka’pmk+l‘q7 where 1<p <20 and 1<p < 20 (2)

k=1

The resulting 20x20 dimensional matrix B represents the PSSM profile
bigram of peptide fragment P. Subsequently, the matrix B is converted to
a 400-dimensional row vector denoted by F1 as shown in Eq. 3.

F1 =By ,Bi2,...,B120,B21,B22, ..., B220s .-, B20,1, B202, ---s B2020] 3)

2.5. Structural feature extraction

Along with the evolutionary information, the structural properties of
the protein have been shown to be effective to predict other PTMs
(Dehzangi et al., 2018; Islam et al., 2018; Reddy et al., 2019; Dehzangi
et al., 2013; Chowdhury et al., 2017; Roy Dipta et al., 2020). The pro-
tein’s structural properties include secondary structures, accessible
surface area (ASA), and torsion angles.

The secondary structure depicts each amino acid residue in a number
of distinct configurations, the most frequent of which are helix, sheet,
and coil. Local backbone angles also define the local protein structures
through torsion angles between neighboring amino acids. Unlike sec-
ondary structure, which provides a coarse-grain description of local
configuration in terms of 3 discrete shapes - coil, strand, or helix, local
backbone angles give continuous information about the local structure
concerning four angles. The four angles include two backbone torsion
angles, y, and ¢, which indicate the angles between atoms along the
protein backbone, and dihedral angles # and 7, which represent the
rotation angles. The secondary structure and backbone angles describe
which amino acids are more dissembled and prone to interact with other
macromolecules.

ASA measures how much an amino acid residue area is exposed to
solvent (water) in a protein. The amino acid residue on the protein’s
surface area has a high chance of undergoing PTMs. Hence, ASA is an
essential structural property for phosphorylation prediction. As it was
mentioned earlier, we used SPIDER2 to predict the values of the pa-
rameters mentioned above for each amino acid residue in a protein

Serine

D s R 2R -+
(A [As | A A, (A, S A (A A [A [A,]
b
A, | A, A A AL A A
Left Mirroring l
LA A A A | A A (A AL [ A [ A |
[Asw | As | A [ A5 | Ay
| Right Mirroring

| Ao | As | A | A | Ay Ai.. A Ag

Fig. 2. The representation of serine residue with its upstream and downstream amino acids. (a) Serine residue with enough neighbors on the upstream and
downstream sides. (b) Serine residue with inadequate neighbors, either upstream or downstream.
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sequence. SPIDER is a deep learning-based tool that achieves promising
results for predicting secondary structure, backbone angles, and ASA
from protein sequences (Yang et al., 2017; Heffernan et al., 2015). It
produces a matrix of L « 8 dimensions that contain the predicted values
of eight structural properties (coil, strand, helix, ASA, ., ¢,0,7) for each
amino acid residue in a protein of length L.

To capture the structural information of each peptide segment P in
our dataset, we extract the submatrix A from the SPD file of the protein
sequence that contains P and flattens it to form a row vector F2. The
matrix A is W x 8 dimensional, where W is the window size. We inves-
tigated different values for window size which among them, using 21 for
serine (S), threonine (T), and tyrosine (Y) demonstrates the best per-
formance. Hence, A is a 21x8 dimensional matrix. The resultant row
vector is 168 dimensional denoted by F2 as shown in Eq. 4.

F2= [B,I,HB/I,Z’ "'7B,l.87B/2.17B/2.27 "'7B/z,ss "'B/21,1=B/21,2= “‘73121‘8] G

2.6. Formation of feature vector

After extracting the bigram profile from PSSM and structural features
from SPD, we integrate both feature groups to form a feature vector to
predict microbial phosphorylation. The resultant 560 (400 + 168)
dimensional feature vector captures the critical structural and evolu-
tionary information essential to discriminating phosphorylated and non-
phosphorylated sites.

F =[B11,;B120; -, Ba01;,B2020, By 1y s By g -y By 1 oo By ] %)

2.7. Balancing dataset

The number of non-phosphorylated sites (negative samples) is
greater than the number of phosphorylated sites (positive samples) in
our benchmark datasets, as shown in Table 1. Such imbalance could
influence any machine learning-based predictor to be biased towards the
negative sample. Therefore, balancing the training dataset is critical for
developing a bias-free predictor. Two main ways to balance the dataset
are under-sampling and over-sampling. While the former keeps all
samples in the rare class and reduces the abundant type, the latter in-
crease the size of the infrequent category by generating artificial in-
stances. This paper analyzes various balancing techniques from both
under-sampling and over-sampling categories, including ADASYS (He
et al., 2008), SMOTE (Chawla et al., 2002), Tomek Links (Tomek, 1976),
and NearMiss (Mani and Zhang, 2003). Our results demonstrate that
NearMiss-3 which is a down-sampling technique exhibited the best
performance. Hence, we used the NearMiss-3 technique for balancing
our training dataset.

NearMiss-3 selects the given number of closet samples from the
majority class (negative) for each instance in the minority class based on
the Euclidean distance. Consequently, it picks the more information-rich
non-phosphorylated sites, which are vital for designing a powerful de-
cision boundary to differentiate phosphorylated and non-
phosphorylated sites (Mani and Zhang, 2003). Moreover, it does not
produce artificial samples thus minimizing the computational cost when
fitting the model. We implemented NearMiss-3 to select one closet non-
phosphorylated site for each phosphorylated site. As a result, the
transformed training dataset includes an equal number of phosphory-
lated and non-phosphorylated sites. Note that the balancing is not per-
formed on the independent test set used to evaluate the performance of
the model to avoid overfitting.

2.8. Classification model

In this study, to build RotPhoPred, we use Rotation Forest (RoF)
algorithm since it exhibits encouraging performance in similar studies
found in the literature (Dehzangi et al., 2015; Roy Dipta et al., 2020;
Dehzangi et al., 2010; Bustamam et al., 2019; Wang et al., 2018; Wang
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et al., 2018; You et al., 2017). Rotation forest is an ensemble learning
technique that trains N base classifiers separately in parallel and predicts
class labels based on the majority of soft voting (Rodriguez et al., 2006).
Unlike Random Forest that uses a random subset of features, the rotation
forest uses a transformed feature space to build the individual base
learner. To build each base classifier, it randomly splits the feature set
into K subsets, and for each subset, a bootstrap sample of size 75% of the
original dataset is drawn. Then the Principal Component Analysis (PCA)
(Abdi and Williams, 2010) is then performed on the selected samples to
transform the feature vector linearly, to enhance diversity among the
base learners. Later, the K transformed feature subsets are combined to
form a feature vector to train the base classifier. RoF utilizes decision
trees as the base learners since they are accurate and sensitive to the
rotation of the feature axes. In this study, we used the rotation_forest
package available in python3 with 100 decision trees as base estimators
as it was shown the effective number in previous studies (Dehzangi
etal., 2015; Roy Dipta et al., 2020). The max_features parameter was set
to ’auto’ and n_jobs, indicating the number of jobs to run parallel, was
set to —1 to force the algorithm to use all the functional processors.

2.9. Validation scheme

A wide range of validation schemes, including the k-folds cross-
validation and jack-knife test, are reported in the literature to evaluate
the efficacy of machine learning-based predictors. In this paper, we have
utilized the stratified 5-folds cross-validation to avoid overfitting and
assess our performance with different parameter settings. The cross-
validation is performed as follows:

1. Divide the dataset into five disjoint folds of equal size by maintaining
the percentage of instances from both classes in each fold.

2. Fit the predictor on 4-folds, and evaluate its performance on the
remaining fold via different metrics such as sensitivity, specificity
accuracy, and MCC.

3. Repeat step 2 five times and calculate each metric’s average.

Fig. 3 graphically demonstrates the overall process of the 5-fold
cross-validation scheme.

2.10. Evaluation metrics

To evaluate the performance of RotPhoPred, we use six metrics
namely, Sensitivity (Sn), Specificity (Sp), Precision (Pr), Accuracy (Ac),
F1 Measure (F1), Mathews’ correlation coefficient (MCC), and area
under the ROC curves (AUC) to evaluate the performance of the pro-
posed method.

Sensitivity measures the predictor’s ability to identify phosphory-
lated sites accurately. It quantifies how many phosphorylated sites the
predictor can accurately detect out of the total number of phosphory-
lated sites. Sensitivity ranges from O to 100 percent. The predictor
detecting all phosphorylated sites will receive sensitivity of 100.

Specificity assesses how well the predictor performs in detecting
non-phosphorylated sites. Hence, it is the ratio of the total number of
successfully identified non-phosphorylated sites by the predictor to the
actual number of non-phosphorylated sites. The value of specificity can
be between 0 to 100 percent.

The predictor’s ability to discriminate between phosphorylated and
non-phosphorylated sites is measured by accuracy. It summarizes the
predictor’s overall performance with a single score. Accuracy ranges
from 0% to 100%, with 100% indicating the most accurate prediction.

Precision is the ratio of correctly predicted phosphorylated sites to all
predicted phosphorylated sites by the model.

F-Measure summarizes the sensitivity and precision through a single
measure by computing their harmonic mean. The score reflects how well
the predictor can balance the sensitivity and precision. It also ranges
from O to 1, with 1 denoting perfect balance. It is the most common
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Fig. 3. Schematic overview of five folds cross-validation scheme.

metric used to measure a model’s performance developed on an
imbalanced dataset.

Matthews correlation coefficient (MCC) is the most reliable statisti-
cal metric for binary classifiers when both classes are of interest and the
size differs. It considers the actual and predicted classes as two variables
and calculates the correlation coefficient between them. It fluctuates
from —1 to 1. The higher the correlation between actual and predicted
classes, the better the prediction. MCC is 1 for the perfect predictor,
indicating a perfect positive correlation. Conversely, when the predictor
consistently makes incorrect predictions, the MCC value drops to —1,
representing the perfect negative correlation. Respectively, MCC of
0 represents no correlation. The Sn, Sp, Pr, Ac, F1, and MCC are calcu-
lated as follows:

TP
Sn=Tp N 6)
™
Sp=— 7
P=INTFP 7
TP
Pr=—— ®)
TP + FP
TP + TN
Ac=—— LHINV ©
TP+ FN + FP+ TN
2% PrsS
Fl = 2o (10)
Pr+ Sn

e — TP « TN — FP « FN an
/(TN + FN) * (TP + FP) % (IN + FP) * (TP + FN)

where, TP (True Positive) indicates the number of correctly identified
phosphorylation sites, TN (True Negative) means the number of
correctly identified non-phosphorylation sites, FP (False Positive) rep-
resents the number of incorrectly identified non-phosphorylation sites as
phosphorylated sites, and FN (False Negative) denotes the number of
incorrectly identified phosphorylation sites as non-phosphorylated sites.
We also used the Receiver Operating Characteristics (ROC) curve to
evaluate the predictor’s performance graphically. ROC curve plots the
true positive rate against the false-positive rate for different classifica-
tion thresholds. The area under the ROC curve can also quantify the
predictor’s performance. The higher the area under the ROC (AUC)
value, the better the predictor. A perfect predictor will achieve the
highest score in all of these metrics.

3. Results and discussion

In this section we present our results, compare them with previous
studies, and discuss their significance.

3.1. Feature significance analysis

This section investigates the significance of extracted features in
phosphorylation site prediction. Three sets of features namely struc-
tural, evolutionary, and combination of both have been compared using
the Rotation Forest classifier. The results achieved using the 5-folds
cross-validation are presented in Table 2 for pS, pT, and pY, predic-
tion tasks. As shown in this table, the evolutionary feature extracted
from the PSSM achieves better results for the pS site prediction. In
contrast, the structural feature provides more discriminatory informa-
tion for pT and pY site identification. However, the best prediction
performance in terms of sensitivity, specificity, precision, accuracy, and
MCQC is reported with integrated structural and evolutionary features.
This pattern is consistent for all three predictors to identify phosphor-
ylation on serine, threonine, and tyrosine residue. Such consistency
justifies the significance of evolutionary and structural features in mi-
crobial phosphorylation prediction.

We also plot the ROC curves for structural, evolutionary, and com-
bined features in predicting pS, pT, and pY sites using the independent
test set. The plots are shown in Fig. 4. The curves illustrate that the best
AUC values of 0.96, 0.90, and 0.91 are achieved respectively for pS, pT,
and pY site prediction tasks when structural and evolutionary features
are combined.

We created another predictor by extracting the bigram profile from
the structural and evolutionary peptide matrixes and training a rotation
forest algorithm to examine how the structural information’s bigram
profile influences the prediction performance. We named it StrucBi-
gram. Table 3 compares StrucBigram with RotPhoPred on the inde-
pendent test set for predicting pS, pT, and pY sites. The table shows that
the performance degrades for all prediction tasks when the bigram
feature of structural information is utilized, as indicated by the MCC
scores of StrucBigram. RotPhosPred achieves the highest performance
for the pS site prediction in all evaluation measures. While predicting pT
and pY sites, although StrucBigram attains 13.5% and 3.8% better
sensitivity, its performance in other metrics is significantly lower than
RotPhosPred. StrucBigram fails to detect 17.5%, 17.6%, and 25.8% non-
phosphorylated serine, threonine, and tyrosine sites, respectively. Be-
sides, it misclassified many nonphosphorylated sites as phosphorylated
sites, as apparent from the lower precisions of 0.29, 0.33, and 0.38 for
the detection of pS, pT, and pY sites. The results also indicate that the
StrucBigram predictor is biased towards the positive class. The possible
cause behind such biases can be the minimization of features due to the
bigram operation on structural information. While the bigram operation
is performed, the structural features are reduced from 168 to 64.
Consequently, RotPhosPred and StrucBigram are trained on the 568 and
464 features, respectively.

3.2. Comparison with different classifiers

In this section, we analyze the performance of different machine
learning algorithms for phosphorylation prediction. To do this, we use
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Table 2
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Impact of different features on the prediction performance using 5-folds cross validation. The standard deviation among five folds for each metric is presented in the

brackets. Bold items indicate the highest values.

Task Features Sn(%) Sp(%) Pr Ac(%) F1 MCC AUC

pS Combined 87.7(0.03) 97.6(0.01) 0.93(0.01) 92.7(0.01) 0.92(0.01) 0.86(0.02) 0.93(0.01)
Evolutionary 81.1(0.03) 93.0(0.02) 0.92(0.02) 87.0(0.01) 0.86(0.01) 0.75(0.02) 0.87(0.01)
Structural 81.1(0.02) 91.6(0.02) 0.91(0.02) 86.4(0.01) 0.86(0.01) 0.73(0.02) 0.86(0.01)

pT Combined 79.4(0.02) 99.3(0.01) 0.99(0.01) 89.3(0.01) 0.88(0.01) 0.80(0.02) 0.89(0.01)
Evolutionary 50.9(0.01) 98.9(0.01) 0.98(0.02) 74.9(0.01) 0.67(0.01) 0.57(0.02) 0.75(0.01)
Structural 75.4(0.02) 97.8(0.01) 0.97(0.01) 86.6(0.01) 0.85(0.02) 0.75(0.02) 0.87(0.01)

pY Combined 75.2(0.03) 99.3(0.01) 0.99(0.00) 87.3(0.02) 0.85(0.02) 0.77(0.03) 0.87(0.02)
Evolutionary 54.2(0.03) 97.1(0.01) 0.95(0.02) 75.6(0.01) 0.69(0.02) 0.57(0.02) 0.76(0.01)
Structural 67.7(0.02) 95.7(0.01) 0.94(0.01) 81.7(0.01) 0.79(0.01) 0.66(0.02) 0.82(0.01)
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0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

(c)

Fig. 4. ROC curves for different feature groups for (a) pS, (b) pT, and (c) pT
sites identifications on independent test.

five different classifiers namely, Rotation Forest (RoF), Support Vector
Machine (SVM), Random Forest (RF), Gradient Boosting Tree (GBT),
and Adaptive Boosting (AdaBoost). The hyperparameters of all the
classifiers are tuned using cross-validation. We created the Rotation
Forest exploiting the rotation-forest package available in python3 with
100 decision trees as base estimators. The max_features parameter was
set to auto, and n_jobs, indicating the number of jobs to run parallel, was

set to —1 to force the algorithm to use all the functional processors. All
other machine-learning algorithms are implemented using the scikit-
learn package in Python. We used a polynomial kernel for SVM to make
the samples linearly separable. Besides, set the regularization parameter
¢ = 1, which optimizes the hyperplane’s margin and minimizes the
misclassification of training data. The Gradient Boosting is executed for
100 boosting stages to minimize the log loss with a learning rate of 0.1.
The friedman_mse splitting criterion was used to measure a split’s
quality. A decision tree was used as the base estimator for adaptive
boosting, which was constructed to execute up to 100 boosting itera-
tions. Each classifier’s weight at each boosting iteration was set to 0.1
via the hyperparameter learning_rate. We built the random forest model
with 100 decision trees and Gini-impurity splitting criteria by setting
n_estimator = 100 and criterion = gini, respectively. Other parameters of
the classifiers are kept default as in the rotation-forest and scikit-learn
packages. A summary of the hyperparameters settings of different ma-
chine learning classifiers used in this study for comparison is shown in
Table 4.

For this experiment, we extracted the structural and evolutionary
features from each site represented by 21 amino acid residue windows.
The experiments using 5-folds cross-validation are shown in Table 5,
where the mean values of different performance metrics are reported.

Table 6 shows the independent test results for the various classifiers
where the rotation forest (RoF) reporting the best MCC scores for all
three predictors for recognizing pS, pT, and pY sites.

The results shows that the RoF beats all the classifiers in sensitivity,
accuracy, fl-measure, MCC, and AUC in pS sites identification. The
specificity and precision of RoF are also reasonable since they are not
significantly lower than the highest values achieved by SVM.

For pT sites predictin task, RoF outperforms all other classifiers in all
metrics except the sensitivity. While, Gradient boosting achieves the
best sensitivity. However, the sensitivity (75.4%) of the RoF is still
comparable to the best results.

Among all the classifiers, RoF shows the highest specificity, preci-
sion, accuracy, f1-measure, and AUC values of 94.7%, 0.93, 86.4%, 0.85,
and 0.86 in predicting pY sites. It is also competitive in terms of sensi-
tivity. Hence, we use this classifier to build RotPhoPred.

Fig. 5 illustrates the ROC curves of different classifiers for predicting
pS, pT, and pY sites on the independent test set. It can be seen from this
figure that the AUC values of RoF in predicting pS, pT and pY sites are
0.96, 0.90, and 0.89 respectively which are the highest among the
classifiers.

All these results demonstrate the effectiveness of RoF in predicting
microbial phosphorylation sites. The secrete behind the superiority of
ROF is its ability to do implicit feature selection and introduce diversity
in each base classifier by feature transformation using PCA (Rodriguez
et al., 2006; Abdi and Williams, 2010).

3.3. Comparison with current state-of-the-art predictors

In this section, we compare RotPhoPred with MPsite and NetPhosBac
on the independent test set as the two best microbial phosphorylation
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Table 3
Impact of structural bigram profile in the prediction performance on the independent test set. Bold items indicate the highest values.
Task Model Sn(%) Sp(%) Pr Ac(%) F1 MCC AUC
pS RotPhoPred 90.0 92.1 0.92 91.0 0.91 0.82 0.96
StrucBigram 88.5 82.5 0.29 83.0 0.44 0.45 0.86
pT RotPhoPred 75.4 97.2 0.96 86.3 0.85 0.74 0.90
StrucBigram 88.9 82.4 0.33 83.0 0.48 0.48 0.86
pY RotPhoPred 78.2 94.7 0.94 86.4 0.85 0.74 0.89
StrucBigram 82.0 74.2 0.38 75.5 0.52 0.43 0.78
bl classifiers, demonstrating our proposed method’s robustness and gen-
Table 4

Hyper-parameters summary of different classifiers

Classifiers Hyper-parameters

Base estimator = Decision Tree
Number of tree = 100
Maximum features = ‘auto’
Number of jobs = —1

Number of tree: 100

Splitting criteria: ‘gini’

Kernel: ‘polynomial’
Regularization, C: 1.0

Loss: ‘log_loss’

Learning rate = 0.1

Splitting criteria = ’friedman_mse’
Number of boosting stage = 100
Base estimator = Decision Tree
Learning rate = 0.1

Maximum number of estimator = 100

Rotation Forset

Random Forest

Support Vector Machine

Gradient Boosting

Adaptive Boosting

cite predictors. To do this, we fed the independent test as fasta files to
MPSite and NetPhosBac servers and collected the predicted result for
each site on the dataset. Then, we characterized the performances of
these predictors in terms of sensitivity, specificity, accuracy, and MCC.
The same metrics are calculated for our method on the independent test
set for a fair comparison. The comparative results for the phospho-serine
(pS) site are given in Table 7.

The results demonstrate that RotPhoPred outperforms both MPSite
and NetPhosBac by achieving the highest sensitivity of 90.0%, speci-
ficity of 92.1%, accuracy of 91.0%, and MCC of 0.82. In the phospho-
threonine (pT) site, our method also performs better than MPSite and
NetPhosBac in terms of sensitivity, specificity, accuracy, and MCC to a
large margin, as shown in Table 8. As shown in this table, we enhance
the pT performance by 17.1%, 21.5%, 12.1%, and 0.52 in terms of
sensitivity, specificity, accuracy, and MCC compared to MPSite as the
current best predictor. Since no work has been done to predict the
phospho-tyrosine(pY) site, there is no scope to compare the performance
of the proposed predictor. Moreover, the independent test set results are
consistent with the 5-fold cross-validation approach for both pS and pT

Table 5

erality. It is important to note that the superiority of our proposed
method comes from the integration of structural and evolutionary fea-
tures and the use of the RoF classifier as it was discussed in prior
sections.

We carefully analyzed the reason behind the poor performances of
NetPhosBac and MPSite on the independent test set. We observed that
the NetPhosBac was trained on only 152 positive sites, which might
overfit or underfit the model. On the other hand, the benchmark training
dataset of MPsite was imbalanced with five times higher negative
samples than the positive sample for both pS and pT sites. MPsite did not
balance the training dataset like us using any imbalance treatment
techniques, which may cause it to be biased toward the negative class.
Besides, the test set of MPsite (the ratio of positive to negative sites is
1:5) was not highly imbalanced like ours (the ratio of positive to nega-
tive sites is 1:>15). Maybe because of these reasons, NetPhosBac and
MPsite show low MCC scores on our independent test but competitive

Table 6
Comparative results using different machine learning algorithm on independent
test.

Task  Classifier Sn Sp Pr Ac F1 MCC AUC
(%) (%) (%)
pS RoF 90.0 92.1 0.92 91.0 0.91 0.82 0.96
SVM 79.4 99.4 0.99 89.4 0.88  0.80 0.96
RF 88.8 92.4 0.92  90.6 090 0.81 0.96
AdaBoost 87.6 76.8 0.79 822 0.83  0.65 0.90
GB 90.6 79.7 0.82 85.1 0.86 0.71 0.93
pT RoF 75.4 97.2 0.96 86.3 0.85 0.74 0.90
SVM 82.9 86.5 0.86 84.7 0.84  0.69 0.91
RF 82.5 84.1 0.84 833 0.83  0.67 0.90
AdaBoost 79.8 72.2 0.74  76.0 0.77  0.52 0.82
GB 83.7 78.6 0.80 81.2 0.82  0.62 0.89
pY RoF 78.2 94.7 0.94 86.4 0.85 0.74 0.89
SVM 85.6 73.2 0.76  79.4 0.81 0.59 0.89
RF 87.3 70.8 0.75  79.0 0.81 0.59 0.89
AdaBoost 83.8 65.5 0.71 74.6 0.77  0.50 0.78
GB 86.6 66.9 0.72 76.8 0.79  0.55 0.87

Comparative results using different machine learning algorithm on 5 folds cross-validation. The standard deviation among five folds for each metric is presented in the

brackets. Bold items indicate the highest values.

Task Classifier Sn(%) Sp(%) Pr Ac(%) F1 MCC AUC

pS RoF 87.7(0.03) 97.6(0.01) 0.97(0.01) 92.7(0.01) 0.92(0.01) 0.86(0.02) 0.93(0.01)
SVM 80.4(0.03) 99.6(0.01) 0.99(0.00) 90.0(0.02) 0.89(0.02) 0.82(0.03) 0.90(0.02)
RF 87.2(0.02) 97.4(0.01) 0.97(0.01) 92.3(0.01) 0.92(0.01) 0.85(0.02) 0.92(0.01)
AdaBoost 84.3(0.02) 85.7(0.01) 0.86(0.01) 85.0(0.00) 0.85(0.00) 0.70(0.00) 0.85(0.00)
GB 87.5(0.02) 92.2(0.01) 0.92(0.01) 89.9(0.01) 0.88(0.02) 0.80(0.03) 0.90(0.01)

pT RoF 79.4(0.02) 99.3(0.01) 0.99(0.01) 89.3(0.01) 0.88(0.01) 0.80(0.02) 0.89(0.01)
SVM 84.3(0.02) 87.5(0.01) 0.87(0.01) 85.9(0.01) 0.86(0.01) 0.72(0.01) 0.93(0.01)
RF 86.9(0.02) 97.0(0.01) 0.97(0.01) 91.9(0.01) 0.92(0.01) 0.84(0.02) 0.92(0.01)
AdaBoost 84.3(0.02) 87.5(0.01) 0.87(0.01) 85.9(0.01) 0.86(0.01) 0.72(0.01) 0.86(0.01)
GB 87.2(0.01) 91.3(0.02) 0.91(0.02) 89.2(0.02) 0.89(0.02) 0.76(0.04) 0.89(0.02)

pY RoF 75.2(0.03) 99.3(0.00) 0.99(0.00) 87.3(0.02) 0.86(0.02) 0.77(0.03) 0.87(0.02)
SVM 83.8(0.01) 95.7(0.01) 0.95(0.01) 89.7(0.01) 0.89(0.01) 0.80(0.02) 0.90(0.01)
RF 83.4(0.01) 95.2(0.01) 0.95(0.01) 89.3(0.01) 0.87(0.01) 0.79(0.02) 0.89(0.01)
AdaBoost 79.2(0.02) 80.1(0.01) 0.80(0.01) 79.6(0.01) 0.80(0.01) 0.59(0.02) 0.80(0.01)
GB 83.1(0.03) 86.4(0.03) 0.86(0.03) 84.6(0.02) 0.84(0.02) 0.70(0.03) 0.85(0.02)
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Fig. 5. ROC curves for different classifiers for (a) pS, (b) pT, and (c) pY sites
identifications on independent test.

Table 7
Comparison of our method and current predictors for pS site identification on
the independent test set.

Predictors Sn(%) Sp(%) Ac(%) McCC

NetPhosBac (Lee Miller et al., 2009) 31.2 67.8 65.1 —-0.01
MPSite (Md Hasan et al., 2019) 39.1 77.9 75 0.11
Proposed 90.0 92.1 91.0 0.82

Table 8
Comparison of our method and current predictors for pT site identification on
the independent test set

Predictors Sn(%) Sp(%) Ac(%) MCC

NetPhosBac (Lee Miller et al., 2009) 9.4 92.8 85.4 0.03
MPSite (Md Hasan et al., 2019) 58.3 75.7 74.2 0.22
Proposed 75.4 97.2 86.3 0.74
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scores on their test sets. However, though the models are trained on
different training sets, we have evaluated all the predictors on the same
independent test set; Hence the comparison is pretty fair. RotPhoPred as
a standalone predictor and all its source codes are publicly available at:
https://github.com/faisalahm3d/RotPredPho.

4. Conclusion

This paper presents a new microbial phosphorylation site predictor,
called RotPhoPred by integrating the structural information and
evolutionary bigram profile. We also use Rotation Forest as our
employed classifier, which to the best of our knowledge has never been
used for this task, to build RotPhoPred. Experimental results on the in-
dependent test set demonstrate that RotPhoPred performs better than
existing predictors found in the literature for both phospho-serin (pS)
and phospho-threonine (pT). Such results indicate that the structural
and evolutionary features provide significant discriminatory informa-
tion to enhance the microbial phosphorylation site prediction task.

We also compared the performance of RoF with other state-of-the-art
classifiers using the same set of features. The results demonstrate the
performance of using RoF over other classifiers for this task. In the
future, we aim at using deep learning models to predict microbial
phosphorylation sites more accurately. We also aim to develop a user-
friendly and robust web server to provide data interpretation ability
using graphical support. RotPhoPred as a standalone predictor and all its
source codes are publicly available at: https://github.com/faisalahm3d/
RotPredPho

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

References

Abdi, Hervé, Williams, Lynne J, 2010. Principal component analysis. Wiley Interdiscip.
Rev.: Comput. Stat. 2 (4), 433-459.

Ahmad, Md Wakil, Arafat, Md Easin, Taherzadeh, Ghazaleh, Sharma, Alok, Dipta,
Shubhashis Roy, Dehzangi, Abdollah, Shatabda, Swakkhar, 2020. Mal-light:
Enhancing lysine malonylation sites prediction problem using evolutionary-based
features. IEEE Access, 8:77888-77902.

Ahmed, Saeed, Kabir, Muhammad, Arif, Muhammad, Khan, Zaheer Ullah, Dong-Jun, Yu.,
2021. Deepppsite: a deep learning-based model for analysis and prediction of
phosphorylation sites using efficient sequence information. Anal. Biochem. 612,
113955.

Altschul, Stephen F., Madden, Thomas L., Schaffer, Alejandro A., Zhang, Jinghui,
Zhang, Zheng, Miller, Webb, Lipman, David J., 1997. Gapped blast and psi-blast: a
new generation of protein database search programs. Nucl. Acids Res. 25 (17),
3389-3402.

Biswas, Ashis Kumer, Noman, Nasimul, Sikder, Abdur Rahman, 2010. Machine learning
approach to predict protein phosphorylation sites by incorporating evolutionary
information. BMC Bioinform. 11 (1), 1-17.

Blom, Nikolaj, Gammeltoft, Steen, Brunak, Sgren, 1999. Sequence and structure-based
prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol. 294 (5),
1351-1362.

Bustamam, Alhadi, Musti, Mohamad I.S., Hartomo, Susilo, Aprilia, Shirley,
Tampubolon, Patuan P., Lestari, Dian, 2019. Performance of rotation forest ensemble
classifier and feature extractor in predicting protein interactions using amino acid
sequences. BMC genomics 20 (9), 1-13.

Chandra, Abel, Sharma, Alok, Dehzangi, Abdollah, Shigemizu, Daichi,

Tsunoda, Tatsuhiko, 2019. Bigram-pgk: phosphoglycerylation prediction using the
technique of bigram probabilities of position specific scoring matrix. BMC Mol. Cell
Biol. 20 (2), 1-9.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote:
synthetic minority over-sampling technique. Journal of artificial intelligence
research, 16:321-357, 2002.

Ann Chen, Yian, Eschrich, Steven A., 2014. Computational methods and opportunities for
phosphorylation network medicine. Transl. Cancer Res., 3(3):266.

Chen, Chi-Wei, Huang, Lan-Ying, Liao, Chia-Feng, Chang, Kai-Po, Chu, Yen-Wei, 2020.
Gasphos: protein phosphorylation site prediction using a new feature selection
approach with a ga-aided ant colony system. Int. J. Mol. Sci. 21 (21), 7891.

Chowdhury, Shahana Yasmin, Shatabda, Swakkhar, Dehzangi, Abdollah, 2017. idnaprot-
es: Identification of dna-binding proteins using evolutionary and structural features.
Scient. Reports 7 (1), 1-14.


http://refhub.elsevier.com/S0378-1119(22)00813-7/h0005
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0005
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0015
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0015
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0015
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0015
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0020
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0020
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0020
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0020
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0025
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0025
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0025
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0030
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0030
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0030
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0035
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0035
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0035
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0035
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0040
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0040
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0040
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0040
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0055
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0055
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0055
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0060
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0060
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0060

F. Ahmed et al.

Abdollah Dehzangi, Somnuk Phon-Amnuaisuk, Mahmoud Manafi, and Soodabeh Safa.
Using rotation forest for protein fold prediction problem: An empirical study. In
European Conference on Evolutionary Computation, Machine Learning and Data
Mining in Bioinformatics, pages 217-227. Springer, 2010.

Abdollah Dehzangi, Kuldip Paliwal, James Lyons, Alok Sharma, and Abdul Sattar.
Enhancing protein fold prediction accuracy using evolutionary and structural
features. In IAPR International Conference on Pattern Recognition in Bioinformatics,
pages 196-207. Springer, 2013.

Dehzangi, Abdollah, Sohrabi, Sohrab, Heffernan, Rhys, Sharma, Alok, Lyons, James,
Paliwal, Kuldip, Sattar, Abdul, 2015. Gram-positive and gram-negative subcellular
localization using rotation forest and physicochemical-based features. BMC
Bioinform. 16 (4), 1-8.

Abdollah Dehzangi, Yosvany Lopez, Sunil Pranit Lal, Ghazaleh Taherzadeh, Abdul Sattar,
Tatsuhiko Tsunoda, and Alok Sharma. Improving succinylation prediction accuracy
by incorporating the secondary structure via helix, strand and coil, and evolutionary
information from profile bigrams. PloS one, 13(2):e0191900, 2018.

Dou, Yongchao, Yao, Bo, Zhang, Chi, 2014. Phosphosvm: prediction of phosphorylation
sites by integrating various protein sequence attributes with a support vector
machine. Amino acids 46 (6), 1459-1469.

Gao, Jianjiong, Thelen, Jay J, Keith Dunker, A., Dong, Xu., 2010. Musite, a tool for global
prediction of general and kinase-specific phosphorylation sites. Mol. Cell. Proteom. 9
(12), 2586-2600.

Haibo He, Yang Bai, Edwardo A Garcia, and Shutao Li. Adasyn: Adaptive synthetic
sampling approach for imbalanced learning. In 2008 IEEE international joint
conference on neural networks (IEEE world congress on computational intelligence),
pages 1322-1328. IEEE, 2008.

Heffernan, Rhys, Paliwal, Kuldip, Lyons, James, Dehzangi, Abdollah, Sharma, Alok,
Wang, Jihua, Sattar, Abdul, Yang, Yuedong, Zhou, Yaoqi, 2015. Improving
prediction of secondary structure, local backbone angles and solvent accessible
surface area of proteins by iterative deep learning. Scient. Rep. 5 (1), 1-11.

Huang, Ying, Niu, Beifang, Gao, Ying, Limin, Fu., Li, Weizhong, 2010. Cd-hit suite: a web
server for clustering and comparing biological sequences. Bioinformatics 26 (5),
680-682.

Md Mofijul Islam, Sanjay Saha, Md Mahmudur Rahman, Swakkhar Shatabda, Dewan Md
Farid, and Abdollah Dehzangi. iprotgly-ss: Identifying protein glycation sites using
sequence and structure based features. Proteins: Structure, Function, and
Bioinformatics, 86(7), 777-789, 2018.

Jamal, Salma, Ali, Waseem, Nagpal, Priya, Grover, Abhinav, Grover, Sonam, 2021.
Predicting phosphorylation sites using machine learning by integrating the
sequence, structure, and functional information of proteins. J. Transl. Med. 19 (1),
1-11.

Martin Lee Miller, Boumediene Soufi, Carsten Jers, Nikolaj Blom, Boris Macek, and Ivan
Mijakovic. Netphosbac-a predictor for ser/thr phosphorylation sites in bacterial
proteins. Proteomics, 9(1), 116-125, 2009.

Li, Weizhong, Godzik, Adam, 2006. Cd-hit: a fast program for clustering and comparing
large sets of protein or nucleotide sequences. Bioinformatics 22 (13), 1658-1659.

Zhengpeng Li, Ping Wu, Yuanyuan Zhao, Zexian Liu, and Wei Zhao. Prediction of serine/
threonine phosphorylation sites in bacteria proteins. In Advance in Structural
Bioinformatics, pages 275-285. Springer, 2015.

Limin, Fu., Niu, Beifang, Zhu, Zhengwei, Sitao, Wu., Li, Weizhong, 2012. Cd-hit:
accelerated for clustering the next-generation sequencing data. Bioinformatics 28
(23), 3150-3152.

Loughery, Jayne, Meek, David, 2013. Switching on p53: an essential role for protein
phosphorylation? BioDiscovery 8, e8946.

Luo, Fenglin, Minghui Wang, Yu., Liu, Xing-Ming Zhao, Li, Ao, 2019. Deepphos:
prediction of protein phosphorylation sites with deep learning. Bioinformatics 35
(16), 2766-2773.

Inderjeet Mani and I Zhang. knn approach to unbalanced data distributions: a case study
involving information extraction. In Proceedings of workshop on learning from
imbalanced datasets, volume 126, pages 1-7. ICML, 2003.

10

Gene 851 (2023) 146993

Md Hasan, Md., Rashid, Mst Khatun, Kurata, Hiroyuki, et al., 2019. Computational
identification of microbial phosphorylation sites by the enhanced characteristics of
sequence information. Scient. Rep. 9 (1), 1-9.

Rashid, Md.M., Swakkhar Shatabda, Md., Hasan, Hiroyuki Kurata, et al., 2020. Recent
development of machine learning methods in microbial phosphorylation sites. Curr.
Genom. 21 (3), 194-203.

Hamendra Manhar Reddy, Alok Sharma, Abdollah Dehzangi, Daichi Shigemizu, Abel
Avitesh Chandra, and Tatushiko Tsunoda. Glystruct: glycation prediction using
structural properties of amino acid residues. BMC bioinformatics, 19(13):55-64,
2019.

Juan José Rodriguez, Ludmila I Kuncheva, and Carlos J Alonso. Rotation forest: A new
classifier ensemble method. IEEE transactions on pattern analysis and machine
intelligence, 28(10):1619-1630, 2006.

Shubhashis Roy Dipta, Ghazaleh Taherzadeh, MD Wakil Ahmad, MD Easin Arafat,
Swakkhar Shatabda, and Abdollah Dehzangi. Semal: Accurate protein malonylation
site predictor using structural and evolutionary information. Computers in biology
and medicine, 125:104022, 2020.

Sharma, Alok, Lyons, James, Dehzangi, Abdollah, Paliwal, Kuldip K., 2013. A feature
extraction technique using bi-gram probabilities of position specific scoring matrix
for protein fold recognition. J. Theoret. Biol. 320, 41-46.

Shatabda, Swakkhar, Saha, Sanjay, Sharma, Alok, Dehzangi, Abdollah, 2017. iphloc-es:
Identification of bacteriophage protein locations using evolutionary and structural
features. J. Theoret. Biol. 435, 229-237.

Ying Shi, Ying Zhang, Shaofeng Lin, Chenwei Wang, Jiagi Zhou, Di Peng, and Yu Xue.
dbpsp 2.0, an updated database of protein phosphorylation sites in prokaryotes.
Scientific Data, 7(1), 1-9, 2020.

Jiangning Song, Huilin Wang, Jiawei Wang, André Leier, Tatiana Marquez-Lago,
Bingjiao Yang, Ziding Zhang, Tatsuya Akutsu, Geoffrey I Webb, and Roger J Daly.
Phosphopredict: A bioinformatics tool for prediction of human kinase-specific
phosphorylation substrates and sites by integrating heterogeneous feature selection.
Scientific reports, 7(1):1-19, 2017.

Niraj Thapa, Meenal Chaudhari, Anthony A Iannetta, Clarence White, Kaushik Roy,
Robert Newman, Leslie M Hicks, and KC Dukka. Chlamy-enphossite: A deep
learning-based approach for chlamydomonas reinhardtii-specific phosphorylation
site prediction. 2021.

Ivan Tomek. Two modifications of cnn. 1976.

Trost, Brett, Kusalik, Anthony, 2011. Computational prediction of eukaryotic
phosphorylation sites. Bioinformatics 27 (21), 2927-2935.

Wang, Lei, You, Zhu-Hong, Yan, Xin, Xia, Shi-Xiong, Liu, Feng, Li, Li-Ping, Zhang, Wei,
Zhou, Yong, 2018. Using two-dimensional principal component analysis and rotation
forest for prediction of protein-protein interactions. Scient. Rep. 8 (1), 1-10.

Wang, Lei, You, Zhu-Hong, Chen, Xing, Yan, Xin, Liu, Gang, Zhang, Wei, 2018. Rfdt: A
rotation forest-based predictor for predicting drug-target interactions using drug
structure and protein sequence information. Curr. Protein Pept. Sci. 19 (5), 445-454.

Wang, Duolin, Liu, Dongpeng, Yuchi, Jiakang, He, Fei, Jiang, Yuexu, Cai, Siteng,

Li, Jingyi, Dong, Xu., 2020. Musitedeep: a deep-learning based webserver for protein
post-translational modification site prediction and visualization. Nucleic Acids Res.
48 (W1), W140-W146.

Wei, Leyi, Xing, Pengwei, Tang, Jijun, Zou, Quan, 2017. Phospred-rf: a novel sequence-
based predictor for phosphorylation sites using sequential information only. IEEE
Trans. Nanobiosci. 16 (4), 240-247.

Yuedong Yang, Rhys Heffernan, Kuldip Paliwal, James Lyons, Abdollah Dehzangi, Alok
Sharma, Jihua Wang, Abdul Sattar, and Yaoqi Zhou. Spider2: A package to predict
secondary structure, accessible surface area, and main-chain torsional angles by
deep neural networks. In Prediction of protein secondary structure, pages 55-63.
Springer, 2017.

You, Zhu-Hong, Li, Xiao, Chan, Keith C.C., 2017. An improved sequence-based prediction
protocol for protein-protein interactions using amino acids substitution matrix and
rotation forest ensemble classifiers. Neurocomputing 228, 277-282.

Zhang, Qing-bin, Kai, Yu., Liu, Zekun, Wang, Dawei, Zhao, Yuanyuan, Yin, Sanjun,
Liu, Zexian, 2018. Prediction of prkc-mediated protein serine/threonine
phosphorylation sites for bacteria. PloS one 13 (10), e0203840.


http://refhub.elsevier.com/S0378-1119(22)00813-7/h0075
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0075
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0075
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0075
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0085
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0085
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0085
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0090
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0090
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0090
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0100
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0100
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0100
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0100
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0105
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0105
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0105
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0115
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0115
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0115
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0115
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0125
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0125
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0135
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0135
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0135
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0140
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0140
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0145
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0145
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0145
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0155
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0155
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0155
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0160
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0160
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0160
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0180
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0180
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0180
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0185
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0185
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0185
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0210
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0210
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0215
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0215
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0215
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0220
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0220
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0220
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0225
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0225
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0225
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0225
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0230
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0230
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0230
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0240
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0240
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0240
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0245
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0245
http://refhub.elsevier.com/S0378-1119(22)00813-7/h0245

	Accurately predicting microbial phosphorylation sites using evolutionary and structural features
	1 Introduction
	2 Material and methods
	2.1 Benchmark datasets
	2.2 Features
	2.3 Formulation of peptide fragments for each site
	2.4 Evolutionary feature extraction
	2.5 Structural feature extraction
	2.6 Formation of feature vector
	2.7 Balancing dataset
	2.8 Classification model
	2.9 Validation scheme
	2.10 Evaluation metrics

	3 Results and discussion
	3.1 Feature significance analysis
	3.2 Comparison with different classifiers
	3.3 Comparison with current state-of-the-art predictors

	4 Conclusion
	Declaration of Competing Interest
	References


