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A B S T R A C T   

Post-translational modification (PTM) is a biological process involving a protein’s enzymatic changes after its 
translation by the ribosome. Phosphorylation is one of the most critical PTMs that occurs when a phosphate 
group interacts with an amino acid residue along protein sequence. It contributes to cell communication, DNA 
repair, and gene regulation. Predicting microbial phosphorylation sites can provide better understanding of host- 
pathogen interaction and the development of anti-microbial agents. Experimental methods such as mass spec
trometry are time-consuming, laborious, and expensive. This paper proposes a new approach, called RotPhoPred, 
for predicting phospho-serine (pS), phospho-threonine (pT), and phospho-tyrosine (pY) sites in the microbial 
organism by integrating evolutionary bigram profile with structural information and using Rotation Forest as the 
classification technique. To the best of our knowledge, our extracted features and employed classifier have never 
been utilized for this task. Comparative results demonstrate that the RotPhoPred surpasses its peers in terms of 
different metrics such as sensitivity (90.0%, 75.4% and 78.2%), specificity (92.1%, 97.2% and 94.7%), accuracy 
(91.0%, 86.3%, 86.4%), and MCC (0.82, 0.74 and 0.74) for pS, pT, and pY sites predictions, respectively. Rot
PhoPred as a standalone predictor and all its source codes are publicly available at: https://github.com/faisa
lahm3d/RotPredPho.   

1. Introduction 

Post-translational modification is a biological mechanism in which 
one or more amino acids of a protein interact with a specific molecular 
group after its translation process by the ribosome (Rashid et al., 2020). 
Phosphorylation is one of the most critical and common PTMs. It occurs 
when a phosphate group is added to an amino acid residue. It most 
commonly appears in serine (S), threonine(T), and tyrosine(Y). It also 
happens in arginine, lysine, and histidine residues to a lesser extent 
(Jamal et al., 2021). Phosphorylation plays an essential role in a wide 
range of cellular functions, including cell communication, DNA repair, 
and gene regulation in eukaryote and microbial organisms (Trost and 
Kusalik, 2011; Chen et al., 2020). Phosphorylation causes dysregulation 
of cell signalling mechanisms, which results in the development and 
progress of complex diseases like cancer (Chen and Eschrich, 2014). For 
example, p53 is a protein where multiple phosphorylation sites are 

observed to be responsible for tumor development (Loughery and Meek, 
2013). Identification of Phosphorylation in prokaryotes cells can pro
vide crucial information for a better understanding of host-pathogen 
interactions and the development of antimicrobial agents (Shi et al., 
2020). Liquid chromatography-tandem mass spectrometry (LC-MS/MS), 
radioactive chemical labelling, and western blotting are the most com
mon experimental methods for identifying PTMs, including phosphor
ylation. However, experimental approaches for detecting PTMs are 
time-consuming, tedious, expensive, and require a skilled workforce. 
Moreover, the number of protein sequences is increasing exponentially 
due to advanced sequencing technologies. Therefore, it is unfeasible to 
identify phosphorylation sites using experimental methods in the wet 
lab from such a massive protein database. Hence, there is a crucial de
mand for developing fast and accurate computational tools to identify 
phosphorylation sites. 

During the past few years, several machine learning-based predictors 
have been proposed to predict phosphorylation sites. The most 
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promising predictors are PhosPred-RF (Wei et al., 2017), PhosphoSVM 
(Dou et al., 2014), NetPhos (Blom et al., 1999), PRED (Biswas et al., 
2010), Musite (Gao et al., 2010). These methods have used features 
extracted from proteins’ primary sequence or secondary structure. For 
example, PhosPred-RF (Wei et al., 2017) and PhosphoSVM (Dou et al., 
2014) use sequence-based features, whereas PPRED (Biswas et al., 2010) 
uses evolutionary information to identify phosphorylation sites. 
Sequence and structural features are combined in NetPhos (Blom et al., 
1999) for independent and kinase-specific phosphorylation site predic
tion. PhosphoPredict (Song et al., 2017) integrates sequence-based and 
functional features to identify kinase-specific substrates and their cor
responding phosphorylation sites. They also used different classification 
techniques including support vector machines (SVM), Random Forests 
(RF), gradient boosting trees (GBT), and AdaBoost to build their models. 

More recently, several deep learning-based predictors have been 
proposed to predict Phosphorylation sites. Manual feature extraction is 
unnecessary for the deep learning-based approaches since they can 
automatically retrieve complicated patterns from protein sequences. 
MusiteDeep (Wang et al., 2020), DeepPPSite (Ahmed et al., 2021), 
DeepPhos (Luo et al., 2019), and Chlamy-EnPhosSite (Thapa and 
Chaudhari, 2021) are notable deep learning-based Phosphorylation site 
predictors. MusiteDeep uses one-hot encoding of protein sequence and 
convolutional neural network (CNN) with attention layer (Wang et al., 
2020). DeepPhos utilizes multi-layer CNN architecture consisting of 
densely connected convolutional blocks with different window and filter 
sizes (Luo et al., 2019). DeepPPsite is constructed using a stacked long- 
short-term memory recurrent network (Ahmed et al., 2021), whereas 
Chlamy-EnPhosSite is an ensemble-based organism-specific predictor 
developed by combining CNN and LSTM (Thapa and Chaudhari, 2021). 
DeepPPSite combines five distinct sequence-encoding approaches 
namely, sequence location information, amino acid composition de
scriptors, grouped-based features, and physicochemical property-based 
features. Unlike MisiteDeep and DeepPhos, where binary encoding is 
used, the embedding layer is employed in Chlamy-EnPhosSite to encode 
protein sequences. 

Among all these approaches, only four computational methods for 
predicting phosphorylation sites in microbial organisms are available to 
date. The initial two methods NetPhosBac (Lee Miller et al., 2009) and 
cPhosBac (Li et al., 2015), are bacteria-specific protein phosphorylation 
site predictors. The former is created by implementing an artificial 
neural network algorithm. The latter utilizes k-spaced amino acid pairs 
(KSAAP) composition for sequence encoding and SVM for classification. 
The predictors are trained on the same dataset, consisting of 152 
experimentally confirmed phosphorylated serine/threonine sites in 119 
substrates. The cPhosBac outperforms the NetPhosBac. On the other 
hand, prkC-PSP was proposed by Zhang et al. as a prkC-specific phos
phorylation site predictor (Zhang et al., 2018). It extracts amino acid 
location information-based features from the protein sequence and use 

SVM as the classification technique to distinguish probable prkC-specific 
phosphorylation sites. The dataset contains experimentally identified 36 
phosphorylation and 512 non-phosphorylation sites curated manually 
from the literature. In 2019, Mamun et al., developed a general micro
bial phosphorylation site predictor named MPsite by using enhanced 
characteristics of sequence as features and Random Forest as the clas
sification technique (Md Hasan et al., 2019). To build this model, they 
used Wilcoxon rank-sum test (WR) to select the optimal set of features. 
The dataset used in this study was collected from the dbPSP, consisting 
of 2045 pS sites in 1940 proteins and 2174 pT sites in 1534 proteins. 
MPsite shows more promising performance than the existing microbial 
phosphorylation site predictors. 

Despite all the efforts that have been made so far, there is still room 
for improving microbial phosphorylation site prediction accuracy. We 
have observed that only composition-based features were used in the 
previous studies to predict microbial phosphorylation sites. However, 
previous research on protein subcellular localization (Dehzangi et al., 
2015), bacteriophage protein identification (Shatabda et al., 2017), and 
protein succinylation and malonylation prediction (Roy Dipta et al., 
2020; Dehzangi et al., 2018) have shown that extracting structural and 
evolutionary information greatly improves prediction performance. 
Hence, we hypothesize that integrating these features can improve mi
crobial phosphorylation site prediction as well. 

In this study, we propose a new machine learning-based predictor 
called RotPhoPred to accurately predict phospho-serine (pS), phospho- 
threonine (pT), and phospho-tyrosine (pY) in the protein sequence of 
microbial organisms, which integrates both structural and evolutionary 
information. Our predictors coalesce predicted structural features and 
evolutionary bigram profiles to describe each peptide fragment in the 
dataset. We also use the NearMiss-3 undersampling technique to balance 
the dataset to avoid bias towards larger class set. Subsequently, we use 
Rotation Forest classifier which is an ensemble-based machine learning 
classifier to predict microbial phosphorylation on serine (S), threonine 
(T), and tyrosine (Y) residues. We then use 5-folds cross-validation and 
independent test set to assess the prediction performance of the pre
dictors. The overall flowchart of the proposed method is shown in Fig. 1. 

Our results show that RotPhoPred outperforms the existing pre
dictors (NetPhosBac and MPsite). It achieves 90.0%, 91.4%, 91.5%, and 
0.82, in terms of Sensitivity, Specificity, Accuracy, and Mathews cor
relation coefficient (MCC) for predicting pS sites, respectively. It also 
achieves 75.4%, 99.2%, 86.3%, and 0.74 in terms of sensitivity, speci
ficity accuracy, and MCC for predicting pT sites, respectively. The 
recorded sensitivity, specificity, accuracy, and MCC for the pY site 
prediction are 78.2%, 94.7%, 86.4%, and 0.74, respectively. Rot
PhoPred as a standalone predictor and all its source codes are publicly 
available at: https://github.com/faisalahm3d/RotPredPho. 

The significant contributions of this paper are as follows:  

1. The paper proposes the fusion of the evolutionary bigram profile 
with structural information as features and the utilization of Rotation 
Forest as the classifier for the first time for microbial phosphoryla
tion prediction.  

2. It is the first study for predicting microbial phospho-tyrosine (pY) 
sites. Previous studies focused only on phosphorylation prediction on 
serine (S) and threonine (T) residues.  

3. Our proposed predictor is generic, which can predict phospho-serine 
(pS), phospho-threonine (pT), and phospho-tyrosine (pY) sites 
applying the same feature and classifier. 

4. We have conducted extensive experiments on the benchmark data
sets of laboratory-verified phosphorylated sites to validate the 
effectiveness and applicability of the proposed predictor.  

5. The predictor can maintain an excellent balance between sensitivity 
and specificity in a highly imbalanced dataset, as apparent in the 
experimental results.  

6. We have publicly shared our dataset and model so that researchers 
can quickly reproduce the results for further experiments and 

Abbreviations list 

ASA acessible surface area 
CNN convolutional neural network 
MCC Mathews correlation coefficient 
GBT gradient boosting trees 
LC-MS/MS Liquid chromatography-tandem mass spectrometry 
PTM Post Translational Modifications 
pS phospho-serine 
pT phospho-threonine 
pY phospho-tyrosine 
SVM Support vector machines 
RF Random Forests 
WR Wilcoxon rank-sum test  
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biologists can easily access the predictor for the initial screening of 
phosphorylation sites. 

2. Material and methods 

In this section, we describe the benchmark dataset that is used in this 
study and present our proposed methodology to build RotPhoPred. 

2.1. Benchmark datasets 

We have collected the protein sequences with experimentally veri
fied pS, pT, and pY PTMs from the dbPSP database (Shi et al., 2020). The 
assembled dataset contains redundant proteins. To remove redundancy, 
we use CD-HIT to remove those proteins with over 40% sequential 
similarity (Limin et al., 2012; Li and Godzik, 2006; Huang et al., 2010). 
The final datasets contain 1483, 1220, and 1161 protein sequences for 
pS, pT, and pY PTMs, respectively. The pT dataset consists of a total 
36,513 instances with 2024 phosphorylated (positive) and 34489 no- 
phosphorylated (negative) sites. There are 26239 samples in the pT 
dataset, with 1647 positive and 24592 negative sites. The pY dataset 
comprises of total 17476 instances where 1644 are positive and 15832 
are negative. A summary of the datasets used in this study is given in 

Table 1. 
To avoid overfitted and assess the generality of our model, 10% of 

the datasets are used to form the independent test sets. The remaining 
90% of the datasets are used to train the classifiers (training dataset). 

2.2. Features 

To extract the evolutionary and structural information, the protein 
sequences from the benchmark dataset are fed to PSI-BLAST (Altschul 
et al., 1997) and SPIDER2 (Yang et al., 2017; Heffernan et al., 2015). 
Using PSI-BLAST, we generate position-specific scoring matrix (PSSM) 
file, and using SPIDER2, we generate an SPD file. The PSSM calculates 
the likelihood of replacing each protein’s amino acid with the other 20 
amino acids based on their location. On the other hand, the predicted 
secondary structure probabilities, accessible surface area (ASA), and 
torsion angles for each amino acid residue are described in the SPD file 
in matrix format. The evolutionary bigram profile and structural fea
tures are then constructed from the PSSM and SPD files. Later, the 
different feature groups extracted from PSSM and SPD files are com
bined to form a feature vector. After feature vectorization, we split the 
data into training and test sets. A NearMiss-3 under-sampling technique 
is then applied to the training set to address the imbalance issue while 
keeping the test data untouched (Mani and Zhang, 2003). 

2.3. Formulation of peptide fragments for each site 

In this study, we used a window-based approach to represent each 
positive or negative site. Each phosphorylation or non-phosphorylation 
site is described by a peptide fragment P of 2n + 1 residues with a S/T/Y 
in the center, n upstream residues at the right, and n downstream 

Fig. 1. The overall flowchart of the proposed method.  

Table 1 
The summary of the datasets for pS, pT, and pY identification problems.  

Tasks Total Sequences Positive Sites Negative Sites Positive: Negative 

pS 1483 2040 34489 1:17 
pT 1220 1647 24952 1:15 
pY 1161 1644 15832 1:10  
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residues at the left as follows: 

P = {A−n, A− (n−1), …, A−2, A−1, S/T/Y, A1, A2, …, A+(n−1), A+n} (1)  

where A−i and A+i represent the upstream and downstream amino acids 
respectively, and S, T, Y represents serine, threonine, and tyrosine, 
respectively. If n upstream or downstream residues are not available in 
the protein to describe the S/T/Y sites, the mirroring technique is used 
to fill the gap of missing amino acids as shown in Fig. 2. 

After analyzing the performance of different window sizes, we 
choose n = 10 since it exhibits the best performance. Fig. 2 demonstrates 
the overall windowing process for serine residue. 

2.4. Evolutionary feature extraction 

As it was mentioned earlier, we use PSSM to extract evolutionary 
information. We generated the PSSM for each protein sequence in our 
benchmark dataset by running the PSI-BLAST algorithm for three iter
ations on the non-redundant (nr) database provided by NCBI with a 
cutoff (E) value of 0.001. The PSSM is an Lx20 matrix, where L is the 
protein sequence’s length, and the 20 columns denote different amino 
acids of the genetic code. 

It was shown in previous studies that using bigram, we can extract 
important disciriminatory information for the classification task from 
PSSM for similar problems (Sharma et al., 2013; Roy Dipta et al., 2020; 
Dehzangi et al., 2018; Chandra et al., 2019; Ahmad et al., 2020). 
Moreover, bigram feature size is independent from the window. It ex
tracts a 400-dimensional feature vector to capture evolutionary infor
mation regardless of the number of upstream and downstream residues. 
As a result, we may expand the number of residues surrounding the S/T/ 
Y site without increasing the number of features. This study generates 
bigram probabilities for each protein segment to apprehend its evolu
tionary profile. To generate the bigram profile from the evolutionary 
information, the submatrix M for the peptide fragment P that describes a 
phosphorylated or non-phosphorylated site is segmented from the PSSM 
matrix. M is a W ∗ 20 dimensional matrix where W is the window size 
(W = 21 consisting of 10 upstream, 10 downstream, and one central S/ 
T/Y residue), as mentioned in Section 2.3. Each element mi,j of the 
matrix M represents the transitional probability of jth amino acid at the 

ith position in the peptide fragment P. Then the bigram profile of the 
submatrix is calculated using the following equation: 

Bp,q =
∑20

k=1
mk,pmk+1,q, where 1⩽p ≤ 20 and 1⩽p ≤ 20 (2)  

The resulting 20x20 dimensional matrix B represents the PSSM profile 
bigram of peptide fragment P. Subsequently, the matrix B is converted to 
a 400-dimensional row vector denoted by F1 as shown in Eq. 3. 

F1 = [B1,1, B1,2, ..., B1,20, B2,1, B2,2, ..., B2,20, ..., B20,1, B20,2, ..., B20,20] (3)  

2.5. Structural feature extraction 

Along with the evolutionary information, the structural properties of 
the protein have been shown to be effective to predict other PTMs 
(Dehzangi et al., 2018; Islam et al., 2018; Reddy et al., 2019; Dehzangi 
et al., 2013; Chowdhury et al., 2017; Roy Dipta et al., 2020). The pro
tein’s structural properties include secondary structures, accessible 
surface area (ASA), and torsion angles. 

The secondary structure depicts each amino acid residue in a number 
of distinct configurations, the most frequent of which are helix, sheet, 
and coil. Local backbone angles also define the local protein structures 
through torsion angles between neighboring amino acids. Unlike sec
ondary structure, which provides a coarse-grain description of local 
configuration in terms of 3 discrete shapes - coil, strand, or helix, local 
backbone angles give continuous information about the local structure 
concerning four angles. The four angles include two backbone torsion 
angles, ψ , and ϕ, which indicate the angles between atoms along the 
protein backbone, and dihedral angles θ and τ, which represent the 
rotation angles. The secondary structure and backbone angles describe 
which amino acids are more dissembled and prone to interact with other 
macromolecules. 

ASA measures how much an amino acid residue area is exposed to 
solvent (water) in a protein. The amino acid residue on the protein’s 
surface area has a high chance of undergoing PTMs. Hence, ASA is an 
essential structural property for phosphorylation prediction. As it was 
mentioned earlier, we used SPIDER2 to predict the values of the pa
rameters mentioned above for each amino acid residue in a protein 

Fig. 2. The representation of serine residue with its upstream and downstream amino acids. (a) Serine residue with enough neighbors on the upstream and 
downstream sides. (b) Serine residue with inadequate neighbors, either upstream or downstream. 
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sequence. SPIDER is a deep learning-based tool that achieves promising 
results for predicting secondary structure, backbone angles, and ASA 
from protein sequences (Yang et al., 2017; Heffernan et al., 2015). It 
produces a matrix of L ∗ 8 dimensions that contain the predicted values 
of eight structural properties (coil, strand, helix, ASA, ψ,ϕ,θ,τ) for each 
amino acid residue in a protein of length L. 

To capture the structural information of each peptide segment P in 
our dataset, we extract the submatrix A from the SPD file of the protein 
sequence that contains P and flattens it to form a row vector F2. The 
matrix A is W ∗ 8 dimensional, where W is the window size. We inves
tigated different values for window size which among them, using 21 for 
serine (S), threonine (T), and tyrosine (Y) demonstrates the best per
formance. Hence, A is a 21x8 dimensional matrix. The resultant row 
vector is 168 dimensional denoted by F2 as shown in Eq. 4. 

F2 = [B′
1,1, B′

1,2, ..., B′
1,8, B′

2,1, B′
2,2, ..., B′

2,8, ...B′
21,1, B′

21,2, ..., B′
21,8] (4)  

2.6. Formation of feature vector 

After extracting the bigram profile from PSSM and structural features 
from SPD, we integrate both feature groups to form a feature vector to 
predict microbial phosphorylation. The resultant 560 (400 + 168) 
dimensional feature vector captures the critical structural and evolu
tionary information essential to discriminating phosphorylated and non- 
phosphorylated sites. 

F = [B1,1, ..., B1,20, ..., B20,1, ..., B20,20, B′
1,1, ..., B′

1,8, ..., B′
21,1, ..., B′

21,8] (5)  

2.7. Balancing dataset 

The number of non-phosphorylated sites (negative samples) is 
greater than the number of phosphorylated sites (positive samples) in 
our benchmark datasets, as shown in Table 1. Such imbalance could 
influence any machine learning-based predictor to be biased towards the 
negative sample. Therefore, balancing the training dataset is critical for 
developing a bias-free predictor. Two main ways to balance the dataset 
are under-sampling and over-sampling. While the former keeps all 
samples in the rare class and reduces the abundant type, the latter in
crease the size of the infrequent category by generating artificial in
stances. This paper analyzes various balancing techniques from both 
under-sampling and over-sampling categories, including ADASYS (He 
et al., 2008), SMOTE (Chawla et al., 2002), Tomek Links (Tomek, 1976), 
and NearMiss (Mani and Zhang, 2003). Our results demonstrate that 
NearMiss-3 which is a down-sampling technique exhibited the best 
performance. Hence, we used the NearMiss-3 technique for balancing 
our training dataset. 

NearMiss-3 selects the given number of closet samples from the 
majority class (negative) for each instance in the minority class based on 
the Euclidean distance. Consequently, it picks the more information-rich 
non-phosphorylated sites, which are vital for designing a powerful de
cision boundary to differentiate phosphorylated and non- 
phosphorylated sites (Mani and Zhang, 2003). Moreover, it does not 
produce artificial samples thus minimizing the computational cost when 
fitting the model. We implemented NearMiss-3 to select one closet non- 
phosphorylated site for each phosphorylated site. As a result, the 
transformed training dataset includes an equal number of phosphory
lated and non-phosphorylated sites. Note that the balancing is not per
formed on the independent test set used to evaluate the performance of 
the model to avoid overfitting. 

2.8. Classification model 

In this study, to build RotPhoPred, we use Rotation Forest (RoF) 
algorithm since it exhibits encouraging performance in similar studies 
found in the literature (Dehzangi et al., 2015; Roy Dipta et al., 2020; 
Dehzangi et al., 2010; Bustamam et al., 2019; Wang et al., 2018; Wang 

et al., 2018; You et al., 2017). Rotation forest is an ensemble learning 
technique that trains N base classifiers separately in parallel and predicts 
class labels based on the majority of soft voting (Rodriguez et al., 2006). 
Unlike Random Forest that uses a random subset of features, the rotation 
forest uses a transformed feature space to build the individual base 
learner. To build each base classifier, it randomly splits the feature set 
into K subsets, and for each subset, a bootstrap sample of size 75% of the 
original dataset is drawn. Then the Principal Component Analysis (PCA) 
(Abdi and Williams, 2010) is then performed on the selected samples to 
transform the feature vector linearly, to enhance diversity among the 
base learners. Later, the K transformed feature subsets are combined to 
form a feature vector to train the base classifier. RoF utilizes decision 
trees as the base learners since they are accurate and sensitive to the 
rotation of the feature axes. In this study, we used the rotation_forest 
package available in python3 with 100 decision trees as base estimators 
as it was shown the effective number in previous studies (Dehzangi 
et al., 2015; Roy Dipta et al., 2020). The max_features parameter was set 
to ’auto’ and n_jobs, indicating the number of jobs to run parallel, was 
set to −1 to force the algorithm to use all the functional processors. 

2.9. Validation scheme 

A wide range of validation schemes, including the k-folds cross- 
validation and jack-knife test, are reported in the literature to evaluate 
the efficacy of machine learning-based predictors. In this paper, we have 
utilized the stratified 5-folds cross-validation to avoid overfitting and 
assess our performance with different parameter settings. The cross- 
validation is performed as follows:  

1. Divide the dataset into five disjoint folds of equal size by maintaining 
the percentage of instances from both classes in each fold.  

2. Fit the predictor on 4-folds, and evaluate its performance on the 
remaining fold via different metrics such as sensitivity, specificity 
accuracy, and MCC.  

3. Repeat step 2 five times and calculate each metric’s average. 

Fig. 3 graphically demonstrates the overall process of the 5-fold 
cross-validation scheme. 

2.10. Evaluation metrics 

To evaluate the performance of RotPhoPred, we use six metrics 
namely, Sensitivity (Sn), Specificity (Sp), Precision (Pr), Accuracy (Ac), 
F1 Measure (F1), Mathews’ correlation coefficient (MCC), and area 
under the ROC curves (AUC) to evaluate the performance of the pro
posed method. 

Sensitivity measures the predictor’s ability to identify phosphory
lated sites accurately. It quantifies how many phosphorylated sites the 
predictor can accurately detect out of the total number of phosphory
lated sites. Sensitivity ranges from 0 to 100 percent. The predictor 
detecting all phosphorylated sites will receive sensitivity of 100. 

Specificity assesses how well the predictor performs in detecting 
non-phosphorylated sites. Hence, it is the ratio of the total number of 
successfully identified non-phosphorylated sites by the predictor to the 
actual number of non-phosphorylated sites. The value of specificity can 
be between 0 to 100 percent. 

The predictor’s ability to discriminate between phosphorylated and 
non-phosphorylated sites is measured by accuracy. It summarizes the 
predictor’s overall performance with a single score. Accuracy ranges 
from 0% to 100%, with 100% indicating the most accurate prediction. 

Precision is the ratio of correctly predicted phosphorylated sites to all 
predicted phosphorylated sites by the model. 

F-Measure summarizes the sensitivity and precision through a single 
measure by computing their harmonic mean. The score reflects how well 
the predictor can balance the sensitivity and precision. It also ranges 
from 0 to 1, with 1 denoting perfect balance. It is the most common 

F. Ahmed et al.                                                                                                                                                                                                                                  



Gene 851 (2023) 146993

6

metric used to measure a model’s performance developed on an 
imbalanced dataset. 

Matthews correlation coefficient (MCC) is the most reliable statisti
cal metric for binary classifiers when both classes are of interest and the 
size differs. It considers the actual and predicted classes as two variables 
and calculates the correlation coefficient between them. It fluctuates 
from −1 to 1. The higher the correlation between actual and predicted 
classes, the better the prediction. MCC is 1 for the perfect predictor, 
indicating a perfect positive correlation. Conversely, when the predictor 
consistently makes incorrect predictions, the MCC value drops to −1, 
representing the perfect negative correlation. Respectively, MCC of 
0 represents no correlation. The Sn, Sp, Pr, Ac, F1, and MCC are calcu
lated as follows: 

Sn =
TP

TP + FN
(6)  

Sp =
TN

TN + FP
(7)  

Pr =
TP

TP + FP
(8)  

Ac =
TP + TN

TP + FN + FP + TN
(9)  

F1 =
2 ∗ Pr ∗ Sn

Pr + Sn
(10)  

MCC =
TP ∗ TN − FP ∗ FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TN + FN) ∗ (TP + FP) ∗ (TN + FP) ∗ (TP + FN)

√ (11)  

where, TP (True Positive) indicates the number of correctly identified 
phosphorylation sites, TN (True Negative) means the number of 
correctly identified non-phosphorylation sites, FP (False Positive) rep
resents the number of incorrectly identified non-phosphorylation sites as 
phosphorylated sites, and FN (False Negative) denotes the number of 
incorrectly identified phosphorylation sites as non-phosphorylated sites. 
We also used the Receiver Operating Characteristics (ROC) curve to 
evaluate the predictor’s performance graphically. ROC curve plots the 
true positive rate against the false-positive rate for different classifica
tion thresholds. The area under the ROC curve can also quantify the 
predictor’s performance. The higher the area under the ROC (AUC) 
value, the better the predictor. A perfect predictor will achieve the 
highest score in all of these metrics. 

3. Results and discussion 

In this section we present our results, compare them with previous 
studies, and discuss their significance. 

3.1. Feature significance analysis 

This section investigates the significance of extracted features in 
phosphorylation site prediction. Three sets of features namely struc
tural, evolutionary, and combination of both have been compared using 
the Rotation Forest classifier. The results achieved using the 5-folds 
cross-validation are presented in Table 2 for pS, pT, and pY, predic
tion tasks. As shown in this table, the evolutionary feature extracted 
from the PSSM achieves better results for the pS site prediction. In 
contrast, the structural feature provides more discriminatory informa
tion for pT and pY site identification. However, the best prediction 
performance in terms of sensitivity, specificity, precision, accuracy, and 
MCC is reported with integrated structural and evolutionary features. 
This pattern is consistent for all three predictors to identify phosphor
ylation on serine, threonine, and tyrosine residue. Such consistency 
justifies the significance of evolutionary and structural features in mi
crobial phosphorylation prediction. 

We also plot the ROC curves for structural, evolutionary, and com
bined features in predicting pS, pT, and pY sites using the independent 
test set. The plots are shown in Fig. 4. The curves illustrate that the best 
AUC values of 0.96, 0.90, and 0.91 are achieved respectively for pS, pT, 
and pY site prediction tasks when structural and evolutionary features 
are combined. 

We created another predictor by extracting the bigram profile from 
the structural and evolutionary peptide matrixes and training a rotation 
forest algorithm to examine how the structural information’s bigram 
profile influences the prediction performance. We named it StrucBi
gram. Table 3 compares StrucBigram with RotPhoPred on the inde
pendent test set for predicting pS, pT, and pY sites. The table shows that 
the performance degrades for all prediction tasks when the bigram 
feature of structural information is utilized, as indicated by the MCC 
scores of StrucBigram. RotPhosPred achieves the highest performance 
for the pS site prediction in all evaluation measures. While predicting pT 
and pY sites, although StrucBigram attains 13.5% and 3.8% better 
sensitivity, its performance in other metrics is significantly lower than 
RotPhosPred. StrucBigram fails to detect 17.5%, 17.6%, and 25.8% non- 
phosphorylated serine, threonine, and tyrosine sites, respectively. Be
sides, it misclassified many nonphosphorylated sites as phosphorylated 
sites, as apparent from the lower precisions of 0.29, 0.33, and 0.38 for 
the detection of pS, pT, and pY sites. The results also indicate that the 
StrucBigram predictor is biased towards the positive class. The possible 
cause behind such biases can be the minimization of features due to the 
bigram operation on structural information. While the bigram operation 
is performed, the structural features are reduced from 168 to 64. 
Consequently, RotPhosPred and StrucBigram are trained on the 568 and 
464 features, respectively. 

3.2. Comparison with different classifiers 

In this section, we analyze the performance of different machine 
learning algorithms for phosphorylation prediction. To do this, we use 

Fig. 3. Schematic overview of five folds cross-validation scheme.  
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five different classifiers namely, Rotation Forest (RoF), Support Vector 
Machine (SVM), Random Forest (RF), Gradient Boosting Tree (GBT), 
and Adaptive Boosting (AdaBoost). The hyperparameters of all the 
classifiers are tuned using cross-validation. We created the Rotation 
Forest exploiting the rotation-forest package available in python3 with 
100 decision trees as base estimators. The max features parameter was 
set to auto, and n jobs, indicating the number of jobs to run parallel, was 

set to −1 to force the algorithm to use all the functional processors. All 
other machine-learning algorithms are implemented using the scikit- 
learn package in Python. We used a polynomial kernel for SVM to make 
the samples linearly separable. Besides, set the regularization parameter 
c = 1, which optimizes the hyperplane’s margin and minimizes the 
misclassification of training data. The Gradient Boosting is executed for 
100 boosting stages to minimize the log loss with a learning rate of 0.1. 
The friedman mse splitting criterion was used to measure a split’s 
quality. A decision tree was used as the base estimator for adaptive 
boosting, which was constructed to execute up to 100 boosting itera
tions. Each classifier’s weight at each boosting iteration was set to 0.1 
via the hyperparameter learning rate. We built the random forest model 
with 100 decision trees and Gini-impurity splitting criteria by setting 
n estimator = 100 and criterion = gini, respectively. Other parameters of 
the classifiers are kept default as in the rotation-forest and scikit-learn 
packages. A summary of the hyperparameters settings of different ma
chine learning classifiers used in this study for comparison is shown in 
Table 4. 

For this experiment, we extracted the structural and evolutionary 
features from each site represented by 21 amino acid residue windows. 
The experiments using 5-folds cross-validation are shown in Table 5, 
where the mean values of different performance metrics are reported. 

Table 6 shows the independent test results for the various classifiers 
where the rotation forest (RoF) reporting the best MCC scores for all 
three predictors for recognizing pS, pT, and pY sites. 

The results shows that the RoF beats all the classifiers in sensitivity, 
accuracy, f1-measure, MCC, and AUC in pS sites identification. The 
specificity and precision of RoF are also reasonable since they are not 
significantly lower than the highest values achieved by SVM. 

For pT sites predictin task, RoF outperforms all other classifiers in all 
metrics except the sensitivity. While, Gradient boosting achieves the 
best sensitivity. However, the sensitivity (75.4%) of the RoF is still 
comparable to the best results. 

Among all the classifiers, RoF shows the highest specificity, preci
sion, accuracy, f1-measure, and AUC values of 94.7%, 0.93, 86.4%, 0.85, 
and 0.86 in predicting pY sites. It is also competitive in terms of sensi
tivity. Hence, we use this classifier to build RotPhoPred. 

Fig. 5 illustrates the ROC curves of different classifiers for predicting 
pS, pT, and pY sites on the independent test set. It can be seen from this 
figure that the AUC values of RoF in predicting pS, pT and pY sites are 
0.96, 0.90, and 0.89 respectively which are the highest among the 
classifiers. 

All these results demonstrate the effectiveness of RoF in predicting 
microbial phosphorylation sites. The secrete behind the superiority of 
RoF is its ability to do implicit feature selection and introduce diversity 
in each base classifier by feature transformation using PCA (Rodriguez 
et al., 2006; Abdi and Williams, 2010). 

3.3. Comparison with current state-of-the-art predictors 

In this section, we compare RotPhoPred with MPsite and NetPhosBac 
on the independent test set as the two best microbial phosphorylation 

Table 2 
Impact of different features on the prediction performance using 5-folds cross validation. The standard deviation among five folds for each metric is presented in the 
brackets. Bold items indicate the highest values.  

Task Features Sn(%) Sp(%) Pr Ac(%) F1 MCC AUC 

pS Combined 87.7(0.03) 97.6(0.01) 0.93(0.01) 92.7(0.01) 0.92(0.01) 0.86(0.02) 0.93(0.01)  
Evolutionary 81.1(0.03) 93.0(0.02) 0.92(0.02) 87.0(0.01) 0.86(0.01) 0.75(0.02) 0.87(0.01)  
Structural 81.1(0.02) 91.6(0.02) 0.91(0.02) 86.4(0.01) 0.86(0.01) 0.73(0.02) 0.86(0.01) 

pT Combined 79.4(0.02) 99.3(0.01) 0.99(0.01) 89.3(0.01) 0.88(0.01) 0.80(0.02) 0.89(0.01)  
Evolutionary 50.9(0.01) 98.9(0.01) 0.98(0.02) 74.9(0.01) 0.67(0.01) 0.57(0.02) 0.75(0.01)  
Structural 75.4(0.02) 97.8(0.01) 0.97(0.01) 86.6(0.01) 0.85(0.02) 0.75(0.02) 0.87(0.01) 

pY Combined 75.2(0.03) 99.3(0.01) 0.99(0.00) 87.3(0.02) 0.85(0.02) 0.77(0.03) 0.87(0.02)  
Evolutionary 54.2(0.03) 97.1(0.01) 0.95(0.02) 75.6(0.01) 0.69(0.02) 0.57(0.02) 0.76(0.01)  
Structural 67.7(0.02) 95.7(0.01) 0.94(0.01) 81.7(0.01) 0.79(0.01) 0.66(0.02) 0.82(0.01)  

Fig. 4. ROC curves for different feature groups for (a) pS, (b) pT, and (c) pT 
sites identifications on independent test. 
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cite predictors. To do this, we fed the independent test as fasta files to 
MPSite and NetPhosBac servers and collected the predicted result for 
each site on the dataset. Then, we characterized the performances of 
these predictors in terms of sensitivity, specificity, accuracy, and MCC. 
The same metrics are calculated for our method on the independent test 
set for a fair comparison. The comparative results for the phospho-serine 
(pS) site are given in Table 7. 

The results demonstrate that RotPhoPred outperforms both MPSite 
and NetPhosBac by achieving the highest sensitivity of 90.0%, speci
ficity of 92.1%, accuracy of 91.0%, and MCC of 0.82. In the phospho- 
threonine (pT) site, our method also performs better than MPSite and 
NetPhosBac in terms of sensitivity, specificity, accuracy, and MCC to a 
large margin, as shown in Table 8. As shown in this table, we enhance 
the pT performance by 17.1%, 21.5%, 12.1%, and 0.52 in terms of 
sensitivity, specificity, accuracy, and MCC compared to MPSite as the 
current best predictor. Since no work has been done to predict the 
phospho-tyrosine(pY) site, there is no scope to compare the performance 
of the proposed predictor. Moreover, the independent test set results are 
consistent with the 5-fold cross-validation approach for both pS and pT 

classifiers, demonstrating our proposed method’s robustness and gen
erality. It is important to note that the superiority of our proposed 
method comes from the integration of structural and evolutionary fea
tures and the use of the RoF classifier as it was discussed in prior 
sections. 

We carefully analyzed the reason behind the poor performances of 
NetPhosBac and MPSite on the independent test set. We observed that 
the NetPhosBac was trained on only 152 positive sites, which might 
overfit or underfit the model. On the other hand, the benchmark training 
dataset of MPsite was imbalanced with five times higher negative 
samples than the positive sample for both pS and pT sites. MPsite did not 
balance the training dataset like us using any imbalance treatment 
techniques, which may cause it to be biased toward the negative class. 
Besides, the test set of MPsite (the ratio of positive to negative sites is 
1:5) was not highly imbalanced like ours (the ratio of positive to nega
tive sites is 1:⩾15). Maybe because of these reasons, NetPhosBac and 
MPsite show low MCC scores on our independent test but competitive 

Table 3 
Impact of structural bigram profile in the prediction performance on the independent test set. Bold items indicate the highest values.  

Task Model Sn(%) Sp(%) Pr Ac(%) F1 MCC AUC 

pS RotPhoPred 90.0 92.1 0.92 91.0 0.91 0.82 0.96  
StrucBigram 88.5 82.5 0.29 83.0 0.44 0.45 0.86 

pT RotPhoPred 75.4 97.2 0.96 86.3 0.85 0.74 0.90  
StrucBigram 88.9 82.4 0.33 83.0 0.48 0.48 0.86 

pY RotPhoPred 78.2 94.7 0.94 86.4 0.85 0.74 0.89  
StrucBigram 82.0 74.2 0.38 75.5 0.52 0.43 0.78  

Table 4 
Hyper-parameters summary of different classifiers  

Classifiers Hyper-parameters 

Rotation Forset Base estimator  = Decision Tree  
Number of tree  = 100  
Maximum features = ‘auto’  
Number of jobs = −1 

Random Forest Number of tree: 100  
Splitting criteria: ‘gini’ 

Support Vector Machine Kernel: ‘polynomial’  
Regularization, C: 1.0 

Gradient Boosting Loss: ‘log_loss’  
Learning rate  = 0.1  
Splitting criteria = ’friedman_mse’  
Number of boosting stage  = 100 

Adaptive Boosting Base estimator  = Decision Tree  
Learning rate  = 0.1  
Maximum number of estimator  = 100  

Table 5 
Comparative results using different machine learning algorithm on 5 folds cross-validation. The standard deviation among five folds for each metric is presented in the 
brackets. Bold items indicate the highest values.  

Task Classifier Sn(%) Sp(%) Pr Ac(%) F1 MCC AUC 

pS RoF 87.7(0.03) 97.6(0.01) 0.97(0.01) 92.7(0.01) 0.92(0.01) 0.86(0.02) 0.93(0.01)  
SVM 80.4(0.03) 99.6(0.01) 0.99(0.00) 90.0(0.02) 0.89(0.02) 0.82(0.03) 0.90(0.02)  
RF 87.2(0.02) 97.4(0.01) 0.97(0.01) 92.3(0.01) 0.92(0.01) 0.85(0.02) 0.92(0.01)  
AdaBoost 84.3(0.02) 85.7(0.01) 0.86(0.01) 85.0(0.00) 0.85(0.00) 0.70(0.00) 0.85(0.00)  
GB 87.5(0.02) 92.2(0.01) 0.92(0.01) 89.9(0.01) 0.88(0.02) 0.80(0.03) 0.90(0.01) 

pT RoF 79.4(0.02) 99.3(0.01) 0.99(0.01) 89.3(0.01) 0.88(0.01) 0.80(0.02) 0.89(0.01)  
SVM 84.3(0.02) 87.5(0.01) 0.87(0.01) 85.9(0.01) 0.86(0.01) 0.72(0.01) 0.93(0.01)  
RF 86.9(0.02) 97.0(0.01) 0.97(0.01) 91.9(0.01) 0.92(0.01) 0.84(0.02) 0.92(0.01)  
AdaBoost 84.3(0.02) 87.5(0.01) 0.87(0.01) 85.9(0.01) 0.86(0.01) 0.72(0.01) 0.86(0.01)  
GB 87.2(0.01) 91.3(0.02) 0.91(0.02) 89.2(0.02) 0.89(0.02) 0.76(0.04) 0.89(0.02) 

pY RoF 75.2(0.03) 99.3(0.00) 0.99(0.00) 87.3(0.02) 0.86(0.02) 0.77(0.03) 0.87(0.02)  
SVM 83.8(0.01) 95.7(0.01) 0.95(0.01) 89.7(0.01) 0.89(0.01) 0.80(0.02) 0.90(0.01)  
RF 83.4(0.01) 95.2(0.01) 0.95(0.01) 89.3(0.01) 0.87(0.01) 0.79(0.02) 0.89(0.01)  
AdaBoost 79.2(0.02) 80.1(0.01) 0.80(0.01) 79.6(0.01) 0.80(0.01) 0.59(0.02) 0.80(0.01)  
GB 83.1(0.03) 86.4(0.03) 0.86(0.03) 84.6(0.02) 0.84(0.02) 0.70(0.03) 0.85(0.02)  

Table 6 
Comparative results using different machine learning algorithm on independent 
test.  

Task Classifier Sn 
(%) 

Sp 
(%) 

Pr Ac 
(%) 

F1 MCC AUC 

pS RoF 90.0 92.1 0.92 91.0 0.91 0.82 0.96  
SVM 79.4 99.4 0.99 89.4 0.88 0.80 0.96  
RF 88.8 92.4 0.92 90.6 0.90 0.81 0.96  
AdaBoost 87.6 76.8 0.79 82.2 0.83 0.65 0.90  
GB 90.6 79.7 0.82 85.1 0.86 0.71 0.93 

pT RoF 75.4 97.2 0.96 86.3 0.85 0.74 0.90  
SVM 82.9 86.5 0.86 84.7 0.84 0.69 0.91  
RF 82.5 84.1 0.84 83.3 0.83 0.67 0.90  
AdaBoost 79.8 72.2 0.74 76.0 0.77 0.52 0.82  
GB 83.7 78.6 0.80 81.2 0.82 0.62 0.89 

pY RoF 78.2 94.7 0.94 86.4 0.85 0.74 0.89  
SVM 85.6 73.2 0.76 79.4 0.81 0.59 0.89  
RF 87.3 70.8 0.75 79.0 0.81 0.59 0.89  
AdaBoost 83.8 65.5 0.71 74.6 0.77 0.50 0.78  
GB 86.6 66.9 0.72 76.8 0.79 0.55 0.87  
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scores on their test sets. However, though the models are trained on 
different training sets, we have evaluated all the predictors on the same 
independent test set; Hence the comparison is pretty fair. RotPhoPred as 
a standalone predictor and all its source codes are publicly available at: 
https://github.com/faisalahm3d/RotPredPho. 

4. Conclusion 

This paper presents a new microbial phosphorylation site predictor, 
called RotPhoPred by integrating the structural information and 
evolutionary bigram profile. We also use Rotation Forest as our 
employed classifier, which to the best of our knowledge has never been 
used for this task, to build RotPhoPred. Experimental results on the in
dependent test set demonstrate that RotPhoPred performs better than 
existing predictors found in the literature for both phospho-serin (pS) 
and phospho-threonine (pT). Such results indicate that the structural 
and evolutionary features provide significant discriminatory informa
tion to enhance the microbial phosphorylation site prediction task. 

We also compared the performance of RoF with other state-of-the-art 
classifiers using the same set of features. The results demonstrate the 
performance of using RoF over other classifiers for this task. In the 
future, we aim at using deep learning models to predict microbial 
phosphorylation sites more accurately. We also aim to develop a user- 
friendly and robust web server to provide data interpretation ability 
using graphical support. RotPhoPred as a standalone predictor and all its 
source codes are publicly available at: https://github.com/faisalahm3d/ 
RotPredPho 
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