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A B S T R A C T

We establish that for any fixed horizon 𝛿 > 0, the solution of a nonlocal diffusion model with
a weakly singular kernel 𝑝𝛿 converges asymptotically to the solution of the corresponding
Fickian diffusion equation. The diffusion tensor of the Fickian equation is determined by
half of the covariance matrix, with 𝑝𝛿 serving as the probability density function. Numerical
experiments are performed to validate our findings. Additionally, we observe that the mean
square displacement of the nonlocal diffusion model exhibits a linear relationship with respect
to time 𝑡.

1. Introduction

Nonlocal models, exemplified by the nonlocal diffusion model [1–3] and the fractional diffusion equation [4–6], offer a powerful
framework for describing (anomalously) diffusive transport in the natural world. They overcome limitations inherent in classical
integer-order diffusion equations, providing a more comprehensive representation of these phenomena. The versatility of nonlocal
models allows them to tailor their form to the unique characteristics of the phenomena at hand. In this paper, we focus on the
nonlocal diffusion model

𝜕𝑢

𝜕𝑡
(𝑡,𝒙) = ∫𝐵𝛿 (𝒙)

𝑝𝛿(|𝒙 − 𝒚|)(𝑢(𝑡, 𝒚) − 𝑢(𝑡,𝒙)
)
𝑑𝒚 (𝑡,𝒙) ∈ R

+ × R
𝑑 ,

𝑢(0,𝒙) = 𝑢0(𝒙), 𝒙 ∈ R
𝑑 .

(1)

Here 𝑑 is the dimension of the space. The horizon 𝛿 > 0 defines the extent of nonlocal interactions. The neighborhood 𝐵𝛿(𝒙) ⊂ R
𝑑

represents the closed ball in the 𝑙𝛾 norm, denoted by | ⋅ |𝛾 with 1 ≤ 𝛾 ≤ ∞ [7]. This ball has a radius of 𝛿 and is centered at the
point 𝒙. Additionally, the kernel 𝑝𝛿(|𝒙|) is assumed to be a nonnegative function with compact support within 𝐵𝛿(𝟎).

The investigation into the asymptotic behavior of the nonlocal diffusion model and its connection with the integer-order
diffusion equation stands as a central theme in nonlocal diffusion model research. Previous studies in the literature have primarily
concentrated on understanding the behavior of the nonlocal diffusion model as 𝛿 tends to 0. Under appropriate assumptions regarding
the kernel 𝑝𝛿 , findings in [2] illustrate that as 𝛿 → 0, the nonlocal effect diminishes. Consequently, the nonlocal diffusion model
converges to the classical local differential equation in the local limit.

In this paper, we establish that for any fixed 𝛿 > 0, the solution of the nonlocal diffusion model (1) with a weakly singular kernel
𝑝𝛿 converges asymptotically to the solution of the corresponding Fickian diffusion equation. The diffusion tensor of the Fickian
equation is determined by half of the covariance matrix, with 𝑝𝛿 serving as the probability density function. The detailed analysis
is presented in Section 2. In Section 3, we conduct numerical experiments to validate our findings. Additionally, we observe that
the mean square displacement of the nonlocal diffusion model exhibits a linear relationship with respect to time 𝑡.
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2. Asymptotic analysis

The nonlocal diffusion model, denoted by (1), comprises a nonlocal spatial term alongside a first-order temporal differential
operator known for its exponentially decaying local behavior over time. Our current investigation aims to elucidate whether the
formally nonlocal spatial component within (1) demonstrates local or nonlocal behavior in space asymptotically. This endeavor
essentially boils down to discerning the tail behavior of 𝑢(𝑡,𝒙) as 𝒙 → ±∞. This task is tantamount to determining the behavior of
the Fourier transform of the probability density function (i.e., the normalized unknown variable 𝑢) in the phase plane as 𝒌 → 𝟎. To
facilitate this analysis, we introduce the Fourier transform for the function 𝜆(𝒙) [8,9]

𝜆̂(𝒌) ∶=  [𝜆](𝒌) ∶= ∫
R𝑑

𝜆(𝒙)𝑒−i𝒌⋅𝒙𝑑𝒙.

We expand the analysis in [9] by applying it to the nonlocal diffusion model (1). Let 𝑿 ∶= [𝑋1, 𝑋2,… , 𝑋𝑑 ]
⊤ be the random vector.

We are now in the position to proving the main result of this paper for the nonlocal diffusion model (1) in the following theorem.

Theorem 2.1. Assume that the kernel 𝑝𝛿(|𝒙|) in the nonlocal diffusion model (1) is weakly singular, i.e.,

∫𝐵𝛿 (𝟎)

𝑝𝛿(|𝒙|)𝑑𝒙 < ∞. (2)

Then for any fixed 𝛿 > 0, the nonlocal model (1) demonstrates asymptotic equivalence to the 𝑑-dimensional Fickian diffusion equation

𝜕𝑢

𝜕𝑡
(𝑡,𝒙) = ∇ ⋅ (𝐊∇𝑢(𝑡,𝒙)) (𝑡,𝒙) ∈ R

+ × R
𝑑 ,

𝑢(0,𝒙) = 𝑢0(𝒙) 𝒙 ∈ R
𝑑 .

(3)

Here the diffusion tensor 𝑲 is defined by

𝐊 ∶=
1

2
𝐶𝑜𝑣(𝑿) ∶=

1

2

⎡⎢⎢⎢⎣

E(𝑋2
1
) … E(𝑋1𝑋𝑑 )

⋮ … ⋮

E(𝑋1𝑋𝑑 ) … E(𝑋2
𝑑
)

⎤
⎥⎥⎥⎦
,

E(𝑋𝑖𝑋𝑗 ) ∶= ∫𝐵𝛿 (𝟎)

𝑥𝑖𝑥𝑗𝑝𝛿(𝒙)𝑑𝒙, 1 ≤ 𝑖, 𝑗 ≤ 𝑑.

(4)

Proof. We set 𝒛 ∶= 𝒙 − 𝒚, then the right-hand side of (1) can be rewritten as

𝐺(𝑡,𝒙) = ∫𝐵𝛿 (𝒙)

𝑝𝛿(|𝒙 − 𝒚|)(𝑢(𝑡, 𝒚) − 𝑢(𝑡,𝒙)
)
𝑑𝒚

= ∫𝐵𝛿 (𝟎)

𝑝𝛿(|𝒛|)
(
𝑢(𝑡,𝒙 − 𝒛) − 𝑢(𝑡,𝒙)

)
𝑑𝒛

= 𝑝𝛿(|𝒙|) ∗ 𝑢(𝑡,𝒙) −
(
∫𝐵𝛿 (𝟎)

𝑝𝛿(|𝒛|)𝑑𝒛
)
𝑢(𝑡,𝒙).

Take the Fourier transform of 𝐺 to obtain

𝐺̂(𝑡,𝒌) = 𝑝̂𝛿(𝒌)𝑢̂(𝑡,𝒌) −
(
∫𝐵𝛿 (𝟎)

𝑝𝛿(|𝒛|)𝑑𝒛
)
𝑢̂(𝑡,𝒌). (5)

We evaluate the Fourier transform 𝑝̂𝛿(𝒌) of the kernel 𝑝𝛿(𝒌) as follows

𝑝̂𝛿(𝒌) = ∫
R𝑑

𝑒−i𝒌⋅𝒙𝑝𝛿(|𝒙|)𝑑𝒙

= ∫𝐵𝛿 (𝟎)

(
1 − i𝒌 ⋅ 𝒙 +

(−i𝒌 ⋅ 𝒙)2

2
+ 𝑜

(
(𝒌 ⋅ 𝒙)2

))
𝑝𝛿(|𝒙|)𝑑𝒙.

(6)

As 𝑝𝛿(|𝒙|) is an even function of 𝒙, so

∫𝐵𝛿 (𝟎)

𝒌 ⋅ 𝒙𝑝𝛿(|𝒙|)𝑑𝒙 = 0. (7)

Furthermore, since 𝐵𝛿(𝟎) is compact, the assumption (2) ensures that the covariance matrix has finite entries. Using (7) in (6) we
obtain

𝑝̂𝛿(𝒌) = ∫𝐵𝛿 (𝟎)

𝑝𝛿(|𝒙|)𝑑𝒙 − 𝒌⊤𝑲𝒌 + 𝑜
(
𝒌⊤𝑲𝒌

)
. (8)

Substitute Eq. (8) into Eq. (5) to express the Fourier transform 𝐺̂(𝑡,𝒌) of 𝐺(𝑡,𝒙) as follows

𝐺̂(𝑡,𝒌) = −𝒌⊤𝑲𝒌𝑢̂(𝑡,𝒌) + 𝑜
(
𝒌⊤𝑲𝒌

)
𝑢̂(𝑡,𝒌). (9)
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Take the Fourier transform of the nonlocal diffusion model (1) and apply Eq. (9) to obtain

𝜕𝑢̂

𝜕𝑡
= −𝒌⊤𝑲𝒌𝑢̂(𝑡,𝒌) + 𝑜

(
𝒌⊤𝑲𝒌

)
𝑢̂(𝑡,𝒌). (10)

Again by looking at the lowest terms in (10) as 𝒌 → 𝟎, we obtain the diffusion limit satisfied by 𝑢̂(𝑡,𝒌) in the phase space [8,9]

𝜕𝑢̂

𝜕𝑡
= −𝒌⊤𝑲𝒌𝑢̂(𝑡,𝒌) = (i𝒌)⊤𝑲(i𝒌)𝑢̂(𝑡,𝒌). (11)

Take the inverse Fourier transform of Eq. (11) to recover the governing Fickian diffusion equation presented in problem (3). □

3. Numerical investigation

In this section, we conduct numerical experiments to validate that the nonlocal diffusion model represented by Eq. (1)
demonstrates Fickian diffusive tendencies asymptotically as 𝒙 approaches ±∞. To achieve this, we assess the mean square
displacement (MSD) concerning the solution 𝑢. It is widely recognized that Fickian diffusion, akin to microscopic Brownian motion,
manifests as linear temporal variation [8,9]:

𝑀𝑆𝐷(𝑡) ∶= ∫
R𝑑

|𝒙|2𝑢(𝑡,𝒙)𝑑𝒙 = 𝐶𝑡. (12)

Specifically, when the 𝑀𝑆𝐷(𝑡) exhibits a linear relationship with time, the associated nonlocal diffusion model defined by Eq. (1)
demonstrates Fickian diffusion behavior. Variations in the coefficient 𝐶 denote distinct diffusion rates.

In the numerical experiments, we utilize the collocation method [7] to perform numerical experiments aimed at investigating
the asymptotic behavior of solutions to the nonlocal diffusion model (1) in both one and two space dimensions. We consider both
Gaussian and power-law kernels. Subsequently, we compare these solutions with those of the corresponding Fickian diffusion Eq. (3),
employing a finite difference method for computation. This comparative analysis serves to validate the theoretical insights presented
in Section 2.

Hence, in order to support the findings in Section 2, we compare the𝑀𝑆𝐷(𝑡), defined in Eq. (12), for the solutions of the nonlocal
diffusion model (1), employing both Gaussian and power-law kernels, and the Fickian diffusion Eq. (3) to ascertain whether they
both exhibit linearity in time and so the Fickian diffusion or Brownian motion behavior.

3.1. Behavior of the one-dimensional nonlocal diffusion model

We perform numerical experiments for the one-dimensional nonlocal diffusion model (1), employing both Gaussian and power-
law kernels in Examples 1 and 2, respectively, and the Fickian diffusion Eq. (3). We choose the following Gaussian with 𝐷 = 5×10−3

to numerically approximate a Dirac delta initial data located at the origin at the initial time 𝑡 = 0

𝑢0(𝑥) =
1√
4𝜋𝐷

exp
−

𝑥2

4𝐷 𝑥 ∈ R.

Example 1 (One-dimensional Gaussian Kernel). The kernel is defined as

𝑝𝛿(|𝑥|) ∶=
⎧
⎪⎨⎪⎩

4

5
7
2

𝑒
−

𝑥2

2𝜎2

(
∫

𝛿

−𝛿

𝑥2𝑒
−

𝑥2

2𝜎2 𝑑𝑥

)−1

𝑥 ∈ [−𝛿, 𝛿],

0 elsewhere.

(13)

In this example simulation, we calculate solutions for the one-dimensional nonlocal diffusion model (1) with 𝛿 = 0.2 and 𝜎 = 0.02 in
(13). Subsequently, we compare these solutions with the solutions of the corresponding Fickian diffusion Eq. (3), where the diffusion
coefficient 𝑲 is determined by (4) which depends on the horizon 𝛿. Finally, we compute the mean square displacement 𝑀𝑆𝐷(𝑡) for
the solutions of the nonlocal diffusion model (1) and the Fickian diffusion Eq. (3). The numerical results are presented in Fig. 1.

We note a remarkable consistency between the solutions and the mean square displacement 𝑀𝑆𝐷(𝑡) of the nonlocal model (1)
and those of the corresponding Fickian diffusion Eq. (3). Notably, the mean square displacement 𝑀𝑆𝐷(𝑡) of the nonlocal model
exhibits a linear relationship with respect to time 𝑡, providing strong support for the theoretical findings.

Example 2 (One-Dimensional Weakly Singular Power-Law Kernel). The kernel is defined as 𝑝𝛿(|𝑥|) = |𝑥|−𝜎 for 𝑥 ∈ [−𝛿, 𝛿] or 0 elsewhere.
In this simulation example, we compute the solution for the one-dimensional nonlocal diffusion model (1) with 𝜎 = 0.5, and 𝛿 = 0.2.
The obtained solution is then compared with the solution of the corresponding Fickian diffusion Eq. (3), along with an analysis of
their mean square displacement 𝑀𝑆𝐷(𝑡). The numerical outcomes are depicted in Fig. 2.

Once again, we observe a consistency between the solutions and their respective 𝑀𝑆𝐷(𝑡) profiles. It is noteworthy to mention
a slight disparity between the solutions of the Fickian diffusion Eq. (3), specifically in the middle plot of the second row in Fig. 1
compared to the middle plot in Fig. 2. Despite employing the same horizon 𝛿 = 0.2 in Eq. (4), different kernels 𝑝𝛿(|𝑥|) are utilized.
The Gaussian kernel and the power-law kernel in (4) have different decaying rates, when truncated to the same domain [𝑥−𝛿, 𝑥+𝛿],
generate solutions with subtle differences. In summary, these findings once again strongly support the theoretical underpinnings.
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Fig. 1. Plots for Example 1: Left: The solution of the one-dimensional nonlocal diffusion model (1) with the Gaussian kernel specified in Example 1. Middle:
The solution of the Fickian diffusion Eq. (3). Right: Mean square displacement 𝑀𝑆𝐷(𝑡) of both solutions.

Fig. 2. Plots for Example 2: Left: The solution of the one-dimensional nonlocal diffusion model (1) with the weakly singular power-law kernel specified in
Example 2 with 𝜎 = 0.5. Middle: The solution of the Fickian diffusion Eq. (3). Right: Mean square displacement 𝑀𝑆𝐷(𝑡) of both solutions.

Fig. 3. Plots for Example 3: Left Column: Solutions of the two-dimensional nonlocal diffusion model (1) with the Gaussian kernel specified in Example 3. Middle
Column: Solutions of the Fickian diffusion Eq. (3). Right Column: Mean square displacement 𝑀𝑆𝐷(𝑡) of their solutions. First Row: 𝜎 = 0.02 and 𝛿 = 0.1. Second
Row: 𝜎 = 0.2 and 𝛿 = 1.

3.2. Behavior of the two-dimensional nonlocal diffusion model

We perform numerical experiments for the two-dimensional nonlocal diffusion model (1), employing both Gaussian and power-
law kernels in Examples 3 and 4, respectively, and the Fickian diffusion Eq. (3). As a mollification of the Dirac delta initial condition
located at the origin at the initial time 𝑡 = 0, we use the following two-dimensional Gaussian pulse as initial data

𝑢0(𝒙) =
1

2𝜋𝐷
exp

−
|𝒙|2

2
2𝐷 𝒙 ∈ R

2. (14)

Here | ⋅ |2 refers to the Euclidean norm in R
2.

Example 3 (Two-dimensional Gaussian Kernel). The kernel is defined as:

𝑝𝛿(|𝒙|) ∶=
⎧⎪⎨⎪⎩

5

2𝜋𝜎2
𝑒
−

|𝒙|2
2

2𝜎2 |𝒙|2 ≤ 𝛿,

0 elsewhere.

(15)

In this simulation example, we investigate solutions for the two-dimensional nonlocal diffusion model given by Eq. (1). We consider
two sets of parameters: 𝜎 = 0.02, 𝛿 = 0.1, and 𝜎 = 0.2, 𝛿 = 1 in (1) and (15). We select the neighborhood 𝐵𝛿(𝒙) as a closed disk
centered at 𝒙. The parameter 𝐷 = 10−4 is chosen in the initial data (14). Subsequently, we compare these solutions with those
of the corresponding Fickian diffusion Eq. (3), where the diffusion tensor 𝑲 is determined by (4) and depends on the horizon 𝛿.
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Fig. 4. Plots for Example 4: Left: The solution of the two-dimensional nonlocal diffusion model (1) with the weakly singular kernel specified in Example 4.
Middle: The solution of the Fickian diffusion Eq. (3). Right: Mean square displacement 𝑀𝑆𝐷(𝑡) of both solutions.

We compute the mean square displacement 𝑀𝑆𝐷(𝑡) for the solutions of the nonlocal diffusion model (1) and the Fickian diffusion
Eq. (3) with 𝛿 = 0.1 and 1, respectively.

Note that due to the page limitation of the manuscript, this set of examples represents the only instance where two different
horizon values of 𝛿 = 0.1 and 1 are considered. Nonetheless, the numerical results presented in Fig. 3 provide a representative
performance. These results again show a remarkable consistency between the solutions and the mean square displacement 𝑀𝑆𝐷(𝑡)

of the nonlocal model (1) and those of the corresponding Fickian diffusion Eq. (3), and offer substantial support for the theoretical
analysis.

Example 4 (Two-dimensional Weakly Singular Kernel). The two-dimensional weakly singular kernel is chosen in the separable form:

𝑝𝛿(|𝒙|) ∶=
⎧⎪⎨⎪⎩

1

|𝑥1|1∕2
1

|𝑥2|1∕2
|𝒙|∞ ≤ 𝛿,

0 elsewhere.

(16)

For simulation simplicity, we define the neighborhood 𝐵𝛿(𝒙) as a closed square parallel to the coordinate axes, with a side length
of 2𝛿, centered at 𝒙. It is a closed ‘‘ball’’ in the | ⋅ |∞ norm with a radius of 𝛿 = 0.2 as specified in (16).

𝐷 = 10−4 is chosen in (14). The solution for the two-dimensional nonlocal diffusion model (1) is computed with 𝛿 = 0.2, and is
compared with the solution of the Fickian diffusion Eq. (3). Additionally, we compute the mean square displacement 𝑀𝑆𝐷(𝑡) for
both the solutions of the nonlocal diffusion model (1) and the Fickian diffusion Eq. (3) with the same 𝛿 = 0.2.

The numerical findings depicted in Fig. 4 illustrate the close agreement between the solutions of the nonlocal diffusion model
(1) and of the Fickian diffusion Eq. (3). We note a subtle discrepancy between the slope of the 𝑀𝑆𝐷(𝑡) for the Fickian diffusion
equation and the nonlocal diffusion model. Note that the 𝑀𝑆𝐷(𝑡) for both solutions demonstrates a linear correlation with time 𝑡,
indicative of Fickian diffusion or Brownian motion. The slight discrepancy between the slopes of the 𝑀𝑆𝐷(𝑡) for the two models
indicates slightly different diffusion rates, which is expected to be attributed, in part, to the numerical errors due to the relatively
large jump of the kernel 𝑝𝛿(|𝒙|) across the boundary 𝜕𝐵𝛿(𝒙) and its lack of rotational invariance. This analysis underscores the
intricate dynamics captured by both models and highlights the nuanced influence of the chosen kernel function on their respective
behaviors.
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