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Probabilistic programs often trade accuracy for efficiency, and thus may, with a small probability, return

an incorrect result. It is important to obtain precise bounds for the probability of these errors, but existing

verification approaches have limitations that lead to error probability bounds that are excessively coarse, or

only apply to first-order programs. In this paper we present Eris, a higher-order separation logic for proving

error probability bounds for probabilistic programs written in an expressive higher-order language.

Our key novelty is the introduction of error credits, a separation logic resource that tracks an upper bound

on the probability that a program returns an erroneous result. By representing error bounds as a resource, we

recover the benefits of separation logic, including compositionality, modularity, and dependency between

errors and program terms, allowing for more precise specifications. Moreover, we enable novel reasoning

principles such as expectation-preserving error composition, amortized error reasoning, and error induction.

We illustrate the advantages of our approach by proving amortized error bounds on a range of examples,

including collision probabilities in hash functions, which allow us to write more modular specifications for

data structures that use them as clients. We also use our logic to prove correctness and almost-sure termination

of rejection sampling algorithms. All of our results have been mechanized in the Coq proof assistant using the

Iris separation logic framework and the Coquelicot real analysis library.
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1 Introduction
Randomness is an important tool in the design of efficient algorithms and data structures and

is widely used in many application domains, including cryptography and machine learning. In

many cases, probabilistic programs are only approximately correct because they admit unwanted

behaviors with low probability, usually as a trade-off for better performance.

One major class of randomized algorithms are so-called Monte Carlo algorithms; they admit

wrong results with small probability, but are usually much faster than their deterministic counter-

parts. For example, primality tests such asMiller-Rabin [Miller 1975; Rabin 1980] or Solovay-Strassen

[Solovay and Strassen 1977] are Monte Carlo algorithms: they check the divisibility of a potential

prime by a number of randomly selected candidates and answer in polynomial time with either

“probably prime” (which may happen for composite inputs with low probability) or with “certainly

composite”. The other major class are Las Vegas algorithms. These never return wrong results,

but their running time is a random variable which may take high values but generally with low

probability. For example, a rejection sampler searching for a “good” sample in a large sample space

might give up after a bounded number of iterations if no good sample can be found in time (Monte

Carlo) or continue searching indefinitely (Las Vegas).

The trade-off between efficiency and accuracy/termination is typically justified by observing that

the unwanted behavior occurs only with small probability. Establishing bounds on the probability

of these errors (from now on, “error bounds” ) is therefore an important prerequisite for the use of

Monte Carlo and Las Vegas algorithms. However, probabilistic reasoning is often counterintuitive

and when combined with reasoning about the complex state space of probabilistic programs, it

quickly becomes infeasible to manually establish error bounds for even moderately complicated

programs. To address this problem, probabilistic program logics offer a rigorous way to establish

trust in the correctness of randomized programs. For randomized first-order WHILE programs,

the approximate Hoare logic (aHL) of Barthe et al. [2016b] provides a convenient way to over-

approximate the error behavior of an algorithm. Formally, aHL judgments are annotated with

an “error budget” 𝜀. The judgment ⊢𝜀 {𝑃} 𝑐 {𝑄} means that when the precondition 𝑃 holds, the

probability that the postcondition 𝑄 is violated after executing 𝑐 is at most 𝜀. The logic supports

local reasoning through union bounds:1 the error of a sequence of commands 𝑐1; 𝑐2 is bounded by

𝜀1 + 𝜀2 if 𝑐1 (resp. 𝑐2) has error 𝜀1 (resp. 𝜀2) when considered in isolation. This principle is formalized

in the rule for sequential composition:

⊢𝜀1 {𝑃} 𝑐1 {𝑄} ⊢𝜀2 {𝑄} 𝑐2 {𝑅}
⊢𝜀1+𝜀2 {𝑃} 𝑐1; 𝑐2 {𝑅}

aHL seq

Subsequent work [Aguirre et al. 2021; Sato et al. 2019] develops a higher-order union bound logic

(HO-UBL) for a monadic presentation of a probabilistic λ-calculus without recursion.
However, by baking the error bounds into the judgmental structure of the logic rather than

treating them as ordinary propositions, these works on approximate correctness forego some of

the ability to reason about errors in a modular way. For instance, an error bound in aHL [Barthe

et al. 2016b] cannot depend on a program term, and HO-UBL [Aguirre et al. 2021, §4.1] cannot

prove the expected approximate higher-order specifications for simple functions such as List.iter
because the error is a part of the judgement, and not a first class proposition which may itself occur

in, e.g., a pre- or postcondition.
Furthermore, reasoning about composition via union bounds over-approximates error and

can produce excessively coarse bounds when errors are not independent. Specifically, the union

1
The principle behind union bounds is also known as “Boole’s inequality”.
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bound for two events 𝐴 and 𝐵 bounds the probability Pr[𝐴 ∨ 𝐵 ] = Pr[𝐴] + Pr[𝐵 ] − Pr[𝐴 ∧ 𝐵 ] by
Pr[𝐴] + Pr[𝐵 ], thereby losing precision when Pr[𝐴 ∧ 𝐵 ] is large.

In this paper, we present Eris: a higher-order separation logic with support for advanced reasoning

principles for proving bounds on the probabilities of errors for programs written in λrand
ref

, an

expressive ML-like language with random sampling, full recursion, higher-order functions, and

higher-order store. Inspired by time credits [Atkey 2011; Charguéraud and Pottier 2019; Mével et al.

2019] to reason about cost as a resource, we introduce and develop error credits. Ownership of 𝜀

error credits is a first-class proposition in Eris, written E (𝜀) (read: “up to 𝜀”), and proving an Eris

specification ⊢ {𝑃 ∗ E (𝜀)} 𝑒 {𝑄} intuitively means: “if 𝑃 holds then the probability of 𝑒 crashing or

returning a result that violates 𝑄 is at most 𝜀”.

The resource approach affords Eris great flexibility: if we own an error credit E (𝜀), we can choose

to spend it however suits our proof. We can “pay” for an operation which fails with probability 𝜀,

store it in an invariant describing a probabilistic data structure, frame it away during a function

call to keep it for later, or split it into any number of credits E (𝜀1) , . . . , E (𝜀𝑛) so long as we stay

below the initial error budget, i.e.
∑𝑛
𝑖=1 𝜀𝑖 ≤ 𝜀.

We now proceed to outline how Eris addresses the two limitations of prior work mentioned

above (lack of modularity and conservative error bounds), and afterwards we explain how the error

credits of Eris also support a novel form of reasoning about amortized error bounds for randomized

data structures. Finally, we give an overview of how error credits in a total correctness version of

Eris can be used to prove almost-sure termination of Las Vegas algorithms.

Modular specifications of higher-order programs. Eris can be used to give modular specifi-

cations to higher-order functions. For a concrete example, consider the specification below for a

(parallel) iterator function List.iter, which is just the standard specification one would prove in a

non-probabilistic setting. In the precondition, the first line states that the argument 𝑙 is program-

level representation for the mathematical sequence of values 𝑥𝑠 . Then, the second line assumes a

specification for the function 𝑒 to be iterated over the list: for each argument 𝑥 , 𝑒 takes 𝑃 (𝑥) as a
precondition and returns𝑄 (𝑥) as a postcondition. The last line states that the precondition 𝑃 holds

for each 𝑥 in the list 𝑥𝑠 . Finally, the postcondition states that 𝑄 holds for each 𝑥 in 𝑥𝑠 .
isList 𝑥𝑠 𝑙 ∗

∀𝑥 . {𝑃 (𝑥)} 𝑒 𝑥 {𝑄 (𝑥)} ∗
∗𝑥∈𝑥𝑠 𝑃 (𝑥)

 List.iter 𝑒 𝑙

{∗
𝑥∈𝑥𝑠

𝑄 (𝑥)
}

By instantiating the higher-order specification, we can reason in a setting in which the specifi-

cation of 𝑒 only holds up to some error bound as shown below. Now, the second line states that

assuming that the precondition 𝑅(𝑥) holds, the postcondition 𝑄 (𝑥) will hold except with some

error probability E(𝑥). Notably, the error can depend on the value of the argument 𝑥 . The third

line requires that the user of the List.iter has have enough error credits to “pay” for each call to 𝑒 .
isList 𝑥𝑠 𝑙 ∗

∀𝑥 .
{
𝑅(𝑥) ∗ E (E(𝑥))

}
𝑒 𝑥 {𝑄 (𝑥)} ∗

∗𝑥∈𝑥𝑠 (𝑅(𝑥) ∗ E (E(𝑥)))
 List.iter 𝑒 𝑙

{∗
𝑥∈𝑥𝑠

𝑄 (𝑥)
}

It is noteworthy that by treating error as a resource, the version with error credits can be derived
from the standard version by instantiating 𝑃 (𝑥) to be 𝑅(𝑥) ∗ E (E(𝑥)). The specification of List.iter
does not need to be reproven and the probabilistic version just becomes a special case.

More precise error bounds via expectation-preserving composition. In addition to bringing
union-bound reasoning in the style of Aguirre et al. [2021]; Barthe et al. [2016b]; Sato et al. [2019] to
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a richer programming language, Eris supports a novel form of reasoning about errors in expectation,
which leads to more precise error bounds. This feature hinges on two observations.

The first observation is a simple but useful consequence of treating errors bounds as separation

logic resources: as mentioned above, error bounds can depend on values of computations. Concretely,

consider the following instantiation of the so-called bind rule:

⊢ {𝑃 ∗ E (𝜀1)} 𝑒1 {𝑥 . E (E2 (𝑥)) ∗ 𝑄} ⊢ ∀𝑥 . {𝑄 ∗ E (E2 (𝑥))} 𝑒2 {𝑅}
⊢ {𝑃 ∗ E (𝜀1)} let 𝑥 = 𝑒1 in 𝑒2 {𝑅}

ht-bind-exp

The rule expresses that starting with 𝜀1 credits to begin with, if all evaluations of 𝑒1 leave enough

credits E2 (𝑥) to verify the continuation 𝑅, then 𝜀1 credits suffice to verify the entire let expression.
Recall that the 𝑥 . in the postcondition of 𝑒1 acts as a binder that captures the return value of the

computation. By this rule, Eris supports value-dependent error composition: in different branches of

𝑒2 we can spend different amounts of credits depending on 𝑥 , giving us a more precise error bound

than the maximum error across all cases. We present a concrete example of this phenomenon in §3.

The second observation is that, whenever the program takes a step and we initially have 𝜀1
credits, then we can split our 𝜀1 error credits across all possible branches as a weighted sum
according to the probability of each branch. For example, if we sample 𝑖 uniformly from the set

{0, . . . , 𝑁 }, and moreover we know that any continuation needs E2 (𝑖) credits, then it suffices to

have E[E2 ] =
∑𝑁
𝑖=0 E2 (𝑖)/(𝑁 + 1) credits at the start. This is captured formally in the proof rule

for the random sampling operation shown below:∑𝑁
𝑖=0

E2 (𝑖)
𝑁 + 1 = 𝜀1

⊢ {E (𝜀1)} rand𝑁 {𝑛. E (E2 (𝑛))}
ht-rand-exp

To put the two observations to use, let us consider a concrete example of a composite computation

for which we get more precise error bounds than would be possible in previous work:{
∀𝑥 . {𝜀} 𝑒 0 {True} ∗

E
(
𝜀 · 𝐾

2

) }
let 𝑛 = rand𝐾 in
let 𝑙 = List.make 0 𝑛 in List.iter 𝑒 𝑙

{True}

Here we intend List.make 0 𝑛 to construct a list of zeros of length 𝑛, where 𝑛 is sampled uniformly

from the set {0, . . . , 𝐾}, and that 𝑒 is a function to be iterated, such that it with the argument 0

requires 𝜀 credits to execute safely (i.e. without crashing). Using the ht-bind-exp rule, we can then

prove that the composed program executes safely if we have 𝜀 · 𝐾
2
credits in our precondition and

set E2 (𝑛) = 𝑛 · 𝜀 in the postcondition of rand𝐾 . By the specification of List.iter we will need E (𝜀)
for every element of the list we iterate over, that is E (𝜀 · 𝑛) for a list of length 𝑛. Note that 𝜀 · 𝐾

2
is

precisely the expected value of E2, and in combination, the two observations mean that we obtain

a form of expectation-preserving composition. We further discuss these rules in §3.

Amortized error bounds. By representing error bounds as a resource, Eris not only addresses

the limitations of prior work mentioned above, but also supports reasoning about amortized error
bounds for operations of randomized data structures. Inspired by the work on type-based resource

analysis of Hofmann and Jost [2003], Atkey [2011] pioneered the use of “time credits” to reason

about amortized time complexity in separation logic, and the idea was subsequently extended

and formalized in different separation logics [Charguéraud and Pottier 2019; Mével et al. 2019].

Our use of error credits in turn allows us to give modular, amortized specifications of randomized

data structures which hide implementation details such as the timing of “costly” (i.e. error-prone)
internal operations. In §4 we present several case studies that demonstrate how Eris supports

modular reasoning about amortized error bounds.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 246. Publication date: August 2024.
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Almost-sure termination using error credits. So far, we have implicitly considered a partial

correctness interpretation of the Eris Hoare triples. In particular, this means that a divergent

program trivially satisfies any Hoare triple; in Eris this can be proven using so-called guarded

recursion/Löb induction. This proof principle is sound in Eris because the semantics of Hoare

triples is defined using a guarded fixed point. Now, an interesting observation is that we can easily

make a “total-correctness” version of Eris called Eris𝑡 by instead defining the semantics of Hoare

triples as a least fixed point. Because of the approximate up-to-error interpretation of Hoare triples

this yields an “approximate total-correctness” interpretation: a Hoare triple with 𝜀 credits in the

precondition bounds the probability of never reaching a value satisfying the postcondition, which

includes both the possibility of not satisfying the postcondition and the possibility of diverging. In

particular, the probability of termination is at least 1− 𝜀. In turn, if we can show a total Hoare triple

for an arbitrary error bound 𝜀, then we can conclude that it holds when 𝜀 becomes vanishingly

small and thus that the program almost-surely terminates, i.e. it terminates with probability 1. We

state and prove these properties more formally in §5 and §6; the soundness of this approach relies

on a continuity argument for the semantics. To the best of our knowledge, this argument and the

approach of showing almost-sure termination via error credits is novel. We demonstrate in §5.2 how

it can be used to prove correctness of several Las Vegas algorithms, including rejection samplers.

Contributions. To summarize, we provide:

• The first probabilistic higher-order separation logic, Eris, for modular approximate reasoning

(up-to-errors) about probabilistic programs written in λrand
ref

, a randomized higher-order

language with higher-order references.

• A resourceful account of errors which allows for more precise accounting of error bounds via

value-dependent and expectation-preserving composition, and for reasoning about a richer

class of properties, in particular amortized error bounds.

• A total correctness version of Eris, which can be used to establish lower bounds on probabilities
of program behaviors and thus to prove almost-sure termination.

• A substantial collection of case studies which demonstrate how the proof principles mentioned

work in practice.

• All of the results in this paper have been mechanized (see [Aguirre et al. 2024]) in the Coq

proof assistant, building on the Iris separation logic framework [Jung et al. 2016, 2018, 2015a;

Krebbers et al. 2017] and the Coquelicot real analysis library [Boldo et al. 2015].

Outline. In §2 we recall some preliminaries and define the operational semantics of λrand
ref

. We

then introduce Eris in §3. We demonstrate how to use Eris on a range of case studies, focusing on

amortized error bounds, in §4. Afterwards, in §5 we describe how a total version Eris𝑡 of Eris can

be used to reason about almost-sure termination via error credits; the section includes a number

of case studies (and more can be found in the long version of the paper
2
). Then we present the

model of Eris in §6 and sketch how the model is used to prove soundness and adequacy of the

logics. Finally, we discuss related work in §7 and conclude and discuss future work in §8.

2 Preliminaries and the Language λrand
ref

In §2.1 we first recall elements of discrete probability theory required to define the semantics of our

probabilistic language λrand
ref

and introduce the definitions we use to express approximate reasoning.

We subsequently define the syntax and operational semantics of λrand
ref

in §2.2.

2
A full version of the paper with appendix can be found at https://arxiv.org/pdf/2404.14223
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2.1 Probabilities and Programs
As a first approximation, one might expect the execution of a randomized program 𝑒 to produce a

(discrete) probability distribution on values. However, since programs may not terminate, programs

might not induce proper distributions, but rather subdistributions, whose total mass is upper-bounded

by 1, but may be lower.

Definition 1 (Mass). Let R≥0 denote the non-negative real numbers. For a countable set 𝑋 , the
mass of a function 𝑓 : 𝑋 → R≥0 is given by |𝑓 | = ∑

𝑥∈𝑋 𝑓 (𝑥) if this sum is finite.

Definition 2 (Subdistribution). A (discrete) probability subdistribution on a countable set 𝑋
is a function 𝜇 : 𝑋 → [0, 1] such that |𝜇 | ≤ 1. We say that 𝜇 is a proper probability distribution if
|𝜇 | = 1. We write D(𝑋 ) for the set of all subdistributions on 𝑋 .
We simply write distribution to mean “discrete probability subdistribution” in the remainder of

the paper. Unless otherwise specified, the variable 𝜇 denotes a distribution, and 𝑋 or 𝑌 a countable

set, typically the set of values, expressions, or configurations of λrand
ref

.

Lemma 3 (Probability Monad). Let 𝜇 ∈ D(𝑋 ), 𝑥 ∈ 𝑋 , and 𝑓 : 𝑋 → D(𝑌 ). Then
(1) bind(𝑓 , 𝜇) (𝑦) ≜ ∑

𝑥∈𝑋 𝜇 (𝑥) · 𝑓 (𝑥) (𝑦)

(2) ret(𝑥) (𝑥 ′) ≜
{
1 if 𝑥 = 𝑥 ′

0 otherwise

gives a monadic structure to D. We write 𝜇 ≫= 𝑓 for bind(𝑓 , 𝜇).
Definition 4 (Restriction). Let 𝑃 be a predicate on 𝑋 . The restriction of 𝜇 to 𝑃 is given by:

𝜇 |𝑃 (𝑥) =
{
𝜇 (𝑥) if 𝑃 (𝑥) holds,
0 otherwise.

Definition 5 (Probability of a Predicate). The probability of a predicate 𝑃 with respect to 𝜇,
written as Pr𝜇 [𝑃 ], is the total probability mass of 𝜇 satisfying 𝑃 , i.e. Pr𝜇 [𝑃 ] = |𝜇 |𝑃 |.

2.2 Language Definition and Operational Semantics
The syntax of λrand

ref
, the language we consider in this paper, is defined by the grammar below.

𝑣,𝑤 ∈Val ::= 𝑧 ∈ Z | 𝑏 ∈ B | () | ℓ ∈ Loc | rec f x = 𝑒 | (𝑣,𝑤) | inl 𝑣 | inr 𝑣
𝑒 ∈ Expr ::= 𝑣 | x | rec f x = 𝑒 | 𝑒1 𝑒2 | 𝑒1 + 𝑒2 | 𝑒1 − 𝑒2 | . . . | if 𝑒 then 𝑒1 else 𝑒2 |

(𝑒1, 𝑒2) | fst 𝑒 | snd 𝑒 | inl(𝑒) | inr(𝑒) | match 𝑒 with inl 𝑣 ⇒ 𝑒1 | inr𝑤 ⇒ 𝑒2 end |
allocn 𝑒1 𝑒2 | ! 𝑒 | 𝑒1 ← 𝑒2 | rand 𝑒

𝐾 ∈ Ectx ::= − | 𝑒 𝐾 | 𝐾 𝑣 | allocn𝐾 | !𝐾 | 𝑒 ← 𝐾 | 𝐾 ← 𝑣 | rand𝐾 | . . .

𝜎 ∈ State ≜ (Loc fin−⇀Val) 𝜌 ∈ Cfg ≜ Expr × State
The term language is mostly standard: allocn 𝑒1 𝑒2 allocates a new array of length 𝑒1 with each cell

containing the value returned by 𝑒2, ! 𝑒 dereferences the location 𝑒 evaluates to, and 𝑒1 ← 𝑒2 assigns

the result of evaluating 𝑒2 to the location that 𝑒1 evaluates to. We introduce syntactic sugar for

lambda abstractions 𝜆𝑥 . 𝑒 defined as rec _ 𝑥 = 𝑒 , let-bindings let 𝑥 = 𝑒1 in 𝑒2 defined as (𝜆𝑥. 𝑒2) 𝑒1,
sequencing 𝑒1; 𝑒2 defined as let _ = 𝑒1 in 𝑒2, and references ref 𝑒 defined as allocn 𝑒 1. We write 𝑙 [𝑏]
as sugar for offsetting location 𝑙 by 𝑏, defined as (𝑙 + 𝑏).

Our language matches that of Clutch [Gregersen et al. 2024], modulo the minor difference that

we add arrays.
3
States in λrand

ref
are finite maps from memory locations to values.

3
As in Clutch, we support presampling tapes, but since they are not used until §5, we relegate this discussion to §5.2.3.
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To define full program execution, we define step(𝜌) ∈ D(Cfg), the distribution induced by

the single step reduction of configuration 𝜌 ∈ Cfg. The semantics of step is standard: all non-

probabilistic constructs reduce deterministically as usual, e.g., step(if true then 𝑒1 else 𝑒2, 𝜎) =
ret(𝑒1, 𝜎), and the probabilistic choice operator rand𝑁 reduces uniformly at random:

step(rand𝑁, 𝜎) (𝑛, 𝜎) =
{

1

𝑁+1 for 𝑛 ∈ {0, 1, . . . , 𝑁 },
0 otherwise.

The Boolean operation flip is syntactic sugar for (rand 1 == 1).
With the single step reduction step defined, we now define a stratified execution probability

exec𝑛 : Cfg→ D(Val) by induction on 𝑛:

exec𝑛 (𝑒, 𝜎) ≜

0 if 𝑒 ∉Val and 𝑛 = 0,

ret(𝑒) if 𝑒 ∈Val,
step(𝑒, 𝜎) ≫= exec(𝑛−1) otherwise.

where 0 denotes the everywhere-zero distribution. The probability that a full execution, starting

from configuration 𝜌 , reaches a value 𝑣 is taken as the limit of its stratified approximations, which

exists by monotonicity and boundedness:

exec(𝜌) (𝑣) ≜ lim𝑛→∞ exec𝑛 (𝜌) (𝑣)
We simply write exec 𝑒 as notation for exec(𝑒, 𝜎) if exec(𝑒, 𝜎) is the same for all states 𝜎 .

As an example, consider the program 𝑒 ≜ if flip&& flip then 42 else Ω, where Ω is a diverging

term and && denotes logical conjunction. If we execute 𝑒 , we either obtain the value 42 in a few

steps (both flips return true with probability 0.5 × 0.5 = 0.25), or we do not obtain a value at all

otherwise. In other words, exec 𝑒 induces the subdistribution {42 ↦→ 0.25, _ ↦→ 0} : Val→ [0, 1] .

3 The Eris Logic
In this section we introduce the Eris logic. We first present the propositions of Eris, and then to

provide some intuition for the program logic proof rules we present the adequacy theorem, which

expresses what one can conclude by proving a Hoare triple in Eris. The adequacy theorem itself is

only proved later (§6.2) when we introduce the semantic model of Eris. After the adequacy theorem,

we then present a selection of the program logic rules of Eris.

Eris is based on the Iris separation logic framework [Jung et al. 2018] and inherits all of the

basic propositions and their associated proof rules. An excerpt of Eris propositions is shown below,

including the later modality ⊲, the persistence modality � and the points-to connective ℓ ↦→ 𝑣 ,

which asserts ownership of the location ℓ and its content 𝑣 :

𝑃,𝑄 ∈ iProp ::= True | False | 𝑃 ∧𝑄 | 𝑃 ∨𝑄 | 𝑃 ⇒ 𝑄 | ∀𝑥 . 𝑃 | ∃𝑥 . 𝑃 | 𝑃 ∗ 𝑄 | 𝑃 ∗ 𝑄 |
� 𝑃 | ⊲ 𝑃 | ℓ ↦→ 𝑣 | E (𝜀) | {𝑃} 𝑒 {𝑄} | . . .

The main novelty of Eris is the program logic {𝑃} 𝑒 {𝑄} and the new E (𝜀) assertion which

denotes ownership of 𝜀 error credits. Error credits satisfy the following rules:

E (𝜀1) ∗ E (𝜀2) ⊣⊢ E (𝜀1 + 𝜀2) E (𝜀1) ∗ (𝜀2 < 𝜀1) ⊢ E (𝜀2) E (1) ⊢ False
From the point of view of a user of the logic, this interface (and the rule ht-rand-exp below) is all

they need to know about credits. The first rule expresses that ownership of 𝜀1 + 𝜀2 error credits
is the same as ownership of 𝜀1 credits and ownership of 𝜀2 credits. The second rule says that it is

sound to throw away credits that we own. Finally, the last rule says that if we own 1 full error credit,

then we can immediately conclude a contradiction. Intuitively, ownership of E (1) corresponds to
proving a statement holds with probability at least 0, which is trivially true.
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We define the semantics of the program logic in §6. The adequacy theorem shown below captures

what a specification with error credits means in terms of probabilities and the operational semantics.

Theorem 6 (Adeqacy). If ⊢ {E (𝜀)} 𝑒 {𝜙} then Prexec𝑒 [¬𝜙 ] ≤ 𝜀. Moreover, the probability of 𝑒
getting stuck is at most 𝜀.

The adequacy theorem states that if we prove {E (𝜀)} 𝑒 {𝜙} in Eris, for any meta-logic post-

condition 𝜙 , then the final distribution obtained from running 𝑒 does not satisfy 𝜙 with at most

probability 𝜀. It also states that 𝑒 is safe with probability at least 1 − 𝜀.
As mentioned in §1, Eris is a partial correctness logic, which means that a diverging program

satisfies any specification, and diverging traces of 𝑒 will also be considered correct. Hence 𝜀 is an

upper bound on the probability of terminating and not satisfying 𝜙 . Later on, we will present Eris𝑡 ,

a total correctness version of Eris, which allows us to establish lower bounds on the probability of

terminating and satisfying 𝜙 .

Although our definition of Hoare triples is new, the program logic rules for the deterministic

fragment of λrand
ref

are essentially standard, e.g.,
ht-frame

⊢ {𝑃} 𝑒 {𝑄}
⊢ {𝑃 ∗ 𝑅} 𝑒 {𝑄 ∗ 𝑅}

ht-bind

⊢ {𝑃} 𝑒 {𝑣 .𝑄} ⊢ ∀𝑣 . {𝑄} 𝐾 [𝑣] {𝑅}
⊢ {𝑃} 𝐾 [𝑒] {𝑅}

ht-load

ℓ ↦→ 𝑤 ⊢ 𝑃 (𝑤)
⊢ {ℓ ↦→ 𝑤} ! ℓ {𝑣 . 𝑃 (𝑣)}

ht-rec

∀𝑤. {𝑃} (rec 𝑓 𝑥 = 𝑒) 𝑤 {𝑄} ⊢ {𝑃} 𝑒 [𝑣/𝑥] [(rec 𝑓 𝑥 = 𝑒)/𝑓 ] {𝑄}
⊢ {𝑃} (rec 𝑓 𝑥 = 𝑒) 𝑣 {𝑄}

Note in particular that Eris includes the standard rule ht-rec for reasoning about recursive func-

tions.

We do not have a specialized rule for composing errors for composite computations as in previous

works. The error is just a resource which, as mentioned in §1, allows us to derive an aHL-style

composition rule as well as the value-dependent composition rule shown in §1 from the resource

rules of credits and the ht-bind and ht-frame rules. These derived rules are shown below.

⊢ {𝑃 ∗ E (𝜀1)} 𝑒 {𝑣 .𝑄} ⊢ ∀𝑣 . {𝑄 ∗ E (𝜀2)} 𝐾 [𝑣] {𝑅}
⊢ {𝑃 ∗ E (𝜀1 + 𝜀2)} 𝐾 [𝑒] {𝑅}

ht-bind-simpl

⊢ {𝑃 ∗ E (𝜀1)} 𝑒1 {𝑥 . E (E2 (𝑥)) ∗ 𝑄} ⊢ ∀𝑥 . {𝑄 ∗ E (E2 (𝑥))} 𝑒2 {𝑅}
⊢ {𝑃 ∗ E (𝜀1)} let 𝑥 = 𝑒1 in 𝑒2 {𝑅}

ht-bind-exp

Proof rules for sampling. The only rules that make direct use of error credits are our novel

rules involving sampling. As mentioned in §1, Eris includes a general rule for sampling, which

takes the expected number of error credits into account. When taking a probabilistic step, this

allows us to make the error depend on the result of the step. Suppose that we sample 𝑖 uniformly

from the set {0, . . . , 𝑁 } and, moreover, that we know that any continuation needs E2 (𝑖) credits,
where E2 : {0, . . . , 𝑁 } → [0, 1]. Then it suffices to have E[E2 ] at the start, since it is the expected
number of error credits that our proof will need. We can also interpret this principle forwards:

whenever we take a step, we can split our 𝜀 error credits across all possible branches as a weighted

sum according to the probability of each branch. Formally, this is captured in the following rule:∑𝑁
𝑖=0

E2 (𝑖)
𝑁 + 1 = 𝜀1

⊢ {E (𝜀1)} rand𝑁 {𝑛 . E (E2 (𝑛))}
ht-rand-exp

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 246. Publication date: August 2024.



Error Credits: Resourceful Reasoning about Error Bounds for Higher-Order Probabilistic Programs 246:9

let 𝑛 = rand 3 in

if 𝑛 ≤ 1 then

true

else

let 𝑘 = rand 1 in

if (𝑛 + 𝑘 ≤ 2) then
true

elif (𝑛 + 𝑘 = 3) then
false

else

Ω

𝑒 ≜

𝑒′ ≜

𝑒

𝜀𝑝=
2

8
, 𝜀𝑡=

3

8

4

8
: 𝜙

1

2

𝑒′ [𝑛:=2]
𝜀𝑝 = 𝜀𝑡=

1

2

1

8
: 𝜙

1

2

1

8
: ¬𝜙

1

2

1

4

𝑒′ [𝑛:=3]
𝜀𝑝=

1

2
, 𝜀𝑡=1

1

8
: ¬𝜙

1

2

1

8
: ⇑

1

2

1

4

Fig. 1. Expected error analysis, partial and total.

In practice, we often want to avoid the generality of this rule as it requires explicit accounting of

error credits for every possible outcome. We derive rules for applications that only require a more

coarse-grained analysis. For instance, when sampling from {0, . . . , 𝑁 }, we can guarantee that the

result of our sampling will not be in a list of error values 𝑥𝑠 by using the following derived rule:

⊢ {E (length(𝑥𝑠)/(𝑁 + 1))} rand𝑁 {𝑛 . 𝑛 ∉ 𝑥𝑠}
ht-rand-err-list

In order to derive the rule, it suffices to apply ht-rand-exp using

E2 (𝑛) ≜ if (𝑛 ∈ 𝑥𝑠) then 1 else 0
and immediately discard all outcomes in 𝑥𝑠 using E (1) ⊢ ⊥.

Example. Consider the program 𝑒 and its probabilistic execution tree shown in Figure 1. The

program first samples a natural𝑛 at random from 0 to 3, returning true if it chooses 0 or 1. Otherwise

the sub-program 𝑒′ samples a random bit 𝑘 and branches on the sum of 𝑛 + 𝑘 : when 𝑛 + 𝑘 ≤ 2

the program returns true, when 𝑛 + 𝑘 = 3 the program returns false, and otherwise the program

diverges (denoted by Ω).
We will now show how to use Eris to show that 𝑒 returns true up to some error bound. Before

we present the proof, let us take a step back and ask ourselves: What specification can we hope to

show for 𝑒? If we consider all the possible executions of 𝑒 , we can determine that it returns a value

that satisfies 𝜙 with probability
5

8
, returns a value that does not satisfy 𝜙 with probability

1

4
, and

loops forever with probability
1

8
. Therefore, we should be able to prove the Hoare triple:{

E
(
1

4

)}
𝑒 {𝜙}

To prove this triple, we first prove a triple for the subexpression 𝑒′:{
(𝑛 = 3 ∨ 𝑛 = 2) ∗ E

(
1

2

)}
𝑒′ {𝜙}

This Hoare triple is not difficult to prove; during the rand 1 step, we use the ht-rand-err-list rule

to spend E
(
1

2

)
and “avoid” values that eventually lead to undesirable outcomes, e.g. returning false.

To be more specific, for the case where 𝑛 = 2, we avoid sampling 1 as that branch eventually reduces

to false. Similarly, for the case where 𝑛 = 3, we avoid sampling 0. After verifying the sub-program

𝑒′, we can now turn to verifying the overall program 𝑒 . Notice that after assigning a random value
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to 𝑛, the number of error credits that we need for the continuation depends on 𝑛. This dependency

is captured by the E2 function defined below:

E2 (𝑛) =
{
0 𝑥 < 2

1

2
𝑥 = 2 ∨ 𝑥 = 3

Since

∑ E2 (𝑖)/4 = 1/4 we apply the ht-rand-exp rule to conclude

{
E
(
1

4

)}
rand 3 {𝑛. E2 (𝑛)} and

by using ht-bind-exp we complete the proof.

To summarize, this example demonstrates how we can use the proof rules of Eris to distribute

error credits across many branches in a fine-grained manner and establish a strict expected error

bound. Moreover, the error analysis in the proof is modular in the sense that we prove the properties

of the sub-program 𝑒′ without taking into account the context in which it is used.

4 Case Studies
In this section we present a series of case studies that showcase the features and reasoning principles

introduced by Eris. Due to the representation of errors as a resource, Eris allows us to do precise,

value-dependent reasoning about error bounds for operations on randomized data structures.

However, when using these randomized data structures as a client, value dependent specifications

often reveal too many details about the internal state of the data structure and its implementation.

Here we also show how to do amortized error reasoning which, analogously to bounds on amortized

running time, assigns a uniform error cost to every operation on the data structure despite the real

error cost varying over time.

4.1 Dynamic Vectors under a Faulty Allocator
A quintessential example of amortized time complexity reasoning is that of a vector with dynamic

resizing, see [Cormen et al. 2009]. We assume that on initialization we will allocate a memory block

of size 𝑁 , which allows us to do 𝑁 insertions (each of cost 1) into the vector. For the (𝑁 + 1)-th
insertion however, we allocate a new block of memory of size 2𝑁 and copy the contents of the

vector into the new block. This operation incurs a cost of 𝑁 + 1, paying 𝑁 to copy the initial 𝑁

elements into the new memory block, and 1 for the actual insertion. Using amortized cost reasoning

we can argue that each insertion has amortized cost 3: 1 for the insertion itself, 1 to pay for the first

time it gets copied, and 1 to pay to copy another element that was inserted and moved previously.

We will use a similar intuition to introduce amortized error reasoning. Here we consider a faulty
memory allocator which has a small probability 𝜀 of failing on each write operation. Specifically,

we assume that the allocator offers two methods extend and store with specifications:

{E (𝑛 · 𝜀) ∗ 𝑙 ↦→∗ 𝑣𝑠} extend 𝑛 𝑙 {𝑙 ′ . 𝑙 ′ ↦→∗ (𝑣𝑠 ++ replicate(𝑛, ()))}
{E (𝜀) ∗ 𝑙 ↦→∗ 𝑣𝑠 ∗ 𝑛 < length(𝑣𝑠)} store 𝑙 𝑛 𝑣 {𝑙 ↦→∗ (𝑣𝑠 [𝑛 := 𝑣])}

Here, ↦→∗ 𝑣𝑠 denotes ownership of a points-to connective for each element of the list 𝑣𝑠 . Provided

we own 𝑙 ↦→∗ 𝑣𝑠 , we can get a new, extended memory block starting at a new location 𝑙 ′ containing
the old array with 𝑛 new empty locations (containing () ) appended. This incurs an error cost of

E (𝑛 · 𝜀). We can also use the store operation to write to any position 𝑛 within 𝑣𝑠 and update its

value, again by incurring an error cost of E (𝜀). Consider now the following code for the pushback
method which adds an element 𝑣 to the end of the vector vec. It is parametrized by two methods
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ext and str for extending and storing:

pushback ext str vec 𝑣 ≜ let (𝑙, 𝑠, 𝑟 ) = vec in

str 𝑙 𝑠 𝑣 ;

if 𝑠 + 1 == 𝑟 then (ext 𝑟 𝑙, 𝑠 + 1, 2 · 𝑟 )
else (𝑙, 𝑠 + 1, 𝑟 )

A vector is a tuple (𝑙, 𝑠, 𝑟 ) of a location 𝑙 pointing to the start of the vector and two integers 𝑠, 𝑟

denoting the current size of the vector and the current size of the allocated block, respectively. On

insertion we store value 𝑣 at position 𝑠 , and if we reach the end of the current allocated space we

resize it so that the new block has size 2 · 𝑟 .
The representation predicate for the vector looks as follows:

vec_spec vec vs ≜ ∃𝑙, 𝑠, 𝑟 , 𝑥𝑠, 𝑝. 𝑣𝑠 = (𝑙, 𝑠, 𝑟 ) ∗ E (𝑝) ∗ 𝑙 ↦→∗ (𝑣𝑠 ++ 𝑥𝑠) ∗
𝑠 < 𝑟 ∗ 𝑠 = length(𝑣𝑠) ∗ 𝑟 = length(𝑣𝑠) + length(𝑥𝑠) ∗
𝑝 + 2 · 𝜀 · length(𝑥𝑠) = 𝑟 · 𝜀

Here, vec_spec vec vs should be read as “vec is a vector containing the values vs”. Internally, the
representation predicate contains the starting location of the vector 𝑙 , its current size 𝑠 , the size of

the allocated space 𝑟 and a list of dummy values 𝑥𝑠 . Crucially, it also stores a reserve of 𝑝 error

credits. We also know that there are length(𝑥𝑠) insertions remaining until resizing, and on each we

will leave 2𝜀 credits to spare. Altogether, this suffices until the next resizing, which has cost 𝑟 · 𝜀.
With this representation predicate, we can prove the following specification for pushback.

{vec_spec vec vs ∗ E (3 · 𝜀)} pushback extend store vec v {vec′, vec_spec vec′ vs ++ [v]}

Ignoring the error credits for the moment, this is a natural specification: if we have a vector

containing vs and we append v, we get a vector containing vs ++ [v]. We just give a quick sketch of

the proof, focusing on the accounting of credits, as the rest is standard separation logic reasoning.

First, we split E (3 · 𝜀) into E (𝜀) ∗ E (2 · 𝜀), using the first 𝜀 credits to pay for the call to store. From
the definition of the representation predicate we get E (𝑝), and we can split the proof into two cases

depending on whether 𝑠 + 1 < 𝑟 or 𝑠 + 1 = 𝑟 . In the first case, which steps into the else branch of

the conditional, we store back E (2 · 𝜀 + 𝑝) into the representation predicate. It is easy to see that

𝑝 + 2 · 𝜀 + 2 · 𝜀 · (length(𝑥𝑠) − 1) = 𝑟 · 𝜀

since we will overwrite the first dummy location of 𝑥𝑠 . In the second case, we step into the then
branch to resize. Here we know from the representation predicate that length(𝑥𝑠) = 1 since there

is only one dummy location left to be overwritten. Therefore, the representation predicate implies

𝑝 + 2 · 𝜀 = 𝑟 · 𝜀

We own exactly E (𝑝) ∗ E (2 · 𝜀), which we use to pay for the extend operation with cost E (𝑟 · 𝜀).
At the end, we store 0 error credits into the representation predicate. This completes the proof.

4.2 Amortized Error for Collision-Free Hash Functions
Wenow implement amodel of an idealized hash function under the uniform hash assumption [Bellare
and Rogaway 1993], i.e., a hash function ℎ from a set of keys 𝐾 to values 𝑉 that behaves as if, for

each key 𝑘 , the hash ℎ(𝐾) is randomly sampled from a uniform distribution over 𝑉 independently

of all other keys. We implement the model using a mutable map 𝑙𝑚, which serves as a cache of
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hashes computed so far. If the key 𝑘 has already been hashed we return the value stored in 𝑙𝑚(𝑘).
Otherwise, we sample a fresh value uniformly from 𝑉 = {0, . . . , 𝑛}, store it in 𝑙𝑚(𝑘), and return it.

compute_hash 𝑙𝑚 𝑣 ≜ match get 𝑙𝑚 𝑣 with
Some(𝑏) ⇒ 𝑏

| None ⇒ let 𝑏 = rand𝑛 in
set 𝑙𝑚 𝑣 𝑏;

𝑏

end

To reason about the correctness of many data structures, we often assume that a hash function is

collision-free in the sense that for the finite number of times we query the hash function, different

input keys will return different hash values. In reality collisions may occur, but when the size of 𝑉

is magnitudes larger than the number of times we use the hash function it is common to postulate

that the hash function will remain collision-free, up to some small error.

To be precise, suppose we have queried hfun ≜ compute_hash 𝑙𝑚 a total of 𝑠 times, each with a

distinct input, and that the map is still collision-free (that is, we have observed 𝑠 different values).

If we apply the hash function to a completely new input, in order to maintain the collision-free

property the hash function needs to “avoid” sampling any of the previous 𝑠 hash outputs. We can

reason about this by means of the ht-rand-err-list rule, meaning we would need to pay E
(
𝑠
𝑛+1

)
when choosing the new hash. We can encode this as a specification for our hash function in Eris:{

𝑛 ∉ dom𝑚 ∗ cf _hashfun 𝑙𝑚 𝑚 𝑉 ∗ E
(
size(𝑚)
𝑛+1

)}
hfun 𝑛 {𝑣 . cf _hashfun 𝑙𝑚 (𝑚[𝑛← 𝑣]) 𝑉 }

The predicate cf _hashfun 𝑙𝑚𝑚𝑉 states that the mutable map 𝑙𝑚 tracks the finite partial function

𝑚 : N ⇀ {0, . . . ,𝑉 } represented as a finite map, and furthermore states that𝑚 is injective (i.e. there
are no collisions). After querying the hash function for an unhashed key 𝑛, it will return a value 𝑣

and update the mutable map to track the finite map𝑚[𝑛← 𝑣], which is again injective.

One limitation of the above specification is that the error requirement for each hash operation

is proportional to the size of the map. This leads to worse modularity, since a client of this data

structure needs to know how many queries have been performed before, which may be challenging

e.g., in the presence of concurrency where multiple clients may share the same hash function.

One possible solution is to fix a maximum global number of hash queries MAX and amortize the

error over all those queries, so that for each query, the error one needs to pay is a fixed constant

that is not dependent on the inner map. As with the previous example, we will implement this

using error credits.

Starting from an empty map, if we bound the number of queries to beMAX, the total number

of error credits used for theMAX queries is

∑MAX−1
𝑖=0

𝑖
𝑛+1 =

(MAX−1)∗MAX
2(𝑛+1) . We will require that the

client always incurs the mean error
(MAX−1)∗MAX
2(𝑛+1)∗MAX =

(MAX−1)
2(𝑛+1) . Let 𝜀MAX =

(MAX−1)
2(𝑛+1) . Updating our

specification,{
size(𝑚) < MAX ∗ 𝑛 ∉ dom𝑚 ∗

amort_cf _hashfun 𝑙𝑚 𝑚 𝑉 ∗ E (𝜀MAX)

}
hfun 𝑛 {𝑣 . amort_cf _hashfun 𝑙𝑚 (𝑚[𝑛← 𝑣]) 𝑉 }

In Eris, this new specification is derivable from the original non-amortized specification. We

accomplish this by defining the abstract predicate amort_cf _hashfun to not only contain the

cf _hashfun resource, but also a reserve of extra error credits which the clients paid in excess for

the first half of the hash operations (similar to the dynamic vector example). For the second half of

the hash operations, when the mean error 𝜀MAX is insufficient to apply the original specification,

we draw the additional error credits from the reserve in amort_cf _hashfun. By using error credits,
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we provide a simpler interface to our initial specification which alleviates the error accounting

burden from clients of amort_cf _hashfun.

4.3 Collision-Free Resizing Hash Functions
We can go one step further and implement a collision-free hash function with constant amortized

insertion error, but without imposing any a priori limit on the number of insertions. Of course with

a fixed set 𝑉 of possible hash values (as in the implementation above), collisions are eventually

unavoidable. Instead, we will keep the probability of collision low by resizing the sample space
once a threshold of inserted elements is reached. One way to think of this model is to assume that

the hash function gets values over a much larger sample space, but initially we only look at the

first 𝑛, and every time we resize we look at the (𝑛 + 1)-th bit.

As in the previous example, the hash is sampled lazily. In addition to a mutable map𝑚 the hash

function will keep track of three quantities 𝑉 , 𝑆 , and 𝑅. Here 𝑉 represents the size of the value

space of our hash function, which are nonnegative integers over {0, . . . ,𝑉 }. The value 𝑆 represents

the current size of the domain of the hash function, and 𝑅 represents a threshold on the amount of

stored values after which the hash will resize. That is, once 𝑆 reaches 𝑅, we will update the hash so

that 𝑅 becomes 2 · 𝑅 and𝑉 becomes 2 ·𝑉 . Initially𝑉 , 𝑆, 𝑅 are set to some default values𝑉0, 0, 𝑅0. We

will prove that overall, the hash will remain collision-free with an amortized error of (3 ·𝑅0)/(4 ·𝑉0)
per insertion, no matter the number of insertions.4 For instance, to keep the amortized error below

2
10
we can initially set 𝑉0 = 2

10 · 𝑅0.
The code for querying the hash function is shown below:

hash_rs ℎ𝑓 𝑤 ≜ let (𝑙𝑚, 𝑣, 𝑠, 𝑟 ) = ℎ𝑓 in
match get 𝑙𝑚 𝑤 with
Some(𝑏) ⇒ (𝑏, ℎ𝑓 )
| None ⇒ let 𝑏 = rand (𝑣 − 1) in

set 𝑙𝑚 𝑤 𝑏;

if 𝑠 + 1 = 𝑟 then (𝑏, (𝑙𝑚, 2 · 𝑣, 𝑠 + 1, 2 · 𝑟 ))
else (𝑏, (𝑙𝑚, 𝑣, 𝑠 + 1, 𝑟 ))

end

Note that, the code is analogous to the non-resizing hash besides tracking the size: in the case

where 𝑠 + 1 = 𝑟 we double the value of both 𝑣 and 𝑟 . The specification uses the following predicate:

cf _hash_rs hf 𝑚 𝑣 𝑠 𝑟 ≜ ∃𝑙𝑚, 𝑝. ℎ𝑓 = (𝑙𝑚, 𝑣, 𝑠, 𝑟 ) ∗ E (𝑝) (1)

𝑝 + (𝑟𝑣𝑎𝑙 − 𝑠𝑣𝑎𝑙) · ((3 · 𝑅0)/(4 ·𝑉0)) ≥
∑𝑟−1
𝑖=𝑠 𝑖/𝑣 ∗ (2)

cf _hashfun 𝑙𝑚 𝑚 𝑣 ∗ (. . . ) (3)

We explain the representation predicate line by line. The first line contains the internal represen-

tation of the hash function as a tuple, and a reserve of 𝑝 error credits. The second line imposes a

condition on 𝑝 , namely that the current number of credits in the reserve plus the credits we will get

until the next resizing is enough to pay for all of the error of the insertions until the next resizing.

Note that when there are 𝑠 elements in the image of the hash function and we sample uniformly

over {0, . . . , 𝑣 − 1}, the error we will have to pay is E (𝑠/𝑣). The third line states that 𝑙𝑚 points to

a list that represents the partial map𝑚, and that there are no collisions. Finally, the rest of the

predicate contains some constraints on the sizes 𝑣, 𝑠, 𝑟 that we omit for brevity. In this specification

4
Of course, even with this constant error cost, if we execute a large enough number of insertions we will eventually have

consumed over 1 error credit. The advantage of this specification is that it will enables us to do more modular proofs, since

the cost will be constant independently of the internal state of the hash function.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 246. Publication date: August 2024.



246:14 A. Aguirre, P. G. Haselwarter, M. de Medeiros, K. H. Li, S. O. Gregersen, J. Tassarotti, and L. Birkedal

we have decided to expose 𝑣 , 𝑠 and 𝑟 to the client as we will use those values in the next section,

however it is also possible to hide these values from the client when those details are not needed.

We prove three specifications for hash_rs, depending on the initial conditions. If we query an

element that was already in the domain of the hash function, we just get back its hash value,

without the need for spending error credits:{
𝑚[𝑤] = Some 𝑏 ∗
cf _hash_rs 𝑓 𝑚 𝑣 𝑠 𝑟

}
hash_rs 𝑓 𝑤

{
(𝑏′, 𝑓 ′). 𝑏

′ = 𝑏 ∗
cf _hash_rs 𝑓 ′ 𝑚 𝑣 𝑠 𝑟

}
If we query for an element that is not in the domain we will have to sample it in a collision-

free manner, at a cost of E (𝑠/𝑣). From the precondition we have E ((3 · 𝑟0)/(4 · 𝑣0)), and from the

representation predicate we can get the reserve E (𝑝). We can derive that this is enough to pay

for E (𝑠/𝑣) from condition (2) by an uninteresting, albeit nontrivial, calculation. Since the code

branches depending on whether 𝑠 + 1 is equal to 𝑟 , we have the following specification:{
𝑚[𝑤] = None ∗ (𝑠 + 1 ≤ 𝑟 ) ∗ cf _hash_rs 𝑓 𝑚 𝑣 𝑠 𝑟 ∗ E

(
3𝑟0
4𝑣0

)}
hash_rs 𝑓 𝑤{
(𝑏, 𝑓 ′). (𝑠 + 1 < 𝑟 ∗ cf _hash_rs 𝑓 ′ 𝑚[𝑤 := 𝑏] 𝑣 (𝑠 + 1) 𝑟 ) ∨

(𝑠 + 1 = 𝑟 ∗ cf _hash_rs 𝑓 ′ 𝑚[𝑤 := 𝑏] (2 · 𝑣) (𝑠 + 1) (2 · 𝑟 ))

}
In both cases we will have to reestablish the representation predicate. In particular, we will have

to store the remaining credits back into the reserve, and prove that condition (2) is still valid (i.e.,
that we will have enough credits to pay for future insertions). This follows again by arithmetic

calculations.

4.4 Collision-Free Resizing Hash Map
Hash maps (or hash tables) are one of the most ubiquitous data structures in programming, since

they can represent large sets with efficient insertion, deletion, and lookup. Their efficiency relies

on having a low number of collisions, so that each location on the table contains a small number of

values. As the number of collisions increases, and thus the performance of the hash map worsens,

it is often beneficial to resize the table, redistributing the hashed values and freeing up space for

new insertions.

In order to be able to reason about the efficiency of hash maps, we need to compute the probability

of a hash collision. Computing this probability over a sequence of insertions can be cumbersome,

as it depends on the current size of the hash map and the number of elements it contains. As a

consequence, it can lead to less modular specifications for programs that use hash maps inside

their components.

We will use the dynamically-resizing hash function defined above to implement a collision-free

dynamically-resizing hash map, and specify it with an amortized cost for insertion. Namely we will

use an array of size 𝑣 , in which 𝑠 entries are filled with a hashed value and the rest are uninitialized.

Once we fill in 𝑟 elements, we resize the table to have size 2𝑣 and we set 𝑟 to 2𝑟 . New hash elements

are sampled in a collision-free manner following the specification shown in the previous sections,

thus ensuring that the hash map is also collision-free. We can then prove the following specification
5

for inserting a value𝑤 into a hash map ℎ𝑚:

{isHashmap ℎ𝑚 𝑛𝑠 ∗ E ((3 · 𝑅0)/(4 ·𝑉0))} insert ℎ𝑚 𝑤 {ℎ𝑚′ . isHashmap ℎ𝑚′ (𝑛𝑠 ∪ {𝑤})}
Recall here that 𝑉0 is the initial capacity of the hash table, and 𝑅0 is the threshold on which we

will first resize. The representation predicate isHashmap ℎ𝑚 𝑛𝑠 should be understood as “ℎ𝑚 is

5
The code for this example and the definition of the representation predicate can be found in Appendix B
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a collision-free hash map representing the set (of natural numbers) 𝑛𝑠”. Crucially, this predicate

does not keep track of error credits as all of the error accounting is done through the cf _hash_rs
predicate, which is used as a client within isHashmap. This specification states that an insertion

of an element𝑤 fail with probability at most (3 · 𝑅0)/(4 ·𝑉0). There are two cases in proving this

specification: either 𝑤 was already in the hash map (and therefore 𝑛𝑠 = 𝑛𝑠 ∪ {𝑤}) or it is a new
element. The former case is immediate; if it is a new element, we can use E ((3 · 𝑅0)/(4 ·𝑉0)) to
sample a fresh value from the hash function using the specifications proven in the previous section.

This ensures that the location in the table corresponding to that index is uninitialized. Since the

hash map resizes at the same time as the hash function does, this establishes our specification no

matter how many insertions have been performed before.

4.5 Amortized Hash Functions and Merkle Trees
A Merkle tree [Merkle 1987] is a data structure that relies on a hash function. It is used to ensure

the authenticity and validity of data received from a potentially unreliable and malicious source

and used widely in, e.g., distributed file systems [Benet 2014] and databases [DeCandia et al. 2007].

A Merkle tree is a binary tree whose nodes contain pairs consisting of a value and a label. For

leaves, the label is the hash of the value stored in the leaf. In the case of inner nodes, the label

corresponds to the hash of the concatenation of the labels of its children. We call the label of the

root of a Merkle tree a root hash. Merkle trees are interesting because they support constructing a

cryptographic proof certificate that a value is in a leaf of the tree. These proofs can be validated by

a client who only knows the root hash of the tree.

To construct a proof that a value 𝑣 is in the tree, we start from the leaf 𝑙 containing the value 𝑣 ,

The proof starts with the hash of the sibling of 𝑙 . We then traverse up from the leaf 𝑙 to the root

along the ancestors of 𝑙 , appending to the proof the hash annotations of the siblings of each ancestor

we traverse. A client who has the root hash ℎ can check the proof by effectively computing a list

fold over the proof, successively hashing each element of the proof against an accumulated hash.

The client then checks whether the result of the fold matches the root hash ℎ; if it matches, the

proof is deemed valid, and otherwise it is rejected as invalid.

Why is this proof checking procedure sound? For an invalid proof to be (incorrectly) validated by

a checker, the invalid proof must contain values that cause a colliding hash value to be computed

during the checker’s list fold. Thus, if an adversary cannot find a collision, they cannot maliciously

convince a checker with an invalid proof. In particular, if the hash is treated as a uniform random

function, and the total number of distinct hashes ever computed is relatively small (e.g., because
of constraints on the adversary’s computational power), the probability that the proof checking

procedure will accept an invalid proof is very small. In this example, we prove such an error bound

under the assumption of a bound on the total number of hashes ever computed.

We use the fixed-size amortized hash with values in 0, . . . , 2𝑉 −1 to implement a library for

Merkle trees. Given a possible leaf value and a purported proof, together with an error credit of

E (𝜀MAX · height (tree)) in the precondition, the specification for the proof checker will ensure that

when a proof is invalid the checker will return false (i.e., the checker is sound up to this probability

of error). The amortization of the hash simplifies the specification of the checker since it incurs a

constant amount of error credits which only depends on the amortized error 𝜀MAX and the tree but

not the size of the map in the hash.

The checker function as shown in Figure 2 is implemented using the hash_path helper function,

which recursively computes the potential root hash from the input proof and leaf value. We

represent a proof as a list of tuples following the path from the leaf to the root: each tuple consists

of a boolean flag to determine which child of the current node is on the path to the leaf, and the

hash of the child node that is not on the path. In the base case where the proof is an empty list,
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hash_path f lproof lleaf ≜

match lproof with
(hd :: tl) ⇒ let (b, hash) = hd in

if b then f ((hash_path f tl lleaf) ∗ 2𝑉 + hash)
else f (hash ∗ 2𝑉 + (hash_path f tl lleaf))

| nil ⇒ f lleaf
end

checker root_hash f ≜

𝜆lproof, lleaf.

let hp = hash_path f lproof lleaf in

root_hash == hp

Fig. 2. A proof checker for Merkle trees.

we arrive at the leaf of the Merkle tree, and we return the hash of our input leaf value. In the

intermediate step, where we arrive at a branch of the tree, we recursively compute the potential

hash value of the branch containing the leaf node and bit-wise concatenate it with the hash found

in the head element of our proof. We then return the hash of this concatenated number.

Our simplified specification for the checker is displayed below:
isList 𝑙 lproof ∗

tree_valid tree𝑚 ∗
amort_cf _hashfun f 𝑚 ∗

size(𝑚) + height (tree) <= MAX ∗
E (𝜀MAX · height (tree))


checker root_hash f lproof v

𝑏.
if 𝑏

then tree_leaf _proof _match tree v lproof ∗ . . .
else not_tree_leaf _proof _match tree v lproof ∗ . . .


Line-by-line, the precondition here says that:

(1) the value lproof is represented by the abstract mathematical list 𝑙 ,

(2) the Merkle tree tree is built correctly according to the hash map𝑚,

(3) the function f encodes the amortized hash function under the map𝑚,

(4) the size of𝑚 plus the height of the tree is smaller or equal to MAX,
(5) we have credits equal to amortized error multiplied by the height of the tree.

The postcondition states that the Boolean returned by checker soundly represents the inclusion

of 𝑣 in the tree. We impose the inequality of the size of the map𝑚 in the beginning since checker
runs the hash function exactly height (tree) times (recall that there is a total limit on the number of

distinct hashes that can be computed).

How are the error credits used to derive this specification? As long as the hash function remains

collision-free throughout the checking procedure then any corrupted data will modify all hashes

above it in the tree—in particular, it will change the root hash. Therefore, we will spend error

credits at each of the height (tree) hashes computed by checker to preserve collision-freedom
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Fig. 3. Partial and total approximate correctness contrasted.

throughout the checking process. We remark that if we chose to use a non-amortized hash for the

implementation of the Merkle tree library, the amount of error credits paid as one traverses the

tree may change if a new value is ever encountered, leading to a more convoluted specification.

4.6 Further Case Studies
For reasons of space, we omit other case studies, which can be found in the long version of the

paper. In particular, we include an example that uses the Merkle tree as a client to store data into

an unreliable storage system and prove that, with high probability, it can be used to detect data

corruption.

5 Almost-Sure Termination via Error Credits
In this section, we introduce Eris𝑡 , an approximate total-correctness version of Eris, and show how it

can be used to prove almost-sure termination via reasoning about error credits. Before we embark

on the technical development, we consider for a second time the example from Figure 1, which

illustrates the distinction between partial and total correctness interpretations of approximate

reasoning up to some error. A summary of the example is depicted in Figure 3.

In §3 we showed that for the program 𝑒 in Figure 1, we can show the specification Hoare triple{
E
(
𝜀𝑝
)}
𝑒 {𝑥 . 𝑥 = true} for 𝜀𝑝 = 2

8
= 1

4
in Eris, intuitively because the program terminates with

a result not satisfying the postcondition (false) with probability
1

4
. Note that the probability of

non-termination (
1

8
) is not included in the error, since non-termination is considered acceptable by

the partial-correctness interpretation of Eris.

In Eris𝑡 on the other hand, one cannot satisfy a Hoare triple by not terminating, and thus 𝜀𝑡 =
3

8

is needed to show an approximate total Hoare triple ⟨E (𝜀𝑡 )⟩ 𝑒 ⟨𝑥 . 𝑥 = true⟩ (we use angle brackets
when we want to emphasize that we are stating a Hoare triple in Eris𝑡 ). The proof of this Hoare

triple in Eris𝑡 is very similar to the Eris proof for 𝑒 in §3, only changing the distribution of error

credits at each sample so that our additional starting credit can discharge the nonterminating

branch (specifically, 𝜀𝑡 = 1 in the rightmost branch of Figure 1).

Stepping back from the example, we can make a simple but crucial observation: if the total error

necessary for showing a Hoare triple ⟨E (𝜀)⟩ 𝑒 ⟨𝑃⟩ (for any postcondition 𝑃 ) can be proven for any

arbitrary (but positive) 𝜀, then we can make the probability of divergence vanishingly small, and 𝑒

must be almost-surely terminating.

In this section, we show how to make this argument precise and then demonstrate how it yields

an approach for showing almost-sure termination via error credits, which allows us to prove

correctness of Las Vegas algorithms.
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5.1 The Eris𝑡 Logic, Adequacy, and Almost-Sure Termination
It is important to note that all the proof rules of Eris shown earlier are still sound for Eris𝑡 , with

the exception of ht-rec. Note in particular that ht-rec could be applied to the diverging function

rec 𝑓 𝑥 = 𝑓 𝑥 , which is unsound in the total-correctness setting. To reason about recursive programs

in Eris𝑡 we can instead use a novel technique we call induction on the error amplification. We will

see examples below of how this principle works.

The meaning of a Hoare triple in Eris𝑡 is given by its adequacy theorem, which states that given

a program 𝑒 , if from the assumption E (𝜀) we can prove a metalogical postcondition 𝜙 , then the

program will terminate and satisfy 𝜙 with at least probability 1 − 𝜀:
Theorem 7 (Total Adeqacy). If ⊢ ⟨E (𝜀)⟩ 𝑒 ⟨𝜙⟩ then Prexec (𝑒,𝜎 ) [𝜙 ] ≥ 1 − 𝜀 for any state 𝜎 .

Since the logic is total this also implies that the probability of the program crashing is bounded

from above by 𝜀. By a continuity argument in the meta logic (outlined in §6), we then obtain the

following theorem.

Theorem 8 (Almost-Sure Termination). Let 𝜀 ≥ 0. If for all 𝜀′ > 𝜀, ⊢ ⟨E (𝜀′)⟩ 𝑒 ⟨𝜙⟩ then
Prexec (𝑒,𝜎 ) [𝜙 ] ≥ 1 − 𝜀 for any state 𝜎 .

If we pick 𝜀 = 0, this theorem allows us to conclude almost-sure termination of 𝑒 by proving

⊢ ⟨E (𝜀′)⟩ 𝑒 ⟨𝜙⟩ for any 𝜀′ > 0. Note that we here quantify over 𝜀′ in the meta-logic; the Eris𝑡 portion

of this argument freely assumes ownership over some arbitrary positive E (𝜀′).

5.2 Case Studies
We now present case studies of how we can prove almost-sure termination via error credits. In the

first case study we demonstrate how we can prove a Hoare triple in Eris𝑡 by a form of induction

on error credits. The second case study presents a technique to upper-bound the probability of

excessively long runs of a program. In the third case study we present a novel planner proof rule,
which can separate credit arithmetic from concrete program steps, and we show how to use it to

prove correctness of general rejection samplers. Finally, we revisit an example due to McIver et al.

[2018], and show how error credits can be used to provide a simple proof that it is almost surely

terminating.

5.2.1 Induction by Error Amplification. A variety of Las Vegas algorithms employ a “sample

and retry” approach, whereby a sampler program produces a possibly undesirable value and a

checker program forces the sampler to retry until it produces an acceptable value. In a partial-

correctness logic, it is trivial to prove that such algorithms return acceptable values when they

terminate (using ht-rec in Eris). However, it is more challenging to bound the probability that

they fail to terminate.

Rejection samplers are one common example of this kind of algorithm. Rejection samplers

simulate complex probability distributions using sequences of samples from simpler distributions,

by strategically rejecting sequences which do not correspond to values in the target distribution.

Consider the implementation of a typical rejection sampling scheme (RSamp 𝑠 𝑐) with sampler

program 𝑠 and checker program 𝑐 below.

RSamp ≜ 𝜆s. 𝜆c. let try = (rec try _ = let v = s () in if (c v) then v else try ()) in try ()
As an archetypical example, we can emulate samples from {0, 1, . . . , 𝑁 } using a uniform sampler of

size𝑀 > 𝑁 ≥ 1 by providing the sampler us𝑀 ≜ (𝜆_. rand𝑀) and checker uc𝑁 ≜ (𝜆v. v ≤ 𝑁 ).
Let us show that this uniform rejection sampler (RSamp us𝑀 uc𝑁 ) terminates almost surely.

Using Theorem 8, it suffices to show, for arbitrary nonnegative 𝜀,

⟨E (𝜀)⟩ RSamp us𝑀 uc𝑁 ⟨True⟩ . (4)
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In proving this, we need to reason about the recursion in RSamp. Since we no longer have

ht-rec, we will have to use some form of induction, yet there appears to be no argument to induct

on. The solution is a technique we call induction by error amplification. We first show how the

principle works in detail, then derive rules that makes its use more practical. Note that using

expectation-preserving composition, for any 𝜀′ we are able to prove

⟨E (𝜀′)⟩ us𝑀 ⟨𝑣 . E (𝐸 (𝑣) · 𝜀′)⟩ where 𝐸 (𝑣) ≜
{
0 0 ≤ 𝑣 ≤ 𝑁
𝑀+1
𝑀−𝑁 𝑁 < 𝑣

since
1

𝑀+1
∑𝑀
𝑖=0 𝐸 (𝑖) = 1. In other words, each sampling attempt either produces a value which

the checker will certainly accept, or scales our error credit by a factor of
𝑀+1
𝑀−𝑁 > 1. This means

that we can grow our error credit geometrically in the cases where a sample does not immediately

terminate, and we need only repeat this procedure 𝑑 (𝜀) = ⌈− log(𝑀+1)/(𝑀−𝑁 ) (𝜀)⌉ times: either

some sampling attempt will succeed, or they all fail and we will have amplified the original error

to E (1), from which we obtain a proof of False. Starting with any 𝜀 > 0, induction over 𝑑 (𝜀) allows
us to prove (4), completing the proof. While this proof technique appears to be novel among total

correctness logics, under the hood it closely mirrors a standard analysis in probability theory where

one shows that longer and longer traces are increasingly unlikely, and concludes by taking a limit.

This induction principle is abstractly captured by the rule below:

ind-err-amp

𝜀 > 0 𝑘 > 1 ∀𝜀′ . (E (𝑘 · 𝜀′) ∗ 𝑃) ∗ E (𝜀′) ⊢ 𝑃
E (𝜀) ⊢ 𝑃

The rule requires us to (1) own a positive amount of error credits 𝜀 and (2) choose an amplification

factor𝑘 > 1. Using the rule gives us an arbitrary initial amount of error credits E (𝜀′) and an inductive
hypothesis for which we need to pay E (𝑘 · 𝜀′). Soundness of the rule is proven by induction on the

number of times we need to scale 𝜀 by 𝑘 until we accumulate E (1), i.e. ⌈− log𝑘 (𝜀)⌉.
Note that while this principle holds for an arbitrary proposition 𝑃 , it only ever makes sense

to use it when reasoning about programs, because otherwise we have no way of amplifying our

error credits. To reason about recursive functions in the total correctness logic, we can derive the

following rule as a consequence:

ht-rec-err

𝜀 > 0 𝑘 > 1

∀𝜀′ . (∀𝑤. ⟨𝑃 ∗ E (𝑘 · 𝜀′)⟩ (rec 𝑓 𝑥 = 𝑒) 𝑤 ⟨𝑄⟩) ⊢ ⟨𝑃 ∗ E (𝜀′)⟩ 𝑒 [𝑣/𝑥] [(rec 𝑓 𝑥 = 𝑒)/𝑓 ] ⟨𝑄⟩
⊢ ⟨𝑃 ∗ E (𝜀)⟩ (rec 𝑓 𝑥 = 𝑒) 𝑣 ⟨𝑄⟩

Turning again to our example, we can prove Equation (4) in an arguably simpler manner by

applying ht-rec-err and setting 𝑘 = 𝑀+1
𝑀−𝑁 . This reduces to proving, for an arbitrary 𝜀′,

⟨E (𝑘 · 𝜀′)⟩ try () ⟨True⟩ ⊢ ⟨E (𝜀′)⟩ let v = us𝑀 in if (uc𝑁 v) then v else try () ⟨True⟩

Following the credit splitting strategy above, after sampling from us𝑀 we will either have a value v
that passes the check uc𝑁 , or we will amplify our error credits to E (𝑘 · 𝜀′) and go to the recursive

case, in which case we can conclude immediately by instantiating the inductive hypothesis.

5.2.2 Reasoning about Tail Bounds. Another property one may want to prove about a rejection

sampler is that long runs only happen with low probability. The explicit proof of termination in

the example above using induction on 𝑑 (𝜀) is implicitly proving an upper bound on the probability

of a run taking longer than 𝑑 (𝜀) steps. Indeed, we can make this concrete by instrumenting the
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rejection sampler with a counter, and make it fail once a limit count is reached.

RSampbd ≜ 𝜆s. 𝜆c. 𝜆m. let rec try 𝑛 =

if 𝑛 ≤ 0 then None

else (let v = s () in if (c v) then Some v else try (𝑛 − 1)))𝑖𝑛
try𝑚

We can now prove the triple below:〈
E
( (
𝑀−𝑁
𝑀+1

)𝑛)〉
RSampbd us𝑀 uc𝑁 𝑛 ⟨𝑣 . ∃𝑤. 𝑣 = Some𝑤⟩ .

Since the sampler will only return something of the shape Some 𝑤 if it succeeds in 𝑛 tries or

fewer,

(
𝑀−𝑁
𝑀+1

)𝑛
is an upper bound on the probability of the sampler of taking more than 𝑛 tries

to produce a valid sample. We can prove this specification by a simple (Coq-level) induction on

𝑛. The case 𝑛 = 0 is trivial, because we begin the proof with E (1). In the inductive case, after the

probabilistic sampling, we will either terminate or amplify our error by
𝑀+1
𝑀−𝑁 , as in the previous

case study, and then we can apply the inductive hypothesis.

The caveat of this approach is that the reasoning about the runtime is entirely intrinsic. Our

adequacy theorem does not allow us to derive from the proof of a Hoare triple a statement about

the concrete runtime of our programs, but we believe that we can achieve this via an integration of

(deterministic) time credits [Mével et al. 2019] into this setting.

5.2.3 Presampling Tapes. In order to extract a more general proof rule from our credit amplifi-

cation argument, it is useful to separate the credit accounting steps from the symbolic execution

of a program. Because the amount of error credits after an expectation-preserving composition

can depend on the value sampled, this necessitates some way to express the outcome of random

sampling events ahead of time. Luckily, the presampling tapes by Gregersen et al. [2024] provide

this mechanism exactly. In this section we first briefly recall the semantics of λrand
ref

with tapes as well

as the proof rules for a 𝜄 ↩→ (𝑁, ®𝑛) proposition, which expresses ownership of a presampling tape.

In the next section we show how to use them to get a general proof rule for credit amplification.

For more details on presampling tapes, we refer the reader to loc. cit., where tapes were originally
introduced and used to sample in an asynchronous manner.

To introduce presampling tapes in λrand
ref

, we extend the syntax of the language as follows.

𝑒 ∈ Expr ::= . . . | tape 𝑒 | rand 𝑒1 𝑒2
𝑣,𝑤 ∈Val ::= . . . | 𝜄 ∈ Label
𝜎 ∈ State ≜ (Loc fin−⇀Val) × (Label fin−⇀ Tape)
𝑡 ∈ Tape ≜ {(𝑁, ®𝑛) | 𝑁 ∈ N ∧ ®𝑛 ∈ N∗≤𝑁 }

In addition to the heap, a state in λrand
ref

with presampling also contains a map from tape labels to

presampling tapes. Tapes are formally pairs (𝑁, ®𝑛) of an upper bound 𝑁 ∈ N and a finite sequence

®𝑛 of natural numbers less than or equal to 𝑁 . Tape allocation via tape 𝑒 returns a fresh label 𝜄 and

extends the state with a new empty tape 𝜖 with bound 𝑁 if 𝑒 evaluates to 𝑁 ∈ N. Sampling from

a tape with label 𝜄 via rand𝑁 𝜄 either deterministically pops the first element from the list ®𝑛 or

uniformly samples a new integer between 0 and 𝑁 .

From the point of view of the Eris𝑡 logic, a presampling tape behaves somewhat similarly to

standard heap location. Like in Clutch, the proposition 𝜄 ↩→ (𝑁, ®𝑛) asserts ownership of a tape

labelled 𝜄 with bound 𝑁 and contents ®𝑛. We can allocate an empty tape 𝜖 with a specified bound.
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⊢ ⟨True⟩ tape(𝑁 ) ⟨𝜄. 𝜄 ↩→ (𝑁, 𝜖)⟩
alloc-tape

Sampling from a non-empty tape consumes the first value of the list.

⊢ ⟨𝜄 ↩→ (𝑁,𝑛 · ®𝑛)⟩ rand𝑁 𝜄 ⟨𝑥 . 𝑥 = 𝑛 ∗ 𝜄 ↩→ (𝑁, ®𝑛)⟩
load-tape

Note that there are no primitives in λrand
ref

for directly writing to or adding values to tapes and values

are only added to tapes via ghost operations that appear purely at the logical level of an Eris proof.

⊢ ⟨𝜄 ↩→ (𝑁, ®𝑛 · 𝑛)⟩ 𝑒 ⟨𝑃⟩ 0 ≤ 𝑛 ≤ 𝑁
⊢ ⟨𝜄 ↩→ (𝑁, ®𝑛)⟩ 𝑒 ⟨𝑃⟩

presample

Crucially, Eris extends the above proof rules for tapes taken from [Gregersen et al. 2024] with the

following additional rule, connecting error credits in expectation to presampling via tapes.∑𝑁
𝑖=0
E2 (𝑖 )
𝑁+1 = 𝜀1 ∀𝑛. ⊢ ⟨𝜄 ↩→ (𝑁, ®𝑛 · 𝑛) ∗ E (E2 (𝑛))⟩ 𝑒 ⟨𝑃⟩

⊢ ⟨𝜄 ↩→ (𝑁, ®𝑛) ∗ E (𝜀1)⟩ 𝑒 ⟨𝑃⟩
presample-exp

Similarly to ht-rand-exp, this rule allows us to sample a random integer 𝑛, write it to a tape, and

get E2 (𝑛) error credits, assuming that our initial amount of error credits 𝜀1 is the expected value of

E2 (𝑛). Since no execution step is taken, this allows us to disentangle credit arithmetic from the

operational semantics of the program. Analogous rules also hold in the partial version of the logic,

but the interaction between tapes and error credits is particularly useful for total correctness.

5.2.4 The Planner Rule. Equipped with the ability to perform credit reasoning and symbolic

execution separately, we can now derive an induction principle for Eris𝑡 which eliminates the

need to perform fine-grained credit arithmetic as in §5.2.1. Our proof rule is directly inspired by

the “planner” method by Arons et al. [2003]. Arons et al. establish a proof system wherein to

prove termination, one can reason as if a sequence of randomized choices will yield some prover-

selected sequence of outputs infinitely often (as justified by the Borel-Cantelli lemma from classical

probability theory). Expressed in Eris𝑡 , we have the following planner rule:

0 < 𝜀 ∀𝑠 . |𝑧 (𝑠) | ≤ 𝐿
⊢ ⟨∃𝑦𝑠. 𝜄 ↩→ (𝑁, 𝑥𝑠 ++ 𝑦𝑠 ++ 𝑧 (𝑥𝑠 ++ 𝑦𝑠))⟩ 𝑒 ⟨𝜙⟩

⊢ ⟨𝜄 ↩→ (𝑁, 𝑥𝑠) ∗ E (𝜀)⟩ 𝑒 ⟨𝜙⟩
presample-planner

The rule states that if we have a tape with contents 𝑥𝑠 and any positive amount of error credits

𝜀, then we can update our tape with some unknown sequence of “garbage” samples 𝑦𝑠 in order

to ensure it includes a prover-selected target sequence 𝑧 (𝑥𝑠 ++ 𝑦𝑠) at the end. Generalizing Arons
et al.’s planner rule, our version allows the target sequence to be a function 𝑧 of the current state of

the tape, provided that the length of the target word has a fixed upper bound 𝐿 (and consequently,

cannot become arbitrarily unlikely). After invoking the planner rule, a prover can consume the

samples in 𝑥𝑠 ++ 𝑦𝑠 using a regular induction on lists, eventually ending up in their desired tape

state 𝜄 ↩→ (𝑁, 𝑧 (𝑥𝑠 ++ 𝑦𝑠)).
The planner rule is derivable entirely within Eris𝑡 using the rules we have already seen. The

proof proceeds by induction by error amplification, and most of the proof is directly analogous to

the argument in §5.2.1. The key step lies in proving the following amplification lemma which, for a
particular constant 𝐾𝑁,𝑤 > 1 (dependent on 𝑁 and |𝑤 |), allows us to either sample a target word𝑤
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onto a tape, or sample a garbage string 𝑗 and scale our error credit by a factor of 𝐾𝑁,𝑤 :

⊢
〈
∃ 𝑗 . 𝜄 ↩→ (𝑁, ®𝑛 ++ 𝑗) ∗ E

(
𝐾𝑁,𝑤 · 𝜀

)〉
𝑒 ⟨𝜙⟩ ⊢ ⟨𝜄 ↩→ (𝑁, ®𝑛 ++𝑤)⟩ 𝑒 ⟨𝜙⟩

⊢ ⟨𝜄 ↩→ (𝑁, ®𝑛) ∗ E (𝜀)⟩ 𝑒 ⟨𝜙⟩
Proving this involves |𝑧 (®𝑛) | applications of presample-exp. We provide the details, including the

amplification constant 𝐾𝑁,𝑤 , in Appendix C.

Example. To demonstrate how the planner rule can eliminate the credit accounting in induction
by error amplification, we will prove that a Poisson trial almost surely terminates. A Poisson trial is

a random process, whose value comes from counting how many independent attempts a random

variable takes before meeting some criteria. We can implement a Poisson trial that flips pairs of fair

coins until they are both heads as an instantiation of a rejection sampler 𝑆 :

cs𝑙 ≜ 𝜆_. 𝑙 ← (! 𝑙 + 1); (rand 1, rand 1) cp𝑙 ≜ 𝜆𝑣. 𝑣 == (1, 1)
Note that the sampler here both maintains internal state (counting the number of trials) and uses

multiple calls to rand. We seek to show

⟨E (𝜀) ∗ 0 < 𝜀 ∗ 𝑙 ↦→ 0⟩ 𝑆 cs𝑙 cp𝑙 ⟨True⟩ .
Starting with any tape 𝜄 ↩→ (𝑁, 𝑥𝑠), we invoke the planner rule with E (𝜀) and the target function

𝑧 (𝑠) =
{
[1, 1] |𝑠 | is even,
[0, 1, 1] otherwise.

(5)

This results in a tape of the form 𝜄 ↩→ (1, 𝑥𝑠 ++ 𝑗 ++ [1, 1]) where 𝑗 has even length. By induction

over 𝑗 , we consume the entire garbage section of the tape, with each invocation of cs𝑙 pulling off
the two samples. Either the garbage section will happen to contain some spurious [1, 1] sample,

in which case the program terminates, or we step through the entire garbage section and end up

with tape 𝜄 ↩→ (1, [1, 1]) which will also cause termination. We obtain our almost-sure termination

result using Theorem 8, as our initial error credit was arbitrarily small.

5.2.5 The Escaping Spline. In this case study, we revisit Example 5.4 from [McIver et al. 2018],

which presents a so-called escaping spline. This consists in a random walk over the non-negative

integers. An agent is at a position indicated by an integer 𝑛 and on every step it chooses prob-

abilistically between stopping, or moving to 𝑛 + 1. However, the bias changes with the current

position 𝑛, the probability it chooses to stop is
1

𝑛+1 . Our goal is to show that, despite the probability

of choosing to stop decreasing as time goes on, this walk is almost surely terminating, no matter

the initial position. We can implement the walk by the following program:

rec spline n = let 𝑥 = rand𝑛 in

if 𝑥 = 0 then () else spline (𝑛 + 1)
Using our total correctness logic, and Theorem 8, it suffices to show, for any arbitrary positive 𝜀,

and any initial position 𝑛,

⊢ ⟨E (𝜀)⟩ spline 𝑛 ⟨True⟩ (6)

The crucial part of the proof is the following auxiliary result, proven by induction on 𝑘

⊢
〈
E
( 𝑛

𝑛 + 𝑘 + 1

)〉
spline 𝑛 ⟨True⟩

for all 𝑛. In the case 𝑘 = 0 we own E
(
𝑛
𝑛+1

)
, which is precisely what we need in position 𝑛 to ensure

we choose to stop. For the successor case, we own E
(

𝑛
𝑛+(𝑘+1)+1

)
. Here we can apply ht-rand-exp

to ensure we either jump to 0 or we jump to 𝑛 + 1 and scale our credits by
𝑛+1
𝑛
, which leaves us
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with E
(

𝑛+1
𝑛+1+𝑘+1

)
. This is what we require to apply our inductive hypothesis at position 𝑛 + 1, and

finish the proof of this lemma.

Going back to proving Equation (6), since our initial budget E (𝜀) is strictly positive, and the

sequence
𝑛

𝑛+𝑘+1 over 𝑘 gets arbitrarily small, we can always pick a 𝐾 such that
𝑛

𝑛+𝐾+1 < 𝜀, and then

weaken our assumption to E
(

𝑛
𝑛+𝐾+1

)
and conclude by applying the auxiliary lemma above.

To contrast with our proof, McIver et al. introduce a specialized rule to prove that this and

other complex examples terminate almost surely. Within our setting, error credits and (meta-logic)

induction can be used directly, with no need for additional rules. It is not clear if their other case

studies can also be proven AST using error credits, or if their termination rule can be encoded in

terms of error credits.

5.2.6 Additional Case Studies. While the planner rule is a versatile technique for proving

almost-sure termination, it is not the only way to abstract induction by error amplification.
In particular, when the “target sample” has complex dependencies on program state it may

be cumbersome to explicitly produce a target sample function 𝑧. In the long version we outline

an alternative approach for proving almost-sure termination, which leverages a higher-order

specification to directly express a relationship between the behavior of a sampler, checker, and error

credit values. We then apply this specification to show that WalkSAT, a randomized SAT solver

whose behavior is highly dependent on state, almost surely recognizes satisfiable 3SAT formulas.

6 Semantic Model and Soundness
We now turn our attention to the semantic model of Eris, which we use to prove soundness of the

proof rules for Eris and to prove the adequacy theorem presented in §3.

Following standard practice [Jung et al. 2018], we define Eris Hoare triples in terms of a weakest
precondition predicate

{𝑃} 𝑒 {𝑄} ≜ �(𝑃 ∗ wp 𝑒 {𝑄})
where the persistence modality � ensures that the predicate can be duplicated. However, our

definition of the weakest precondition predicate wp 𝑒 {𝑄} is novel. The definition is shown below.

We omit from the definition the parts pertaining to how the Iris logic handles modifications to

resources via “update modalities”, since these details would distract from the definition and are

completely standard. The full definition can be found in Appendix A.1.

wp 𝑒1 {Φ} ≜ (𝑒1 ∈Val ∧ Φ(𝑒1))
∨ (𝑒1 ∉Val ∧ ∀𝜎1, 𝜀1 . 𝑆 (𝜎1) ∗ E• (𝜀1) ∗

GLM(𝑒1, 𝜎1, 𝜀1, (𝜆 𝑒2, 𝜎2, 𝜀2 . ⊲(𝑆 (𝜎2) ∗ E• (𝜀2) ∗ wp 𝑒2 {Φ})))
The overall structure of this definition is similar to the weakest precondition for a non-probabilistic

language [Jung et al. 2018, §6.3]. In particular, wp 𝑒1 {Φ} is defined by guarded recursion. The

first clause of the disjunction indicates that the weakest precondition for a value simply means

that the postcondition Φ(𝑒1) must be satisfied. The second clause of the disjunction deals with the

non-value case. It requires that the state interpretation 𝑆 (𝜎) is valid, which connects the logical

points-to connectives to the physical state of the program. Both the heap and the presampling

tapes are handled in this way, using the standard interpretation of state as partial finite maps from

locations (resp. labels) to values (resp. presampled values) [Gregersen et al. 2024; Jung et al. 2018].

The weakest precondition gives meaning to ownership of the error resource E (𝜀) through the

error interpretation E• (𝜀1). Just like for the state interpretation, the error interpretation E• (𝜀1)
connects the logical connective for error credits E (𝜀) to the errors during program execution. Error

credits are defined using the authoritative resource algebra [Jung et al. 2018, 2015b] over the positive

real numbers with addition and the natural order, whose valid elements are the numbers in the
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half-open interval [0, 1). The definition of the error credit resource is thus similar to that of later

credits [Spies et al. 2022], but instead of Auth(N, +) we use Auth(R+
0
, +) with validity restricted to

elements strictly smaller than 1. The proposition E (𝜀) asserts ownership of a fragmental element

of the resource algebra, while E• (𝜀) stands for the authoritative view. The error rules from §3

then follow directly from the definition of the error credit resource together with the rules for the

authoritative resource algebra.

The novel part of our definition of weakest precondition (besides the addition of the error

interpretation) is that the recursive appearance of the weakest precondition is wrapped in the

graded lifting modality GLM. The exact way in which GLM connects the operational semantics to

errors will be explained in the next section. For now, we focus on its intuitive use in the weakest

precondition. Think of (𝑒1, 𝜎1) as the starting configuration and of 𝜀1 as the current error budget.

Through GLM, we quantify over the configurations we may step to according to the operational

semantics as (𝑒2, 𝜎2), and 𝜀2 stands for the left-over error budget. The final part of the definition
then indicates that the state and error interpretations with respect to 𝜎2 and 𝜀2 have to be satisfied,

and that the weakest precondition has to hold recursively for 𝜀2 and Φ. Crucially, this recursive
appeal to the weakest precondition occurs under the later modality ⊲. This is what allows us to

take the guarded fixed point of wp (which, in turn, allows us to prove soundness of the recursion

rule ht-rec).

For Eris𝑡 , the only difference is that we omit the ⊲ modality in the definition of weakest precon-

dition and instead define the predicate by the least fixed point (this is well-defined since wp only

occurs positively inside its own definition).

6.1 The Graded Lifting Modality
We now turn our attention to the graded lifting modality GLM(𝑒1, 𝜎1, 𝜀, 𝑍 ). Eris uses the graded
lifting modality to construct approximate predicate liftings of the graded predicate on configurations

𝑍 with respect to the distributions induced by the execution of (𝑒1, 𝜎1). As we shall see, to prove

the modality, the initial error budget 𝜀 may be shared between the modality and 𝑍 . Our use of the

graded lifting modality in the weakest precondition bears similarity with the coupling modality of

Clutch [Gregersen et al. 2024], which was used to construct couplings between the execution of a

specification program and its refinement, but the definition of our modality itself is rather different.

To focus the discussion on the most interesting aspects of the modality, we first present a

simplified version step-simple that only supports reasoning about uniform error bounds. We then

show how to modify the definition to enable expected error bound reasoning in step-exp. The full

definition, which additionally supports expected error reasoning for presampling tapes, can be

found in Appendix A.2.

The simplified version is specified by the following rule (which should be read as a definition,

expressing that the GLM(𝑒1, 𝜎1, 𝜀, 𝑍 ) predicate in the conclusion holds if the separating conjunction

of the premises above the line holds):

red(𝑒1, 𝜎1) 𝜀1 + 𝜀2 ≤ 𝜀 Prstep(𝑒1,𝜎1 ) [¬𝑅 ] ≤ 𝜀1 ∀𝑒2, 𝜎2. 𝑅(𝑒2, 𝜎2) ∗ 𝑍 (𝑒2, 𝜎2, 𝜀2)
GLM(𝑒1, 𝜎1, 𝜀, 𝑍 )

step-simple

The intuitive meaning of step-simple is that we can split the starting error budget 𝜀 into 𝜀1 + 𝜀2
and then likewise split the reasoning about the behaviour of the program into reasoning about the

first step and about the rest of the execution separately. The error bounds can then be composed to

yield a bound on the execution of the whole program.

On a technical level, the first premise of step-simple ensures that the program does not get stuck

(red is short for reducible). The second premise states that the error budget can be split into two

parts 𝜀1 and 𝜀2 provided their sum does not exceed 𝜀. The inequality gives some flexibility in error
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accounting by allowing one to “weaken” the error bound: it is always sound to leave error budget

unused. The user of the rule then picks an auxiliary intermediate predicate on configurations 𝑅.

The premise Prstep(𝑒1,𝜎1 ) [¬𝑅 ] ≤ 𝜀1 states that the configurations (𝑒2, 𝜎2) which (𝑒1, 𝜎1) can reduce

to in one step do not violate 𝑅 with error more than 𝜀1, i.e., Prstep(𝑒1,𝜎1 ) [¬𝑅 ] ≤ 𝜀1. Finally, the last
premise requires a proof of 𝑍 for configurations (𝑒2, 𝜎2) with error budget 𝜀2, but in that proof we

may now assume that 𝑅(𝑒2, 𝜎2) is satisfied, since we “paid” for this assumption with 𝜀1.

Error in expectation. The rule step-simple imposes a constant bound on the error credit 𝜀2
that is left available for the correctness proof of the remainder of the program (𝑒2, 𝜎2). However, as
we saw in the examples on expected error analysis, some expressions 𝑒2 may need more or less

error credit than others. This intuition is realized via the next rule.

red(𝜌1) Prstep(𝜌1 ) [¬𝑅 ] ≤ 𝜀1 ∃𝑟 . ∀𝜌2. E2 (𝜌2) ≤ 𝑟

𝜀1 +
∑
𝜌2∈Cfg step(𝜌1) (𝜌2) · E2 (𝜌2) ≤ 𝜀

∀𝜌2 . 𝑅(𝑒2, 𝜎2) ∗ E2 (𝜌2) ≥ 1 ∨ 𝑍 (𝜌2, (E2 (𝜌2)))
GLM(𝜌1, 𝜀, 𝑍 )

step-exp

The first two premises serve the same purpose as in step-simple, and the third premise is a purely

technical side-condition that guarantees that the sum in premise four exists. The novelty in step-

exp is that instead of a fixed error for the “rest of the program”, we have a configuration-indexed

family of errors E2. Premise four states that the error budget 𝜀 can be split into 𝜀1 and, for each 𝜌2
the starting configuration 𝜌1 can step to, E2 (𝜌2) error credits, so long as the weighted sum of the

errors multiplied by the probability of attaining each 𝜌2 is below 𝜀. This weighted sum is, of course,

nothing other than the expectation of the random variable E2 over the distribution step(𝜌1). The
last premise is similar to that of step-simple, except that step-exp of course uses the rescaled error

E2 (𝜌2). Another detail that was omitted from the simple rule is that we include a clause that allows

us to conclude immediately if the remaining error budget exceeds 1.

6.2 Soundness, Adequacy, and Almost-Sure Termination
Using ourmodel of weakest preconditions and Hoare triples, we can prove soundness of the program

logic proof rules. For reasons of space, we refer the reader to the accompanying Coq formalization

for details. The adequacy theorem for Hoare triples follows directly from the corresponding theorem

for the weakest precondition:

Theorem 9 (Limit WP adeqacy). If E (𝜀) ⊢ wp 𝑒 {𝜙} then ∀𝜎. Prexec(𝑒,𝜎 ) [¬𝜙 ] ≤ 𝜀
Since exec is continuous in the sense that (∀𝑛. Prexec𝑛 (𝑒,𝜎 ) [𝜙 ] ≤ 𝑥) =⇒ Prexec (𝑒,𝜎 ) [𝜙 ] ≤ 𝑥 ,

it suffices to prove the corresponding statement about finite executions of arbitrary length. By

applying the standard soundness theorem of the Iris base logic, we can thus restrict our attention

to showing that ⊢ ⊲𝑛 Prexec𝑛 (𝑒,𝜎 ) [¬𝜙 ] ≤ 𝜀 holds. The proof then proceeds by induction on the step

index 𝑛. The inductive step for this argument hinges on the following lemma:

GLM(𝜌1, 𝜀1, (𝜆(𝜌2, 𝜀2), ⊲ 𝑛+1 (Prexec𝑛 (𝜌2 ) [¬𝜙 ] ≤ 𝜀2))) ⊢ ⊲ 𝑛+1 (Prexec𝑛+1 (𝜌1 ) [¬𝜙 ] ≤ 𝜀1)
Intuitively, this says that the graded lifting modality can be composed with an error bound for an

𝑛-step execution of the program 𝜌1 to obtain an error bound on the execution of 𝜌1 for (𝑛 + 1) steps.
This should come as no surprise, since GLM requires the existence of an error bound on a single

execution step. The key lemma that allows this composition is then the corresponding lemma for

composing error bounds along monadic composition:

Lemma 10. Let 𝜇 ∈ D(𝐴), and let 𝑓 be an 𝐴-indexed family of distributions, and let E2 be a family
of errors. If Pr𝜇 [¬𝜙 ] ≤ 𝜀 and ∃𝑥 . ∀𝑎. 0 ≤ E2 (𝑎) ≤ 𝑥 and (∀𝑎. 𝜙 (𝑎) =⇒ Pr𝑓 (𝑎) [¬𝜓 ] ≤ E2 (𝑎)),
then Pr𝜇≫=𝑓 [¬𝜓 ] ≤ 𝜀1 +

∑
𝑎∈𝐴 𝜇 (𝑎) · E2 (𝑎).
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This lemma in turn is proven by carefully re-arranging the terms of the sums obtained from the

definition of the bind of the probability monad.

Finally, the almost-sure termination theorem for Eris𝑡 (Theorem 8) is proved by (1) proving the

total adequacy theorem in much the same manner as the partial adequacy theorem (except that no

later modalities are involved) and (2) by the completeness of the real numbers, in the sense that for

any 𝑥,𝑦 ∈ R, if ∀𝜀 > 0. 𝑥 − 𝜀 ≤ 𝑦 then 𝑥 ≤ 𝑦.

7 Related Work
Accuracy of probabilistic programs. Our logic is inspired by aHL [Barthe et al. 2016b], which

introduced the idea of using a grading on Hoare triples that indicates the probability of the program

failing to satisfy the specification, and then adding those errors through the sequence rule. This work

considered an imperative probabilistic While language and used their approach to reason about

accuracy of differentially private mechanisms. These ideas were then extended to the higher-order

setting first by Sato et al. [2019], who consider a probabilistic lambda calculus with terminating

recursion, and then by Aguirre et al. [2021], who add global first-order state via a state monad.

Compared to them, we consider full recursion and higher-order state with dynamic allocation, and

we validate new proof principles, including expected error composition and value dependent error.

Expectation preserving composition of error can be related to expectation-based logics, such as

Batz et al. [2019]; Kaminski et al. [2016]; Morgan et al. [1996], where predicates are real-valued

random variables. These logics are presented via weakest-precondition-style predicate transform-

ers, and the weakest precondition of a sampling statement is precisely the expected value of its

postcondition, similar to how credits are transformed in our ht-rand-exp rule. These logics can

also be used to reason about approximate correctness, but they target first-order imperative lan-

guages. Recently, these techniques were applied in Batz et al. [2023] to reason about amortized

expected time complexity of probabilistic programs. Various weakest pre-expectation-based logics

also support techniques for proving almost-sure termination [Kaminski 2019, Chapter 6]. In a

variant of one of these logics, McIver et al. [2018] present a powerful rule for proving almost-sure

termination of probabilistic programs that are out of scope of other techniques. While it is unclear

if it is possible to encode this general principle using error credits, we have used Eris𝑡 to prove that

their Example 5.4 is AST. The recently presented Caesar [Schröer et al. 2023] provides SMT-based

support for verification in expectation-based logics.

Other approaches have tried to automate the computation of the probability that a program fails

to satisfy a postcondition [Chakarov and Sankaranarayanan 2013; Smith et al. 2019; Wang et al.

2021]. These exploit different techniques of probability theory and programming language theory,

such as martingales, concentration inequalities, approximants of fixed points, etc.

Approximate reasoning for probabilistic programs is also useful in the relational setting. Barthe

et al. [2016a] introduce approximate couplings, which can be applied to prove different notions of

approximate equivalence or differential privacy, in the setting of first-order imperative programs.

Aguirre et al. [2021] also show that these techniques can be extended to the higher-order setting

with global state. Also in the relational setting, the line of work on Rely [Carbin et al. 2013] considers

two kinds of approximate properties: the probability that a program executes correctly, and the

accuracy of the result itself.

Credit-based reasoning and resource analysis. There is a long line of work on automated

amortized resource analysis [Hoffmann and Jost 2022; Hofmann and Jost 2003], which uses a

substructural type system that associates a potential (a kind of stored credit) with a data structure.

Recent work has extended this approach to probabilistic programs [Das et al. 2023; Ngo et al. 2018;
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Wang et al. 2020] to prove bounds on expected costs. Analogously to our expected error rules, their

typing rules for sampling instructions allow to average the potential across all possible outcomes.

Atkey [2011] proposes a realization of ARAA-style potentials as a separation logic resource,

via a notion of credit. This idea was adapted to 𝜆ref and implemented in Coq by Charguéraud and

Pottier [2019], and later brought to Iris [Mével et al. 2019; Pottier et al. 2024]. Error credits follow a

parallel story, namely realizing aHL-style error annotations on triples as a separation logic resource

and exploring the gains on expressive power we obtain. However, there are no further similarities

between the implementations of error credits and time credits. In particular, the semantics of the

languages, the property being tracked and the approach to proving soundness are all different.

Probabilities and separation logic. A number of works in recent years have focused on the

interactions between separation logic and probabilities. Gregersen et al. [2024] introduced Clutch,

upon which we build. They present a separation logic to reason about higher-order probabilistic

programs, focusing on relational properties and in particular contextual equivalence. Batz et al.

[2019] present an expectation-based version of separation logic, which can be used to prove error

bounds for first-order pointer programs.

Polaris [Tassarotti and Harper 2019] is a concurrent program logic based on Iris for proving a

coupling between a randomized program and a more abstract model. The soundness theorem for

Polaris allows bounds on probabilities and expectations in the model to be translated into bounds

on the program across schedulers.

Other works focus on reinterpreting the notion of separating conjunction in separation logic to

represent probabilistic independence. This line of work originated with Barthe et al. [2020], and

different variants have been developed (Bao et al. [2022]; Li et al. [2023]). These works also focus

on first-order programs. In our work, the separating conjunction has the standard meaning, it is

only Hoare triples as whole that have a probabilistic interpretation. Exploring a deeper connection

between our logic and separation logics for independence would be an interesting follow-up.

8 Conclusions and Future Work
In this paper we presented Eris, which develops the idea of representing error as a resource to

enable novel reasoning principles for approximation bounds that lead to more modular and precise

specifications compared to prior work, including almost sure termination of probabilistic algorithms.

There are multiple directions for future work. Firstly, it would be interesting to extend Eris to a

concurrent language, to support reasoning about approximate randomized concurrent algorithms.

Secondly, the idea of expected error composition should apply to other kinds of separation logic

resources, such as time credits, and could be used to reason about expected time complexity

of higher-order probabilistic programs. Thirdly, by integrating ideas from separation logics for

probabilistic independence, we could encode concentration bounds that exploit this independence

and thereby obtain more precise error bounds. Finally, we believe our ideas should also apply to

the relational setting, where the error credits could be used to prove approximate couplings, and

have interesting applications to security and differential privacy.
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A Appendix: Full Definition of the Weakest Precondition and Graded Lifting Modality
The definitions of the weakest precondition and of the graded lifting modality as presented in §6

contain some simplifications for the sake of pedagogy. We now restate the definitions in full detail.

A.1 The Weakest Precondition in Detail
The full definition of the weakest precondition differs from the one presented in §6 in that it also

contains the invariant mask annotation and fancy update modality of Iris.

wpE 𝑒1 {Φ} ≜ (𝑒1 ∈Val ∧ |⇛EΦ(𝑒1)) ∨
(𝑒1 ∉Val ∧ ∀𝜎1, 𝜀1. 𝑆 (𝜎1) ∗ E• (𝜀1) ∗ |⇛E ∅
GLM (𝑒1, 𝜎1, 𝜀1, (𝜆 𝑒2, 𝜎2, 𝜀2 . ⊲ |⇛∅ E (𝑆 (𝜎2) ∗ E• (𝜀2) ∗ wpE 𝑒2 {Φ})))

Just as before, the full definition of the total weakest precondition is obtained by omitting the later

modality on the last line, and by taking the least instead of the guarded fixed point of the recursive

definition.

A.2 The Graded Lifting Modality in Detail
In §6.1, we presented a simplified version of the graded lifting modality which does not support

presampling tapes. The full definition of GLM contains two clauses: step-exp for expected error

lifting of program steps and statestep-exp for the presampling analog.

The rules in this section should be read as defining GLM as an inductive predicate, i.e. as the
least fixed point of the closure system associated to the rules.

Adding presampling tapes. The presampling ghost operations on tapes are realized through

an auxiliary state steps relation state_step : Label × State→ D(State). If 𝜄 is the label associated to

an (allocated) tape with bound 𝑁 , then state_step𝜄 (𝜎1) denotes the distribution on states obtained

by appending a uniformly randomly sampled value between 0 and 𝑁 to the end of tape 𝜄:

state_step𝜄 (𝜎1) (𝜎2) =
{

1

𝑁+1 if 𝜎2 = 𝜎1 [𝜄 → (𝑁, ®𝑛 · 𝑛)] and 𝜎1 (𝜄) = (𝑁, ®𝑛) and 𝑛 ≤ 𝑁,
0 otherwise.

We can now extend the graded lifting modality to allow taking state steps. Just as we did with

step-simple, we will first discuss a simplified rule that does not support reasoning about errors in

expectation. In practice, this rule is derivable from the rule statestep-exp below.

𝜀1 + 𝜀2 ≤ 𝜀 Prstate_step𝜄 (𝜎1 ) [¬𝑅 ] ≤ 𝜀1 ∀𝜎2. 𝑅(𝜎2) ∗ GLM(𝑒1, 𝜎2, 𝜀2, 𝑍 )
GLM(𝑒1, 𝜎1, 𝜀, 𝑍 )

statestep-simple

The user of the rule can, once again, split the error budget 𝜀 between a first step and the remainder

of the program. In statestep-simple, however, the first step is a state step, i.e. a purely logical step

in the ghost state. The recursive occurrence of GLM in the last premise of statestep-simple allows

the user of the modality to perform a number of state steps before eventually proving the base case

of the modality, namely step-exp.
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Finally, we can combine the idea of reasoning of expected-error reasoning with state steps via

the following rule.

red(𝑒1, 𝜎1) Prstate_step𝜄 (𝜎1 ) [¬𝑅 ] ≤ 𝜀1 ∃𝑟 . ∀𝜌2 . E2 (𝜌2) ≤ 𝑟

𝜀1 +
∑︁

𝜎2∈State
state_step(𝑒1, 𝜎1) (𝑒1, 𝜎2) · E2 (𝑒1, 𝜎2) ≤ 𝜀

∀𝜎2 . 𝑅(𝜎2) ∗ E2 (𝑒1, 𝜎2) ≥ 1 ∨ GLM(𝑒1, 𝜎2, E2 (𝑒1, 𝜎2))
GLM(𝑒1, 𝜎1, 𝜀, 𝑍 )

statestep-exp

This rule is used, for instance, to derive the program logic rule presample-exp.

B Appendix: Additional Details for Collision-Free Hash Map
We include the code for the insertion function for a collision-free, resizing hash map, as studied

in §4.4. A hash map is represented as a tuple (𝑙, ℎ𝑓 , 𝑣, 𝑠, 𝑟 ), where 𝑙 is an array containing the physical
representation of the map, ℎ𝑓 is a (collision-free) hash function as shown in §4.3, 𝑣 is the current

size of the array containing the hash map, 𝑠 is the number of initialized entries and 𝑟 is the size

threshold before resizing:

insert hm𝑤 ≜ let (𝑙, ℎ𝑓 , 𝑣, 𝑠, 𝑟 ) = hm in

let (𝑏, ℎ𝑓 ′) = hash_rs ℎ𝑓 𝑤 in

let𝑤 ′ = ! 𝑙 [𝑏] in
if𝑤 ′ = () then
𝑙 [𝑏] ← 𝑤

if 𝑠 + 1 = 𝑟 then
let 𝑙 ′ = resize 𝑙 𝑣 𝑣 in

(𝑙 ′, ℎ𝑓 ′, 2 ∗ 𝑣, 𝑠 + 1, 2 ∗ 𝑟 )
else (𝑙, ℎ𝑓 ′, 𝑣, 𝑠 + 1, 𝑟 )

else (𝑙, ℎ𝑓 ′, 𝑣, 𝑠, 𝑟 )

Note in particular that if we try to insert an element𝑤 and there is another element𝑤 ′ with the

same hash, then𝑤 will not get inserted into the table. However, the specification of hash_rs ensures
that this will not happen if we have ownership of E ((3 · 𝑅0)/(4 ·𝑉0)).

The core part of the representation predicate for the hash map is shown below:

isHashmap ℎ𝑚 𝑛𝑠 ≜ ∃𝑙, ℎ𝑓 , 𝑣, 𝑠, 𝑟 ,𝑚, 𝑡𝑏𝑙 .(ℎ𝑚 = (𝑙, ℎ𝑓 , 𝑣, 𝑠, 𝑟 ))∗
𝑙 ↦→∗ 𝑡𝑏𝑙 ∗ ((filterUnits 𝑡𝑏𝑙) ≡ 𝑛𝑠)∗
cf _hash_rs ℎ𝑓 𝑚 𝑣 𝑠 𝑟∗
(∀(𝑖,𝑤 : N).𝑚[𝑤] = 𝑖 ↔ 𝑡𝑏𝑙 [𝑖] = 𝑤)∗
(∀𝑖 < 𝑣, 𝑖 ∉ img𝑚 → 𝑡𝑏𝑙 [𝑖] = ()) ∗ (. . . )

This should be read as “ℎ𝑚 is a hash map representing the set (of natural numbers) 𝑛𝑠”. The hash

map contains a table 𝑡𝑏𝑙 whose contents are either natural numbers or unit, and the set of natural

numbers it contains is exactly 𝑛𝑠 . The index at which every element is located is controlled by a

collision-free hash function ℎ𝑓 , that tracks a partial map𝑚. Thus the table will contain an element

𝑤 at index 𝑖 if and only if𝑚 maps𝑤 to 𝑖 .
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C Appendix: Expectation-Preserving Composition on Words
While ht-rand-exp and presample-exp can move error credits between the outcomes of a single

random event, in order to prove the planner rule we need to move error credits out of the sequence of

events which sample an entire target word. Defining a suitable sequence of expectation-preserving

composition steps to accomplish this can be subtle: sampling any prefix of our target word should

decrease our error credit, but sampling a prefix of the target followed by an erroneous sample

should yield an amplification on our initial credit amount.

Let ®𝑤 be a word of length 𝐿 > 0 in the alphabet [0, 𝑁 ]. For 0 ≤ 𝑖 ≤ 𝐿, define the constants

ecAmp𝑁,𝐿 ≜ 1 + 1

(𝑁 + 1)𝐿 − 1
ecRem𝑁,𝐿 (𝑖) ≜ 1 − (𝑁 + 1)

𝑖 − 1
(𝑁 + 1)𝐿 − 1

so that 0 ≤ ecRem𝑁,𝐿 (𝑖) < 1 < ecAmp𝑁,𝐿 . Suppose we want to amplify some positive amount

of credit 𝜀 against ®𝑤 ; that is we seek to either sample all of ®𝑤 , or obtain extra error credits. For

0 ≤ 𝑖 < 𝐿, define the error distribution functions

𝐷𝜀𝑁 ,𝐿 (𝑖, 𝑐) ≜
{
ecRem𝑁,𝐿 (𝑖 + 1) · 𝜀 𝑐 = ®𝑤 [𝑖]
ecAmp𝑁,𝐿 · 𝜀 otherwise

Starting with E
(
ecRem𝑁,𝐿 (𝑖) · 𝜀

)
the function 𝐷𝜀

𝑁 ,𝐿
(𝑖, _) is mean-preserving, since

𝑁∑︁
𝑐=0

𝐷𝜀𝑁 ,𝐿 (𝑖, 𝑐) = ecRem𝑁,𝐿 (𝑖 + 1) · 𝜖 + 𝑁 · ecAmp𝑁,𝐿 · 𝜀

=

(
(𝑁 + 1) (𝑁 + 1)𝐿 − (𝑁 + 1)𝑖+1

(𝑁 + 1)𝐿 − 1

)
· 𝜀

= (𝑁 + 1) · ecRem𝑁,𝐿 (𝑖) · 𝜀

Now we can redistribute the error credit out of the event where we sample ®𝑤 and distribute

it evenly into all other cases, using 𝐿 − 1 steps of advanced composition. Starting with 𝑖 = 0,

at the beginning of the 𝑖th sample we have will have correctly sampled the first 𝑖 characters

of ®𝑤 and own E
(
ecRem𝑁,𝐿 (𝑖) · 𝜀

)
. At step 𝑖 , perform expectation preserving composition using

the error function 𝐷𝜀
𝑁 ,𝐿
(𝑖, _). Each composition either correctly samples the next character of ®𝑤

and decreases the error credit supply to E
(
ecRem𝑁,𝐿 (𝑖 + 1) · 𝜀

)
, or increases it to E

(
ecAmp𝑁,𝐿 · 𝜀

)
.

Note that E
(
ecRem𝑁,𝐿 (0) · 𝜀

)
= E (𝜀) for the initial case, and E

(
ecRem𝑁,𝐿 (𝐿) · 𝜀

)
= E (0) once ®𝑤 is

completely sampled. In aggregate, this sequence of proof steps will either result in sampling ®𝑤 or

increasing our error credit by a factor of ecAmp𝑁,𝐿 .
Implemented using presample-exp, this procedure proves the amplification lemma from §5.2.4:〈

∃®𝑗 . 𝜄 ↩→ (𝑁, ®𝑛 ++ ®𝑗) ∗ E
(
ecAmp𝑁,𝐿 · 𝜀

)〉
𝑒 ⟨𝜙⟩ ⟨𝜄 ↩→ (𝑁, ®𝑛 ++ ®𝑤)⟩ 𝑒 ⟨𝜙⟩

⟨𝜄 ↩→ (𝑁, ®𝑛) ∗ E (𝜀)⟩ 𝑒 ⟨𝜙⟩

Finally, it will be convenient to define a lower bound on the amount of extra credit generated

each time our chain of advanced composition fails to sample ®𝑤 : ecExc𝑁,𝐿 ≜ ecAmp𝑁,𝐿 − 1. Since
ecRem𝑁,𝐿 (𝑖) < 1 for all 0 ≤ 𝑖 ≤ 𝐿, we can prove that

E
(
ecAmp𝑁,𝐿

)
∗ E

(
ecRem𝑁,𝐿 (𝑖)

)
∗ E

(
ecExc𝑁,𝐿

)
(7)

In other words, when we fail to sample ®𝑤 using this technique we have at least enough credit to

try again, plus an additional E
(
ecExc𝑁,𝐿 · 𝜀

)
.
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