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Abstract

Evaluating the forthcoming impacts of climate change is important for formulating efficient and flexible
approaches to water resource management. General Circulation Models (GCMs) are primary tools that
enable scientists to study both past and potential future climate changes, as well as their impacts on policies
and actions. In this work, we quantify the future projected impacts of hydroclimatic extremes on the coastal,
risk-prone Tar-Pamlico River basin in North Carolina using GCMs from the Sixth International Coupled
Model Intercomparison Project (CMIP6). These models incorporate projected future societal development
scenarios (Shared Socioeconomic Pathways, SSPs) as defined in the Intergovernmental Panel on Climate
Change (IPCC) Sixth Assessment Report (AR6). Specifically, we have utilized historical residential
expansion data, the Soil and Water Assessment Tool Plus (SWAT+), the Standardized Precipitation Index
(SPI), and the Interquartile Range (IQR) method for analyzing extremes from 2024 to 2100. Our findings
include: (1) a trend toward wetter conditions is identified with an increase in flood events toward 2100; (2)
projected increases in the severity of flood peaks are found, quantified by a rise of 21% compared to the
2000-2020 period; (3) downstream regions are forecast to experience severe droughts up to 2044; and (4)
low-lying and coastal regions are found as particularly susceptible to higher flood peaks and more frequent
drought events between 2045 and 2100. This work provides valuable insights into the anticipated shifts in
natural disaster patterns and supports decision-makers and authorities in promoting adaptive strategies and
sustainable policies to address challenges posed by future climate changes in the Tar-Pamlico region and

throughout the state of North Carolina, United States.

Keywords: Climate change; Flood; Drought; CMIP6; Resilience; Tar-Pamlico River basin.
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1. Introduction

Many countries, including the United States, have an extensive history of dealing with natural disasters
(Easterling et al., 2000). Many works indicated that changes in the intensity and frequency of these extreme
events could significantly impact human lives (Bonsoms et al., 2023; Guan et al., 2021; Kang et al., 2022;
Saadi et al., 2024; Sanjay Mankar et al., 2020; Tran et al., 2022d, 2023b, 2023¢; Donnelly et al., 2024a).
Weather-related extreme events such as droughts and floods, which vary spatially and temporally, can
considerably affect local communities (Anjanee Prabha and Tapas, 2020; Cao et al., 2023; Dias et al., 2024;
IPCC, 2013; Omojola et al., 2012; Tan et al., 2023; Trenberth et al., 2014; Zhang et al., 2023; Zhou et al.,
2023; Noori et al., 2023). Specifically, floods and droughts can lead to severe fatalities and cause significant
losses in country’s economy (Garner et al., 2017; Ma and Yuan, 2021; Ren et al., 2023; Thibeault and Seth,
2014; Tran et al., 2021a, 2021b; Zhang et al., 2024; Donnelly et al., 2024b). The frequency and severity of
these events are projected to increase significantly with rising temperatures and greater precipitation
intensities (Aryal et al., 2023; Mishra et al., 2023; Nguyen et al., 2023; Tran et al., 2022a). In the United
States, Porter et al. (2021) indicated that the projected risk for human properties could increase up to 10%
under climate change impacts. Additionally, Hsiao et al. (2021) and Masciopinto and Liso. (2016) found

that these impacts are even more substantial in low-lying regions.

Human-related factors could further intensify extreme weather events (Hansen and Stone, 2016). The
latest Intergovernmental Panel on Climate Change (IPCC) report highlights the expected rise in temperature
and CO2 concentrations, primarily due to human activities (Carter et al., 1994; IPPC, 2021). An increase
of at least 1.5 °C above pre-industrial levels in global temperatures is projected within the next two decades
(Carter et al., 1994; Chen et al., 2020; Hansen and Stone, 2016; IPPC, 2021; Yun et al., 2021). A recent
work by Raftery et al. (2017), using a statistically-based probabilistic approach, indicated there is only a
1% chance of preventing this phenomenon. In addition, this is expected to escalate the frequency and
severity of floods and droughts, especially in coastal regions (IPCC, 2021, 2019). Global increases in
greenhouse gas emissions from anthropogenic sources could intensify water-related issues (Hansen and
Stone, 2016; IPCC, 2019; Nguyen et al., 2022; Rosenzweig and Neofotis, 2013; Song et al., 2022; Trang et
al., 2017). Future hydroclimatic extremes would then result in severe impacts, such as sea-level rise
(Mahdian et al., 2024), coastal flooding (Kang et al., 2022; Mafi-Gholami et al., 2020; Masciopinto and
Liso, 2016), increased storm intensity (Hsiao et al., 2021), changes in salinity (Loc et al., 2021; Park et al.,
2022), and economic losses (Lien, 2019). These impacts are particularly pronounced in agriculture (Parajuli
et al., 2019) and coastal watersheds (IPPC, 2021; Mafi-Gholami et al., 2020). Besides, coastal regions face

unique challenges compared to other areas, mainly due to their low altitude (Baills et al., 2020; Toimil et
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al., 2020), lack of natural-based measurements (O’Donoghue et al., 2021), and exacerbating factors such

as urbanization (Gopalakrishnan et al., 2019).

The Tar-Pamlico River basin, which is the fourth-largest watershed in North Carolina, has been
selected for future climatic investigations due to its unique geographical and socioeconomic characteristics
(NC DEQ, 1994). This is also motivated by the region’s significant agriculture activities that are
increasingly threatened by climate change (Mulligan et al., 2019; Osmond et al., 2015). In addition, this
region, where fifty-five percent of the land comprises forests and wetlands, is currently vulnerable to
environmental risks such as seawater intrusion, sea-level rise, and land degradation that are likely to be
exacerbated by future climate (NC DEQ, 1994). Tapas et al. (2022a) developed a hydrological model for
the Tar-Pamlico basin, which incorporates stakeholders’ inputs. Their preliminary results revealed that local
farmers are increasingly threatened by climate change, a finding found by their discussions with the locals
and authorities. Thus, given its high socioeconomic and ecological value, immediate action is necessary to
protect the region’s agriculture and human well-being from hydroclimatic extremes (Mulligan et al., 2019).
Furthermore, despite escalating global climate change impacts this decade (Chen et al., 2020; Hansen and
Stone, 2016; Mahdian et al., 2023), as of this writing, no studies have been published investigating the
climate change impacts on this region. This research gap has thus become the primary motivation for our
work, which aims to support authorities and stakeholders in developing sustainable plans to mitigate future

climate impacts on this area.

General Circulation Models (GCMs) are important for quantifying impacts of future projected
hydroclimatic extremes (Neill et al., 2016; Tebaldi et al., 2021). GCMs theoretically simulate the physics,
chemistry, and biology of the atmosphere, land, and oceans in great detail (Tebaldi et al., 2021). The latest
version of the Coupled Model Intercomparison Project Version V6 (CMIP6) was recently released with
updates (Neill et al., 2016). Specifically, it introduces a new concept of the Scenario Model Intercomparison
Project, which is based on the Shared Socioeconomic Pathways (SSPs) (Eyring et al., 2016). This marks a
significant milestone of the IPCC’s global project with the integration and consideration of socioeconomic
factors (IPPC, 2021; Meyer, 2015), as highlighted in the IPCC AR6 report (IPPC, 2021). SSP outlines
specific scenarios of greenhouse gas emissions (e.g., SSP2—45 and 5-85) and Land Use Land Cover
(LULC) changes under baseline scenarios (Neill et al., 2016). Incorporating these emission scenarios into
hydrological models enables a better understanding of the physical impacts of climate and societal factors
on hydrological processes (Neill et al., 2016). Additionally, selecting appropriate CMIP6 GCMs is critical
due to various factors such as resolution (Di Virgilio et al., 2022) and geographical characteristics of the
region (Tebaldi et al., 2021). In this study, we use the NASA Earth Exchange Global Daily Downscaled
Projections — NASA NEX-GDDP-CMIP6 (Thrasher et al., 2022), which has been utilized and validated in
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previous works (Chen et al., 2020; Dias et al., 2024; Park et al., 2023; Saadi et al., 2024). In this study, four
GCMs have been selected for their proven efficiency in recent works: BCC-CSM2-MR from the Beijing
Climate Center, China Meteorological Administration (China); CanESM5 from the Canadian Center for
Climate Modeling and Analysis (Canada); MIROC6 from the Japan Agency for Marine-Earth Science and
Technology and the Atmosphere and Ocean Research Institute at the University of Tokyo (Japan); and MRI-
ESM2-0 from the Meteorological Research Institute (Japan) (Chen et al., 2022; Peng et al., 2023; Wang et
al., 2021; Xu et al., 2023) (see Section 2.2).

In this study, our aim is to quantify the impacts of GCMs under SSP scenarios on future climatic
extremes in the Tar-Pamlico River basin, North Carolina state. We employed the Standardized Precipitation
Index (SPI), the semi-distributed hydrological Soil and Water Assessment Tool Plus (SWAT+) model, and
the Interquartile Range (IQR) method for analysis across three timeframes: the near future (2024-2044),
mid future (2045-2069), and far future (2070-2100). Our primary objectives are to understand and evaluate
the impacts of climate change on hydroclimatic extremes, mainly focusing on S1-3 regions (see Section
2.1). We aim to first (a) reveal projected changes in future meteorological variables, then (b) quantify the
intensity and frequency of future flood and drought events, and lastly (c) discuss the forecasted impacts of
these extremes on these regions. Additionally, we provide a general analysis on the historical residential
expansions (population and housing units) in the S1-3 regions from 1990 to 2020, using data from the U.S.
Census Bureau, the North Carolina Department of Environmental Quality (NC DEQ), and the United States
Geological Survey (USGS) Land Change Monitoring, Assessment, and Projection (LCMAP) data sets
(USGS, 2020) (Fig. 1). The materials and methods will be presented in Section 2, results in Section 3,
discussions of the findings in Section 4, limitations and potential future work in Section 5, and the

conclusions in Section 6.
2. Materials and methods
2.1. Study area

The Tar-Pamlico River basin has been selected for this study due to its distinctive hydrological modeling
characteristics because of its significance to the North Carolina state, United States (Fig. 1). This basin
drains into the Pamlico Sound, supporting a unique and diverse ecosystem of habitats (Keith, 2014; NC
DEQ, 1994, 2009). It covers an area of approximately 14,428 km? (about 5,571 mi?), extends across 15
counties, and supports a total population of over 470,000 (Keith, 2014; NC DEQ, 2009).
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128  Fig. 1. (a) Location of the Tar-Pamlico River basin within the United States; (b) Terrain profiles and

129  geographical characteristics of the Tar-Pamlico watershed; (c—f) LULC changes and historical residential
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expansions, including population and housing units, in the (S1) Tarboro, (S2) Washington, and (S3) Goose
Creek Game Land regions, using LCMAP data sets (1990-2020) (USGS, 2020) with the colors encoded to
corresponding regions (S1-S3). The region’s historical residential expansions, including population
growth, housing units, and their densities are calculated based on data from the U.S. Census Bureau (U.S.
Census Bureau, 2022; Center for Sustainable Systems, 2023) and NC DEQ (NC DEQ, 2020). The

percentage change (%) indicates the difference between the latter year and the previous year.

The Tar-Pamlico River basin features a diverse distribution of land use, with forests covering 33.9%,
wetlands 31.9%, and agricultural land 27.9% of the area (NC DEQ, 2009). The freshwater streams and
rivers within the basin have their origins in the agriculturally rich, wetland-dense, and forested areas of the
Piedmont region in north-central North Carolina. These waterways flow southeastward and, upon nearing
tidal zones, transform into expansive, tidally influenced estuaries (Keith, 2014). These estuaries eventually
feed into the Tar-Pamlico Sound (Fig. 1b), enhancing its ecological complexity and economic productivity
(NC DEQ, 1994, 2009). The basin’s distinct terrain profiles, LULC distribution, and climatic characteristics
make it an ideal area for this study. In this study, we mainly focus on three regions, including (S1) the town
of Tarboro and (S2) the city of Washington, which have been selected due to their socioeconomic
importance (Fig. 1), as well as (S3) the Goose Creek Game Land region, chosen because of its vulnerability

to seawater intrusion and ecological significance (NC DEQ, 1994, 2009) (Fig. 1).
2.2. Descriptions of GCMs and SSP scenarios

We used the NASA NEX-GDDP-CMIP6 dataset, which was downscaled and bias-corrected with a spatial
resolution of approximately 25 x 25 km (Thrasher et al., 2022). This dataset covers two “Tier 1 SSP
scenarios, namely SSPs 2-45 and 5-85 (Neill et al., 2016; Thrasher et al., 2022). These CMIP6 GCMs were
designed to support the objectives of the [IPCC ARG, focusing on capturing climate projections based on
various socioeconomic scenarios (IPPC, 2021). The datasets have been downscaled using the Bias-
Correction Spatial Disaggregation method with the aim to address common constraints in GCM outputs
(Maurer and Hidalgo, 2008; Wood et al., 2002, 2004). The efficiency of GCMs is affected by different
factors, such as the model’s algorithm and baseline conditions, resulting in divergent precision levels in
simulating particular basins and regions (Chen et al., 2020). Studies by Park et al. (2023) and Thrasher et
al. (2022) highlighted that the BCC-CSM2-MR, CanESMS5, MIROC6, and MRI-ESM2-0 models show
good applications in future climate investigations, and thus they have been chosen in this study. Besides,
Chen et al. (2022) and Xu et al. (2023) indicated the good performance of these GCMs in capturing a wide
range of future streamflow changes, while Wang et al. (2021) indicated that CanESMS5 and BCC-CSM2-

MR show unique advantages in producing satisfactory results in terms of precipitation.
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Specifically, these models show good correlations compared to the other GCMs (Wang et al., 2021).
Besides, Peng et al. (2023) highlighted that MIROC6 and MRI-ESM2-0 have the highest reliabilities in
temperature and precipitation, outperforming the other 17 GCMs. Our analysis was conducted on two SSP
scenarios, as the intermediate (SSP2-45) and high-end (SSP5-85) greenhouse gas emission levels (Thrasher
et al., 2022). The summary of the these GCM models is presented in Table 1.

Table 1.

Description of the chosen GCMs used in this study.

No Model Country Description

1 BCC-CSM2-MR China Beijing Climate Center China Meteorological Administration

CanESMS5 Canada  Canadian Centre for Climate Modelling and Analysis, Environment
2 .
and Climate Change Canada, Canada
MIROC6 Japan Japan Agency for Marine-Earth Science and Technology (JAMSTEC),
Japan & Atmosphere and Ocean Research Institute (AORI), The
3 University of Tokyo, Japan & National Institute for Environmental

Studies, Japan (NIES) & RIKEN Center for Computational Science,
Japan (R-CCS)

4  MRI-ESM2-0 Japan Meteorological Research Institute, Japan

2.3. Hydrological SWAT+ model

SWAT model was developed by the United States Department of Agriculture Agricultural Research Service
(USDA-ARS) in the mid-1990s and is one of the most advanced, open-source models for a wide range of
hydrological applications (Tran et al., 2022b, 2023a). SWAT is primarily utilized for simulating
hydrological processes within various water management regimes (Tran et al., 2023d). In this study, we
used the SWAT+ version, a restructured update of SWAT, released in 2017. While retaining the core
hydrological and computational algorithms of the original model, SWAT+ introduces additional features to
better represent spatial distributions. These enhancements are centered around the rainfall-runoff concept

and the water balance equation (Arnold et al., 2012; Gassman et al., 2007; Tran & Lakshmi, 2022).

Many studies have used this model to investigate the impacts of various factors on streamflow and
sediment loads. These factors include changes in land cover (Ahmed et al., 2020; Cheng et al., 2018),
climate change impacts (Aslam et al., 2022; Shafeeque et al., 2023a, 2023b), sustainability of ecosystem
services (Ashrafi et al., 2022a, 2022b; Behboudian et al., 2021; Umar et al., 2022), applications of satellite-
based products (Arshad et al., 2021, 2022; Aryal et al., 2023; Noor et al., 2023; Tran et al., 2022c, 2023c;

Tapas et al., 2023), and groundwater contamination by agricultural chemicals (Trang et al., 2017).
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2.3.1. Model setup and workflow

The boundary of the Tar-Pamlico River basin, which is used in the SWAT+ model, was extracted from the
USGS StreamStats (Ries et al., 2017). Figure 2 shows the schematic workflow of our study, highlighting
the main stages along with the model’s inputs and outputs. We utilized SWAT+ (version 3.16.9) and the
Quantum Geographic Information System (QGIS) software for SWAT+ (Dile et al., 2019) for the model
run in this study (Dile et al., 2019) (Fig. 2). Additionally, the Terrain Analysis Using Digital Elevation
Models (TauDEM) version 5.0 was used within SWAT+ model for watershed delineation (Tarboton, 2011).
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Fig. 2. The schematic flowchart used in this study. First, we prepared the needed data sets, which include
historical data and projected data sets from CMIP6 GCMs (see Section 2.2). Calibration and validation
were conducted at the Washington hydrological station (Fig. 1b). The calibrated model values were then

used to simulate SSP scenarios from 2024 to 2100. Assessments were carried out over the Tar-Pamlico
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River basin and at three selected sites: Tarboro, Washington, and Goose Creek Game Land (Fig. 1b).

Additional analyses incorporated residential expansion data and LULC changes.

For the SWAT+ model, we conducted watershed extraction and analyzed hydrologic information
derived from the DEM input. This analysis was essential to delineate streams, sub-basins, and create
Hydrological Response Units (HRUs) (Arnold et al., 2012; Pignotti et al., 2017). Specifically, the watershed
was divided into smaller sub-watersheds that contain distinctive characteristics from the DEM, LULC, and
soil characteristics that were stored in HRUs. An HRU in SWAT+ represents the smallest spatial unit
(Arnold et al., 2012), where the water balance equation is used for calculations in each pixel within the
watershed, ensuring that hydrological processes are accounted for from the upstream to the downstream

region (Figs. 1 and 2) (Douglas-Mankin et al., 2010; Neitsch et al., 2011; Gassman et al., 2007).

The DEM data for the year 2011, with a 90 m resolution, was obtained from the USGS website
(USGS, 2020) (Fig. 2). LULC data were collected from the USGS National Land Cover Database (NLCD),
based on a survey in 2008 (Yang et al., 2018). In addition, the soil data were acquired from the USDA Soil
Survey Geographic Database (SSURGO) for the year 2015 (USDA, 2010).

To calibrate and validate the SWAT+ model, we utilized data from the USGS database for the
Washington hydrological station (Figs. 1b and 2), covering the period from 2001 to 2019. It is important to
note that this observation includes gaps, primarily due to tidal influence, which can result in negative flow
values. Thus, before using this data in the model calibration, we converted these negative flow values to
zeros, as the SWAT+ model is unable to process backflow (Bieger et al., 2017). This specific adjustment
ensures that negative flows are treated as low flows, considering the limitations of one-dimensional flow

modeling (Arnold et al., 2012; Bieger et al., 2017).

In this study, we have chosen the initial two years (2001 and 2002) for the warm-up period for the
SWAT+ model. The calibration period was chosen between 2003 and 2011 while the validation period was
chosen (2012-2019) (Fig. 2). We performed a total of 5,000 iterations for each scenario at a monthly scale.
Besides, future climate scenarios were simulated using inputs from the selected GCM SSPs and an
ensemble model combining all GCMs (2024-2100). These simulations used the calibrated parameters
extracted from the historical scenario (2003-2019) (Fig. 2). Our analysis was divided into three different
future periods: the near future (2024-2044), the mid future (2045-2069), and the far future (2070-2100).

2.3.2. R-SWAT for model calibration and validation
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We used the interactive web-based application R-SWAT for model calibration and validation. This

application is developed using the R programming language and features open-source parallel processing

capabilities (Nguyen et al., 2022).

Table 2.

Summary of the chosen parameters with their descriptions, change types, ranges, and units used for

calibrating the SWAT+ model. This data are extracted from the SWAT+ documentation (SWAT+, 2018,

2020) with adjustments based on the Tar-Pamlico River basin’s characteristics. Rank is the sensitivity

ranking of parameters from the model’s calibration and validation.

Rank Name Method Min Max Description (unit)

1 cn2.hru relative —0.30 0.20 SCS curve number for soil moisture condition 2 (null)

2 revap _co.aqu absolute —0.10 0.10 Groundwater revap coefficient (null)

3 flo min.aqu relative —0.25 0.50 The lower limit of aquifer storage which enables return
flow (m)

4 awc.sol absolute —0.10 0.30 Available water capacity of the soil layer
(mm_H20O/mm)

5 alpha.aqu replace 0.01 0.50 Baseflow recession factor (days)

6 perco.hru absolute —0.30 0.30 Percolation coefficient (fraction)

7 chk.rte relative —0.25 0.25 Channel base conductivity (mm/hr)

8 cn3 swfhru absolute —0.30 0.50 The coefficient for pothole evaporation (null)

9 epco.hru absolute 0 0.30 Plant uptake compensation factor (null)

10 esco.hru absolute 0 0.30 Soil evaporation compensation factor (null)

11 k.sol relative —0.25 0.25 Hydraulic conductivity (mm/hr)

12 ovn.hru absolute 0 5 SCS curve number for soil moisture condition 2 (null)

13 surlag.bsn  replace 0.05 15 The coefficient for surface runoff lag (days)

14 evlai.bsn replace 0 10 Leaf area index at zero evaporation from water bodies
(null)

15 biomix.hru absolute —0.30 0.30 Biological mixing efficiency (m)

16 nperco.bsn  absolute 0 1  Nitrate percolation coefficient (null)

17 lat len.hru  relative —0.30 0.30 Slope length for lateral subsurface flow (m)

10
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18 lat_orgn.aqu relative —0.30 0.30 Organic N in the base flow (mg/L)

19 crk.bsn absolute 0 1  Crack flow code (null)

20 field len.fld relative —0.30 0.30 Field length for wind erosion (m)

21 field wid.fld relative —0.30 0.30 Field width for wind erosion (m)

22 n_updis.bsn absolute 0 30 Nitrogen uptake distribution parameter (null)

3 erorgp.hru  relative —0.30 0.30 Phosphorus enrichment ratio for loading with sediment
(null)

24 dis_stream  relative —0.50 0.50 Average distance to stream (m)

For the calibration and validation of the SWAT+ model, we selected a total of 24 parameters using
the R-SWAT application and employed the Generalized Likelihood Uncertainty Estimation (GLUE)
calibration technique (Blasone et al., 2008) (Table 2). GLUE is a widely used algorithm in environmental
system modeling due to its robustness (Tolson and Shoemaker, 2007). This technique involves randomly
selecting numerous parameter combinations, with each set being assigned a likelihood score. This score
reflects the probability of its occurrence across multiple model sets, based on how well the simulated values
agree with the observed values, grounded in the principle of uniformity (Blasone et al., 2008; Mirzaei et
al., 2015). In the SWAT+ model, the calibration (.cal) file delineates the absolute minimum and maximum
ranges for these parameters. For parameters pertaining to aquifer levels, we used the “replace” method.
This approach was chosen because SWAT+ typically assigns uniform values to all aquifers within a
watershed, which can result in a loss of resolution at the aquifer level (Blasone et al., 2008; Tolson and

Shoemaker, 2007; Mirzaei et al., 2015).
2.4. Performance metrics

In our study, the model’s outputs are evaluated using the Kling-Gupta efficiency (KGE) (Gupta et al., 2009),
Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970), and Coefficient of determination (R?) (Moriasi
et al., 2015) (Table 3). The NSE assesses the proportion of the variance in the observed data that is
quantified by the model (Nash and Sutcliffe, 1970). The KGE offers a thorough assessment by taking into
account the comparisons of averages and variability, as well as the correlation between observed and
simulated streamflow (Gupta et al., 2009; Saeedi et al., 2022). R? measures the degree to which fluctuations
in the observed factor are accounted for by the simulated variable (Moriasi et al., 2015). The ranges and

equations of these metrics are shown in Table 3.
Table 3.
Summary of the model performance metrics used in this study.
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Metric Equation Range

NSE +_ ZE1Qobs — Qsim)? VG: NSE > 0.8; G: 0.7 <NSE < 0.8;

n —0 .2
2i=1(Qobs ~ Qobs) S: 0.5 <NSE<0.7;NS: NSE<0.5

d 2 I 2 VG: KGE > 1; G: 0.50 <KGE <1;
- Jcc—pe 4 (Em _q) 4 (2am_y
KGE Q d Q S: 0 <KGE <0.50; NS: KGE <0

obs obs
[%:(Qobsi — Qo) (Qsimi — Loer)]” VG:R* 2 0.8; G: 0.7 <R*<0.8;
R 5:(Qobsi — Qobs)” Zi(Qsimi — Qo) S:0.5<R’><0.7: NS: R2< 0.5

" simulation, and Q is the mean

Note: Q,ps is observed streamflow, Qg;y, is simulated streamflow, i is it
value, and n is the total number of values. Very Good (VG), Good (G), Satisfactory (S), and Not Satisfactory

(NS).
2.5. IOR method for Anomaly Detection of Future Flood Peaks

IQR is a statistical tool used for identifying outliers within a dataset (Wan et al., 2014). It divides the dataset

into three quartiles, providing an overview of data distribution.

- 1% quartile represents the 25th percentile, also known as the median of the dataset’s lower half (Q1).
- 2™ quartile represents the 50th percentile or the overall median of the dataset (Q2).

- 3" quartile represents the 75th percentile, also known as the median of the dataset’s upper half

(Q3).

We first obtained the SWAT+ simulated flood peak on a monthly scale and use as input for this
method. By using the IQR method, we identified anomalies in future flood peaks (2024-2100), in which
our analysis was segmented into three pre-defined periods. We established the IQR range as (Q3 — Q1) with
the lower and upper bounds defined as lower bound equals to [Q1 — (1.5 x IQR)] and upper bound equals
to [Q3 + (1.5 x IQR)]. Peak values found outside these bounds are considered anomalies. By performing
the IQR method over different periods, we highlight years with remarkably high and low peaks, indicating
potential risks. This systematic approach enhances our understanding of potential flood risks in future

scenarios.
2.6. Evaluation of projected drought events

It is crucial to establish criteria for quantifying the intensity and frequency of extreme events (Liu et
al., 2021; Tapas et al., 2022b; Zhong et al., 2022). In this work, we used SPI for our analysis, with different
levels of severity categorized using the US Drought Monitor (Svoboda et al., 2002) (Table 4). To be specific,
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dry conditions are identified when the SPI values fall below zero and keep decreasing to less than negative
one (— 1). In contrast, a drought event is considered to have ended when these values return to positive, in
which wet conditions are identified when the SPI values reach to positive two (+2) and beyond (Liu et al.,

2021; Zhong et al., 2022).

We defined two evaluation indices: Severity (S) and Intensity (IDe). First, S is measured as the
absolute sum of all SPI values during the event, with the event duration defined as the number of months
from the onset of the event to its conclusion, excluding the final month when the SPI returns to positive
(Eq. (1)). IDe is calculated as the average SPI value over the drought duration (Eq. (2)). IDe serves as an

indicator of the event’s severity, where higher values indicate more severe conditions.
S = |Z&, Index;|  (Eq. D)

D, = 3 (Eq. 2)

a

where a is the duration of the event (months), ID, is the intensity, and S; represents the SPI value during
the i-month of the event. The frequency (F) is calculated as the average number of events during a specified

time range.
Table 4.

Summary of drought category and their ranges for SPI.

Drought category SPI range
Extreme wet Index = +2.0
Severe wet + 1.5 < Index < + 2.0
Moderate wet +1.0<Index <+ 1.5
Near normal/mild wet 0<Index <+1.0
Near normal/mild drought -1.0<Index <0
Moderate drought -1.5<Index<-1.0
Severe drought -2.0<Index<-1.5
Extreme drought Index <-2.0

3. Results

3.1. Overview of historical residential expansion

13



296
297
298
299
300
301
302
303
304

305

306
307
308
309
310
311

312
313
314
315
316
317
318
319

320

321
322
323

324

325
326

We found that the Tar-Pamlico River basin experienced an increase in population and housing units from
1990 to 2020 (Fig. 1). Specifically, there was a notable 40% increase in population growth and density in
2020 compared to 2010 (Fig. 1f). At the regional level, the S1-3 areas exhibited similar trends in population,
but showed varying changes in housing units. Indeed, Tarboro (S1) and Washington (S2) experienced
considerable urban expansion, particularly noticeable in the rise in housing units from 2010 to 2020 (Fig.
1). Despite a modest population growth in these regions (a maximum increase of 3% compared to 1990),
the number of new housing units built increased steadily, peaking at a 23.03% increase by 2020. Conversely,
the Goose Creek Game Land region (S3) maintained a relatively stable land use distribution (Fig. 1),

preserving its largely natural state.
3.2. SWAT+ calibration and validation

We performed the sensitivity analysis parameters using a p-value threshold of 0.05. This means if a
parameter has a p-value less than 0.05, then it is considered sensitive. Four parameters were identified as
sensitive in this study, including cn2, revap_co, flo_min, awc, alpha, and perco (Table 2). Specifically, the
baseflow (alpha parameter) and percolation coefficient (perco parameter) are sensitive in this basin. This
indicates a significant ratio of infiltration, where surface water percolates into deeper soil layers, a result

that is consistent with the storage routing technique described in Mapes and Pricope (2020).

The model calibration and validation for the period from 2003 to 2019 yielded good results. The
model achieved an overall NSE of 0.71, KGE of 0.82, and R? of 0.78. During the calibration period (2003-
2011), the model achieved an NSE of 0.72, a KGE of 0.84, and a R? of 0.76, while during the validation
period (2012-2019), these values were 0.68, 0.77, and 0.81, respectively. These results are categorized as
“Good” (see Table 3), particularly when considering the complex hydrodynamic influences in the area,
e.g., dam and reservoir, and backwater effects in this coastal region (Keith, 2014). The results give
confidence to the model’s effectiveness and reliability in simulating and evaluating the impacts of climate

change in the following sections.
3.3. Projected changes in temperature and precipitation

First, we examined changes in the average monthly temperature and precipitation across GCMs and SSPs
(Table 5). The average monthly historical precipitation is found at approximately 85.58 mm, and rises to

87.56 mm under the SSP2-45 and 90.07 mm under the SSP5-85 using the ensemble model.
Table 5.

Projected changes in average monthly precipitation and temperature for the future period (2024-2100)

compared to historical period (2003-2019). Increase (I) represents upward trends, while decrease (D)
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represents downward trends. Darker color denotes a higher increase. Ensemble is the combined model of

four GCMs used in this study (see Table 1).

Temperature (°C)

GCM Maximum Minimum Trend

SSP2-45  SSP5-85  SSP2.45  SSP5.85
Ensemble +0.86 +1.80 I
BCC-CSM2-MR +0.49 +1.36 I
CanESM5 +144 | 4270 1
MIROC6 +0.64 +1.36 I
MRI-ESM2-0 +0.87 +1.77 I

Precipitation (mm)
SSP2-45 SSP5-85 Trend

Ensemble +1.98 +4.49 I
BCC-CSM2-MR +1.60 +4.42 I
CanESMS5 +1.64 +4.37 I
MIROC6 +0.49 +3.81 I

MRI-ESM2-0, CanESMS5, and BCC-CSM2-MR, under the SSP2-45 scenario, project increases in
monthly precipitation of 4.20 mm, 1.64 mm, and 1.60 mm, respectively. Under the SSP5-85 scenario, these
models consistently indicate even greater increases, with projected rises of 5.37 mm, 4.37 mm, and 4.42
mm, respectively (Table 5). These trends, consistent across all SSP scenarios, suggest a general rise in
monthly precipitation, potentially leading to significant changes in future hydroclimatic patterns, including

more frequent flooding events.

On the other hand, we noted that the average historical maximum and minimum temperatures are
around 21.47°C and 10.97°C, respectively. However, these figures are projected to increase by at least
3.77°C for the maximum and 1.80°C for the minimum temperatures, observed using the ensemble model
(Table 5). Under the SSP5-85, the projected minimum temperature increase could be as high as 4.66°C.
Moreover, we found that individual GCMs suggest even higher temperature increases than the ensemble
model. For instance, under the SSP2-45 scenario, the CanESMS model forecasts the most significant
increase in maximum temperature at +5.26°C, closely followed by the BCC-CSM2-MR model with a
projected increase of 4.70°C. These projections emphasize the substantial and increasing risks associated

with extreme heat, highlighting the need for careful observation in mitigating these climatic changes.
3.4. Projected changes in streamflow and flood peaks

Flood peak is an important outcome from numerical models that is essential for hydrological assessment

(Merz et al., 2022). Figure 3 shows the projected flood peaks in the (a) Tarboro, (b) Washington, and (c)
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Fig. 3. Historical and projected flood peaks at (a-b) Tarboro, (c-d) Washington, and (e-f) Goose Creek Game
Land. Future projections are simulated using the SWAT+ model, incorporating inputs from GCMs under
different SSP scenarios (2-45 and 5-85). Black lines represent historical flood peaks (2003-2019), red lines
represent the ensemble model (2024-2100), which combines the outputs from all GCMs, while dash grey
lines show the projections from individual GCMs. Values in boxes represent mean flood peaks over
different future periods (near, mid, and far) while the violin plots show the distribution of flood peaks from

the ensemble models and individual GCMs.

In general, we found that higher flood peaks are likely to appear starting from 2045 across different
examined regions (Fig. 3). While projected flood peaks in the near future (2024-2044) remain relatively
unchanged compared to the historical period, the highest number of record-breaking peaks are frequently
found in the far future (2070-2100), with the more severe greenhouse gas emission pathway (SSP5-85)
showing higher peaks compared to SSP2-45. Specifically, when comparing historical flood peaks with
future projected flood peaks, we observed that these increases range from 3 to 7% during the mid future
and up to 21% during the far future. Moreover, when comparing Tarboro (S1) and Washington (S2),
Tarboro—the more populated and higher housing density region (Fig. 1b)—shows a greater increase in
flood peaks compared to Washington. To be specific, between mid- and far-future periods, mean flood peaks
in Tarboro are expected to increase by 7.5% compared 5.5% in Washington under SSP2-45; and by 21%
compared to 16.5% under SSP5-85, respectively. This could be explained by the higher impervious surface
coverage in developed areas, which prevents water from infiltrating into the ground, exacerbating runoff
and flooding issues. In addition, this could be exacerbated if the housing density continues to increase under

the current growing population trend over the Tar-Pamlico River basin (see Section 3.1).

We also found that there are specific years within the near future (2024-2044) that are likely to
experience notably high flood peaks. All of these regions are projected with significant flood peaks across
various GCMs and SSPs between 2027 and 2039, as well as in 2042, indicating an elevated risk of flooding
in this region (Figs. 3c, 3d, 3e, and 3f). Besides, the mean flood peak for this period is estimated to be
approximately 179.9 m*/s (under the SSP2-45 scenario) and 186.7 m3/s (SSP5-85 scenario), respectively
(Figs. 3e and 3f).

During the mid future (2044-2069), we observed notable trends and differences among GCMs and SSP
scenarios. We found that the flood peak values oscillate between the upper bounds, formed by the MRI-
ESM2-0 and MIROC6 models (significant years marked in 2052, 2057, 2060, 2065, and 2069), and the
lower bounds delineated by the CanESMS5 model (Fig. 3). There was a particularly noticeable increasing
trend of flood peaks in the SSP5-85 scenarios, suggesting a trend towards wetter conditions. In Tarboro,

our results show moderate fluctuations in flood peaks, with notable figures found under the SSP2-45
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scenario, especially in the years 2052 and 2057 (Fig. 3a). Besides, Washington is projected to experience
a higher volume and variability in future flood peaks, particularly during the 2060s, as compared to Tarboro
due to its geographical location over the Tar-Pamlico River basin (Fig. 1b). In addition, Goose Creek Game
Land region consistently exhibits the highest average flood peaks across all models in our analysis (Figs.
3e and 3f). This trend underscores the vulnerability of this low-lying, coastal region to climatic events that
was previously highlighted by the NC Wildlife Resources Commission (NC Wildlife, 2018). Additionally,
the ecological importance of the region and its susceptibility to potential flood risks underscore the need
for strategic and adaptive planning to mitigate the impacts of these events. This includes, but is not limited
to, strengthening flood defenses, enhancing ecological conservation efforts, and preparing comprehensive

disaster response strategies.

For the far future (2070-2100) in Tarboro, our results indicate moderate fluctuations in flood peaks.
Under the SSP2-45 scenario, a peak in 2074 (179.875 m?/s) and a low in 2075 (64.025 m?/s) are observed,
while the SSP5-85 scenario projects a high peak at the beginning of the 2070s (notably in 2070 at 222.5
m?/s), followed by lower projected flood peaks with moderate variability. In contrast, both the Washington
and Goose Creek Game Land regions exhibit an increasing trend in projected flood peaks. In Washington,
the highest peaks are projected in 2091 (242.75 m?/s) and 2079 (221.75 m?/s) under SSP2-45, while the
SSP5-85 scenario projects even higher peaks, with 2070 (315.25 m?/s) and 2075 (271.25 m®/s) seeing the
most significant increases. Similarly, the Goose Creek Game Land region demonstrates greater
vulnerability compared to Tarboro and Washington. Its highest projected peak occurs in 2070 (346.5 m3/s)
under SSP5-85 and in 2079 (265.25 m?/s) under SSP2-45. Additionally, across these regions between 2070
and 2100, there is an observed increase of 11.5% in flood peaks (SSP5-85) compared to the SSP2-45
scenario. This increase is more pronounced than the 3% increase observed during the mid-future period
(2044-2069) and approximately 2% for the near future (2024-2044). This trend suggests that higher
greenhouse gas emissions, as represented by the SSP5-85 scenario, tend to result in higher projected flood

peaks, indicating a wetter trend toward the year 2100.

18



408

(a) TARBORO - Near Future (2024-2044)

(b) WASHINGTON - Near Future (2024-2044)

800 = 800 ———
700 2034 | 700 ; ;gg
s 2038
o —=- - . 5=
£ - 2042 |
E 500 1500
x 8
© 400 400
o ® °
§ 300 300 L4
o ] )
* 200 * * 200 i
v = L [ W=
0 0
o TARBORO - Mid Future (2045-2069) WASHINGTON - Mid Future (2045-2069)
0 o 2052 | 800 - 2050
2057
700 =271 700 —f
2060 - 2060
__600 == 2067 | 600 - 2067
N .
E 500 500
£
© 400 400 °
o ° )
=3
g 300 o . ° 300
= ° td
woo| et e [ e = 100 =
0 0
800 TARBORO - Far Future (2070-2100) WASHINGTON - Far Future (2070-2100)
- 2070 800 - 2070
700 = oma | 700 =5
- 2091 - 2091
__600 600 °
@
E 500 1500 ° °
§ 400 ° . 400
= °
‘§ 300 ° 300
* 200 ® 200
100 % ; 100
0 “
&
",49
&

19



409

410
411
412
413

414
415
416
417
418
419
420
421
422
423

(c) GOOSE CREEK - Near Future (2024-2044)

2029

2034

5] 2038
2039

[T AR E.

GOOSE CREEK - Mid Future (2045-2069)

Flood Peak (m3/s)
w » w
o
o

2050
- 2052

700 - 2059
- 2060
__600 2067
4
£ 500 T
> )
S 400 o o
a
8 300 ° T
2
I L. % —
100 ! 1L N £
0
GOOSE CREEK - Far Future (2070-2100)
800
- 2070
- 2074
700 - 2076

w2084

600

]
L] [ ]
00 o T -
[ ] - pum—

00 -

w@%gﬁ =
O o o o o o o o o  ©
® A A T P P P
NI X & c)")/ o(_/b/ Q\’VQ/ Q7 c,(’)/ Oév “\’L'Q
' h >
& &
A A A ST A SN 2
& S &

&

=3
o

Flood Peak (m3/s)
w » w

o

Fig. 4. Temporal anomalies of flood peaks using IQR method for (a) Tarboro, (b) Washington, and (c) Goose
Creek Game Land station using the ensemble model and GCMs under the SSP2-45 and 5-85 scenarios,
utilizing the IQR method. These analyses are conducted for different future periods, including the near

future (2024-2044), mid future (2045-2069), and far future (2070-2100).

Extremely high or low flood peaks can significantly impact hydrological processes (Maurer et al.,
2018), ecosystems (Yin et al., 2009), and human lives (Villarini and Smith, 2010). Thus, we utilized the
IQR method (see Section 2.5) to identify variations in flood peaks from different GCMs under various
SSPs. Figure 4 presents our findings on anomaly flood peaks over the three future periods - the near future
(2024-2044), mid future (2045-2069), and far future (2070-2100) - for the (a) Tarboro, (b) Washington, and
(c) Goose Creek Game Land regions. In general, we found an increase in flooding events from the near to
the mid future across these regions (Fig. 4). The mid future period, in particular, shows a modest upward
shift in median flood peaks across models, with notable outliers indicating the potential for occasional
extreme flood events. In the far future, there is a considerable increase in both the variability and median

values of flood peaks, especially under the MRI-ESM2-0 model (SSP5-85), indicating a trend towards more
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severe flooding. Across all three regions and various future periods, the MIROC6 and MRI-ESM2-0 models
(SSP2-45 and 5-85) consistently show high medians and ranges for projected flood peaks, suggesting a
correlation with more extreme weather events. Besides, as we move toward the far future (2070-2100), a
clear trend of intensifying flood peaks is found (Fig. 4), highlighting the escalating impacts of climate
change on these regions. We found that Tarboro is particularly susceptible to flooding, especially in 2029
and 2039 during the near future, with at least two GCMs predicting anomalies in the same years. The years
2060 and 2070 are identified as vulnerable for flooding in the mid and far future, respectively. In
Washington, this is projected in 2029 (near future), 2060 (mid future), and 2070 (far future) while Goose
Creek Game Land is in 2060 and 2067 (mid future), and 2070 (far future).
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Fig. 5. The average monthly streamflow difference in percentage between the historical and GCMs at (a)
Tarboro station, (b) Washington, and (c) Goose Creek Game Land station over the near future (2024-2044),
mid future (2045-2069), and far future (2070-2100) under the SPP2-45 and 5-85 scenarios. Darker colors

represent higher values.

Figure 5 shows the average monthly streamflow differences, in percentages, between historical period
(2003-2019) and GCMs for the near future (2024-2044), mid future (2045-2069), and far future (2070-
2100) under the SSP2-45 and 5-85 scenarios. In general, in these regions, the winter months (December to
March) are expected to experience higher streamflow compared to other seasons (Fig. 5) while the summer
period (May to October) is projected to be drier. Besides, as we approach the year 2100, the contrast
between the wetter and drier months becomes more marked as a high discrepancy over the examined
regions. It means the projected wet months are expected to be significantly wetter, while the dry months

become increasingly drier especially under the SSP5-85 scenario.

3.5. Future changes in drought
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In the previous section, we evaluated projected future floods. However, quantifying drought events both
statistically and spatially is equally important. In this section, we utilize the 12-month drought index (SPI-
12) (see Section 2.6) to measure drought intensity and frequency. Specifically, the SPI-12 index is calculated
using projected future precipitation data from various GCMs and the ensemble model under different SSP
scenarios, across the Tar-Pamlico River basin (Fig. 6 and Table 6). In general, a drying trend is observed
during the near future (2024-2044), but the basin trends towards wetter conditions with an increased risk of
flooding as we approach 2100 (Fig. 6, Tables 4 and 5). Under the SSP2-45 scenario, a transition to wetter
conditions is found by 2100.

The Tar-Pamlico River basin exhibits dry conditions (SPI122;4> = — 0.154) during the near future

period, then becomes wetter (SPI 122745 =

md + 0.048), and reaching its peak wetness in the far future

(SPI12%.%5 =+ 0.097) (Fig. 6 and Table 6). This trend is projected to occur across the examined regions

far
and intensifies under the impacts of the SSP5-85 scenario. Specifically, the driest conditions are forecasted
with (m =—0.602), while a significantly wetter trend is indicated for the far future under SSP5-
85 (WZ?;‘S = + 0.445). These results confirm that higher emission projections not only have more
substantial impacts but also contribute significantly to increased variability between seasons and throughout
the future periods. Similarly, the Tarboro, Washington, and Goose Creek Game Land regions are projected
to experience dry conditions in the near future (2024-2044) and become wetter in the mid- and far-future

periods, with the SSP5-85 scenario showing a more pronounced intensity of these conditions (Table 6).

(a) Near Future (2024-2044)
3

SPI-12 scenario 2-45
SPI-12 scenario 5-85
o
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(b) Mid Future (2045-2069)
3

2

SPI-12 scenario 2-45
SPI-12 scenario 5-85

2048 2052 2056 2060 2064 2068 - 2048 2052 2056 2060 2064 2068

(c) Far Future (2070-2100)
. 3

SPI-12 scenario 2-45
SPI-12 scenario 5-85

i
_=li H i i
2072 2076 2080 2084 2088 2092 2096 2100 2072 2076 2080 2084 2088 2092 2096 2100

. -3

Fig. 6. Evaluation of droughts using SPI-12 index for the (a) near future (2024-2044), (b) mid future (2045-
2069), and (c) far future (2070-2100) under SSP2-45 and 5-85 scenarios. Red color indicates dry periods,
while the blue color signifies wet periods. The drought severity classification is presented in Table 4. Black
dotted line represents the SPI-12 range across different GCMs, whereas the red and blue colors denote the

values of the ensemble model.
Table 6.

Summary of the average SPI-12 index for the Tarboro, Washington, Goose Creek Game Land, and the entire
Tar-Pamlico River basin from different GCMs, the ensemble model, and their SPPs across the near future
(2024-2044), mid future (2045-2069), and far future (2070-2100). Positive (+) values, indicated in blue,
suggest a wet trend, while negative (—) values, shown in red, denote a dry trend. The severity ranges for the

SPI-12 drought index can be found in Table 4.

Ensemble model (SSP2-45)

Site Near future (2024-2044) Mid future (2045-2069)  Far future (2070-2100)
Tarboro —0.141 +0.058 +0.111
Washington —0.159 +0.068 +0.067
Goose Creek —0.159 +0.068 +0.067
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Tar-Pamlico

—0.154 +0.048

+0.097

Ensemble model (SSP5-85)

Near future (2024-2044)

Mid future (2045-2069) Far future (2070-2100)

Tarboro
Washington
Goose Creek
Tar-Pamlico

—-0.592 —0.048
—0.568 —-0.034
—0.568 —-0.034
—0.602 —0.045

+0.426
+0.412
+0.412
+0.445

On the other hand, we have spatially quantified the magnitude and frequency of projected future

droughts over the near future, mid future, and far future within the Tar-Pamlico River basin. This aims to

better understand how climatic extremes could impact regions that are either rapidly developing or

inherently at risk due to their low-lying nature.
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(d) Ensemble model (SSP5-85)
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Fig. 7. Spatial distribution of drought using SPI-12 index over different GCMs and the ensemble model in
three different time periods, including near future (2024-2044), mid future (2045-2069), and far future
(2070-2100). The blue color represents the wet trend while the red color represents the dry trend. In this,
(a) and (c) represent the results from the ensemble model for the SSP2-45 scenario while (b) and (d)

represent the probability of drought occurrence (%) from the ensemble model for the SSP5-85 scenario.

Figure 7 shows the spatial distribution of drought intensity using the SPI-12 index across various
GCMs and the ensemble model for three different periods: the near future (2024-2044), mid future (2045-
2069), and far future (2070-2100). The Tar-Pamlico River basin as well as Tarboro, Washington, and Goose
Creek Game Land are found to become wetter, reaching peak wetness during the far future, while the 2020s-
2040s are expected to exhibit drier conditions (Figs. 7a and 7b). We found that higher emission scenarios
indicating more severe impacts for drought and flood events throughout future periods. Moreover, there is
a noticeable correlation between drought intensity and frequency within the basin, with low-lying (i.e.,
Washington; S2) and coastal regions (i.e., Goose Creek Game Land; S3), as downstream regions, are likely
to experience a greater number of drought events between 2024 and 2100 compared to higher altitude
regions (i.e., Tarboro; S1) (Figs. 7c and 7d). Indeed, toward 2100, the Tar-Pamlico River basin as well as
these regions are likely to experience wetter conditions, thus showing a lower probability of drought

occurrence (Figs. 7c and 7d).
4. Discussion

We have revealed our findings in residential analysis (1990-2020) (see Section 3.1) along with the projected
changes in meteorological conditions and their impact on future climatic extreme events (2024-2100) over
the Tarboro, Washington, and Goose Creek Game Land regions of the Tar-Pamlico River basin (see Sections
3.3 to 3.5). In this section, we will provide our in-depth discussions on these findings and estimated trends

for upcoming decades.
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When examining the historical residential expansions, we found an increase in population since 2010
for the town of Tarboro and since 2000 for the city of Washington (Fig. 1). However, the growth in the
number of housing units has been even more pronounced, with increases ranging from fivefold to
approximately sixteenfold since 1990 (Fig. 1). Besides, this decade is projected to experience an
approximate 40% rise (in 2020 compared to 2010) in both population and population density across the
entire Tar-Pamlico River basin (Fig. 1), a trend likely to be accelerated as partly highlighted by the current
urbanization rate in the United States (Center for Sustainable Systems, 2023). In addition, according to the
2020 Census data, the urban population in the United States increased by 6.4% between 2010 and 2020
(U.S. Census Bureau, 2022) and this trend was also highlighted at the state level. Within this study of the
Tar-Pamlico River basin, the North Carolina’s population is projected to reach approximately 13 million by
2040 (John, 2024) and 14 million by 2050 (Michael, 2022; U.S. Census Bureau, 2020), positioning it as the
seventh most populous state, behind only California, Texas, Florida, New York, Pennsylvania, and Georgia
(Michael, 2023, 2022). By 2050, it is projected that 89% of the U.S. population will reside in urban areas
(UN Population Division, 2018). In the Tar-Pamlico region, the largest metropolitan areas are expected to
see faster population growth compared to smaller municipalities and rural areas (Michael, 2023). Within
this study, given the numerous factors that could interact and influence changes in this region’s population,
potentially exacerbating or mitigating the intensity of climatic extremes toward 2100, we have provided the
analyses mentioned above as our estimations of future trends and recommend using them as references to

support regional adaptive measures but not as definitive statements.

In this study, we observed an increase in temperature and rainfall across seasons and various future
periods, with a more likely pronounced difference in the intensity of climatic extremes (Figs. 5 and 6). To
be specific, the near future is expected to experience more severe impacts from drought, whereas the mid
and far future periods are likely to see increased flooding impacts (Figs. 4, 5, and 6). The summer season
(May to October) is projected to be drier, especially during the near future (Table 6). This condition would
then increase the region’s vulnerability to extreme heat and could adversely affect agricultural activities.
Conversely, the far future is predicted to be highly prone to flooding (Fig. 6) in which this could cause more
water-related issues in terms of water sanitation and hygiene. We found that higher intensity and frequency
of climatic extremes are associated with more severe greenhouse gas emissions (SSP5-85). Indeed, an
increase in flood peaks of between 3 and 7% is observed during the mid-future period with a potential rise
up to 21% in the far future period compared to the historical period (2003-2019) (Fig. 3). Besides, the mid-
and far-future periods are projected to exhibit significant discrepancies between dry and wet seasons,
highlighting substantial damage to agriculture and human activities that are caused by seasonal changes in
meteorological conditions (Fig. 5). Downstream regions are expected to experience severe droughts with

reduced rainfall during the summer season throughout the near future compared to higher altitude regions.
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Besides, low-lying and coastal regions are likely to face higher flood intensities in terms of flood peaks
(Figs. 3 and 5). Besides, when examining the probability of drought occurrence in this region, it appears
that both low-lying and coastal areas are likely to experience more frequent drought events compared to

other areas.

In our analysis, as temperatures would rapidly rise toward 2100 (Table 5) as well as the summer
season tends to exhibit severe dryness, the demand for air conditioning and refrigeration is anticipated to
increase, leading to higher energy consumption (Li et al., 2019). This not only places a burden on electrical
grids, potentially causing outages during heatwaves but also escalates energy costs, impacting household
and business finances (Chen et al., 2021). Extreme temperatures can also decrease economic productivity
(e.g., agriculture), particularly in physically demanding jobs (Kjellstrom et al., 2009; Tran et al., 2024), and
discourage outdoor activities, such as shopping and dining, thereby affecting businesses dependent on
pedestrian patronage. Besides, previous studies have indicated a correlation between socioeconomic
activities, population changes, and extreme events (Ahmadalipour et al., 2019; Bahinipati and
Venkatachalam, 2016). If the total number of concrete-based infrastructures such as housing units continue
to increase (as the current trend found in this study; see Section 3.1), it can significantly intensify impacts
of natural hazards due to the increase the impervious surface area (Zhang et al., 2013). In this point, we
expected for a correlation found as projected changes in climate extremes under impacts of increasing
housing units that could be revealed using future projected LULC maps. Furthermore, this could lead to the
increase of health-related issues due to higher urban heat (Nguyen et al., 2022; Yin et al., 2018; Zhou and
Chen, 2018), especially for the elderly (Zhang et al., 2019) and children (Faurie et al., 2022). Besides,
higher urban temperatures can exacerbate air pollution by increasing the rate of chemical reactions that
produce pollutants, such as ozone (Li et al., 2018; Ulpiani, 2021), suggesting a need for adaptive measures

to reduce this increasing trend over the Tar-Pamlico River basin.

On the other hand, agriculture in urban and peri-urban areas over in the Tar-Pamlico region may
experience reduced crop yields due to heat stress on plants and livestock (Lwasa et al., 2014). These changes
disproportionately impact low-income communities that often rely on agriculture and those living in
densely populated areas with limited green spaces (Chakraborty et al., 2019), thereby leading to exacerbated
social inequalities (Darrel Jenerette et al., 2011). Consequently, our findings highlight the significant
potential for these severe problems to become worsen toward 2100. Therefore, it is crucial for authorities
and stakeholders in the Tar-Pamlico River basin to implement sustainable management practices to mitigate

the impacts of climate change.

4. Limitations and future works
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In this work, we acknowledge our limitations, in which we have not included projected future changes in
residential expansions (housing units and density) and population up to 2100. Additionally, incorporating
more GCM candidates could reduce uncertainties and better quantify the variability of climatic extremes
using future climate projections in hydrological models. Besides, it is beneficial to involve regional
downscaling and bias correction of these GCMs before utilizing. For future work, we plan to reduce these
limitations as well as integrate our model with other models, such as the Regional Ocean Modeling System
(ROMS) to explore how the effects of sea-level rise and estuarine salinity might be exacerbated under the
impacts of climate change (Yin et al., 2024) which is important for the Tar-Pamlico River basin. Our primary

objective is to deliver more accurate and useful outcomes to support the decision-making of this region.
5. Conclusions

In this work, we conducted a comprehensive analysis to quantify the anticipated changes in future extremes
using the NASA NEX-GDDP-CMIP6 dataset, along with regional residential expansions and LULC
changes for the Tar-Pamlico River basin, North Carolina. Specifically, our work investigated the impacts
of two future greenhouse gas emission scenarios, SSP2-45 and 5-85, for the region between 2024 and 2100.
Our results revealed projected changes in meteorological conditions and their impacts on future climatic

extreme events, while also discussing estimated impacts on the region. Key findings are summarized:

(1) A notable increasing trend is expected in meteorological conditions, with higher intensity and
frequency of climatic extremes associated with more severe greenhouse gas emissions. Flood peaks
are projected to increase between 3 and 7% during the mid-future period and could rise to 21% in the
far future period compared to the historical period. Additionally, climatic extremes are projected to
occur more frequently and likely to intensify and become more severe due to residential expansions.

(2) The near future is expected to experience more severe impacts from drought, whereas the mid- and
far-future periods are likely to see increased flooding impacts. Besides, these periods also exhibit
significant discrepancies between dry and wet seasons, highlighting substantial damage caused by
seasonal changes, especially to agriculture.

(3) Downstream regions are expected to experience severe droughts with reduced rainfall during the
summer season throughout the near future, compared to high altitude regions. Additionally, low-lying
and coastal areas are likely to be more vulnerable as they are expected to face higher flood intensities,

particularly in terms of peaks, as well as more frequent drought events compared to other areas.

Our work provide a scientific basis for quantifying the impact of future climate changes on the region’s
water resources. Our approach, which incorporates regional characteristics along with hydrological

analyses, shows potential to better highlight insights to support the long term resilience and safety of the
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region against the challenges posed by climate change. Consequently, this work serves as a valuable
resource for stakeholders and authorities, assisting them in planning of sustainable strategies focused on

natural disaster prevention and management.
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