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Abstract 13 

Evaluating the forthcoming impacts of climate change is important for formulating efficient and flexible 14 

approaches to water resource management. General Circulation Models (GCMs) are primary tools that 15 

enable scientists to study both past and potential future climate changes, as well as their impacts on policies 16 

and actions. In this work, we quantify the future projected impacts of hydroclimatic extremes on the coastal, 17 

risk-prone Tar-Pamlico River basin in North Carolina using GCMs from the Sixth International Coupled 18 

Model Intercomparison Project (CMIP6). These models incorporate projected future societal development 19 

scenarios (Shared Socioeconomic Pathways, SSPs) as defined in the Intergovernmental Panel on Climate 20 

Change (IPCC) Sixth Assessment Report (AR6). Specifically, we have utilized historical residential 21 

expansion data, the Soil and Water Assessment Tool Plus (SWAT+), the Standardized Precipitation Index 22 

(SPI), and the Interquartile Range (IQR) method for analyzing extremes from 2024 to 2100. Our findings 23 

include: (1) a trend toward wetter conditions is identified with an increase in flood events toward 2100; (2) 24 

projected increases in the severity of flood peaks are found, quantified by a rise of 21% compared to the 25 

2000–2020 period; (3) downstream regions are forecast to experience severe droughts up to 2044; and (4) 26 

low-lying and coastal regions are found as particularly susceptible to higher flood peaks and more frequent 27 

drought events between 2045 and 2100. This work provides valuable insights into the anticipated shifts in 28 

natural disaster patterns and supports decision-makers and authorities in promoting adaptive strategies and 29 

sustainable policies to address challenges posed by future climate changes in the Tar-Pamlico region and 30 

throughout the state of North Carolina, United States. 31 

Keywords: Climate change; Flood; Drought; CMIP6; Resilience; Tar-Pamlico River basin. 32 



   
 

2 
 

1. Introduction  33 

Many countries, including the United States, have an extensive history of dealing with natural disasters 34 

(Easterling et al., 2000). Many works indicated that changes in the intensity and frequency of these extreme 35 

events could significantly impact human lives (Bonsoms et al., 2023; Guan et al., 2021; Kang et al., 2022; 36 

Saadi et al., 2024; Sanjay Mankar et al., 2020; Tran et al., 2022d, 2023b, 2023e; Donnelly et al., 2024a). 37 

Weather-related extreme events such as droughts and floods, which vary spatially and temporally, can 38 

considerably affect local communities (Anjanee Prabha and Tapas, 2020; Cao et al., 2023; Dias et al., 2024; 39 

IPCC, 2013; Omojola et al., 2012; Tan et al., 2023; Trenberth et al., 2014; Zhang et al., 2023; Zhou et al., 40 

2023; Noori et al., 2023). Specifically, floods and droughts can lead to severe fatalities and cause significant 41 

losses in country’s economy (Garner et al., 2017; Ma and Yuan, 2021; Ren et al., 2023; Thibeault and Seth, 42 

2014; Tran et al., 2021a, 2021b; Zhang et al., 2024; Donnelly et al., 2024b). The frequency and severity of 43 

these events are projected to increase significantly with rising temperatures and greater precipitation 44 

intensities (Aryal et al., 2023; Mishra et al., 2023; Nguyen et al., 2023; Tran et al., 2022a). In the United 45 

States, Porter et al. (2021) indicated that the projected risk for human properties could increase up to 10% 46 

under climate change impacts. Additionally, Hsiao et al. (2021) and Masciopinto and Liso. (2016) found 47 

that these impacts are even more substantial in low-lying regions. 48 

Human-related factors could further intensify extreme weather events (Hansen and Stone, 2016). The 49 

latest Intergovernmental Panel on Climate Change (IPCC) report highlights the expected rise in temperature 50 

and CO2 concentrations, primarily due to human activities (Carter et al., 1994; IPPC, 2021). An increase 51 

of at least 1.5 ◦C above pre-industrial levels in global temperatures is projected within the next two decades 52 

(Carter et al., 1994; Chen et al., 2020; Hansen and Stone, 2016; IPPC, 2021; Yun et al., 2021). A recent 53 

work by Raftery et al. (2017), using a statistically-based probabilistic approach, indicated there is only a 54 

1% chance of preventing this phenomenon. In addition, this is expected to escalate the frequency and 55 

severity of floods and droughts, especially in coastal regions (IPCC, 2021, 2019). Global increases in 56 

greenhouse gas emissions from anthropogenic sources could intensify water-related issues (Hansen and 57 

Stone, 2016; IPCC, 2019; Nguyen et al., 2022; Rosenzweig and Neofotis, 2013; Song et al., 2022; Trang et 58 

al., 2017). Future hydroclimatic extremes would then result in severe impacts, such as sea-level rise 59 

(Mahdian et al., 2024), coastal flooding (Kang et al., 2022; Mafi-Gholami et al., 2020; Masciopinto and 60 

Liso, 2016), increased storm intensity (Hsiao et al., 2021), changes in salinity (Loc et al., 2021; Park et al., 61 

2022), and economic losses (Lien, 2019). These impacts are particularly pronounced in agriculture (Parajuli 62 

et al., 2019) and coastal watersheds (IPPC, 2021; Mafi-Gholami et al., 2020). Besides, coastal regions face 63 

unique challenges compared to other areas, mainly due to their low altitude (Baills et al., 2020; Toimil et 64 
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al., 2020), lack of natural-based measurements (O’Donoghue et al., 2021), and exacerbating factors such 65 

as urbanization (Gopalakrishnan et al., 2019).  66 

The Tar-Pamlico River basin, which is the fourth-largest watershed in North Carolina, has been 67 

selected for future climatic investigations due to its unique geographical and socioeconomic characteristics 68 

(NC DEQ, 1994). This is also motivated by the region’s significant agriculture activities that are 69 

increasingly threatened by climate change (Mulligan et al., 2019; Osmond et al., 2015). In addition, this 70 

region, where fifty-five percent of the land comprises forests and wetlands, is currently vulnerable to 71 

environmental risks such as seawater intrusion, sea-level rise, and land degradation that are likely to be 72 

exacerbated by future climate (NC DEQ, 1994). Tapas et al. (2022a) developed a hydrological model for 73 

the Tar-Pamlico basin, which incorporates stakeholders’ inputs. Their preliminary results revealed that local 74 

farmers are increasingly threatened by climate change, a finding found by their discussions with the locals 75 

and authorities. Thus, given its high socioeconomic and ecological value, immediate action is necessary to 76 

protect the region’s agriculture and human well-being from hydroclimatic extremes (Mulligan et al., 2019). 77 

Furthermore, despite escalating global climate change impacts this decade (Chen et al., 2020; Hansen and 78 

Stone, 2016; Mahdian et al., 2023), as of this writing, no studies have been published investigating the 79 

climate change impacts on this region. This research gap has thus become the primary motivation for our 80 

work, which aims to support authorities and stakeholders in developing sustainable plans to mitigate future 81 

climate impacts on this area. 82 

General Circulation Models (GCMs) are important for quantifying impacts of future projected 83 

hydroclimatic extremes (Neill et al., 2016; Tebaldi et al., 2021). GCMs theoretically simulate the physics, 84 

chemistry, and biology of the atmosphere, land, and oceans in great detail (Tebaldi et al., 2021). The latest 85 

version of the Coupled Model Intercomparison Project Version V6 (CMIP6) was recently released with 86 

updates (Neill et al., 2016). Specifically, it introduces a new concept of the Scenario Model Intercomparison 87 

Project, which is based on the Shared Socioeconomic Pathways (SSPs) (Eyring et al., 2016). This marks a 88 

significant milestone of the IPCC’s global project with the integration and consideration of socioeconomic 89 

factors (IPPC, 2021; Meyer, 2015), as highlighted in the IPCC AR6 report (IPPC, 2021). SSP outlines 90 

specific scenarios of greenhouse gas emissions (e.g., SSP2–45 and 5–85) and Land Use Land Cover 91 

(LULC) changes under baseline scenarios (Neill et al., 2016). Incorporating these emission scenarios into 92 

hydrological models enables a better understanding of the physical impacts of climate and societal factors 93 

on hydrological processes (Neill et al., 2016). Additionally, selecting appropriate CMIP6 GCMs is critical 94 

due to various factors such as resolution (Di Virgilio et al., 2022) and geographical characteristics of the 95 

region (Tebaldi et al., 2021). In this study, we use the NASA Earth Exchange Global Daily Downscaled 96 

Projections – NASA NEX-GDDP-CMIP6 (Thrasher et al., 2022), which has been utilized and validated in 97 
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previous works (Chen et al., 2020; Dias et al., 2024; Park et al., 2023; Saadi et al., 2024). In this study, four 98 

GCMs have been selected for their proven efficiency in recent works: BCC-CSM2-MR from the Beijing 99 

Climate Center, China Meteorological Administration (China); CanESM5 from the Canadian Center for 100 

Climate Modeling and Analysis (Canada); MIROC6 from the Japan Agency for Marine-Earth Science and 101 

Technology and the Atmosphere and Ocean Research Institute at the University of Tokyo (Japan); and MRI-102 

ESM2-0 from the Meteorological Research Institute (Japan) (Chen et al., 2022; Peng et al., 2023; Wang et 103 

al., 2021; Xu et al., 2023) (see Section 2.2).  104 

In this study, our aim is to quantify the impacts of GCMs under SSP scenarios on future climatic 105 

extremes in the Tar-Pamlico River basin, North Carolina state. We employed the Standardized Precipitation 106 

Index (SPI), the semi-distributed hydrological Soil and Water Assessment Tool Plus (SWAT+) model, and 107 

the Interquartile Range (IQR) method for analysis across three timeframes: the near future (2024–2044), 108 

mid future (2045–2069), and far future (2070–2100). Our primary objectives are to understand and evaluate 109 

the impacts of climate change on hydroclimatic extremes, mainly focusing on S1-3 regions (see Section 110 

2.1). We aim to first (a) reveal projected changes in future meteorological variables, then (b) quantify the 111 

intensity and frequency of future flood and drought events, and lastly (c) discuss the forecasted impacts of 112 

these extremes on these regions. Additionally, we provide a general analysis on the historical residential 113 

expansions (population and housing units) in the S1-3 regions from 1990 to 2020, using data from the U.S. 114 

Census Bureau, the North Carolina Department of Environmental Quality (NC DEQ), and the United States 115 

Geological Survey (USGS) Land Change Monitoring, Assessment, and Projection (LCMAP) data sets 116 

(USGS, 2020) (Fig. 1). The materials and methods will be presented in Section 2, results in Section 3, 117 

discussions of the findings in Section 4, limitations and potential future work in Section 5, and the 118 

conclusions in Section 6. 119 

2. Materials and methods 120 

2.1. Study area 121 

The Tar-Pamlico River basin has been selected for this study due to its distinctive hydrological modeling 122 

characteristics because of its significance to the North Carolina state, United States (Fig. 1). This basin 123 

drains into the Pamlico Sound, supporting a unique and diverse ecosystem of habitats (Keith, 2014; NC 124 

DEQ, 1994, 2009). It covers an area of approximately 14,428 km2 (about 5,571 mi2), extends across 15 125 

counties, and supports a total population of over 470,000 (Keith, 2014; NC DEQ, 2009).  126 
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 127 

Fig. 1. (a) Location of the Tar-Pamlico River basin within the United States; (b) Terrain profiles and 128 

geographical characteristics of the Tar-Pamlico watershed; (c–f) LULC changes and historical residential 129 
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expansions, including population and housing units, in the (S1) Tarboro, (S2) Washington, and (S3) Goose 130 

Creek Game Land regions, using LCMAP data sets (1990–2020) (USGS, 2020) with the colors encoded to 131 

corresponding regions (S1–S3). The region’s historical residential expansions, including population 132 

growth, housing units, and their densities are calculated based on data from the U.S. Census Bureau (U.S. 133 

Census Bureau, 2022; Center for Sustainable Systems, 2023) and NC DEQ (NC DEQ, 2020). The 134 

percentage change (%) indicates the difference between the latter year and the previous year.  135 

The Tar-Pamlico River basin features a diverse distribution of land use, with forests covering 33.9%, 136 

wetlands 31.9%, and agricultural land 27.9% of the area (NC DEQ, 2009). The freshwater streams and 137 

rivers within the basin have their origins in the agriculturally rich, wetland-dense, and forested areas of the 138 

Piedmont region in north-central North Carolina. These waterways flow southeastward and, upon nearing 139 

tidal zones, transform into expansive, tidally influenced estuaries (Keith, 2014). These estuaries eventually 140 

feed into the Tar-Pamlico Sound (Fig. 1b), enhancing its ecological complexity and economic productivity 141 

(NC DEQ, 1994, 2009). The basin’s distinct terrain profiles, LULC distribution, and climatic characteristics 142 

make it an ideal area for this study. In this study, we mainly focus on three regions, including (S1) the town 143 

of Tarboro and (S2) the city of Washington, which have been selected due to their socioeconomic 144 

importance (Fig. 1), as well as (S3) the Goose Creek Game Land region, chosen because of its vulnerability 145 

to seawater intrusion and ecological significance (NC DEQ, 1994, 2009) (Fig. 1).  146 

2.2. Descriptions of GCMs and SSP scenarios 147 

We used the NASA NEX-GDDP-CMIP6 dataset, which was downscaled and bias-corrected with a spatial 148 

resolution of approximately 25 × 25 km (Thrasher et al., 2022). This dataset covers two “Tier 1” SSP 149 

scenarios, namely SSPs 2-45 and 5-85 (Neill et al., 2016; Thrasher et al., 2022). These CMIP6 GCMs were 150 

designed to support the objectives of the IPCC AR6, focusing on capturing climate projections based on 151 

various socioeconomic scenarios (IPPC, 2021). The datasets have been downscaled using the Bias-152 

Correction Spatial Disaggregation method with the aim to address common constraints in GCM outputs 153 

(Maurer and Hidalgo, 2008; Wood et al., 2002, 2004). The efficiency of GCMs is affected by different 154 

factors, such as the model’s algorithm and baseline conditions, resulting in divergent precision levels in 155 

simulating particular basins and regions (Chen et al., 2020). Studies by Park et al. (2023) and Thrasher et 156 

al. (2022) highlighted that the BCC-CSM2-MR, CanESM5, MIROC6, and MRI-ESM2-0 models show 157 

good applications in future climate investigations, and thus they have been chosen in this study. Besides, 158 

Chen et al. (2022) and Xu et al. (2023) indicated the good performance of these GCMs in capturing a wide 159 

range of future streamflow changes, while Wang et al. (2021) indicated that CanESM5 and BCC-CSM2-160 

MR show unique advantages in producing satisfactory results in terms of precipitation. 161 
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Specifically, these models show good correlations compared to the other GCMs (Wang et al., 2021). 162 

Besides, Peng et al. (2023) highlighted that MIROC6 and MRI-ESM2-0 have the highest reliabilities in 163 

temperature and precipitation, outperforming the other 17 GCMs. Our analysis was conducted on two SSP 164 

scenarios, as the intermediate (SSP2-45) and high-end (SSP5-85) greenhouse gas emission levels (Thrasher 165 

et al., 2022). The summary of the these GCM models is presented in Table 1.   166 

Table 1.  167 

Description of the chosen GCMs used in this study.  168 

No Model  Country Description  

1 BCC-CSM2-MR China Beijing Climate Center China Meteorological Administration 

2 CanESM5 Canada Canadian Centre for Climate Modelling and Analysis, Environment 
and Climate Change Canada, Canada 

3 

MIROC6 Japan Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 
Japan & Atmosphere and Ocean Research Institute (AORI), The 
University of Tokyo, Japan & National Institute for Environmental 
Studies, Japan (NIES) & RIKEN Center for Computational Science, 
Japan (R-CCS) 

4 MRI-ESM2-0 Japan Meteorological Research Institute, Japan 

2.3. Hydrological SWAT+ model 169 

SWAT model was developed by the United States Department of Agriculture Agricultural Research Service 170 

(USDA-ARS) in the mid-1990s and is one of the most advanced, open-source models for a wide range of 171 

hydrological applications (Tran et al., 2022b, 2023a). SWAT is primarily utilized for simulating 172 

hydrological processes within various water management regimes (Tran et al., 2023d). In this study, we 173 

used the SWAT+ version, a restructured update of SWAT, released in 2017. While retaining the core 174 

hydrological and computational algorithms of the original model, SWAT+ introduces additional features to 175 

better represent spatial distributions. These enhancements are centered around the rainfall-runoff concept 176 

and the water balance equation (Arnold et al., 2012; Gassman et al., 2007; Tran & Lakshmi, 2022). 177 

Many studies have used this model to investigate the impacts of various factors on streamflow and 178 

sediment loads. These factors include changes in land cover (Ahmed et al., 2020; Cheng et al., 2018), 179 

climate change impacts (Aslam et al., 2022; Shafeeque et al., 2023a, 2023b), sustainability of ecosystem 180 

services (Ashrafi et al., 2022a, 2022b; Behboudian et al., 2021; Umar et al., 2022), applications of satellite-181 

based products (Arshad et al., 2021, 2022; Aryal et al., 2023; Noor et al., 2023; Tran et al., 2022c, 2023c; 182 

Tapas et al., 2023), and groundwater contamination by agricultural chemicals (Trang et al., 2017). 183 
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2.3.1. Model setup and workflow 184 

The boundary of the Tar-Pamlico River basin, which is used in the SWAT+ model, was extracted from the 185 

USGS StreamStats (Ries et al., 2017). Figure 2 shows the schematic workflow of our study, highlighting 186 

the main stages along with the model’s inputs and outputs. We utilized SWAT+ (version 3.16.9) and the 187 

Quantum Geographic Information System (QGIS) software for SWAT+ (Dile et al., 2019) for the model 188 

run in this study (Dile et al., 2019) (Fig. 2). Additionally, the Terrain Analysis Using Digital Elevation 189 

Models (TauDEM) version 5.0 was used within SWAT+ model for watershed delineation (Tarboton, 2011).   190 

 191 

Fig. 2. The schematic flowchart used in this study. First, we prepared the needed data sets, which include 192 

historical data and projected data sets from CMIP6 GCMs (see Section 2.2).  Calibration and validation 193 

were conducted at the Washington hydrological station (Fig. 1b). The calibrated model values were then 194 

used to simulate SSP scenarios from 2024 to 2100. Assessments were carried out over the Tar-Pamlico 195 
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River basin and at three selected sites: Tarboro, Washington, and Goose Creek Game Land (Fig. 1b). 196 

Additional analyses incorporated residential expansion data and LULC changes. 197 

For the SWAT+ model, we conducted watershed extraction and analyzed hydrologic information 198 

derived from the DEM input. This analysis was essential to delineate streams, sub-basins, and create 199 

Hydrological Response Units (HRUs) (Arnold et al., 2012; Pignotti et al., 2017). Specifically, the watershed 200 

was divided into smaller sub-watersheds that contain distinctive characteristics from the DEM, LULC, and 201 

soil characteristics that were stored in HRUs. An HRU in SWAT+ represents the smallest spatial unit 202 

(Arnold et al., 2012), where the water balance equation is used for calculations in each pixel within the 203 

watershed, ensuring that hydrological processes are accounted for from the upstream to the downstream 204 

region (Figs. 1 and 2) (Douglas-Mankin et al., 2010; Neitsch et al., 2011; Gassman et al., 2007). 205 

The DEM data for the year 2011, with a 90 m resolution, was obtained from the USGS website 206 

(USGS, 2020) (Fig. 2). LULC data were collected from the USGS National Land Cover Database (NLCD), 207 

based on a survey in 2008 (Yang et al., 2018). In addition, the soil data were acquired from the USDA Soil 208 

Survey Geographic Database (SSURGO) for the year 2015 (USDA, 2010). 209 

To calibrate and validate the SWAT+ model, we utilized data from the USGS database for the 210 

Washington hydrological station (Figs. 1b and 2), covering the period from 2001 to 2019. It is important to 211 

note that this observation includes gaps, primarily due to tidal influence, which can result in negative flow 212 

values. Thus, before using this data in the model calibration, we converted these negative flow values to 213 

zeros, as the SWAT+ model is unable to process backflow (Bieger et al., 2017). This specific adjustment 214 

ensures that negative flows are treated as low flows, considering the limitations of one-dimensional flow 215 

modeling (Arnold et al., 2012; Bieger et al., 2017).  216 

In this study, we have chosen the initial two years (2001 and 2002) for the warm-up period for the 217 

SWAT+ model. The calibration period was chosen between 2003 and 2011 while the validation period was 218 

chosen (2012-2019) (Fig. 2). We performed a total of 5,000 iterations for each scenario at a monthly scale. 219 

Besides, future climate scenarios were simulated using inputs from the selected GCM SSPs and an 220 

ensemble model combining all GCMs (2024-2100). These simulations used the calibrated parameters 221 

extracted from the historical scenario (2003-2019) (Fig. 2). Our analysis was divided into three different 222 

future periods: the near future (2024-2044), the mid future (2045-2069), and the far future (2070-2100).  223 

2.3.2. R-SWAT for model calibration and validation 224 
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We used the interactive web-based application R-SWAT for model calibration and validation. This 225 

application is developed using the R programming language and features open-source parallel processing 226 

capabilities (Nguyen et al., 2022).  227 

Table 2.  228 

Summary of the chosen parameters with their descriptions, change types, ranges, and units used for 229 

calibrating the SWAT+ model. This data are extracted from the SWAT+ documentation (SWAT+, 2018, 230 

2020) with adjustments based on the Tar-Pamlico River basin’s characteristics. Rank is the sensitivity 231 

ranking of parameters from the model’s calibration and validation. 232 

Rank Name Method Min Max Description (unit) 

1 cn2.hru relative – 0.30 0.20 SCS curve number for soil moisture condition 2 (null) 

2 revap_co.aqu absolute – 0.10 0.10 Groundwater revap coefficient (null) 

3 flo_min.aqu relative – 0.25 0.50 The lower limit of aquifer storage which enables return 
flow (m) 

4 
awc.sol absolute – 0.10 0.30 Available water capacity of the soil layer 

(mm_H2O/mm) 

5 alpha.aqu replace 0.01 0.50 Baseflow recession factor (days) 

6 perco.hru absolute – 0.30 0.30 Percolation coefficient (fraction) 

7 chk.rte relative – 0.25 0.25 Channel base conductivity (mm/hr) 

8 cn3_swf.hru absolute – 0.30 0.50 The coefficient for pothole evaporation (null) 

9 epco.hru absolute 0 0.30 Plant uptake compensation factor (null) 

10 esco.hru absolute 0 0.30 Soil evaporation compensation factor (null) 

11 k.sol relative – 0.25 0.25 Hydraulic conductivity (mm/hr) 

12 ovn.hru absolute 0 5 SCS curve number for soil moisture condition 2 (null) 

13 surlag.bsn replace 0.05 15 The coefficient for surface runoff lag (days) 

14 
evlai.bsn replace 0 10 Leaf area index at zero evaporation from water bodies 

(null) 

15 biomix.hru absolute – 0.30 0.30 Biological mixing efficiency (m) 

16 nperco.bsn absolute 0 1 Nitrate percolation coefficient (null) 

17 lat_len.hru relative – 0.30 0.30 Slope length for lateral subsurface flow (m) 
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18 lat_orgn.aqu relative – 0.30 0.30 Organic N in the base flow (mg/L) 

19 crk.bsn absolute 0 1 Crack flow code (null) 

20 field_len.fld relative – 0.30 0.30 Field length for wind erosion (m) 

21 field_wid.fld relative – 0.30 0.30 Field width for wind erosion (m) 

22 n_updis.bsn absolute 0 30 Nitrogen uptake distribution parameter (null) 

23 erorgp.hru relative – 0.30 0.30 Phosphorus enrichment ratio for loading with sediment 
(null) 

24 dis_stream relative – 0.50 0.50 Average distance to stream (m) 

 For the calibration and validation of the SWAT+ model, we selected a total of 24 parameters using 233 

the R-SWAT application and employed the Generalized Likelihood Uncertainty Estimation (GLUE) 234 

calibration technique (Blasone et al., 2008) (Table 2). GLUE is a widely used algorithm in environmental 235 

system modeling due to its robustness (Tolson and Shoemaker, 2007). This technique involves randomly 236 

selecting numerous parameter combinations, with each set being assigned a likelihood score. This score 237 

reflects the probability of its occurrence across multiple model sets, based on how well the simulated values 238 

agree with the observed values, grounded in the principle of uniformity (Blasone et al., 2008; Mirzaei et 239 

al., 2015). In the SWAT+ model, the calibration (.cal) file delineates the absolute minimum and maximum 240 

ranges for these parameters. For parameters pertaining to aquifer levels, we used the “replace” method. 241 

This approach was chosen because SWAT+ typically assigns uniform values to all aquifers within a 242 

watershed, which can result in a loss of resolution at the aquifer level (Blasone et al., 2008; Tolson and 243 

Shoemaker, 2007; Mirzaei et al., 2015).  244 

2.4. Performance metrics 245 

In our study, the model’s outputs are evaluated using the Kling-Gupta efficiency (KGE) (Gupta et al., 2009), 246 

Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970), and Coefficient of determination (R2) (Moriasi 247 

et al., 2015) (Table 3). The NSE assesses the proportion of the variance in the observed data that is 248 

quantified by the model (Nash and Sutcliffe, 1970). The KGE offers a thorough assessment by taking into 249 

account the comparisons of averages and variability, as well as the correlation between observed and 250 

simulated streamflow (Gupta et al., 2009; Saeedi et al., 2022). R2 measures the degree to which fluctuations 251 

in the observed factor are accounted for by the simulated variable (Moriasi et al., 2015). The ranges and 252 

equations of these metrics are shown in Table 3. 253 

Table 3.  254 

Summary of the model performance metrics used in this study. 255 



   
 

12 
 

Metric Equation Range 

NSE 
1 −  

∑ (Qobs − Qsim)2n
i=1

∑ (Qobs − Qobs������)2n
i=1

 
VG: NSE ≥ 0.8; G: 0.7 ≤ NSE < 0.8; 

S: 0.5 ≤ NSE < 0.7; NS: NSE < 0.5 

 

KGE 1 −�(CC − 1)2 + �
Qsim

d

Qobs
d − 1�

2

+ �
Qsım������
Qobs������ − 1�

2

 
VG: KGE ≥ 1; G: 0.50 ≤ KGE ≤ 1; 

S: 0 ≤ KGE ≤ 0.50; NS: KGE < 0 

 

R2 

�∑ �Qobs,i − Qobs��������Qsim,i − Q𝑠𝑠𝑠𝑠𝑠𝑠�������i �2

∑ �Q𝑜𝑜𝑜𝑜𝑜𝑜,i − Qobs�������2i ∑ �Qsim,i − Qsım�������2i
 

VG: R2 ≥ 0.8; G: 0.7 ≤ R2 < 0.8; 

S: 0.5 ≤ R2 < 0.7; NS: R2 < 0.5 

Note: 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜 is observed streamflow, 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠 is simulated streamflow, 𝑖𝑖 is 𝑖𝑖𝑡𝑡ℎ simulation, and 𝑄𝑄� is the mean 256 

value, and 𝑛𝑛 is the total number of values. Very Good (VG), Good (G), Satisfactory (S), and Not Satisfactory 257 

(NS).  258 

2.5. IQR method for Anomaly Detection of Future Flood Peaks 259 

IQR is a statistical tool used for identifying outliers within a dataset (Wan et al., 2014). It divides the dataset 260 

into three quartiles, providing an overview of data distribution. 261 

- 1st quartile represents the 25th percentile, also known as the median of the dataset’s lower half (Q1). 262 

- 2nd quartile represents the 50th percentile or the overall median of the dataset (Q2). 263 

- 3rd quartile represents the 75th percentile, also known as the median of the dataset’s upper half 264 

(Q3). 265 

We first obtained the SWAT+ simulated flood peak on a monthly scale and use as input for this 266 

method. By using the IQR method, we identified anomalies in future flood peaks (2024–2100), in which 267 

our analysis was segmented into three pre-defined periods. We established the IQR range as (Q3 – Q1) with 268 

the lower and upper bounds defined as lower bound equals to [Q1 – (1.5 × IQR)] and upper bound equals 269 

to [Q3 + (1.5 × IQR)]. Peak values found outside these bounds are considered anomalies. By performing 270 

the IQR method over different periods, we highlight years with remarkably high and low peaks, indicating 271 

potential risks. This systematic approach enhances our understanding of potential flood risks in future 272 

scenarios. 273 

2.6. Evaluation of projected drought events  274 

It is crucial to establish criteria for quantifying the intensity and frequency of extreme events (Liu et 275 

al., 2021; Tapas et al., 2022b; Zhong et al., 2022). In this work, we used SPI for our analysis, with different 276 

levels of severity categorized using the US Drought Monitor (Svoboda et al., 2002) (Table 4). To be specific, 277 
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dry conditions are identified when the SPI values fall below zero and keep decreasing to less than negative 278 

one (− 1). In contrast, a drought event is considered to have ended when these values return to positive, in 279 

which wet conditions are identified when the SPI values reach to positive two (+2) and beyond (Liu et al., 280 

2021; Zhong et al., 2022). 281 

We defined two evaluation indices: Severity (S) and Intensity (IDe). First, S is measured as the 282 

absolute sum of all SPI values during the event, with the event duration defined as the number of months 283 

from the onset of the event to its conclusion, excluding the final month when the SPI returns to positive 284 

(Eq. (1)). IDe is calculated as the average SPI value over the drought duration (Eq. (2)). IDe serves as an 285 

indicator of the event’s severity, where higher values indicate more severe conditions. 286 

𝑆𝑆 =  |∑ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑎𝑎
𝑖𝑖=1 | (Eq. 1) 287 

𝐼𝐼𝐼𝐼𝑒𝑒 =  𝑆𝑆𝑖𝑖
𝑎𝑎

   (Eq. 2) 288 

where 𝑎𝑎 is the duration of the event (months), 𝐼𝐼𝐼𝐼𝑒𝑒 is the intensity, and 𝑆𝑆𝑖𝑖 represents the SPI value during 289 

the 𝑖𝑖-month of the event. The frequency (𝐹𝐹) is calculated as the average number of events during a specified 290 

time range.  291 

Table 4.  292 

Summary of drought category and their ranges for SPI.  293 

Drought category SPI range 

Extreme wet Index ≥ + 2.0 

Severe wet + 1.5 ≤ Index < + 2.0 

Moderate wet + 1.0 ≤ Index < + 1.5 

Near normal/mild wet 0 ≤ Index < + 1.0 

Near normal/mild drought – 1.0 ≤ Index < 0 

Moderate drought – 1.5 ≤ Index < – 1.0 

Severe drought – 2.0 ≤ Index < – 1.5 

Extreme drought Index ≤ – 2.0 

3. Results  294 

3.1. Overview of historical residential expansion  295 
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We found that the Tar-Pamlico River basin experienced an increase in population and housing units from 296 

1990 to 2020 (Fig. 1). Specifically, there was a notable 40% increase in population growth and density in 297 

2020 compared to 2010 (Fig. 1f). At the regional level, the S1-3 areas exhibited similar trends in population, 298 

but showed varying changes in housing units. Indeed, Tarboro (S1) and Washington (S2) experienced 299 

considerable urban expansion, particularly noticeable in the rise in housing units from 2010 to 2020 (Fig. 300 

1). Despite a modest population growth in these regions (a maximum increase of 3% compared to 1990), 301 

the number of new housing units built increased steadily, peaking at a 23.03% increase by 2020. Conversely, 302 

the Goose Creek Game Land region (S3) maintained a relatively stable land use distribution (Fig. 1), 303 

preserving its largely natural state.  304 

3.2. SWAT+ calibration and validation 305 

We performed the sensitivity analysis parameters using a p-value threshold of 0.05. This means if a 306 

parameter has a p-value less than 0.05, then it is considered sensitive. Four parameters were identified as 307 

sensitive in this study, including cn2, revap_co, flo_min, awc, alpha, and perco (Table 2). Specifically, the 308 

baseflow (alpha parameter) and percolation coefficient (perco parameter) are sensitive in this basin. This 309 

indicates a significant ratio of infiltration, where surface water percolates into deeper soil layers, a result 310 

that is consistent with the storage routing technique described in Mapes and Pricope (2020). 311 

The model calibration and validation for the period from 2003 to 2019 yielded good results. The 312 

model achieved an overall NSE of 0.71, KGE of 0.82, and R² of 0.78. During the calibration period (2003-313 

2011), the model achieved an NSE of 0.72, a KGE of 0.84, and a R² of 0.76, while during the validation 314 

period (2012-2019), these values were 0.68, 0.77, and 0.81, respectively. These results are categorized as 315 

“Good” (see Table 3), particularly when considering the complex hydrodynamic influences in the area, 316 

e.g., dam and reservoir, and backwater effects in this coastal region (Keith, 2014). The results give 317 

confidence to the  model’s effectiveness and reliability in simulating and evaluating the impacts of climate 318 

change in the following sections. 319 

3.3. Projected changes in temperature and precipitation 320 

First, we examined changes in the average monthly temperature and precipitation across GCMs and SSPs 321 

(Table 5). The average monthly historical precipitation is found at approximately 85.58 mm, and rises to 322 

87.56 mm under the SSP2-45 and 90.07 mm under the SSP5-85 using the ensemble model.  323 

Table 5.  324 

Projected changes in average monthly precipitation and temperature for the future period (2024-2100) 325 

compared to historical period (2003-2019). Increase (I) represents upward trends, while decrease (D) 326 
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represents downward trends. Darker color denotes a higher increase. Ensemble is the combined model of 327 

four GCMs used in this study (see Table 1). 328 

  Temperature (oC) 
GCM Maximum Minimum 

Trend 
  SSP2-45 SSP5-85 SSP2-45 SSP5-85 
Ensemble + 3.77 + 4.66 + 0.86 + 1.80 I 
BCC-CSM2-MR + 3.72 + 4.70 + 0.49 + 1.36 I 
CanESM5 + 4.14 + 5.26 + 1.44 + 2.70 I 
MIROC6 + 3.66 + 4.44 + 0.64 + 1.36 I 
MRI-ESM2-0 + 3.57 + 4.25 + 0.87 + 1.77 I 

 Precipitation (mm) 
SSP2-45 SSP5-85 Trend 

Ensemble + 1.98 + 4.49 I 
BCC-CSM2-MR + 1.60 + 4.42 I 
CanESM5 + 1.64 + 4.37 I 
MIROC6 + 0.49 + 3.81 I 
MRI-ESM2-0 + 4.20 + 5.37 I 

MRI-ESM2-0, CanESM5, and BCC-CSM2-MR, under the SSP2-45 scenario, project increases in 329 

monthly precipitation of 4.20 mm, 1.64 mm, and 1.60 mm, respectively. Under the SSP5-85 scenario, these 330 

models consistently indicate even greater increases, with projected rises of 5.37 mm, 4.37 mm, and 4.42 331 

mm, respectively (Table 5). These trends, consistent across all SSP scenarios, suggest a general rise in 332 

monthly precipitation, potentially leading to significant changes in future hydroclimatic patterns, including 333 

more frequent flooding events.  334 

On the other hand, we noted that the average historical maximum and minimum temperatures are 335 

around 21.47°C and 10.97°C, respectively. However, these figures are projected to increase by at least 336 

3.77°C for the maximum and 1.80°C for the minimum temperatures, observed using the ensemble model 337 

(Table 5). Under the SSP5-85, the projected minimum temperature increase could be as high as 4.66°C. 338 

Moreover, we found that individual GCMs suggest even higher temperature increases than the ensemble 339 

model. For instance, under the SSP2-45 scenario, the CanESM5 model forecasts the most significant 340 

increase in maximum temperature at +5.26°C, closely followed by the BCC-CSM2-MR model with a 341 

projected increase of 4.70°C. These projections emphasize the substantial and increasing risks associated 342 

with extreme heat, highlighting the need for careful observation in mitigating these climatic changes. 343 

3.4. Projected changes in streamflow and flood peaks 344 

Flood peak is an important outcome from numerical models that is essential for hydrological assessment 345 

(Merz et al., 2022).  Figure 3 shows the projected flood peaks in the (a) Tarboro, (b) Washington, and (c) 346 



   
 

16 
 

Goose Creek Game Land regions for the near future (2024-2044), mid future (2045-2069), and far future 347 

(2070-2100) .  348 

 349 
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Fig. 3. Historical and projected flood peaks at (a-b) Tarboro, (c-d) Washington, and (e-f) Goose Creek Game 350 

Land. Future projections are simulated using the SWAT+ model, incorporating inputs from GCMs under 351 

different SSP scenarios (2-45 and 5-85). Black lines represent historical flood peaks (2003-2019), red lines 352 

represent the ensemble model (2024-2100), which combines the outputs from all GCMs, while dash grey 353 

lines show the projections from individual GCMs. Values in boxes represent mean flood peaks over 354 

different future periods (near, mid, and far) while the violin plots show the distribution of flood peaks from 355 

the ensemble models and individual GCMs.   356 

In general, we found that higher flood peaks are likely to appear starting from 2045 across different 357 

examined regions (Fig. 3). While projected flood peaks in the near future (2024-2044) remain relatively 358 

unchanged compared to the historical period, the highest number of record-breaking peaks are frequently 359 

found in the far future (2070-2100), with the more severe greenhouse gas emission pathway (SSP5-85) 360 

showing higher peaks compared to SSP2-45. Specifically, when comparing historical flood peaks with 361 

future projected flood peaks, we observed that these increases range from 3 to 7% during the mid future 362 

and up to 21% during the far future. Moreover, when comparing Tarboro (S1) and Washington (S2), 363 

Tarboro—the more populated and higher housing density region (Fig. 1b)—shows a greater increase in 364 

flood peaks compared to Washington. To be specific, between mid- and far-future periods, mean flood peaks 365 

in Tarboro are expected to increase by 7.5% compared 5.5% in Washington under SSP2-45; and by 21% 366 

compared to 16.5% under SSP5-85, respectively. This could be explained by the higher impervious surface 367 

coverage in developed areas, which prevents water from infiltrating into the ground, exacerbating runoff 368 

and flooding issues. In addition, this could be exacerbated if the housing density continues to increase under 369 

the current growing population trend over the Tar-Pamlico River basin (see Section 3.1).  370 

We also found that there are specific years within the near future (2024-2044) that are likely to 371 

experience notably high flood peaks. All of these regions are projected with significant flood peaks across 372 

various GCMs and SSPs between 2027 and 2039, as well as in 2042, indicating an elevated risk of flooding 373 

in this region (Figs. 3c, 3d, 3e, and 3f). Besides, the mean flood peak for this period is estimated to be 374 

approximately 179.9 m³/s (under the SSP2-45 scenario) and 186.7 m³/s (SSP5-85 scenario), respectively 375 

(Figs. 3e and 3f).  376 

During the mid future (2044-2069), we observed notable trends and differences among GCMs and SSP 377 

scenarios. We found that the flood peak values oscillate between the upper bounds, formed by the MRI-378 

ESM2-0 and MIROC6 models (significant years marked in 2052, 2057, 2060, 2065, and 2069), and the 379 

lower bounds delineated by the CanESM5 model (Fig. 3). There was a particularly noticeable increasing 380 

trend of flood peaks in the SSP5-85 scenarios, suggesting a trend towards wetter conditions. In Tarboro, 381 

our results show moderate fluctuations in flood peaks, with notable figures found under the SSP2-45 382 
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scenario, especially in the years 2052 and 2057 (Fig. 3a). Besides, Washington  is projected to experience 383 

a higher volume and variability in future flood peaks, particularly during the 2060s, as compared to Tarboro 384 

due to its geographical location over the Tar-Pamlico River basin (Fig. 1b). In addition, Goose Creek Game 385 

Land region consistently exhibits the highest average flood peaks across all models in our analysis (Figs. 386 

3e and 3f). This trend underscores the vulnerability of this low-lying, coastal region to climatic events that 387 

was previously highlighted by the NC Wildlife Resources Commission (NC Wildlife, 2018). Additionally, 388 

the ecological importance of the region and its susceptibility to potential flood risks underscore the need 389 

for strategic and adaptive planning to mitigate the impacts of these events. This includes, but is not limited 390 

to, strengthening flood defenses, enhancing ecological conservation efforts, and preparing comprehensive 391 

disaster response strategies. 392 

For the far future (2070-2100) in Tarboro, our results indicate moderate fluctuations in flood peaks. 393 

Under the SSP2-45 scenario, a peak in 2074 (179.875 m³/s) and a low in 2075 (64.025 m³/s) are observed, 394 

while the SSP5-85 scenario projects a high peak at the beginning of the 2070s (notably in 2070 at 222.5 395 

m³/s), followed by lower projected flood peaks with moderate variability. In contrast, both the Washington 396 

and Goose Creek Game Land regions exhibit an increasing trend in projected flood peaks. In Washington, 397 

the highest peaks are projected in 2091 (242.75 m³/s) and 2079 (221.75 m³/s) under SSP2-45, while the 398 

SSP5-85 scenario projects even higher peaks, with 2070 (315.25 m³/s) and 2075 (271.25 m³/s) seeing the 399 

most significant increases. Similarly, the Goose Creek Game Land region demonstrates greater 400 

vulnerability compared to Tarboro and Washington. Its highest projected peak occurs in 2070 (346.5 m³/s) 401 

under SSP5-85 and in 2079 (265.25 m³/s) under SSP2-45. Additionally, across these regions between 2070 402 

and 2100, there is an observed increase of 11.5% in flood peaks (SSP5-85) compared to the SSP2-45 403 

scenario. This increase is more pronounced than the 3% increase observed during the mid-future period 404 

(2044-2069) and approximately 2% for the near future (2024-2044). This trend suggests that higher 405 

greenhouse gas emissions, as represented by the SSP5-85 scenario, tend to result in higher projected flood 406 

peaks, indicating a wetter trend toward the year 2100. 407 
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 409 

Fig. 4. Temporal anomalies of flood peaks using IQR method for (a) Tarboro, (b) Washington, and (c) Goose 410 

Creek Game Land station using the ensemble model and GCMs under the SSP2-45 and 5-85 scenarios, 411 

utilizing the IQR method. These analyses are conducted for different future periods, including the near 412 

future (2024-2044), mid future (2045-2069), and far future (2070-2100).  413 

Extremely high or low flood peaks can significantly impact hydrological processes (Maurer et al., 414 

2018), ecosystems (Yin et al., 2009), and human lives (Villarini and Smith, 2010). Thus, we utilized the 415 

IQR method (see Section 2.5) to identify variations in flood peaks from different GCMs under various 416 

SSPs. Figure 4 presents our findings on anomaly flood peaks over the three future periods - the near future 417 

(2024-2044), mid future (2045-2069), and far future (2070-2100) - for the (a) Tarboro, (b) Washington, and 418 

(c) Goose Creek Game Land regions. In general, we found an increase in flooding events from the near to 419 

the mid future across these regions (Fig. 4). The mid future period, in particular, shows a modest upward 420 

shift in median flood peaks across models, with notable outliers indicating the potential for occasional 421 

extreme flood events. In the far future, there is a considerable increase in both the variability and median 422 

values of flood peaks, especially under the MRI-ESM2-0 model (SSP5-85), indicating a trend towards more 423 
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severe flooding. Across all three regions and various future periods, the MIROC6 and MRI-ESM2-0 models 424 

(SSP2-45 and 5-85) consistently show high medians and ranges for projected flood peaks, suggesting a 425 

correlation with more extreme weather events. Besides, as we move toward the far future (2070-2100), a 426 

clear trend of intensifying flood peaks is found (Fig. 4), highlighting the escalating impacts of climate 427 

change on these regions. We found that Tarboro is particularly susceptible to flooding, especially in 2029 428 

and 2039 during the near future, with at least two GCMs predicting anomalies in the same years. The years 429 

2060 and 2070 are identified as vulnerable for flooding in the mid and far future, respectively. In 430 

Washington, this is projected in 2029 (near future), 2060 (mid future), and 2070 (far future) while Goose 431 

Creek Game Land is in 2060 and 2067 (mid future), and 2070 (far future).  432 

 433 
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 435 

Fig. 5. The average monthly streamflow difference in percentage between the historical and GCMs at (a) 436 

Tarboro station, (b) Washington, and (c) Goose Creek Game Land station over the near future (2024-2044), 437 

mid future (2045-2069), and far future (2070-2100) under the SPP2-45 and 5-85 scenarios. Darker colors 438 

represent higher values. 439 

Figure 5 shows the average monthly streamflow differences, in percentages, between historical period 440 

(2003-2019) and GCMs for the near future (2024-2044), mid future (2045-2069), and far future (2070-441 

2100) under the SSP2-45 and 5-85 scenarios. In general, in these regions, the winter months (December to 442 

March) are expected to experience higher streamflow compared to other seasons (Fig. 5) while the summer 443 

period (May to October) is projected to be drier. Besides, as we approach the year 2100, the contrast 444 

between the wetter and drier months becomes more marked as a high discrepancy over the examined 445 

regions. It means the projected wet months are expected to be significantly wetter, while the dry months 446 

become increasingly drier especially under the SSP5-85 scenario. 447 

3.5. Future changes in drought 448 



   
 

24 
 

In the previous section, we evaluated projected future floods. However, quantifying drought events both 449 

statistically and spatially is equally important. In this section, we utilize the 12-month drought index (SPI-450 

12) (see Section 2.6) to measure drought intensity and frequency. Specifically, the SPI-12 index is calculated 451 

using projected future precipitation data from various GCMs and the ensemble model under different SSP 452 

scenarios, across the Tar-Pamlico River basin (Fig. 6 and Table 6). In general, a drying trend is observed 453 

during the near future (2024-2044), but the basin trends towards wetter conditions with an increased risk of 454 

flooding as we approach 2100 (Fig. 6, Tables 4 and 5). Under the SSP2-45 scenario, a transition to wetter 455 

conditions is found by 2100.  456 

The Tar-Pamlico River basin exhibits dry conditions (𝑆𝑆𝑆𝑆𝑆𝑆12𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2−45�������������� = – 0.154) during the near future 457 

period, then becomes wetter (𝑆𝑆𝑆𝑆𝑆𝑆12𝑚𝑚𝑚𝑚𝑚𝑚
2−45�������������� = + 0.048), and reaching its peak wetness in the far future 458 

(𝑆𝑆𝑆𝑆𝑆𝑆12𝑓𝑓𝑓𝑓𝑓𝑓2−45�������������� = + 0.097) (Fig. 6 and Table 6). This trend is projected to occur across the examined regions 459 

and intensifies under the impacts of the SSP5-85 scenario. Specifically, the driest conditions are forecasted 460 

with (𝑆𝑆𝑆𝑆𝑆𝑆12𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛5−85�������������� = – 0.602), while a significantly wetter trend is indicated for the far future under SSP5-461 

85 (𝑆𝑆𝑆𝑆𝑆𝑆12𝑓𝑓𝑓𝑓𝑓𝑓2−45�������������� = + 0.445). These results confirm that higher emission projections not only have more 462 

substantial impacts but also contribute significantly to increased variability between seasons and throughout 463 

the future periods. Similarly, the Tarboro, Washington, and Goose Creek Game Land regions are projected 464 

to experience dry conditions in the near future (2024-2044) and become wetter in the mid- and far-future 465 

periods, with the SSP5-85 scenario showing a more pronounced intensity of these conditions (Table 6). 466 

 467 
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 468 

 469 

Fig. 6. Evaluation of droughts using SPI-12 index for the (a) near future (2024-2044), (b) mid future (2045-470 

2069), and (c) far future (2070-2100) under SSP2-45 and 5-85 scenarios. Red color indicates dry periods, 471 

while the blue color signifies wet periods. The drought severity classification is presented in Table 4. Black 472 

dotted line represents the SPI-12 range across different GCMs, whereas the red and blue colors denote the 473 

values of the ensemble model. 474 

Table 6.  475 

Summary of the average SPI-12 index for the Tarboro, Washington, Goose Creek Game Land, and the entire 476 

Tar-Pamlico River basin from different GCMs, the ensemble model, and their SPPs across the near future 477 

(2024-2044), mid future (2045-2069), and far future (2070-2100). Positive (+) values, indicated in blue, 478 

suggest a wet trend, while negative (–) values, shown in red, denote a dry trend. The severity ranges for the 479 

SPI-12 drought index can be found in Table 4.  480 

Site 
Ensemble model (SSP2-45) 

Near future (2024-2044) Mid future (2045-2069) Far future (2070-2100) 
Tarboro – 0.141 + 0.058 + 0.111 
Washington – 0.159 + 0.068 + 0.067 
Goose Creek – 0.159 + 0.068 + 0.067 
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Tar-Pamlico – 0.154 + 0.048 + 0.097 

 Ensemble model (SSP5-85) 
Near future (2024-2044) Mid future (2045-2069) Far future (2070-2100) 

Tarboro – 0.592 – 0.048 + 0.426 
Washington – 0.568 – 0.034 + 0.412 
Goose Creek – 0.568 – 0.034 + 0.412 
Tar-Pamlico – 0.602 – 0.045 + 0.445 

On the other hand, we have spatially quantified the magnitude and frequency of projected future 481 

droughts over the near future, mid future, and far future within the Tar-Pamlico River basin. This aims to 482 

better understand how climatic extremes could impact regions that are either rapidly developing or 483 

inherently at risk due to their low-lying nature.  484 

 485 

 486 

 487 
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 488 

Fig. 7. Spatial distribution of drought using SPI-12 index over different GCMs and the ensemble model in 489 

three different time periods, including near future (2024-2044), mid future (2045-2069), and far future 490 

(2070-2100). The blue color represents the wet trend while the red color represents the dry trend. In this, 491 

(a) and (c) represent the results from the ensemble model for the SSP2-45 scenario while (b) and (d) 492 

represent the probability of drought occurrence (%) from the ensemble model for the SSP5-85 scenario. 493 

Figure 7 shows the spatial distribution of drought intensity using the SPI-12 index across various 494 

GCMs and the ensemble model for three different periods: the near future (2024-2044), mid future (2045-495 

2069), and far future (2070-2100). The Tar-Pamlico River basin as well as Tarboro, Washington, and Goose 496 

Creek Game Land are found to become wetter, reaching peak wetness during the far future, while the 2020s-497 

2040s are expected to exhibit drier conditions (Figs. 7a and 7b). We found that higher emission scenarios 498 

indicating more severe impacts for drought and flood events throughout future periods. Moreover, there is 499 

a noticeable correlation between drought intensity and frequency within the basin, with low-lying (i.e., 500 

Washington; S2) and coastal regions (i.e., Goose Creek Game Land; S3), as downstream regions, are likely 501 

to experience a greater number of drought events between 2024 and 2100 compared to higher altitude 502 

regions (i.e., Tarboro; S1) (Figs. 7c and 7d). Indeed, toward 2100, the Tar-Pamlico River basin as well as 503 

these regions are likely to experience wetter conditions, thus showing a lower probability of drought 504 

occurrence (Figs. 7c and 7d).  505 

4. Discussion 506 

We have revealed our findings in residential analysis (1990-2020) (see Section 3.1) along with the projected 507 

changes in meteorological conditions and their impact on future climatic extreme events (2024-2100) over 508 

the Tarboro, Washington, and Goose Creek Game Land regions of the Tar-Pamlico River basin (see Sections 509 

3.3 to 3.5). In this section, we will provide our in-depth discussions on these findings and estimated trends 510 

for upcoming decades. 511 
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When examining the historical residential expansions, we found an increase in population since 2010 512 

for the town of Tarboro and since 2000 for the city of Washington (Fig. 1). However, the growth in the 513 

number of housing units has been even more pronounced, with increases ranging from fivefold to 514 

approximately sixteenfold since 1990 (Fig. 1). Besides, this decade is projected to experience an 515 

approximate 40% rise (in 2020 compared to 2010) in both population and population density across the 516 

entire Tar-Pamlico River basin (Fig. 1), a trend likely to be accelerated as partly highlighted by the current 517 

urbanization rate in the United States (Center for Sustainable Systems, 2023). In addition, according to the 518 

2020 Census data, the urban population in the United States increased by 6.4% between 2010 and 2020 519 

(U.S. Census Bureau, 2022) and this trend was also highlighted at the state level. Within this study of the 520 

Tar-Pamlico River basin, the North Carolina’s population is projected to reach approximately 13 million by 521 

2040 (John, 2024) and 14 million by 2050 (Michael, 2022; U.S. Census Bureau, 2020), positioning it as the 522 

seventh most populous state, behind only California, Texas, Florida, New York, Pennsylvania, and Georgia 523 

(Michael, 2023, 2022). By 2050, it is projected that 89% of the U.S. population will reside in urban areas 524 

(UN Population Division, 2018). In the Tar-Pamlico region, the largest metropolitan areas are expected to 525 

see faster population growth compared to smaller municipalities and rural areas (Michael, 2023). Within 526 

this study, given the numerous factors that could interact and influence changes in this region’s population, 527 

potentially exacerbating or mitigating the intensity of climatic extremes toward 2100, we have provided the 528 

analyses mentioned above as our estimations of future trends and recommend using them as references to 529 

support regional adaptive measures but not as definitive statements.  530 

In this study, we observed an increase in temperature and rainfall across seasons and various future 531 

periods, with a more likely pronounced difference in the intensity of climatic extremes (Figs. 5 and 6). To 532 

be specific, the near future is expected to experience more severe impacts from drought, whereas the mid 533 

and far future periods are likely to see increased flooding impacts (Figs. 4, 5, and 6). The summer season 534 

(May to October) is projected to be drier, especially during the near future (Table 6). This condition would 535 

then increase the region’s vulnerability to extreme heat and could adversely affect agricultural activities. 536 

Conversely, the far future is predicted to be highly prone to flooding (Fig. 6) in which this could cause more 537 

water-related issues in terms of water sanitation and hygiene. We found that higher intensity and frequency 538 

of climatic extremes are associated with more severe greenhouse gas emissions (SSP5-85). Indeed, an 539 

increase in flood peaks of between 3 and 7% is observed during the mid-future period with a potential rise 540 

up to 21% in the far future period compared to the historical period (2003-2019) (Fig. 3). Besides, the mid- 541 

and far-future periods are projected to exhibit significant discrepancies between dry and wet seasons, 542 

highlighting substantial damage to agriculture and human activities that are caused by seasonal changes in 543 

meteorological conditions (Fig. 5). Downstream regions are expected to experience severe droughts with 544 

reduced rainfall during the summer season throughout the near future compared to higher altitude regions. 545 
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Besides, low-lying and coastal regions are likely to face higher flood intensities in terms of flood peaks 546 

(Figs. 3 and 5). Besides, when examining the probability of drought occurrence in this region, it appears 547 

that both low-lying and coastal areas are likely to experience more frequent drought events compared to 548 

other areas.  549 

In our analysis, as temperatures would rapidly rise toward 2100 (Table 5) as well as the summer 550 

season tends to exhibit severe dryness, the demand for air conditioning and refrigeration is anticipated to 551 

increase, leading to higher energy consumption (Li et al., 2019). This not only places a burden on electrical 552 

grids, potentially causing outages during heatwaves but also escalates energy costs, impacting household 553 

and business finances (Chen et al., 2021). Extreme temperatures can also decrease economic productivity 554 

(e.g., agriculture), particularly in physically demanding jobs (Kjellstrom et al., 2009; Tran et al., 2024), and 555 

discourage outdoor activities, such as shopping and dining, thereby affecting businesses dependent on 556 

pedestrian patronage. Besides, previous studies have indicated a correlation between socioeconomic 557 

activities, population changes, and extreme events (Ahmadalipour et al., 2019; Bahinipati and 558 

Venkatachalam, 2016). If the total number of concrete-based infrastructures such as housing units continue 559 

to increase (as the current trend found in this study; see Section 3.1), it can significantly intensify impacts 560 

of natural hazards due to the increase the impervious surface area (Zhang et al., 2013). In this point, we 561 

expected for a correlation found as projected changes in climate extremes under impacts of increasing 562 

housing units that could be revealed using future projected LULC maps. Furthermore, this could lead to the 563 

increase of health-related issues due to higher urban heat (Nguyen et al., 2022; Yin et al., 2018; Zhou and 564 

Chen, 2018), especially for the elderly (Zhang et al., 2019) and children (Faurie et al., 2022). Besides, 565 

higher urban temperatures can exacerbate air pollution by increasing the rate of chemical reactions that 566 

produce pollutants, such as ozone (Li et al., 2018; Ulpiani, 2021), suggesting a need for adaptive measures 567 

to reduce this increasing trend over the Tar-Pamlico River basin.  568 

On the other hand, agriculture in urban and peri-urban areas over in the Tar-Pamlico region may 569 

experience reduced crop yields due to heat stress on plants and livestock (Lwasa et al., 2014). These changes 570 

disproportionately impact low-income communities that often rely on agriculture and those living in 571 

densely populated areas with limited green spaces (Chakraborty et al., 2019), thereby leading to exacerbated 572 

social inequalities (Darrel Jenerette et al., 2011). Consequently, our findings highlight the significant 573 

potential for these severe problems to become worsen toward 2100. Therefore, it is crucial for authorities 574 

and stakeholders in the Tar-Pamlico River basin to implement sustainable management practices to mitigate 575 

the impacts of climate change.  576 

4. Limitations and future works 577 
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In this work, we acknowledge our limitations, in which we have not included projected future changes in 578 

residential expansions (housing units and density) and population up to 2100. Additionally, incorporating 579 

more GCM candidates could reduce uncertainties and better quantify the variability of climatic extremes 580 

using future climate projections in hydrological models. Besides, it is beneficial to involve regional 581 

downscaling and bias correction of these GCMs before utilizing. For future work, we plan to reduce these 582 

limitations as well as integrate our model with other models, such as the Regional Ocean Modeling System 583 

(ROMS) to explore how the effects of sea-level rise and estuarine salinity might be exacerbated under the 584 

impacts of climate change (Yin et al., 2024) which is important for the Tar-Pamlico River basin. Our primary 585 

objective is to deliver more accurate and useful outcomes to support the decision-making of this region.  586 

5. Conclusions 587 

In this work, we conducted a comprehensive analysis to quantify the anticipated changes in future extremes 588 

using the NASA NEX-GDDP-CMIP6 dataset, along with regional residential expansions and LULC 589 

changes for the Tar-Pamlico River basin, North Carolina. Specifically, our work investigated the impacts 590 

of two future greenhouse gas emission scenarios, SSP2-45 and 5-85, for the region between 2024 and 2100.  591 

Our results revealed projected changes in meteorological conditions and their impacts on future climatic 592 

extreme events, while also discussing estimated impacts on the region. Key findings are summarized: 593 

(1) A notable increasing trend is expected in meteorological conditions, with higher intensity and 594 

frequency of climatic extremes associated with more severe greenhouse gas emissions. Flood peaks 595 

are projected to increase between 3 and 7% during the mid-future period and could rise to 21% in the 596 

far future period compared to the historical period. Additionally, climatic extremes are projected to 597 

occur more frequently and likely to intensify and become more severe due to residential expansions.  598 

(2) The near future is expected to experience more severe impacts from drought, whereas the mid- and 599 

far-future periods are likely to see increased flooding impacts. Besides, these periods also exhibit 600 

significant discrepancies between dry and wet seasons, highlighting substantial damage caused by 601 

seasonal changes, especially to agriculture.  602 

(3) Downstream regions are expected to experience severe droughts with reduced rainfall during the 603 

summer season throughout the near future, compared to high altitude regions. Additionally, low-lying 604 

and coastal areas are likely to be more vulnerable as they are expected to face higher flood intensities, 605 

particularly in terms of peaks, as well as more frequent drought events compared to other areas. 606 

Our work provide a scientific basis for quantifying the impact of future climate changes on the region’s 607 

water resources. Our approach, which incorporates regional characteristics along with hydrological 608 

analyses, shows potential to better highlight insights to support the long term resilience and safety of the 609 
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region against the challenges posed by climate change. Consequently, this work serves as a valuable 610 

resource for stakeholders and authorities, assisting them in planning of sustainable strategies focused on 611 

natural disaster prevention and management. 612 
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