

1 **Investigating the impacts of climate change on hydroclimatic extremes in the Tar-Pamlico**
2 **River basin, North Carolina**

3 Thanh-Nhan-Duc Tran^{a,*}, Mahesh R Tapas^b, Son K. Do^a, Randall Etheridge^c and Venkataraman Lakshmi^a

4 ^a Department of Civil and Environmental Engineering, University of Virginia, Charlottesville, VA 22904,
5 USA

6 ^b Integrated Coastal Programs, East Carolina University, Greenville, NC 27858, USA

7 ^c Department of Engineering, Center for Sustainable Energy and Environmental Engineering, East Carolina
8 University, Greenville, NC 27858, USA

9

10 *Corresponding author: syu3cs@virginia.edu (Thanh-Nhan-Duc Tran)

11 The 16-digit ORCID: 0000-0001-8478-5893 (Thanh-Nhan-Duc Tran)

12

13 **Abstract**

14 Evaluating the forthcoming impacts of climate change is important for formulating efficient and flexible
15 approaches to water resource management. General Circulation Models (GCMs) are primary tools that
16 enable scientists to study both past and potential future climate changes, as well as their impacts on policies
17 and actions. In this work, we quantify the future projected impacts of hydroclimatic extremes on the coastal,
18 risk-prone Tar-Pamlico River basin in North Carolina using GCMs from the Sixth International Coupled
19 Model Intercomparison Project (CMIP6). These models incorporate projected future societal development
20 scenarios (Shared Socioeconomic Pathways, SSPs) as defined in the Intergovernmental Panel on Climate
21 Change (IPCC) Sixth Assessment Report (AR6). Specifically, we have utilized historical residential
22 expansion data, the Soil and Water Assessment Tool Plus (SWAT+), the Standardized Precipitation Index
23 (SPI), and the Interquartile Range (IQR) method for analyzing extremes from 2024 to 2100. Our findings
24 include: (1) a trend toward wetter conditions is identified with an increase in flood events toward 2100; (2)
25 projected increases in the severity of flood peaks are found, quantified by a rise of 21% compared to the
26 2000–2020 period; (3) downstream regions are forecast to experience severe droughts up to 2044; and (4)
27 low-lying and coastal regions are found as particularly susceptible to higher flood peaks and more frequent
28 drought events between 2045 and 2100. This work provides valuable insights into the anticipated shifts in
29 natural disaster patterns and supports decision-makers and authorities in promoting adaptive strategies and
30 sustainable policies to address challenges posed by future climate changes in the Tar-Pamlico region and
31 throughout the state of North Carolina, United States.

32 **Keywords:** Climate change; Flood; Drought; CMIP6; Resilience; Tar-Pamlico River basin.

33 **1. Introduction**

34 Many countries, including the United States, have an extensive history of dealing with natural disasters
35 (Easterling et al., 2000). Many works indicated that changes in the intensity and frequency of these extreme
36 events could significantly impact human lives (Bonsoms et al., 2023; Guan et al., 2021; Kang et al., 2022;
37 Saadi et al., 2024; Sanjay Mankar et al., 2020; Tran et al., 2022d, 2023b, 2023e; Donnelly et al., 2024a).
38 Weather-related extreme events such as droughts and floods, which vary spatially and temporally, can
39 considerably affect local communities (Anjanee Prabha and Tapas, 2020; Cao et al., 2023; Dias et al., 2024;
40 IPCC, 2013; Omojola et al., 2012; Tan et al., 2023; Trenberth et al., 2014; Zhang et al., 2023; Zhou et al.,
41 2023; Noori et al., 2023). Specifically, floods and droughts can lead to severe fatalities and cause significant
42 losses in country's economy (Garner et al., 2017; Ma and Yuan, 2021; Ren et al., 2023; Thibeault and Seth,
43 2014; Tran et al., 2021a, 2021b; Zhang et al., 2024; Donnelly et al., 2024b). The frequency and severity of
44 these events are projected to increase significantly with rising temperatures and greater precipitation
45 intensities (Aryal et al., 2023; Mishra et al., 2023; Nguyen et al., 2023; Tran et al., 2022a). In the United
46 States, Porter et al. (2021) indicated that the projected risk for human properties could increase up to 10%
47 under climate change impacts. Additionally, Hsiao et al. (2021) and Masciopinto and Liso. (2016) found
48 that these impacts are even more substantial in low-lying regions.

49 Human-related factors could further intensify extreme weather events (Hansen and Stone, 2016). The
50 latest Intergovernmental Panel on Climate Change (IPCC) report highlights the expected rise in temperature
51 and CO₂ concentrations, primarily due to human activities (Carter et al., 1994; IPCC, 2021). An increase
52 of at least 1.5 °C above pre-industrial levels in global temperatures is projected within the next two decades
53 (Carter et al., 1994; Chen et al., 2020; Hansen and Stone, 2016; IPCC, 2021; Yun et al., 2021). A recent
54 work by Raftery et al. (2017), using a statistically-based probabilistic approach, indicated there is only a
55 1% chance of preventing this phenomenon. In addition, this is expected to escalate the frequency and
56 severity of floods and droughts, especially in coastal regions (IPCC, 2021, 2019). Global increases in
57 greenhouse gas emissions from anthropogenic sources could intensify water-related issues (Hansen and
58 Stone, 2016; IPCC, 2019; Nguyen et al., 2022; Rosenzweig and Neofotis, 2013; Song et al., 2022; Trang et
59 al., 2017). Future hydroclimatic extremes would then result in severe impacts, such as sea-level rise
60 (Mahdian et al., 2024), coastal flooding (Kang et al., 2022; Mafi-Gholami et al., 2020; Masciopinto and
61 Liso, 2016), increased storm intensity (Hsiao et al., 2021), changes in salinity (Loc et al., 2021; Park et al.,
62 2022), and economic losses (Lien, 2019). These impacts are particularly pronounced in agriculture (Parajuli
63 et al., 2019) and coastal watersheds (IPCC, 2021; Mafi-Gholami et al., 2020). Besides, coastal regions face
64 unique challenges compared to other areas, mainly due to their low altitude (Baills et al., 2020; Toimil et

65 al., 2020), lack of natural-based measurements (O'Donoghue et al., 2021), and exacerbating factors such
66 as urbanization (Gopalakrishnan et al., 2019).

67 The Tar-Pamlico River basin, which is the fourth-largest watershed in North Carolina, has been
68 selected for future climatic investigations due to its unique geographical and socioeconomic characteristics
69 (NC DEQ, 1994). This is also motivated by the region's significant agriculture activities that are
70 increasingly threatened by climate change (Mulligan et al., 2019; Osmond et al., 2015). In addition, this
71 region, where fifty-five percent of the land comprises forests and wetlands, is currently vulnerable to
72 environmental risks such as seawater intrusion, sea-level rise, and land degradation that are likely to be
73 exacerbated by future climate (NC DEQ, 1994). Tapas et al. (2022a) developed a hydrological model for
74 the Tar-Pamlico basin, which incorporates stakeholders' inputs. Their preliminary results revealed that local
75 farmers are increasingly threatened by climate change, a finding found by their discussions with the locals
76 and authorities. Thus, given its high socioeconomic and ecological value, immediate action is necessary to
77 protect the region's agriculture and human well-being from hydroclimatic extremes (Mulligan et al., 2019).
78 Furthermore, despite escalating global climate change impacts this decade (Chen et al., 2020; Hansen and
79 Stone, 2016; Mahdian et al., 2023), as of this writing, no studies have been published investigating the
80 climate change impacts on this region. This research gap has thus become the primary motivation for our
81 work, which aims to support authorities and stakeholders in developing sustainable plans to mitigate future
82 climate impacts on this area.

83 General Circulation Models (GCMs) are important for quantifying impacts of future projected
84 hydroclimatic extremes (Neill et al., 2016; Tebaldi et al., 2021). GCMs theoretically simulate the physics,
85 chemistry, and biology of the atmosphere, land, and oceans in great detail (Tebaldi et al., 2021). The latest
86 version of the Coupled Model Intercomparison Project Version V6 (CMIP6) was recently released with
87 updates (Neill et al., 2016). Specifically, it introduces a new concept of the Scenario Model Intercomparison
88 Project, which is based on the Shared Socioeconomic Pathways (SSPs) (Eyring et al., 2016). This marks a
89 significant milestone of the IPCC's global project with the integration and consideration of socioeconomic
90 factors (IPPC, 2021; Meyer, 2015), as highlighted in the IPCC AR6 report (IPPC, 2021). SSP outlines
91 specific scenarios of greenhouse gas emissions (e.g., SSP2-45 and 5-85) and Land Use Land Cover
92 (LULC) changes under baseline scenarios (Neill et al., 2016). Incorporating these emission scenarios into
93 hydrological models enables a better understanding of the physical impacts of climate and societal factors
94 on hydrological processes (Neill et al., 2016). Additionally, selecting appropriate CMIP6 GCMs is critical
95 due to various factors such as resolution (Di Virgilio et al., 2022) and geographical characteristics of the
96 region (Tebaldi et al., 2021). In this study, we use the NASA Earth Exchange Global Daily Downscaled
97 Projections – NASA NEX-GDDP-CMIP6 (Thrasher et al., 2022), which has been utilized and validated in

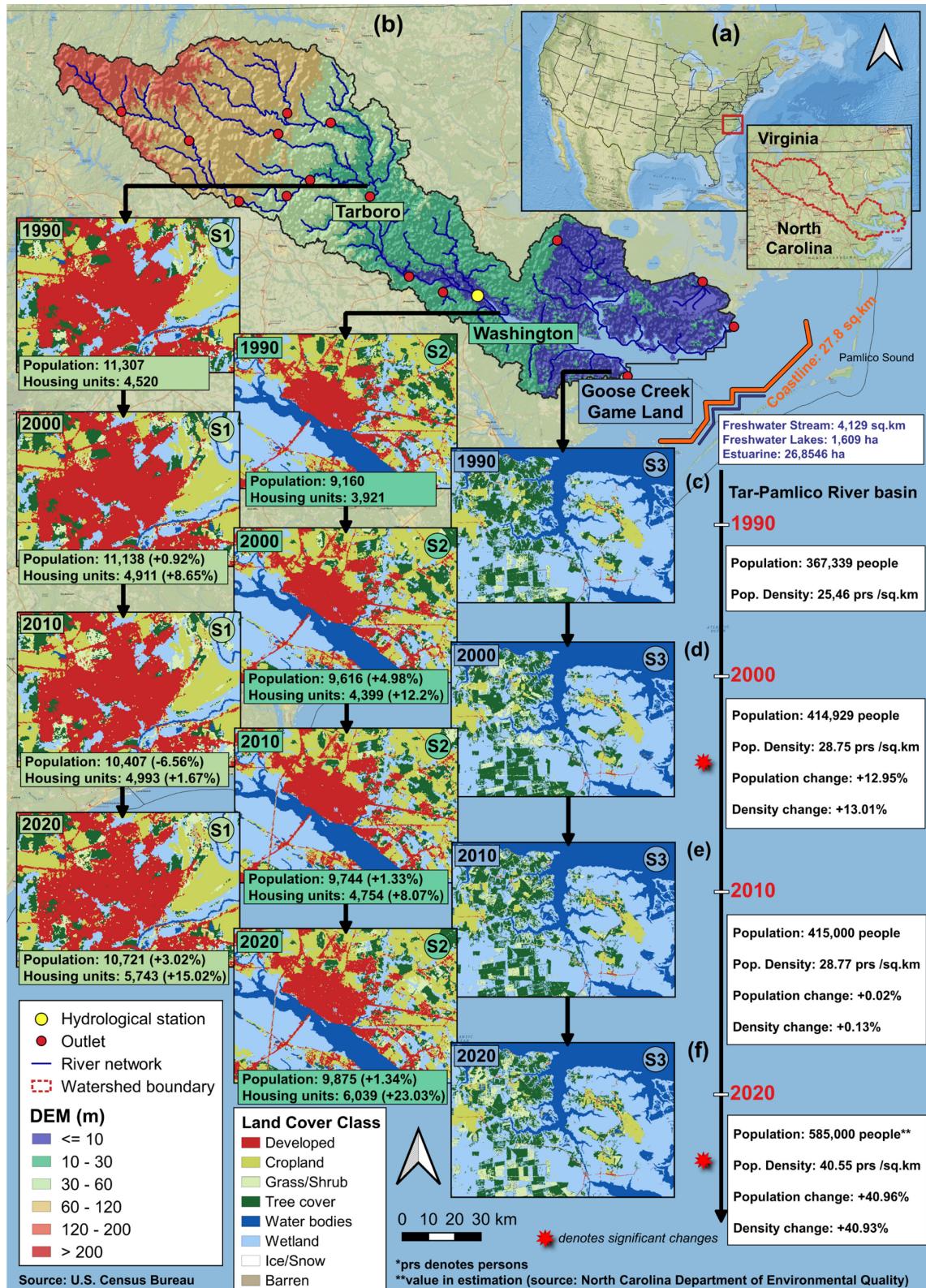
98 previous works (Chen et al., 2020; Dias et al., 2024; Park et al., 2023; Saadi et al., 2024). In this study, four
99 GCMs have been selected for their proven efficiency in recent works: BCC-CSM2-MR from the Beijing
100 Climate Center, China Meteorological Administration (China); CanESM5 from the Canadian Center for
101 Climate Modeling and Analysis (Canada); MIROC6 from the Japan Agency for Marine-Earth Science and
102 Technology and the Atmosphere and Ocean Research Institute at the University of Tokyo (Japan); and MRI-
103 ESM2-0 from the Meteorological Research Institute (Japan) (Chen et al., 2022; Peng et al., 2023; Wang et
104 al., 2021; Xu et al., 2023) (see Section 2.2).

105 In this study, our aim is to quantify the impacts of GCMs under SSP scenarios on future climatic
106 extremes in the Tar-Pamlico River basin, North Carolina state. We employed the Standardized Precipitation
107 Index (SPI), the semi-distributed hydrological Soil and Water Assessment Tool Plus (SWAT+) model, and
108 the Interquartile Range (IQR) method for analysis across three timeframes: the near future (2024–2044),
109 mid future (2045–2069), and far future (2070–2100). Our primary objectives are to understand and evaluate
110 the impacts of climate change on hydroclimatic extremes, mainly focusing on S1-3 regions (see Section
111 2.1). We aim to first (a) reveal projected changes in future meteorological variables, then (b) quantify the
112 intensity and frequency of future flood and drought events, and lastly (c) discuss the forecasted impacts of
113 these extremes on these regions. Additionally, we provide a general analysis on the historical residential
114 expansions (population and housing units) in the S1-3 regions from 1990 to 2020, using data from the U.S.
115 Census Bureau, the North Carolina Department of Environmental Quality (NC DEQ), and the United States
116 Geological Survey (USGS) Land Change Monitoring, Assessment, and Projection (LCMAP) data sets
117 (USGS, 2020) (Fig. 1). The materials and methods will be presented in Section 2, results in Section 3,
118 discussions of the findings in Section 4, limitations and potential future work in Section 5, and the
119 conclusions in Section 6.

120 **2. Materials and methods**

121 *2.1. Study area*

122 The Tar-Pamlico River basin has been selected for this study due to its distinctive hydrological modeling
123 characteristics because of its significance to the North Carolina state, United States (Fig. 1). This basin
124 drains into the Pamlico Sound, supporting a unique and diverse ecosystem of habitats (Keith, 2014; NC
125 DEQ, 1994, 2009). It covers an area of approximately 14,428 km² (about 5,571 mi²), extends across 15
126 counties, and supports a total population of over 470,000 (Keith, 2014; NC DEQ, 2009).



127

128 **Fig. 1.** (a) Location of the Tar-Pamlico River basin within the United States; (b) Terrain profiles and
129 geographical characteristics of the Tar-Pamlico watershed; (c-f) LULC changes and historical residential

130 expansions, including population and housing units, in the (S1) Tarboro, (S2) Washington, and (S3) Goose
131 Creek Game Land regions, using LCMAP data sets (1990–2020) (USGS, 2020) with the colors encoded to
132 corresponding regions (S1–S3). The region’s historical residential expansions, including population
133 growth, housing units, and their densities are calculated based on data from the U.S. Census Bureau (U.S.
134 Census Bureau, 2022; Center for Sustainable Systems, 2023) and NC DEQ (NC DEQ, 2020). The
135 percentage change (%) indicates the difference between the latter year and the previous year.

136 The Tar-Pamlico River basin features a diverse distribution of land use, with forests covering 33.9%,
137 wetlands 31.9%, and agricultural land 27.9% of the area (NC DEQ, 2009). The freshwater streams and
138 rivers within the basin have their origins in the agriculturally rich, wetland-dense, and forested areas of the
139 Piedmont region in north-central North Carolina. These waterways flow southeastward and, upon nearing
140 tidal zones, transform into expansive, tidally influenced estuaries (Keith, 2014). These estuaries eventually
141 feed into the Tar-Pamlico Sound (Fig. 1b), enhancing its ecological complexity and economic productivity
142 (NC DEQ, 1994, 2009). The basin’s distinct terrain profiles, LULC distribution, and climatic characteristics
143 make it an ideal area for this study. In this study, we mainly focus on three regions, including (S1) the town
144 of Tarboro and (S2) the city of Washington, which have been selected due to their socioeconomic
145 importance (Fig. 1), as well as (S3) the Goose Creek Game Land region, chosen because of its vulnerability
146 to seawater intrusion and ecological significance (NC DEQ, 1994, 2009) (Fig. 1).

147 *2.2. Descriptions of GCMs and SSP scenarios*

148 We used the NASA NEX-GDDP-CMIP6 dataset, which was downscaled and bias-corrected with a spatial
149 resolution of approximately 25×25 km (Thrasher et al., 2022). This dataset covers two “Tier 1” SSP
150 scenarios, namely SSPs 2-45 and 5-85 (Neill et al., 2016; Thrasher et al., 2022). These CMIP6 GCMs were
151 designed to support the objectives of the IPCC AR6, focusing on capturing climate projections based on
152 various socioeconomic scenarios (IPPC, 2021). The datasets have been downscaled using the Bias-
153 Correction Spatial Disaggregation method with the aim to address common constraints in GCM outputs
154 (Maurer and Hidalgo, 2008; Wood et al., 2002, 2004). The efficiency of GCMs is affected by different
155 factors, such as the model’s algorithm and baseline conditions, resulting in divergent precision levels in
156 simulating particular basins and regions (Chen et al., 2020). Studies by Park et al. (2023) and Thrasher et
157 al. (2022) highlighted that the BCC-CSM2-MR, CanESM5, MIROC6, and MRI-ESM2-0 models show
158 good applications in future climate investigations, and thus they have been chosen in this study. Besides,
159 Chen et al. (2022) and Xu et al. (2023) indicated the good performance of these GCMs in capturing a wide
160 range of future streamflow changes, while Wang et al. (2021) indicated that CanESM5 and BCC-CSM2-
161 MR show unique advantages in producing satisfactory results in terms of precipitation.

162 Specifically, these models show good correlations compared to the other GCMs (Wang et al., 2021).
163 Besides, Peng et al. (2023) highlighted that MIROC6 and MRI-ESM2-0 have the highest reliabilities in
164 temperature and precipitation, outperforming the other 17 GCMs. Our analysis was conducted on two SSP
165 scenarios, as the intermediate (SSP2-45) and high-end (SSP5-85) greenhouse gas emission levels (Thrasher
166 et al., 2022). The summary of the these GCM models is presented in Table 1.

167 **Table 1.**

168 Description of the chosen GCMs used in this study.

No	Model	Country	Description
1	BCC-CSM2-MR	China	Beijing Climate Center China Meteorological Administration
2	CanESM5	Canada	Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, Canada
3	MIROC6	Japan	Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Japan & Atmosphere and Ocean Research Institute (AORI), The University of Tokyo, Japan & National Institute for Environmental Studies, Japan (NIES) & RIKEN Center for Computational Science, Japan (R-CCS)
4	MRI-ESM2-0	Japan	Meteorological Research Institute, Japan

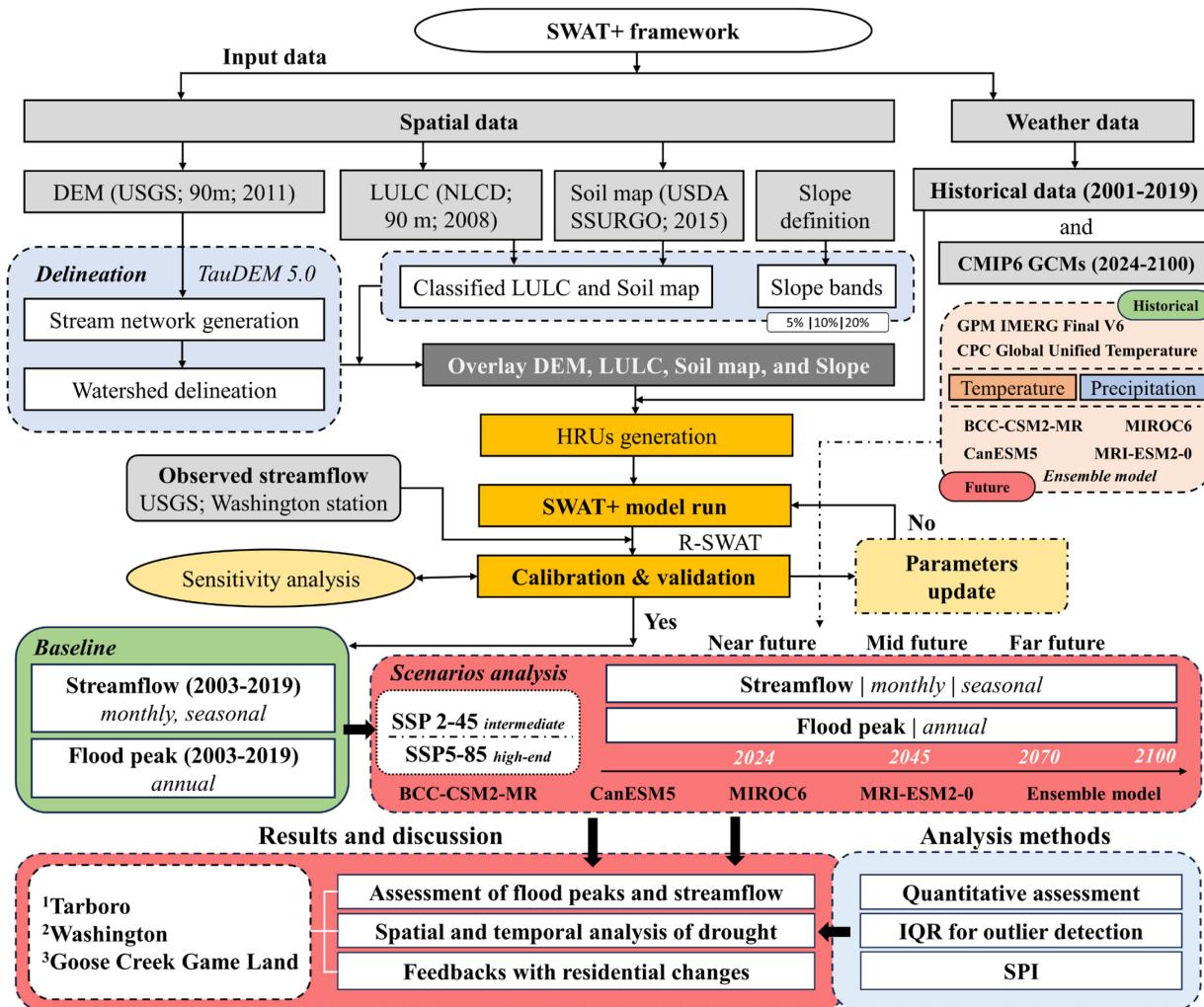
169 *2.3. Hydrological SWAT+ model*

170 SWAT model was developed by the United States Department of Agriculture Agricultural Research Service
171 (USDA-ARS) in the mid-1990s and is one of the most advanced, open-source models for a wide range of
172 hydrological applications (Tran et al., 2022b, 2023a). SWAT is primarily utilized for simulating
173 hydrological processes within various water management regimes (Tran et al., 2023d). In this study, we
174 used the SWAT+ version, a restructured update of SWAT, released in 2017. While retaining the core
175 hydrological and computational algorithms of the original model, SWAT+ introduces additional features to
176 better represent spatial distributions. These enhancements are centered around the rainfall-runoff concept
177 and the water balance equation (Arnold et al., 2012; Gassman et al., 2007; Tran & Lakshmi, 2022).

178 Many studies have used this model to investigate the impacts of various factors on streamflow and
179 sediment loads. These factors include changes in land cover (Ahmed et al., 2020; Cheng et al., 2018),
180 climate change impacts (Aslam et al., 2022; Shafeeqe et al., 2023a, 2023b), sustainability of ecosystem
181 services (Ashrafi et al., 2022a, 2022b; Behboudian et al., 2021; Umar et al., 2022), applications of satellite-
182 based products (Arshad et al., 2021, 2022; Aryal et al., 2023; Noor et al., 2023; Tran et al., 2022c, 2023c;
183 Tapas et al., 2023), and groundwater contamination by agricultural chemicals (Trang et al., 2017).

184 2.3.1. Model setup and workflow

185 The boundary of the Tar-Pamlico River basin, which is used in the SWAT+ model, was extracted from the
 186 USGS StreamStats (Ries et al., 2017). Figure 2 shows the schematic workflow of our study, highlighting
 187 the main stages along with the model's inputs and outputs. We utilized SWAT+ (version 3.16.9) and the
 188 Quantum Geographic Information System (QGIS) software for SWAT+ (Dile et al., 2019) for the model
 189 run in this study (Dile et al., 2019) (Fig. 2). Additionally, the Terrain Analysis Using Digital Elevation
 190 Models (TauDEM) version 5.0 was used within SWAT+ model for watershed delineation (Tarboton, 2011).



192 **Fig. 2.** The schematic flowchart used in this study. First, we prepared the needed data sets, which include
 193 historical data and projected data sets from CMIP6 GCMs (see Section 2.2). Calibration and validation
 194 were conducted at the Washington hydrological station (Fig. 1b). The calibrated model values were then
 195 used to simulate SSP scenarios from 2024 to 2100. Assessments were carried out over the Tar-Pamlico

196 River basin and at three selected sites: Tarboro, Washington, and Goose Creek Game Land (Fig. 1b).
197 Additional analyses incorporated residential expansion data and LULC changes.

198 For the SWAT+ model, we conducted watershed extraction and analyzed hydrologic information
199 derived from the DEM input. This analysis was essential to delineate streams, sub-basins, and create
200 Hydrological Response Units (HRUs) (Arnold et al., 2012; Pignotti et al., 2017). Specifically, the watershed
201 was divided into smaller sub-watersheds that contain distinctive characteristics from the DEM, LULC, and
202 soil characteristics that were stored in HRUs. An HRU in SWAT+ represents the smallest spatial unit
203 (Arnold et al., 2012), where the water balance equation is used for calculations in each pixel within the
204 watershed, ensuring that hydrological processes are accounted for from the upstream to the downstream
205 region (Figs. 1 and 2) (Douglas-Mankin et al., 2010; Neitsch et al., 2011; Gassman et al., 2007).

206 The DEM data for the year 2011, with a 90 m resolution, was obtained from the USGS website
207 (USGS, 2020) (Fig. 2). LULC data were collected from the USGS National Land Cover Database (NLCD),
208 based on a survey in 2008 (Yang et al., 2018). In addition, the soil data were acquired from the USDA Soil
209 Survey Geographic Database (SSURGO) for the year 2015 (USDA, 2010).

210 To calibrate and validate the SWAT+ model, we utilized data from the USGS database for the
211 Washington hydrological station (Figs. 1b and 2), covering the period from 2001 to 2019. It is important to
212 note that this observation includes gaps, primarily due to tidal influence, which can result in negative flow
213 values. Thus, before using this data in the model calibration, we converted these negative flow values to
214 zeros, as the SWAT+ model is unable to process backflow (Bieger et al., 2017). This specific adjustment
215 ensures that negative flows are treated as low flows, considering the limitations of one-dimensional flow
216 modeling (Arnold et al., 2012; Bieger et al., 2017).

217 In this study, we have chosen the initial two years (2001 and 2002) for the warm-up period for the
218 SWAT+ model. The calibration period was chosen between 2003 and 2011 while the validation period was
219 chosen (2012-2019) (Fig. 2). We performed a total of 5,000 iterations for each scenario at a monthly scale.
220 Besides, future climate scenarios were simulated using inputs from the selected GCM SSPs and an
221 ensemble model combining all GCMs (2024-2100). These simulations used the calibrated parameters
222 extracted from the historical scenario (2003-2019) (Fig. 2). Our analysis was divided into three different
223 future periods: the near future (2024-2044), the mid future (2045-2069), and the far future (2070-2100).

224 *2.3.2. R-SWAT for model calibration and validation*

225 We used the interactive web-based application R-SWAT for model calibration and validation. This
226 application is developed using the R programming language and features open-source parallel processing
227 capabilities (Nguyen et al., 2022).

228 **Table 2.**

229 Summary of the chosen parameters with their descriptions, change types, ranges, and units used for
230 calibrating the SWAT+ model. This data are extracted from the SWAT+ documentation (SWAT+, 2018,
231 2020) with adjustments based on the Tar-Pamlico River basin's characteristics. Rank is the sensitivity
232 ranking of parameters from the model's calibration and validation.

Rank	Name	Method	Min	Max	Description (unit)
1	cn2.hru	relative	-0.30	0.20	SCS curve number for soil moisture condition 2 (null)
2	revap_co.aqu	absolute	-0.10	0.10	Groundwater revap coefficient (null)
3	flo_min.aqu	relative	-0.25	0.50	The lower limit of aquifer storage which enables return flow (m)
4	awc.sol	absolute	-0.10	0.30	Available water capacity of the soil layer (mm_H2O/mm)
5	alpha.aqu	replace	0.01	0.50	Baseflow recession factor (days)
6	perco.hru	absolute	-0.30	0.30	Percolation coefficient (fraction)
7	chk.rte	relative	-0.25	0.25	Channel base conductivity (mm/hr)
8	cn3_swf.hru	absolute	-0.30	0.50	The coefficient for pothole evaporation (null)
9	epco.hru	absolute	0	0.30	Plant uptake compensation factor (null)
10	esco.hru	absolute	0	0.30	Soil evaporation compensation factor (null)
11	k.sol	relative	-0.25	0.25	Hydraulic conductivity (mm/hr)
12	ovn.hru	absolute	0	5	SCS curve number for soil moisture condition 2 (null)
13	surlag.bsn	replace	0.05	15	The coefficient for surface runoff lag (days)
14	evlai.bsn	replace	0	10	Leaf area index at zero evaporation from water bodies (null)
15	biomix.hru	absolute	-0.30	0.30	Biological mixing efficiency (m)
16	nperco.bsn	absolute	0	1	Nitrate percolation coefficient (null)
17	lat_len.hru	relative	-0.30	0.30	Slope length for lateral subsurface flow (m)

18	lat_orgn.aqu	relative	- 0.30	0.30	Organic N in the base flow (mg/L)
19	crk.bsn	absolute	0	1	Crack flow code (null)
20	field_len.fld	relative	- 0.30	0.30	Field length for wind erosion (m)
21	field_wid.fld	relative	- 0.30	0.30	Field width for wind erosion (m)
22	n_updis.bsn	absolute	0	30	Nitrogen uptake distribution parameter (null)
23	erorgp.hru	relative	- 0.30	0.30	Phosphorus enrichment ratio for loading with sediment (null)
24	dis_stream	relative	- 0.50	0.50	Average distance to stream (m)

233 For the calibration and validation of the SWAT+ model, we selected a total of 24 parameters using
 234 the R-SWAT application and employed the Generalized Likelihood Uncertainty Estimation (GLUE)
 235 calibration technique (Blasone et al., 2008) (Table 2). GLUE is a widely used algorithm in environmental
 236 system modeling due to its robustness (Tolson and Shoemaker, 2007). This technique involves randomly
 237 selecting numerous parameter combinations, with each set being assigned a likelihood score. This score
 238 reflects the probability of its occurrence across multiple model sets, based on how well the simulated values
 239 agree with the observed values, grounded in the principle of uniformity (Blasone et al., 2008; Mirzaei et
 240 al., 2015). In the SWAT+ model, the calibration (.cal) file delineates the absolute minimum and maximum
 241 ranges for these parameters. For parameters pertaining to aquifer levels, we used the “*replace*” method.
 242 This approach was chosen because SWAT+ typically assigns uniform values to all aquifers within a
 243 watershed, which can result in a loss of resolution at the aquifer level (Blasone et al., 2008; Tolson and
 244 Shoemaker, 2007; Mirzaei et al., 2015).

245 *2.4. Performance metrics*

246 In our study, the model’s outputs are evaluated using the Kling-Gupta efficiency (KGE) (Gupta et al., 2009),
 247 Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970), and Coefficient of determination (R^2) (Moriasi
 248 et al., 2015) (Table 3). The NSE assesses the proportion of the variance in the observed data that is
 249 quantified by the model (Nash and Sutcliffe, 1970). The KGE offers a thorough assessment by taking into
 250 account the comparisons of averages and variability, as well as the correlation between observed and
 251 simulated streamflow (Gupta et al., 2009; Saeedi et al., 2022). R^2 measures the degree to which fluctuations
 252 in the observed factor are accounted for by the simulated variable (Moriasi et al., 2015). The ranges and
 253 equations of these metrics are shown in Table 3.

254 **Table 3.**

255 Summary of the model performance metrics used in this study.

Metric	Equation	Range
NSE	$1 - \frac{\sum_{i=1}^n (Q_{obs} - Q_{sim})^2}{\sum_{i=1}^n (Q_{obs} - \bar{Q}_{obs})^2}$	VG: NSE ≥ 0.8 ; G: $0.7 \leq NSE < 0.8$; S: $0.5 \leq NSE < 0.7$; NS: $NSE < 0.5$
KGE	$1 - \sqrt{(CC - 1)^2 + \left(\frac{Q_{sim}^d}{Q_{obs}^d} - 1\right)^2 + \left(\frac{\bar{Q}_{sim}}{\bar{Q}_{obs}} - 1\right)^2}$	VG: KGE ≥ 1 ; G: $0.50 \leq KGE \leq 1$; S: $0 \leq KGE \leq 0.50$; NS: $KGE < 0$
R^2	$\frac{\left[\sum_i (Q_{obs,i} - \bar{Q}_{obs})(Q_{sim,i} - \bar{Q}_{sim})\right]^2}{\sum_i (Q_{obs,i} - \bar{Q}_{obs})^2 \sum_i (Q_{sim,i} - \bar{Q}_{sim})^2}$	VG: $R^2 \geq 0.8$; G: $0.7 \leq R^2 < 0.8$; S: $0.5 \leq R^2 < 0.7$; NS: $R^2 < 0.5$

256 Note: Q_{obs} is observed streamflow, Q_{sim} is simulated streamflow, i is i^{th} simulation, and \bar{Q} is the mean
 257 value, and n is the total number of values. Very Good (VG), Good (G), Satisfactory (S), and Not Satisfactory
 258 (NS).

259 *2.5. IQR method for Anomaly Detection of Future Flood Peaks*

260 IQR is a statistical tool used for identifying outliers within a dataset (Wan et al., 2014). It divides the dataset
 261 into three quartiles, providing an overview of data distribution.

262 - 1st quartile represents the 25th percentile, also known as the median of the dataset's lower half (Q1).
 263 - 2nd quartile represents the 50th percentile or the overall median of the dataset (Q2).
 264 - 3rd quartile represents the 75th percentile, also known as the median of the dataset's upper half
 265 (Q3).

266 We first obtained the SWAT+ simulated flood peak on a monthly scale and use as input for this
 267 method. By using the IQR method, we identified anomalies in future flood peaks (2024–2100), in which
 268 our analysis was segmented into three pre-defined periods. We established the IQR range as $(Q3 - Q1)$ with
 269 the lower and upper bounds defined as lower bound equals to $[Q1 - (1.5 \times IQR)]$ and upper bound equals
 270 to $[Q3 + (1.5 \times IQR)]$. Peak values found outside these bounds are considered anomalies. By performing
 271 the IQR method over different periods, we highlight years with remarkably high and low peaks, indicating
 272 potential risks. This systematic approach enhances our understanding of potential flood risks in future
 273 scenarios.

274 *2.6. Evaluation of projected drought events*

275 It is crucial to establish criteria for quantifying the intensity and frequency of extreme events (Liu et
 276 al., 2021; Tapas et al., 2022b; Zhong et al., 2022). In this work, we used SPI for our analysis, with different
 277 levels of severity categorized using the US Drought Monitor (Svoboda et al., 2002) (Table 4). To be specific,

278 dry conditions are identified when the SPI values fall below zero and keep decreasing to less than negative
 279 one (-1). In contrast, a drought event is considered to have ended when these values return to positive, in
 280 which wet conditions are identified when the SPI values reach to positive two ($+2$) and beyond (Liu et al.,
 281 2021; Zhong et al., 2022).

282 We defined two evaluation indices: Severity (S) and Intensity (IDe). First, S is measured as the
 283 absolute sum of all SPI values during the event, with the event duration defined as the number of months
 284 from the onset of the event to its conclusion, excluding the final month when the SPI returns to positive
 285 (Eq. (1)). IDe is calculated as the average SPI value over the drought duration (Eq. (2)). IDe serves as an
 286 indicator of the event's severity, where higher values indicate more severe conditions.

287
$$S = |\sum_{i=1}^a Index_i| \quad (Eq. 1)$$

288
$$ID_e = \frac{S_i}{a} \quad (Eq. 2)$$

289 where a is the duration of the event (months), ID_e is the intensity, and S_i represents the SPI value during
 290 the i -month of the event. The frequency (F) is calculated as the average number of events during a specified
 291 time range.

292 **Table 4.**

293 Summary of drought category and their ranges for SPI.

Drought category	SPI range
Extreme wet	$Index \geq +2.0$
Severe wet	$+1.5 \leq Index < +2.0$
Moderate wet	$+1.0 \leq Index < +1.5$
Near normal/mild wet	$0 \leq Index < +1.0$
Near normal/mild drought	$-1.0 \leq Index < 0$
Moderate drought	$-1.5 \leq Index < -1.0$
Severe drought	$-2.0 \leq Index < -1.5$
Extreme drought	$Index \leq -2.0$

294 **3. Results**

295 *3.1. Overview of historical residential expansion*

296 We found that the Tar-Pamlico River basin experienced an increase in population and housing units from
297 1990 to 2020 (Fig. 1). Specifically, there was a notable 40% increase in population growth and density in
298 2020 compared to 2010 (Fig. 1f). At the regional level, the S1-3 areas exhibited similar trends in population,
299 but showed varying changes in housing units. Indeed, Tarboro (S1) and Washington (S2) experienced
300 considerable urban expansion, particularly noticeable in the rise in housing units from 2010 to 2020 (Fig.
301 1). Despite a modest population growth in these regions (a maximum increase of 3% compared to 1990),
302 the number of new housing units built increased steadily, peaking at a 23.03% increase by 2020. Conversely,
303 the Goose Creek Game Land region (S3) maintained a relatively stable land use distribution (Fig. 1),
304 preserving its largely natural state.

305 *3.2. SWAT+ calibration and validation*

306 We performed the sensitivity analysis parameters using a *p*-value threshold of 0.05. This means if a
307 parameter has a *p*-value less than 0.05, then it is considered sensitive. Four parameters were identified as
308 sensitive in this study, including cn2, revap_co, flo_min, awc, alpha, and perco (Table 2). Specifically, the
309 baseflow (alpha parameter) and percolation coefficient (perco parameter) are sensitive in this basin. This
310 indicates a significant ratio of infiltration, where surface water percolates into deeper soil layers, a result
311 that is consistent with the storage routing technique described in Mapes and Pricope (2020).

312 The model calibration and validation for the period from 2003 to 2019 yielded good results. The
313 model achieved an overall NSE of 0.71, KGE of 0.82, and R² of 0.78. During the calibration period (2003-
314 2011), the model achieved an NSE of 0.72, a KGE of 0.84, and a R² of 0.76, while during the validation
315 period (2012-2019), these values were 0.68, 0.77, and 0.81, respectively. These results are categorized as
316 “Good” (see Table 3), particularly when considering the complex hydrodynamic influences in the area,
317 e.g., dam and reservoir, and backwater effects in this coastal region (Keith, 2014). The results give
318 confidence to the model’s effectiveness and reliability in simulating and evaluating the impacts of climate
319 change in the following sections.

320 *3.3. Projected changes in temperature and precipitation*

321 First, we examined changes in the average monthly temperature and precipitation across GCMs and SSPs
322 (Table 5). The average monthly historical precipitation is found at approximately 85.58 mm, and rises to
323 87.56 mm under the SSP2-45 and 90.07 mm under the SSP5-85 using the ensemble model.

324 **Table 5.**

325 Projected changes in average monthly precipitation and temperature for the future period (2024-2100)
326 compared to historical period (2003-2019). Increase (I) represents upward trends, while decrease (D)

327 represents downward trends. Darker color denotes a higher increase. Ensemble is the combined model of
 328 four GCMs used in this study (see Table 1).

GCM	Temperature (°C)				
	Maximum		Minimum		Trend
	SSP2-45	SSP5-85	SSP2-45	SSP5-85	
Ensemble	+ 3.77	+ 4.66	+ 0.86	+ 1.80	I
BCC-CSM2-MR	+ 3.72	+ 4.70	+ 0.49	+ 1.36	I
CanESM5	+ 4.14	+ 5.26	+ 1.44	+ 2.70	I
MIROC6	+ 3.66	+ 4.44	+ 0.64	+ 1.36	I
MRI-ESM2-0	+ 3.57	+ 4.25	+ 0.87	+ 1.77	I

GCM	Precipitation (mm)			Trend
	SSP2-45		SSP5-85	
	SSP2-45	SSP5-85	SSP5-85	
Ensemble	+ 1.98	+ 4.49	+ 4.49	I
BCC-CSM2-MR	+ 1.60	+ 4.42	+ 4.42	I
CanESM5	+ 1.64	+ 4.37	+ 4.37	I
MIROC6	+ 0.49	+ 3.81	+ 3.81	I
MRI-ESM2-0	+ 4.20	+ 5.37	+ 5.37	I

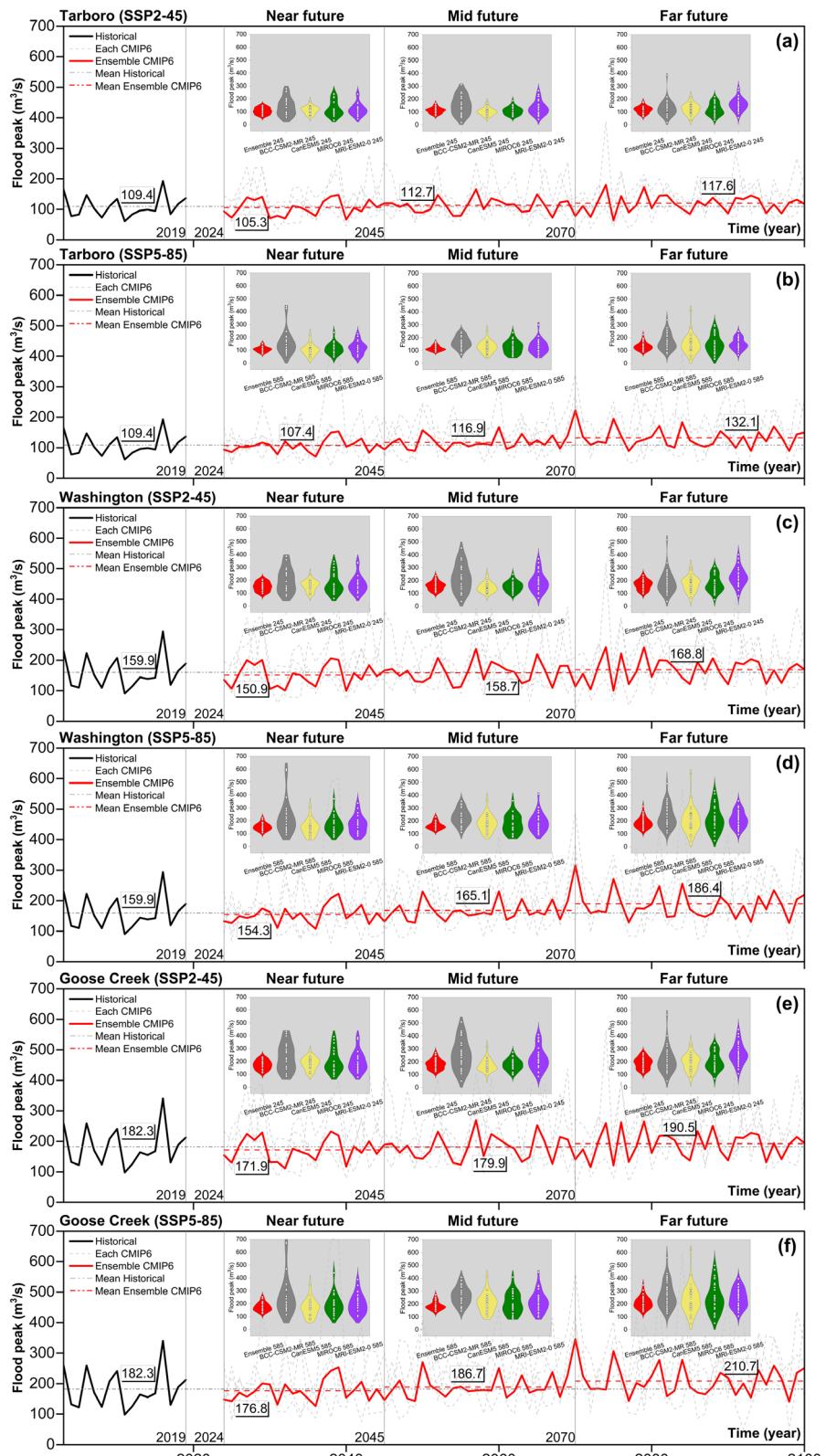
329 MRI-ESM2-0, CanESM5, and BCC-CSM2-MR, under the SSP2-45 scenario, project increases in
 330 monthly precipitation of 4.20 mm, 1.64 mm, and 1.60 mm, respectively. Under the SSP5-85 scenario, these
 331 models consistently indicate even greater increases, with projected rises of 5.37 mm, 4.37 mm, and 4.42
 332 mm, respectively (Table 5). These trends, consistent across all SSP scenarios, suggest a general rise in
 333 monthly precipitation, potentially leading to significant changes in future hydroclimatic patterns, including
 334 more frequent flooding events.

335 On the other hand, we noted that the average historical maximum and minimum temperatures are
 336 around 21.47°C and 10.97°C, respectively. However, these figures are projected to increase by at least
 337 3.77°C for the maximum and 1.80°C for the minimum temperatures, observed using the ensemble model
 338 (Table 5). Under the SSP5-85, the projected minimum temperature increase could be as high as 4.66°C.
 339 Moreover, we found that individual GCMs suggest even higher temperature increases than the ensemble
 340 model. For instance, under the SSP2-45 scenario, the CanESM5 model forecasts the most significant
 341 increase in maximum temperature at +5.26°C, closely followed by the BCC-CSM2-MR model with a
 342 projected increase of 4.70°C. These projections emphasize the substantial and increasing risks associated
 343 with extreme heat, highlighting the need for careful observation in mitigating these climatic changes.

344 3.4. Projected changes in streamflow and flood peaks

345 Flood peak is an important outcome from numerical models that is essential for hydrological assessment
 346 (Merz et al., 2022). Figure 3 shows the projected flood peaks in the (a) Tarboro, (b) Washington, and (c)

347 Goose Creek Game Land regions for the near future (2024-2044), mid future (2045-2069), and far future
 348 (2070-2100) .



349

350 **Fig. 3.** Historical and projected flood peaks at (a-b) Tarboro, (c-d) Washington, and (e-f) Goose Creek Game
351 Land. Future projections are simulated using the SWAT+ model, incorporating inputs from GCMs under
352 different SSP scenarios (2-45 and 5-85). Black lines represent historical flood peaks (2003-2019), red lines
353 represent the ensemble model (2024-2100), which combines the outputs from all GCMs, while dash grey
354 lines show the projections from individual GCMs. Values in boxes represent mean flood peaks over
355 different future periods (near, mid, and far) while the violin plots show the distribution of flood peaks from
356 the ensemble models and individual GCMs.

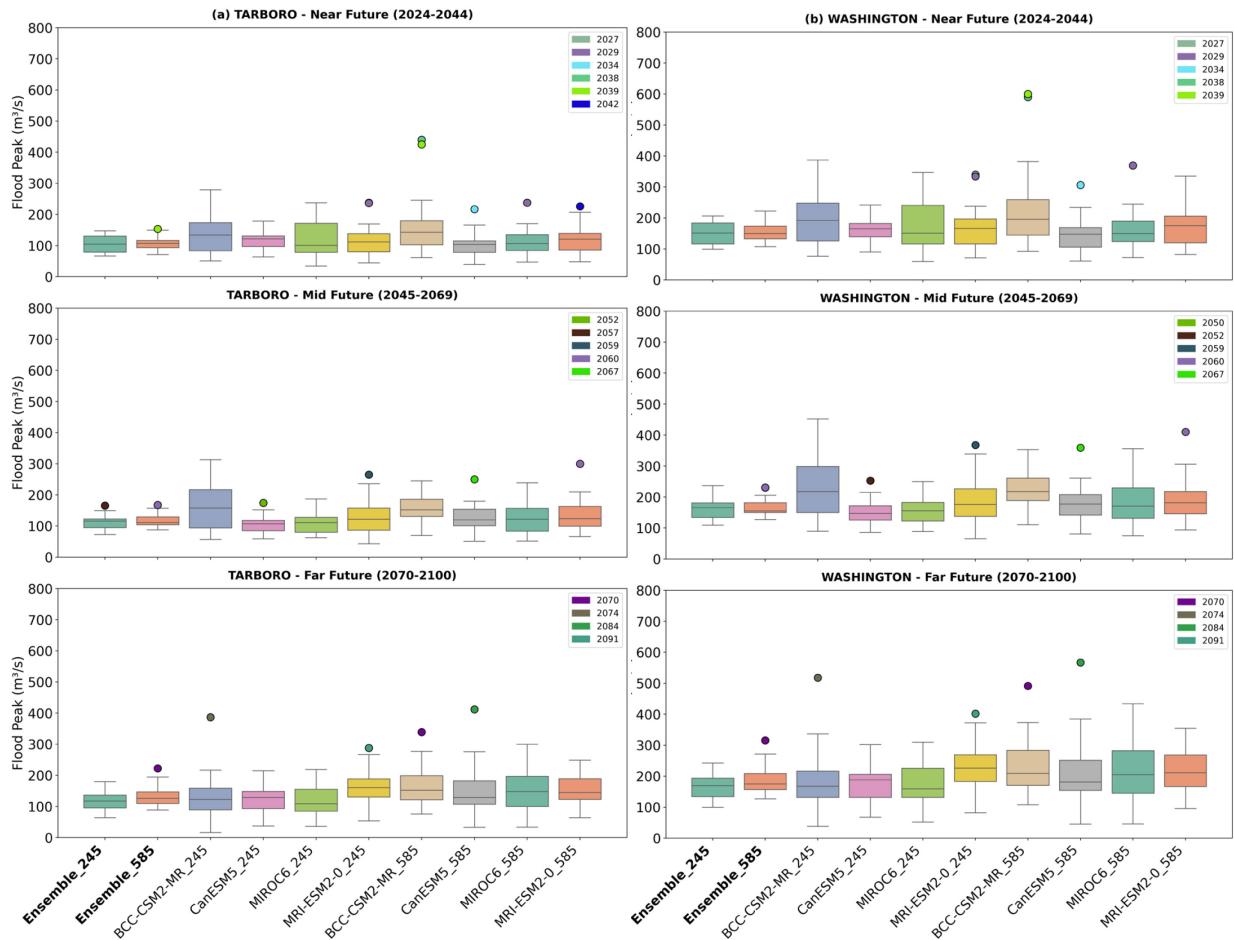
357 In general, we found that higher flood peaks are likely to appear starting from 2045 across different
358 examined regions (Fig. 3). While projected flood peaks in the near future (2024-2044) remain relatively
359 unchanged compared to the historical period, the highest number of record-breaking peaks are frequently
360 found in the far future (2070-2100), with the more severe greenhouse gas emission pathway (SSP5-85)
361 showing higher peaks compared to SSP2-45. Specifically, when comparing historical flood peaks with
362 future projected flood peaks, we observed that these increases range from 3 to 7% during the mid future
363 and up to 21% during the far future. Moreover, when comparing Tarboro (S1) and Washington (S2),
364 Tarboro—the more populated and higher housing density region (Fig. 1b)—shows a greater increase in
365 flood peaks compared to Washington. To be specific, between mid- and far-future periods, mean flood peaks
366 in Tarboro are expected to increase by 7.5% compared 5.5% in Washington under SSP2-45; and by 21%
367 compared to 16.5% under SSP5-85, respectively. This could be explained by the higher impervious surface
368 coverage in developed areas, which prevents water from infiltrating into the ground, exacerbating runoff
369 and flooding issues. In addition, this could be exacerbated if the housing density continues to increase under
370 the current growing population trend over the Tar-Pamlico River basin (see Section 3.1).

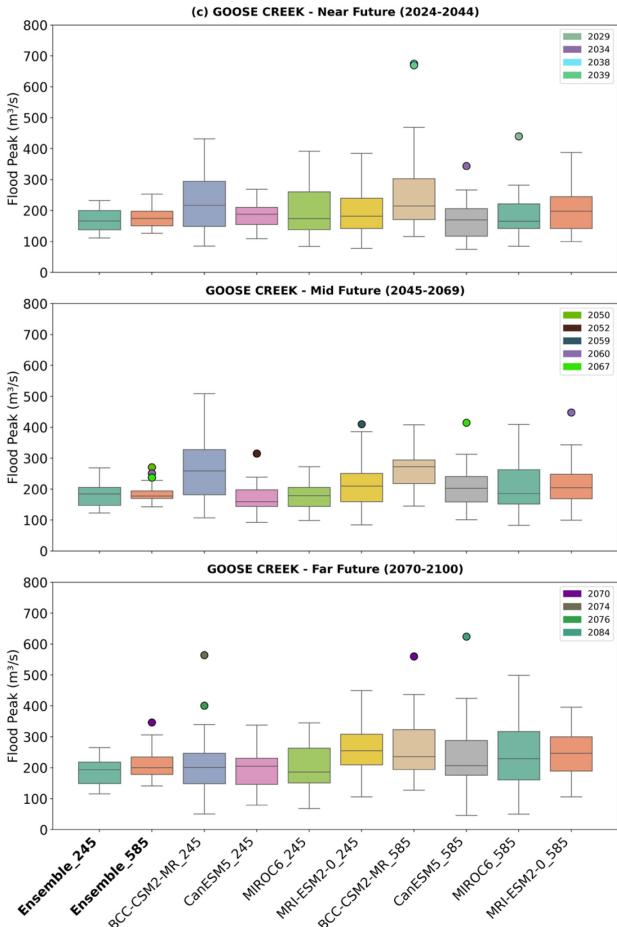
371 We also found that there are specific years within the near future (2024-2044) that are likely to
372 experience notably high flood peaks. All of these regions are projected with significant flood peaks across
373 various GCMs and SSPs between 2027 and 2039, as well as in 2042, indicating an elevated risk of flooding
374 in this region (Figs. 3c, 3d, 3e, and 3f). Besides, the mean flood peak for this period is estimated to be
375 approximately 179.9 m³/s (under the SSP2-45 scenario) and 186.7 m³/s (SSP5-85 scenario), respectively
376 (Figs. 3e and 3f).

377 During the mid future (2044-2069), we observed notable trends and differences among GCMs and SSP
378 scenarios. We found that the flood peak values oscillate between the upper bounds, formed by the MRI-
379 ESM2-0 and MIROC6 models (significant years marked in 2052, 2057, 2060, 2065, and 2069), and the
380 lower bounds delineated by the CanESM5 model (Fig. 3). There was a particularly noticeable increasing
381 trend of flood peaks in the SSP5-85 scenarios, suggesting a trend towards wetter conditions. In Tarboro,
382 our results show moderate fluctuations in flood peaks, with notable figures found under the SSP2-45

383 scenario, especially in the years 2052 and 2057 (Fig. 3a). Besides, Washington is projected to experience
384 a higher volume and variability in future flood peaks, particularly during the 2060s, as compared to Tarboro
385 due to its geographical location over the Tar-Pamlico River basin (Fig. 1b). In addition, Goose Creek Game
386 Land region consistently exhibits the highest average flood peaks across all models in our analysis (Figs.
387 3e and 3f). This trend underscores the vulnerability of this low-lying, coastal region to climatic events that
388 was previously highlighted by the NC Wildlife Resources Commission (NC Wildlife, 2018). Additionally,
389 the ecological importance of the region and its susceptibility to potential flood risks underscore the need
390 for strategic and adaptive planning to mitigate the impacts of these events. This includes, but is not limited
391 to, strengthening flood defenses, enhancing ecological conservation efforts, and preparing comprehensive
392 disaster response strategies.

393 For the far future (2070-2100) in Tarboro, our results indicate moderate fluctuations in flood peaks.
394 Under the SSP2-45 scenario, a peak in 2074 (179.875 m³/s) and a low in 2075 (64.025 m³/s) are observed,
395 while the SSP5-85 scenario projects a high peak at the beginning of the 2070s (notably in 2070 at 222.5
396 m³/s), followed by lower projected flood peaks with moderate variability. In contrast, both the Washington
397 and Goose Creek Game Land regions exhibit an increasing trend in projected flood peaks. In Washington,
398 the highest peaks are projected in 2091 (242.75 m³/s) and 2079 (221.75 m³/s) under SSP2-45, while the
399 SSP5-85 scenario projects even higher peaks, with 2070 (315.25 m³/s) and 2075 (271.25 m³/s) seeing the
400 most significant increases. Similarly, the Goose Creek Game Land region demonstrates greater
401 vulnerability compared to Tarboro and Washington. Its highest projected peak occurs in 2070 (346.5 m³/s)
402 under SSP5-85 and in 2079 (265.25 m³/s) under SSP2-45. Additionally, across these regions between 2070
403 and 2100, there is an observed increase of 11.5% in flood peaks (SSP5-85) compared to the SSP2-45
404 scenario. This increase is more pronounced than the 3% increase observed during the mid-future period
405 (2044-2069) and approximately 2% for the near future (2024-2044). This trend suggests that higher
406 greenhouse gas emissions, as represented by the SSP5-85 scenario, tend to result in higher projected flood
407 peaks, indicating a wetter trend toward the year 2100.



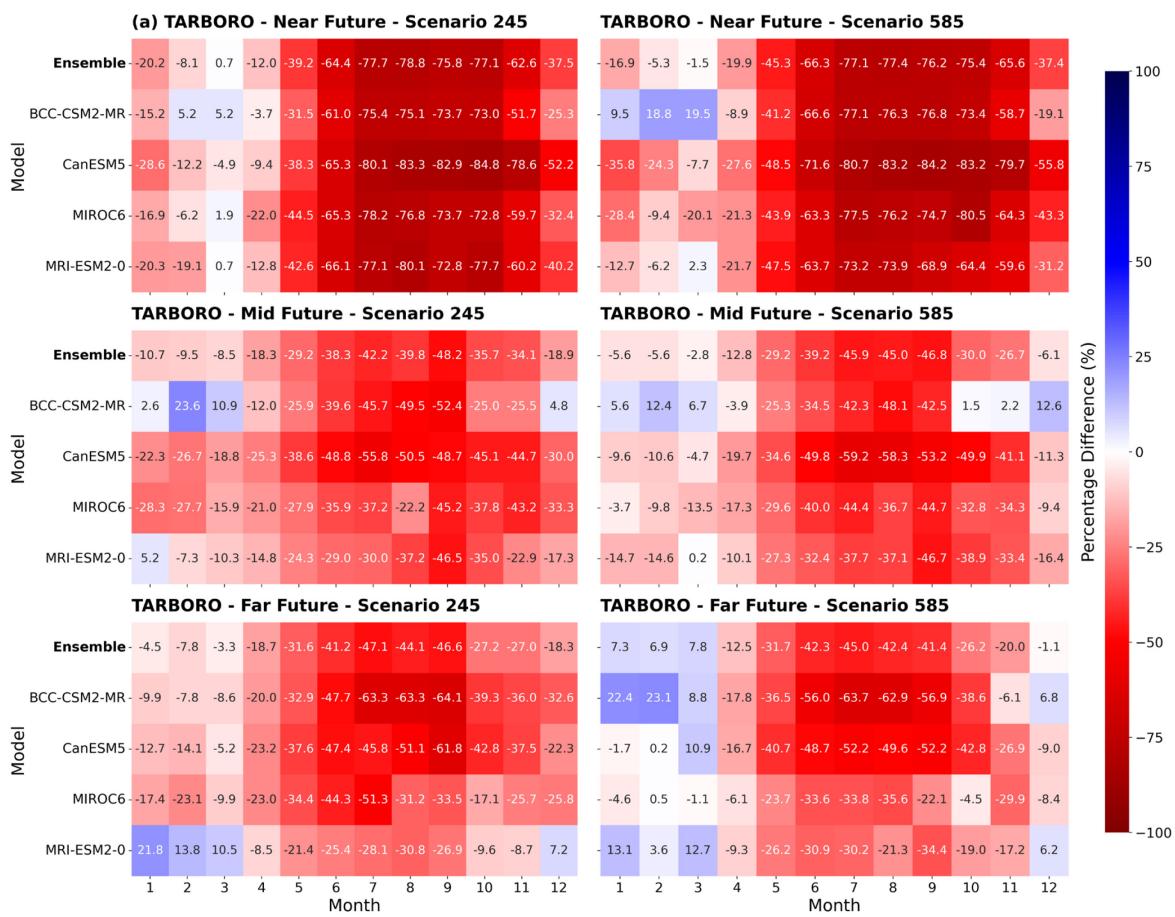


409

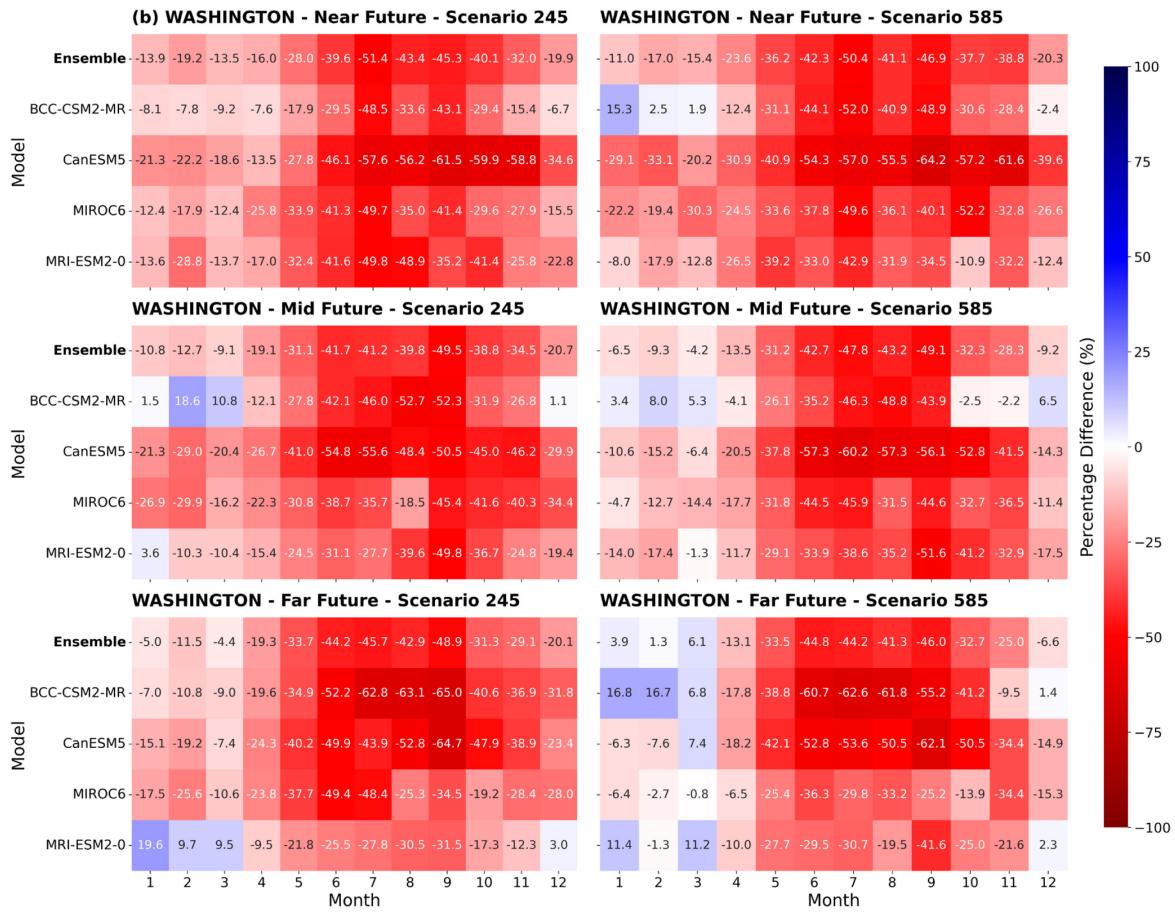
410 **Fig. 4.** Temporal anomalies of flood peaks using IQR method for (a) Tarboro, (b) Washington, and (c) Goose
 411 Creek Game Land station using the ensemble model and GCMs under the SSP2-45 and 5-85 scenarios,
 412 utilizing the IQR method. These analyses are conducted for different future periods, including the near
 413 future (2024-2044), mid future (2045-2069), and far future (2070-2100).

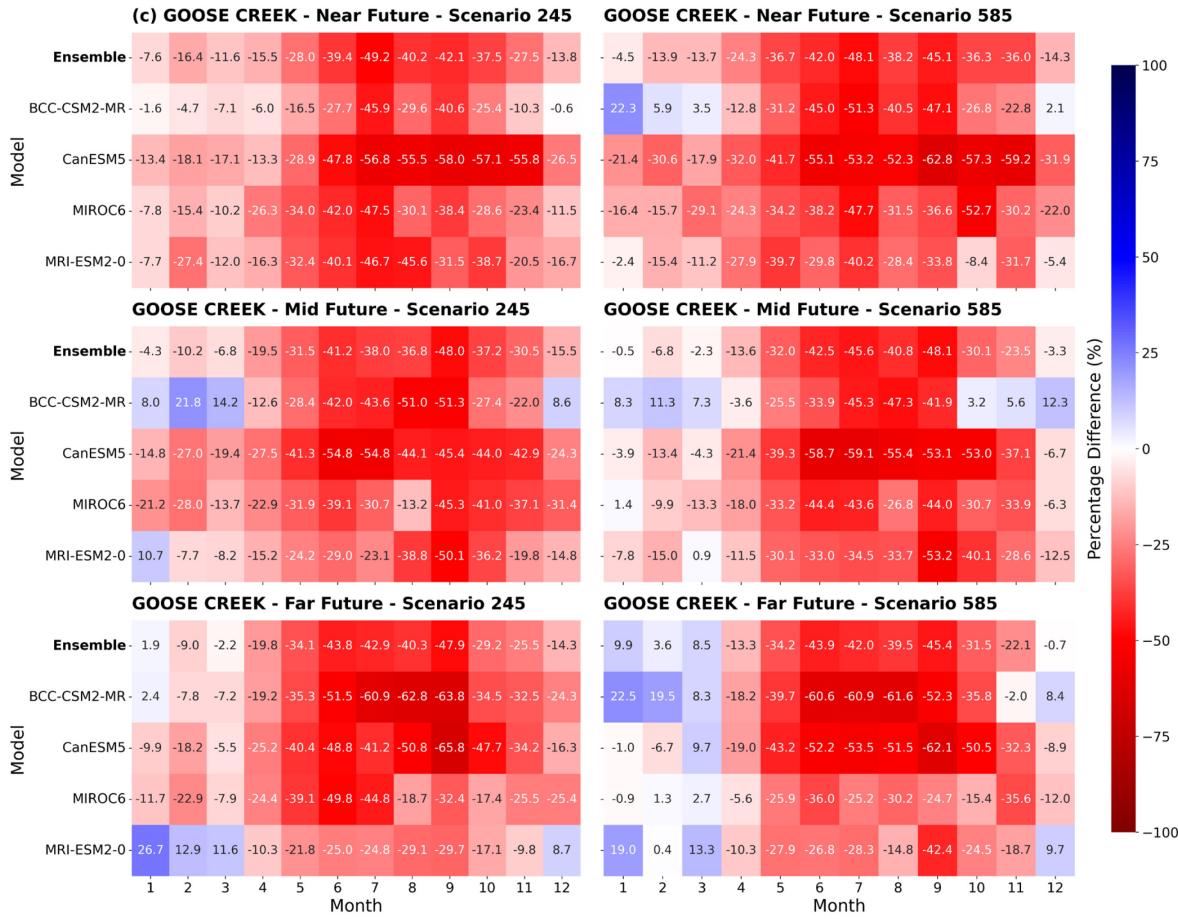
414 Extremely high or low flood peaks can significantly impact hydrological processes (Maurer et al.,
 415 2018), ecosystems (Yin et al., 2009), and human lives (Villarini and Smith, 2010). Thus, we utilized the
 416 IQR method (see Section 2.5) to identify variations in flood peaks from different GCMs under various
 417 SSPs. Figure 4 presents our findings on anomaly flood peaks over the three future periods - the near future
 418 (2024-2044), mid future (2045-2069), and far future (2070-2100) - for the (a) Tarboro, (b) Washington, and
 419 (c) Goose Creek Game Land regions. In general, we found an increase in flooding events from the near to
 420 the mid future across these regions (Fig. 4). The mid future period, in particular, shows a modest upward
 421 shift in median flood peaks across models, with notable outliers indicating the potential for occasional
 422 extreme flood events. In the far future, there is a considerable increase in both the variability and median
 423 values of flood peaks, especially under the MRI-ESM2-0 model (SSP5-85), indicating a trend towards more

424 severe flooding. Across all three regions and various future periods, the MIROC6 and MRI-ESM2-0 models
 425 (SSP2-45 and 5-85) consistently show high medians and ranges for projected flood peaks, suggesting a
 426 correlation with more extreme weather events. Besides, as we move toward the far future (2070-2100), a
 427 clear trend of intensifying flood peaks is found (Fig. 4), highlighting the escalating impacts of climate
 428 change on these regions. We found that Tarboro is particularly susceptible to flooding, especially in 2029
 429 and 2039 during the near future, with at least two GCMs predicting anomalies in the same years. The years
 430 2060 and 2070 are identified as vulnerable for flooding in the mid and far future, respectively. In
 431 Washington, this is projected in 2029 (near future), 2060 (mid future), and 2070 (far future) while Goose
 432 Creek Game Land is in 2060 and 2067 (mid future), and 2070 (far future).



433





435

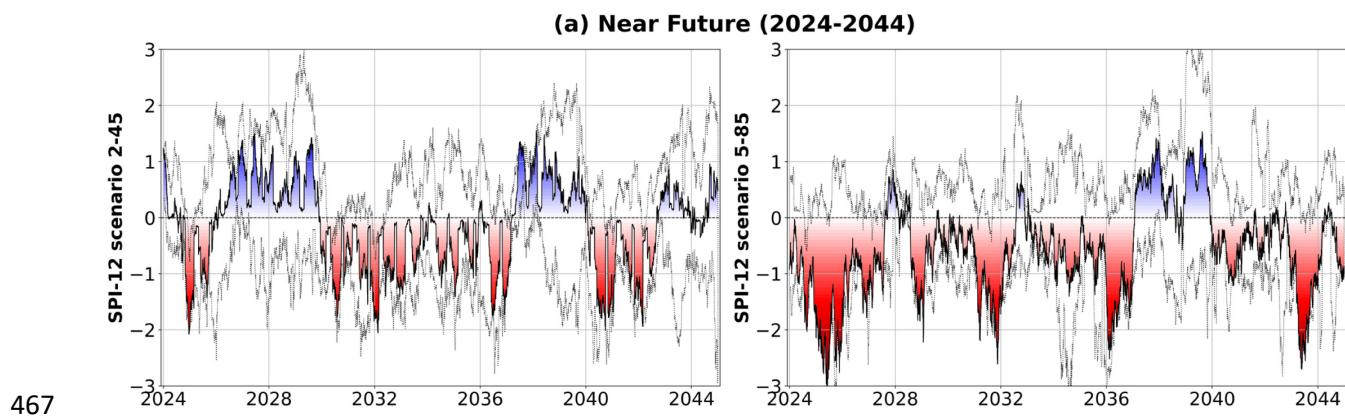
436 **Fig. 5.** The average monthly streamflow difference in percentage between the historical and GCMs at (a)
437 Tarboro station, (b) Washington, and (c) Goose Creek Game Land station over the near future (2024-2044),
438 mid future (2045-2069), and far future (2070-2100) under the SPP2-45 and 5-85 scenarios. Darker colors
439 represent higher values.

440 Figure 5 shows the average monthly streamflow differences, in percentages, between historical period
441 (2003-2019) and GCMs for the near future (2024-2044), mid future (2045-2069), and far future (2070-
442 2100) under the SSP2-45 and 5-85 scenarios. In general, in these regions, the winter months (December to
443 March) are expected to experience higher streamflow compared to other seasons (Fig. 5) while the summer
444 period (May to October) is projected to be drier. Besides, as we approach the year 2100, the contrast
445 between the wetter and drier months becomes more marked as a high discrepancy over the examined
446 regions. It means the projected wet months are expected to be significantly wetter, while the dry months
447 become increasingly drier especially under the SSP5-85 scenario.

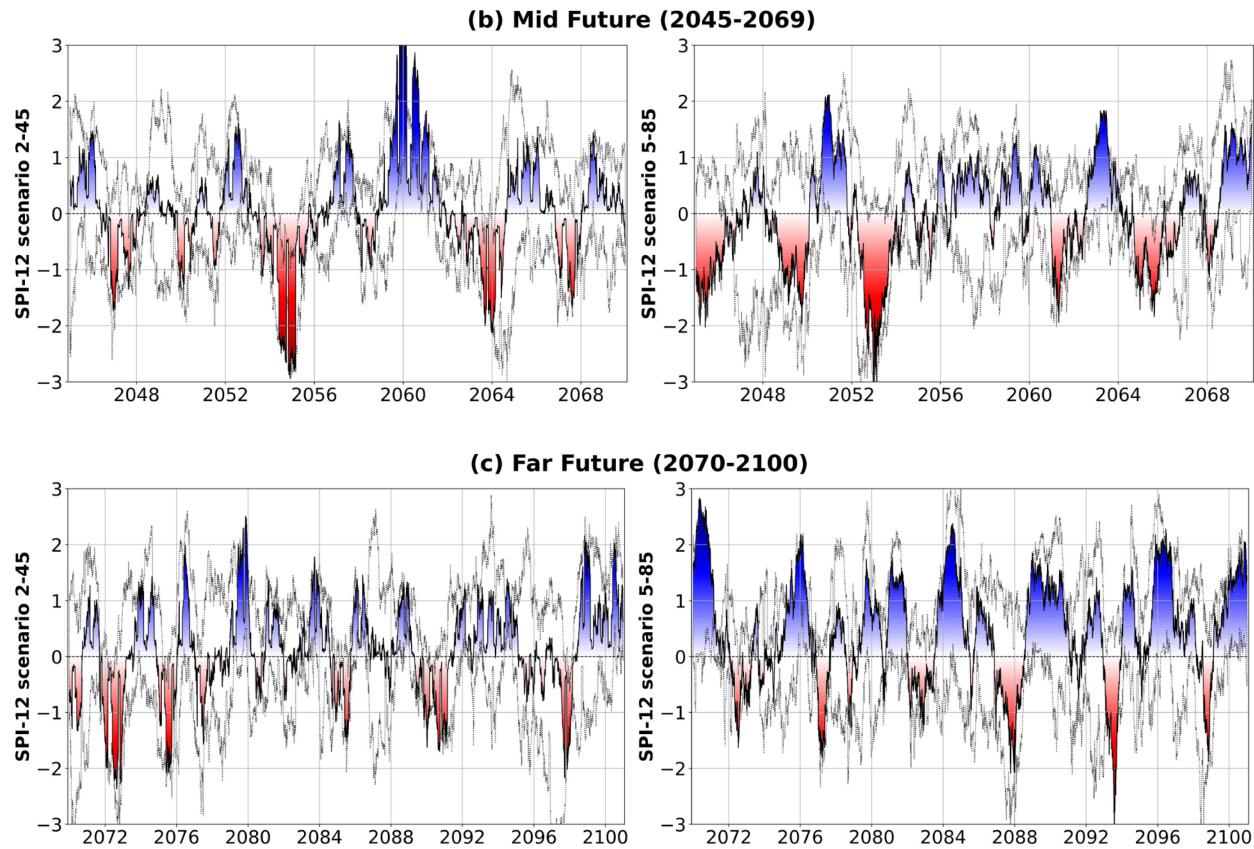
448 *3.5. Future changes in drought*

449 In the previous section, we evaluated projected future floods. However, quantifying drought events both
 450 statistically and spatially is equally important. In this section, we utilize the 12-month drought index (SPI-
 451 12) (see Section 2.6) to measure drought intensity and frequency. Specifically, the SPI-12 index is calculated
 452 using projected future precipitation data from various GCMs and the ensemble model under different SSP
 453 scenarios, across the Tar-Pamlico River basin (Fig. 6 and Table 6). In general, a drying trend is observed
 454 during the near future (2024-2044), but the basin trends towards wetter conditions with an increased risk of
 455 flooding as we approach 2100 (Fig. 6, Tables 4 and 5). Under the SSP2-45 scenario, a transition to wetter
 456 conditions is found by 2100.

457 The Tar-Pamlico River basin exhibits dry conditions ($\overline{SPI12_{near}^{2-45}} = -0.154$) during the near future
 458 period, then becomes wetter ($\overline{SPI12_{mid}^{2-45}} = +0.048$), and reaching its peak wetness in the far future
 459 ($\overline{SPI12_{far}^{2-45}} = +0.097$) (Fig. 6 and Table 6). This trend is projected to occur across the examined regions
 460 and intensifies under the impacts of the SSP5-85 scenario. Specifically, the driest conditions are forecasted
 461 with ($\overline{SPI12_{near}^{5-85}} = -0.602$), while a significantly wetter trend is indicated for the far future under SSP5-
 462 85 ($\overline{SPI12_{far}^{2-45}} = +0.445$). These results confirm that higher emission projections not only have more
 463 substantial impacts but also contribute significantly to increased variability between seasons and throughout
 464 the future periods. Similarly, the Tarboro, Washington, and Goose Creek Game Land regions are projected
 465 to experience dry conditions in the near future (2024-2044) and become wetter in the mid- and far-future
 466 periods, with the SSP5-85 scenario showing a more pronounced intensity of these conditions (Table 6).



468



469

470 **Fig. 6.** Evaluation of droughts using SPI-12 index for the (a) near future (2024-2044), (b) mid future (2045-
 471 2069), and (c) far future (2070-2100) under SSP2-45 and 5-85 scenarios. Red color indicates dry periods,
 472 while the blue color signifies wet periods. The drought severity classification is presented in Table 4. Black
 473 dotted line represents the SPI-12 range across different GCMs, whereas the red and blue colors denote the
 474 values of the ensemble model.

475 **Table 6.**

476 Summary of the average SPI-12 index for the Tarboro, Washington, Goose Creek Game Land, and the entire
 477 Tar-Pamlico River basin from different GCMs, the ensemble model, and their SPPs across the near future
 478 (2024-2044), mid future (2045-2069), and far future (2070-2100). Positive (+) values, indicated in blue,
 479 suggest a wet trend, while negative (-) values, shown in red, denote a dry trend. The severity ranges for the
 480 SPI-12 drought index can be found in Table 4.

Site	Ensemble model (SSP2-45)		
	Near future (2024-2044)	Mid future (2045-2069)	Far future (2070-2100)
Tarboro	- 0.141	+ 0.058	+ 0.111
Washington	- 0.159	+ 0.068	+ 0.067
Goose Creek	- 0.159	+ 0.068	+ 0.067

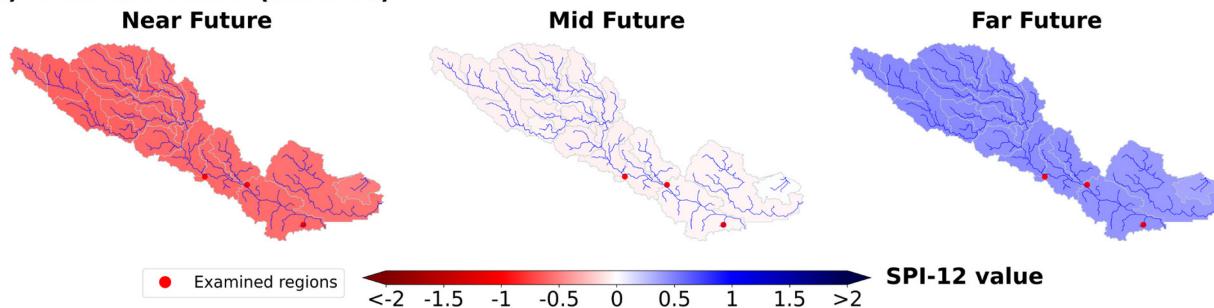
Tar-Pamlico	-0.154	+0.048	+0.097
Ensemble model (SSP5-85)			
	Near future (2024-2044)	Mid future (2045-2069)	Far future (2070-2100)
Tarboro	-0.592	-0.048	+0.426
Washington	-0.568	-0.034	+0.412
Goose Creek	-0.568	-0.034	+0.412
Tar-Pamlico	-0.602	-0.045	+0.445

481 On the other hand, we have spatially quantified the magnitude and frequency of projected future
 482 droughts over the near future, mid future, and far future within the Tar-Pamlico River basin. This aims to
 483 better understand how climatic extremes could impact regions that are either rapidly developing or
 484 inherently at risk due to their low-lying nature.

(a) Ensemble model (SSP2-45)

485

(b) Ensemble model (SSP5-85)

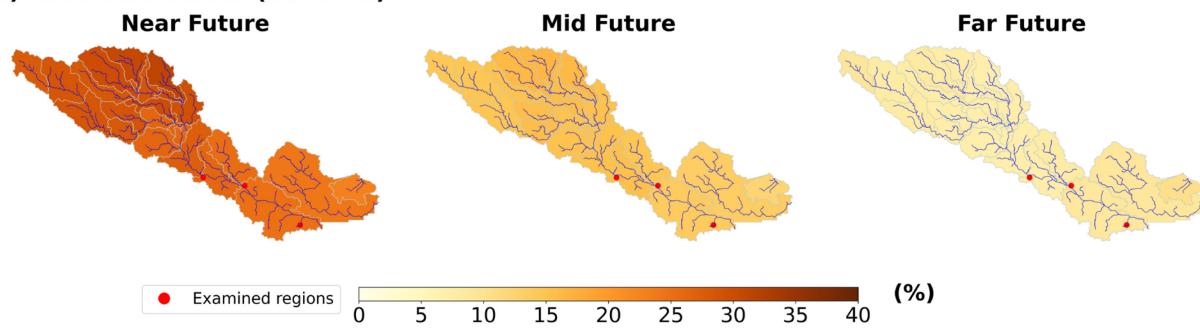


486

(c) Ensemble model (SSP2-45)

487

488 (d) Ensemble model (SSP5-85)



488

489 **Fig. 7.** Spatial distribution of drought using SPI-12 index over different GCMs and the ensemble model in
490 three different time periods, including near future (2024-2044), mid future (2045-2069), and far future
491 (2070-2100). The blue color represents the wet trend while the red color represents the dry trend. In this,
492 (a) and (c) represent the results from the ensemble model for the SSP2-45 scenario while (b) and (d)
493 represent the probability of drought occurrence (%) from the ensemble model for the SSP5-85 scenario.

494 Figure 7 shows the spatial distribution of drought intensity using the SPI-12 index across various
495 GCMs and the ensemble model for three different periods: the near future (2024-2044), mid future (2045-
496 2069), and far future (2070-2100). The Tar-Pamlico River basin as well as Tarboro, Washington, and Goose
497 Creek Game Land are found to become wetter, reaching peak wetness during the far future, while the 2020s-
498 2040s are expected to exhibit drier conditions (Figs. 7a and 7b). We found that higher emission scenarios
499 indicating more severe impacts for drought and flood events throughout future periods. Moreover, there is
500 a noticeable correlation between drought intensity and frequency within the basin, with low-lying (i.e.,
501 Washington; S2) and coastal regions (i.e., Goose Creek Game Land; S3), as downstream regions, are likely
502 to experience a greater number of drought events between 2024 and 2100 compared to higher altitude
503 regions (i.e., Tarboro; S1) (Figs. 7c and 7d). Indeed, toward 2100, the Tar-Pamlico River basin as well as
504 these regions are likely to experience wetter conditions, thus showing a lower probability of drought
505 occurrence (Figs. 7c and 7d).

506 **4. Discussion**

507 We have revealed our findings in residential analysis (1990-2020) (see Section 3.1) along with the projected
508 changes in meteorological conditions and their impact on future climatic extreme events (2024-2100) over
509 the Tarboro, Washington, and Goose Creek Game Land regions of the Tar-Pamlico River basin (see Sections
510 3.3 to 3.5). In this section, we will provide our in-depth discussions on these findings and estimated trends
511 for upcoming decades.

512 When examining the historical residential expansions, we found an increase in population since 2010
513 for the town of Tarboro and since 2000 for the city of Washington (Fig. 1). However, the growth in the
514 number of housing units has been even more pronounced, with increases ranging from fivefold to
515 approximately sixteenfold since 1990 (Fig. 1). Besides, this decade is projected to experience an
516 approximate 40% rise (in 2020 compared to 2010) in both population and population density across the
517 entire Tar-Pamlico River basin (Fig. 1), a trend likely to be accelerated as partly highlighted by the current
518 urbanization rate in the United States (Center for Sustainable Systems, 2023). In addition, according to the
519 2020 Census data, the urban population in the United States increased by 6.4% between 2010 and 2020
520 (U.S. Census Bureau, 2022) and this trend was also highlighted at the state level. Within this study of the
521 Tar-Pamlico River basin, the North Carolina's population is projected to reach approximately 13 million by
522 2040 (John, 2024) and 14 million by 2050 (Michael, 2022; U.S. Census Bureau, 2020), positioning it as the
523 seventh most populous state, behind only California, Texas, Florida, New York, Pennsylvania, and Georgia
524 (Michael, 2023, 2022). By 2050, it is projected that 89% of the U.S. population will reside in urban areas
525 (UN Population Division, 2018). In the Tar-Pamlico region, the largest metropolitan areas are expected to
526 see faster population growth compared to smaller municipalities and rural areas (Michael, 2023). Within
527 this study, given the numerous factors that could interact and influence changes in this region's population,
528 potentially exacerbating or mitigating the intensity of climatic extremes toward 2100, we have provided the
529 analyses mentioned above as our estimations of future trends and recommend using them as references to
530 support regional adaptive measures but not as definitive statements.

531 In this study, we observed an increase in temperature and rainfall across seasons and various future
532 periods, with a more likely pronounced difference in the intensity of climatic extremes (Figs. 5 and 6). To
533 be specific, the near future is expected to experience more severe impacts from drought, whereas the mid
534 and far future periods are likely to see increased flooding impacts (Figs. 4, 5, and 6). The summer season
535 (May to October) is projected to be drier, especially during the near future (Table 6). This condition would
536 then increase the region's vulnerability to extreme heat and could adversely affect agricultural activities.
537 Conversely, the far future is predicted to be highly prone to flooding (Fig. 6) in which this could cause more
538 water-related issues in terms of water sanitation and hygiene. We found that higher intensity and frequency
539 of climatic extremes are associated with more severe greenhouse gas emissions (SSP5-85). Indeed, an
540 increase in flood peaks of between 3 and 7% is observed during the mid-future period with a potential rise
541 up to 21% in the far future period compared to the historical period (2003-2019) (Fig. 3). Besides, the mid-
542 and far-future periods are projected to exhibit significant discrepancies between dry and wet seasons,
543 highlighting substantial damage to agriculture and human activities that are caused by seasonal changes in
544 meteorological conditions (Fig. 5). Downstream regions are expected to experience severe droughts with
545 reduced rainfall during the summer season throughout the near future compared to higher altitude regions.

546 Besides, low-lying and coastal regions are likely to face higher flood intensities in terms of flood peaks
547 (Figs. 3 and 5). Besides, when examining the probability of drought occurrence in this region, it appears
548 that both low-lying and coastal areas are likely to experience more frequent drought events compared to
549 other areas.

550 In our analysis, as temperatures would rapidly rise toward 2100 (Table 5) as well as the summer
551 season tends to exhibit severe dryness, the demand for air conditioning and refrigeration is anticipated to
552 increase, leading to higher energy consumption (Li et al., 2019). This not only places a burden on electrical
553 grids, potentially causing outages during heatwaves but also escalates energy costs, impacting household
554 and business finances (Chen et al., 2021). Extreme temperatures can also decrease economic productivity
555 (e.g., agriculture), particularly in physically demanding jobs (Kjellstrom et al., 2009; Tran et al., 2024), and
556 discourage outdoor activities, such as shopping and dining, thereby affecting businesses dependent on
557 pedestrian patronage. Besides, previous studies have indicated a correlation between socioeconomic
558 activities, population changes, and extreme events (Ahmadalipour et al., 2019; Bahinipati and
559 Venkatachalam, 2016). If the total number of concrete-based infrastructures such as housing units continue
560 to increase (as the current trend found in this study; see Section 3.1), it can significantly intensify impacts
561 of natural hazards due to the increase the impervious surface area (Zhang et al., 2013). In this point, we
562 expected for a correlation found as projected changes in climate extremes under impacts of increasing
563 housing units that could be revealed using future projected LULC maps. Furthermore, this could lead to the
564 increase of health-related issues due to higher urban heat (Nguyen et al., 2022; Yin et al., 2018; Zhou and
565 Chen, 2018), especially for the elderly (Zhang et al., 2019) and children (Faurie et al., 2022). Besides,
566 higher urban temperatures can exacerbate air pollution by increasing the rate of chemical reactions that
567 produce pollutants, such as ozone (Li et al., 2018; Ulpiani, 2021), suggesting a need for adaptive measures
568 to reduce this increasing trend over the Tar-Pamlico River basin.

569 On the other hand, agriculture in urban and peri-urban areas over in the Tar-Pamlico region may
570 experience reduced crop yields due to heat stress on plants and livestock (Lwasa et al., 2014). These changes
571 disproportionately impact low-income communities that often rely on agriculture and those living in
572 densely populated areas with limited green spaces (Chakraborty et al., 2019), thereby leading to exacerbated
573 social inequalities (Darrel Jenerette et al., 2011). Consequently, our findings highlight the significant
574 potential for these severe problems to become worsen toward 2100. Therefore, it is crucial for authorities
575 and stakeholders in the Tar-Pamlico River basin to implement sustainable management practices to mitigate
576 the impacts of climate change.

577 **4. Limitations and future works**

578 In this work, we acknowledge our limitations, in which we have not included projected future changes in
579 residential expansions (housing units and density) and population up to 2100. Additionally, incorporating
580 more GCM candidates could reduce uncertainties and better quantify the variability of climatic extremes
581 using future climate projections in hydrological models. Besides, it is beneficial to involve regional
582 downscaling and bias correction of these GCMs before utilizing. For future work, we plan to reduce these
583 limitations as well as integrate our model with other models, such as the Regional Ocean Modeling System
584 (ROMS) to explore how the effects of sea-level rise and estuarine salinity might be exacerbated under the
585 impacts of climate change (Yin et al., 2024) which is important for the Tar-Pamlico River basin. Our primary
586 objective is to deliver more accurate and useful outcomes to support the decision-making of this region.

587 **5. Conclusions**

588 In this work, we conducted a comprehensive analysis to quantify the anticipated changes in future extremes
589 using the NASA NEX-GDDP-CMIP6 dataset, along with regional residential expansions and LULC
590 changes for the Tar-Pamlico River basin, North Carolina. Specifically, our work investigated the impacts
591 of two future greenhouse gas emission scenarios, SSP2-45 and 5-85, for the region between 2024 and 2100.
592 Our results revealed projected changes in meteorological conditions and their impacts on future climatic
593 extreme events, while also discussing estimated impacts on the region. Key findings are summarized:

- 594 (1) A notable increasing trend is expected in meteorological conditions, with higher intensity and
595 frequency of climatic extremes associated with more severe greenhouse gas emissions. Flood peaks
596 are projected to increase between 3 and 7% during the mid-future period and could rise to 21% in the
597 far future period compared to the historical period. Additionally, climatic extremes are projected to
598 occur more frequently and likely to intensify and become more severe due to residential expansions.
- 599 (2) The near future is expected to experience more severe impacts from drought, whereas the mid- and
600 far-future periods are likely to see increased flooding impacts. Besides, these periods also exhibit
601 significant discrepancies between dry and wet seasons, highlighting substantial damage caused by
602 seasonal changes, especially to agriculture.
- 603 (3) Downstream regions are expected to experience severe droughts with reduced rainfall during the
604 summer season throughout the near future, compared to high altitude regions. Additionally, low-lying
605 and coastal areas are likely to be more vulnerable as they are expected to face higher flood intensities,
606 particularly in terms of peaks, as well as more frequent drought events compared to other areas.

607 Our work provide a scientific basis for quantifying the impact of future climate changes on the region's
608 water resources. Our approach, which incorporates regional characteristics along with hydrological
609 analyses, shows potential to better highlight insights to support the long term resilience and safety of the

610 region against the challenges posed by climate change. Consequently, this work serves as a valuable
611 resource for stakeholders and authorities, assisting them in planning of sustainable strategies focused on
612 natural disaster prevention and management.

613

614 **CRediT authorship contribution statement**

615 **Thanh-Nhan-Duc Tran**: Conceptualization, Methodology, Data curation, Software, Validation,
616 Investigation, Formal analysis, Visualization, Writing – original draft, Writing – review & editing. **Mahesh**
617 **R Tapas**: Software, Data curation, Validation, Writing – review & editing. **Son K. Do**: Writing – review &
618 **Randall Etheridge**: Writing – review & editing. **Venkataraman Lakshmi**: Writing – review &
619 editing, Supervision.

620

621 **Data availability**

622 Data will be made available on request.

623

624 **Declaration of competing interest**

625 The authors declare that they have no known competing financial interests or personal relationships that
626 could have appeared to influence the work reported in this paper.

627

628 **Acknowledgments**

629 We want to express our special thanks to the reviewers for their insightful and constructive comments. This
630 work supports the Focused Coastlines and People (CoPe): Building Capacity for Adaptation in Rural
631 Coastal Communities for the Eastern Shore of Virginia, Virginia, United States, and is funded by the
632 National Science Foundation (NSF) under Grant No. 2052889 under the collaboration between the
633 University of Virginia (Virginia) and the East Carolina University (North Carolina), United States.

634 **References**

635 Ahmadalipour, A., Moradkhani, H., Castelletti, A., Magliocca, N., 2019. Future drought risk in Africa:
636 Integrating vulnerability, climate change, and population growth. *Science of the Total Environment*
637 662, 672–686. <https://doi.org/10.1016/j.scitotenv.2019.01.278>

638 Ahmed, Z., Tran, T.N.D., Nguyen, Q.B., 2020. Applying semi distribution hydrological model SWAT to
639 assess hydrological regime in Lai Giang catchment, Binh Dinh Province, Vietnam, in: Proceedings of
640 the 2nd Conference on Sustainability in Civil Engineering (CSCE'20), Capital University of Science
641 and Technology, Islamabad, Pakistan. p.8.

642 Anjanee Prabha, J., Tapas, M.R., 2020. Event-Based Rainfall-Runoff Modeling Using HEC-HMS. *IOSR*
643 *Journal of Mechanical and Civil Engineering (IOSR-JMCE)* e-ISSN 17, 41–59.
644 <https://doi.org/10.9790/1684-1704034159>

645 Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., Srinivasan, R., Santhi, C.,
646 Harmel, R.D., Van Griensven, A., Van Liew, M.W., Kannan, N., Jha, M.K., 2012. SWAT: Model use,
647 calibration, and validation. *Trans ASABE* 55, 1491–1508. <https://doi.org/10.13031/2013.42256>

648 Arshad, A., Mirchi, A., Samimi, M., Ahmad, B., 2022. Combining downscaled-GRACE data with SWAT
649 to improve the estimation of groundwater storage and depletion variations in the Irrigated Indus Basin
650 (IIB). *Science of the Total Environment* 838, 156044. <https://doi.org/10.1016/j.scitotenv.2022.156044>

651 Arshad, A., Zhang, W., Zhang, Z., Wang, S., Zhang, B., Jehanzeb, M., Cheema, M., Jafari, M., 2021.
652 Reconstructing high-resolution gridded precipitation data using an improved downscaling approach
653 over the high altitude mountain regions of Upper Indus Basin (UIB). *Science of the Total Environment*
654 784, 147140. <https://doi.org/10.1016/j.scitotenv.2021.147140>

655 Aryal, A., Tran, T.N.D., Kumar, B., Lakshmi, V., 2023. Evaluation of Satellite-Derived Precipitation
656 Products for Streamflow Simulation of a Mountainous Himalayan Watershed: A Study of Myagdi
657 Khola in Kali Gandaki. *Remote Sens (Basel)* 15, 47–62. <https://doi.org/10.3390/rs15194762>

658 Ashrafi, S., Kerachian, R., Pourmoghim, P., Behboudian, M., Motlaghzadeh, K., 2022a. Evaluating and
659 improving the sustainability of ecosystem services in river basins under climate change. *Science of the*
660 *Total Environment* 806. <https://doi.org/10.1016/j.scitotenv.2021.150702>

661 Ashrafi, S., Khoie, M.M.M., Kerachian, R., Shafiee-Jood, M., 2022b. Managing basin-wide ecosystem
662 services using the bankruptcy theory. *Science of the Total Environment* 842.
663 <https://doi.org/10.1016/j.scitotenv.2022.156845>

664 Aslam, R.A., Shrestha, S., Usman, M.N., Khan, S.N., Ali, S., Sharif, M.S., Sarwar, M.W., Saddique, N.,
665 Sarwar, A., Ali, M.U., Arshad, A., 2022. Integrated SWAT-MODFLOW Modeling-Based Groundwater
666 Adaptation Policy Guidelines for Lahore , Pakistan under Projected Climate Change , and Human
667 Development Scenarios. *Atmosphere (Basel)* 13, 2001. <https://doi.org/10.3390/atmos13122001>

668 Bahinipati, C.S., Venkatachalam, L., 2016. Role of climate risks and socio-economic factors in influencing
669 the impact of climatic extremes: a normalisation study in the context of Odisha, India. *Reg Environ
670 Change* 16, 177–188. <https://doi.org/10.1007/s10113-014-0735-4>

671 Baills, A., Garcin, M., Bulteau, T., 2020. Assessment of selected climate change adaptation measures for
672 coastal areas. *Ocean Coast Manag* 185. <https://doi.org/10.1016/j.ocecoaman.2019.105059>

673 Behboudian, M., Kerachian, R., Motlaghzadeh, K., Ashrafi, S., 2021. Evaluating water resources
674 management scenarios considering the hierarchical structure of decision-makers and ecosystem
675 services-based criteria. *Science of the Total Environment* 751.
676 <https://doi.org/10.1016/j.scitotenv.2020.141759>

677 Bieger, K., Arnold, J.G., Rathjens, H., White, M.J., Bosch, D.D., Allen, P.M., Volk, M., Srinivasan, R.,
678 2017. Introduction to SWAT+, a completely restructured version of the soil and water assessment tool.
679 *JAWRA Journal of the American Water Resources Association* 53, 115–130.
680 <https://doi.org/10.1111/1752-1688.12482>

681 Blasone, R.-S., Vrugt, J.A., Madsen, H., Rosbjerg, D., Robinson, B.A., Zyvoloski, G.A., 2008. Generalized
682 likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling. *Adv
683 Water Resour* 31, 630–648. <https://doi.org/10.1016/j.advwatres.2007.12.003>

684 Bonsoms, J., Oliva, M., Alonso-González, E., Revuelto, J., López-Moreno, J.I., 2023. Impact of climate
685 change on snowpack dynamics in coastal Central-Western Greenland. *Science of The Total
686 Environment* 169616. <https://doi.org/10.1016/j.scitotenv.2023.169616>

687 Cao, K., Liu, X., Fu, Q., Wang, Y., Liu, D., Li, T., Li, M., 2023. Dynamic and harmonious allocation of
688 irrigation water resources under climate change: A SWAT-based multi-objective nonlinear framework.
689 *Science of the Total Environment* 905. <https://doi.org/10.1016/j.scitotenv.2023.167221>

690 Carter, T.R., Parry, M.L., Harasawa, H., Nishioka, S., 1994. IPCC Technical Guidelines for Assessing
691 Climate Change Impacts and Adaptations. *Radioative Forcing of Climate Change; Evaluation of the
692 IPCC IS92 Emission Scenarios and the IPCC Guidelines for Nacional Greenhouse Gas Inventories.*

693 Center for Sustainable Systems, University of Michigan. 2023. "U.S. Cities Factsheet." Pub. No. CSS09-
694 06. No volume.

695 Chakraborty, T., Hsu, A., Manya, D., Sheriff, G., 2019. Disproportionately higher exposure to urban heat
696 in lower-income neighborhoods: A multi-city perspective. *Environmental Research Letters*.
697 <https://doi.org/10.1088/1748-9326/ab3b99>

698 Chen, C., Gan, R., Feng, D., Yang, F., Zuo, Q., 2022. Quantifying the contribution of SWAT modeling and
699 CMIP6 inputting to streamflow prediction uncertainty under climate change. *J Clean Prod* 364,
700 132675. <https://doi.org/10.1016/j.jclepro.2022.132675>

701 Chen, Y., Liu, A., Cheng, X., 2020. Quantifying economic impacts of climate change under nine future
702 emission scenarios within CMIP6. *Science of the Total Environment* 703.
703 <https://doi.org/10.1016/j.scitotenv.2019.134950>

704 Cheng, X., Chen, L., Sun, R., Kong, P., 2018. Land use changes and socio-economic development strongly
705 deteriorate river ecosystem health in one of the largest basins in China. *Science of the Total
706 Environment* 616–617, 376–385. <https://doi.org/10.1016/j.scitotenv.2017.10.316>

707 Cole, M.B., Augustin, M.A., Robertson, M.J., Manners, J.M., 2018. The science of food security. *NPJ Sci
708 Food* 2. <https://doi.org/10.1038/s41538-018-0021-9>

709 Darrel Jenerette, G., Harlan, S.L., Stefanov, W.L., Martin, C.A., 2011. Ecosystem services and urban heat
710 riskscape moderation: Water, green spaces, and social inequality in Phoenix, USA. *Ecological
711 Applications* 21, 2637–2651. <https://doi.org/10.1890/10-1493.1>

712 Donnelly, J., Daneshkhah, A., Abolfathi, S., 2024a. Forecasting global climate drivers using Gaussian
713 processes and convolutional autoencoders. *Eng Appl Artif Intell* 128.
714 <https://doi.org/10.1016/j.engappai.2023.107536>

715 Donnelly, J., Daneshkhah, A., Abolfathi, S., 2024b. Physics-informed neural networks as surrogate models
716 of hydrodynamic simulators. *Science of the Total Environment* 912.
717 <https://doi.org/10.1016/j.scitotenv.2023.168814>

718 Di Virgilio, G., Ji, F., Tam, E., Nishant, N., Evans, J.P., Thomas, C., Riley, M.L., Beyer, K., Grose, M.R.,
719 Narsey, S., Delage, F., 2022. Selecting CMIP6 GCMs for CORDEX Dynamical Downscaling: Model
720 Performance, Independence, and Climate Change Signals. *Earths Future* 10.
721 <https://doi.org/10.1029/2021EF002625>

722 Dias, C.G., Martins, F.B., Martins, M.A., 2024. Climate risks and vulnerabilities of the Arabica coffee in
723 Brazil under current and future climates considering new CMIP6 models. *Science of the Total
724 Environment* 907. <https://doi.org/10.1016/j.scitotenv.2023.167753>

725 Dile, Y., Srinivasan, R., George, C., 2019. QGIS Interface for SWAT+(QSWAT+), version 1.2. 2, Texas AM
726 University.

727 Douglas-Mankin, K.R., Srinivasan, R., Arnold, J.G., 2010. Soil and water assessment tool (SWAT) model:
728 Current developments and applications. *Trans ASABE* 53, 1423–1431.
729 <https://doi.org/10.13031/2013.34915>

730 Easterling, D.R., Meehl, G.A., Parmesan, C., Changnon, S.A., Karl, T.R., Mearns, L.O., 2000. Climate
731 Extremes: Observations, Modeling, and Impacts 289, 2068–2075.
732 <https://doi.org/10.1126/science.289.5487.2068>

733 Eyring, V., Bony, S., Meehl, G.A., Senior, C.A., Stevens, B., Stouffer, R.J., Taylor, K.E., Dynamique, D.M.,
734 Pierre, I., Laplace, S., Ipsi, L.M.D., 2016. Overview of the Coupled Model Intercomparison Project
735 Phase 6 (CMIP6) experimental design and organization. *Geosci Model Dev* 9, 1937–1958.
736 <https://doi.org/10.5194/gmd-9-1937-2016>

737 Faurie, C., Varghese, B.M., Liu, J., Bi, P., 2022. Association between high temperature and heatwaves with
738 heat-related illnesses: A systematic review and meta-analysis. *Science of the Total Environment*.
739 <https://doi.org/10.1016/j.scitotenv.2022.158332>

740 Garner, A.J., Mann, M.E., Emanuel, K.A., Kopp, R.E., Lin, N., Alley, R.B., Horton, B.P., DeConto, R.M.,
741 Donnelly, J.P., Pollard, D., 2017. Impact of climate change on New York City's coastal flood hazard:
742 Increasing flood heights from the preindustrial to 2300 CE. *Proc Natl Acad Sci U S A* 114, 11861–
743 11866. <https://doi.org/10.1073/pnas.1703568114>

744 Gopalakrishnan, T., Hasan, M.K., Haque, A.T.M.S., Jayasinghe, S.L., Kumar, L., 2019. Sustainability of
745 coastal agriculture under climate change. *Sustainability (Switzerland)* 11.
746 <https://doi.org/10.3390/su11247200>

747 Guan, X., Zhang, J., Bao, Z., Liu, C., Jin, J., Wang, G., 2021. Past variations and future projection of runoff
748 in typical basins in 10 water zones, China. *Science of the Total Environment* 798.
749 <https://doi.org/10.1016/j.scitotenv.2021.149277>

750 Gupta, H. V., Kling, H., Yilmaz, K.K., Martinez, G.F., 2009. Decomposition of the mean squared error and
751 NSE performance criteria: Implications for improving hydrological modelling. *J Hydrol (Amst)* 377,
752 80–91. <https://doi.org/10.1016/j.jhydrol.2009.08.003>

753 Hansen, G., Stone, D., 2016. Assessing the observed impact of anthropogenic climate change. *Nat Clim
754 Chang* 6, 532–537. <https://doi.org/10.1038/nclimate2896>

755 Hsiao, S.C., Chiang, W.S., Jang, J.H., Wu, H.L., Lu, W.S., Chen, W.B., Wu, Y.T., 2021. Flood risk
756 influenced by the compound effect of storm surge and rainfall under climate change for low-lying
757 coastal areas. *Science of the Total Environment* 764. <https://doi.org/10.1016/j.scitotenv.2020.144439>

758 IPCC, 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the
759 Sixth Assessment Report of the Intergovernmental Panel on Climate Change.

760 IPCC, 2019. Global warming of 1.5°C, Special Report on Global Warming of 1.5°C.

761 IPCC, 2013. Climate Change 2013—The Physical Science Basis, Chemistry International.
762 <https://doi.org/10.1515/ci-2021-0407>

763 IPPC, 2021. Chapter Outline of The Working Group III Contribution To The IPCC Six Assessment Report
764 (AR6).

765 Kang, H., Sridhar, V., Ali, S.A., 2022. Climate change impacts on conventional and flash droughts in the
766 Mekong River Basin. *Science of the Total Environment* 838.
767 <https://doi.org/10.1016/j.scitotenv.2022.155845>

768 Keith, D.J., 2014. Satellite remote sensing of chlorophyll a in support of nutrient management in the Neuse
769 and Tar-Pamlico River (North Carolina) estuaries. *Remote Sens Environ* 153, 61–78.
770 <https://doi.org/10.1016/j.rse.2014.05.019>

771 Kjellstrom, T., Holmer, I., Lemke, B., 2009. Workplace heat stress, health and productivity—an increasing
772 challenge for low and middle-income countries during climate change. *Glob Health Action* 2.
773 <https://doi.org/10.3402/gha.v2i0.2047>

774 Li, H., Meier, F., Lee, X., Chakraborty, T., Liu, J., Schaap, M., Sodoudi, S., 2018. Interaction between urban
775 heat island and urban pollution island during summer in Berlin. *Science of the Total Environment* 636,
776 818–828. <https://doi.org/10.1016/j.scitotenv.2018.04.254>

777 Li, X., Zhou, Y., Yu, S., Jia, G., Li, H., Li, W., 2019. Urban heat island impacts on building energy
778 consumption: A review of approaches and findings. Energy.
779 <https://doi.org/10.1016/j.energy.2019.02.183>

780 Lien, M.K., 2019. Vulnerability Assessment of Climate Change on Sea Level Rise Impacts on Some
781 Economic Sectors in Binh Dinh Province, Vietnam. Am J Clim Change 08, 302–324.
782 <https://doi.org/10.4236/ajcc.2019.82017>

783 Liu, C., Yang, C., Yang, Q., Wang, J., 2021. Spatiotemporal drought analysis by the standardized
784 precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) in Sichuan
785 Province, China. Sci Rep 11, 1–14. <https://doi.org/10.1038/s41598-020-80527-3>

786 Loc, H.H., Van Binh, D., Park, E., Shrestha, S., Dung, T.D., Son, V.H., Truc, N.H.T., Mai, N.P., Seijger, C.,
787 2021. Intensifying saline water intrusion and drought in the Mekong Delta: From physical evidence to
788 policy outlooks. Science of the Total Environment 757.
789 <https://doi.org/10.1016/j.scitotenv.2020.143919>

790 Lwasa, S., Mugagga, F., Wahab, B., Simon, D., Connors, J., Griffith, C., 2014. Urban and peri-urban
791 agriculture and forestry: Transcending poverty alleviation to climate change mitigation and adaptation.
792 Urban Clim 7, 92–106. <https://doi.org/10.1016/j.uclim.2013.10.007>

793 Ma, F., Yuan, X., 2021. Impact of climate and population changes on the increasing exposure to summertime
794 compound hot extremes. Science of the Total Environment 772.
795 <https://doi.org/10.1016/j.scitotenv.2021.145004>

796 Mafi-Gholami, D., Jaafari, A., Zenner, E.K., Nouri Kamari, A., Tien Bui, D., 2020. Vulnerability of coastal
797 communities to climate change: Thirty-year trend analysis and prospective prediction for the coastal
798 regions of the Persian Gulf and Gulf of Oman. Science of the Total Environment 741.
799 <https://doi.org/10.1016/j.scitotenv.2020.140305>

800 Mahdian, M., Hosseinzadeh, M., Siadatmousavi, S.M., Chalipa, Z., Delavar, M., Guo, M., Abolfathi, S.,
801 Noori, R., 2023. Modelling impacts of climate change and anthropogenic activities on inflows and
802 sediment loads of wetlands: case study of the Anzali wetland. Sci Rep 13.
803 <https://doi.org/10.1038/s41598-023-32343-8>

804 Mahdian, M., Noori, R., Salamattalab, M.M., Heggy, E., Bateni, S.M., Nohegar, A., Hosseinzadeh, M.,
805 Siadatmousavi, S.M., Fadaei, M.R., Abolfathi, S., 2024. Anzali Wetland Crisis: Unraveling the
806 Decline of Iran's Ecological Gem. Journal of Geophysical Research: Atmospheres 129.
807 <https://doi.org/10.1029/2023JD039538>

808 Mapes, K.L., Pricope, N.G., 2020. Evaluating SWAT model performance for runoff, percolation, and
809 sediment loss estimation in low-gradient watersheds of the Atlantic Coastal Plain. *Hydrology* 7.
810 <https://doi.org/10.3390/HYDROLOGY7020021>

811 Masciopinto, C., Liso, I.S., 2016. Assessment of the impact of sea-level rise due to climate change on
812 coastal groundwater discharge. *Science of the Total Environment* 569–570, 672–680.
813 <https://doi.org/10.1016/j.scitotenv.2016.06.183>

814 Maurer, E.P., Hidalgo, H.G., 2008. Utility of daily vs. monthly large-scale climate data: an intercomparison
815 of two statistical downscaling methods. *Hydrol Earth Syst Sci* 12, 551–563.
816 <https://doi.org/10.5194/hess-12-551-2008>

817 Maurer, E.P., Kayser, G., Doyle, L., Wood, A.W., 2018. Adjusting Flood Peak Frequency Changes to
818 Account for Climate Change Impacts in the Western United States. *J Water Resour Plan Manag* 144.
819 [https://doi.org/10.1061/\(asce\)wr.1943-5452.0000903](https://doi.org/10.1061/(asce)wr.1943-5452.0000903)

820 Merz, B., Basso, S., Fischer, S., Lun, D., Blöschl, G., Merz, R., Guse, B., Viglione, A., Vorogushyn, S.,
821 Macdonald, E., Wietzke, L., Schumann, A., 2022. Understanding Heavy Tails of Flood Peak
822 Distributions. *Water Resour Res.* <https://doi.org/10.1029/2021WR030506>

823 Meyer, L., 2015. IPCC Fifth Assessment Report Synthesis Report Key Messages.

824 Michael, C., 2023. North Carolina's Strong Population Growth Continues [WWW Document]. North
825 Carolina Office of State Budget and Management. URL
826 <https://www.osbm.nc.gov/blog/2023/12/20/north-carolinas-strong-population-growth-continues>
827 (accessed 1.24.24). Page 1-1, No volume.

828 Michael, C., 2022. NC's Population to Reach 14.0 Million by 2050 [WWW Document]. North Carolina
829 Office of State Budget and Management. URL <https://www.osbm.nc.gov/blog/2022/12/30/ncs-population-reach-140-million-2050> (accessed 1.24.24).

831 Mirzaei, M., Huang, Y.F., El-Shafie, A., Shatirah, A., 2015. Application of the generalized likelihood
832 uncertainty estimation (GLUE) approach for assessing uncertainty in hydrological models: a review.
833 *Stochastic environmental research and risk assessment* 29, 1265–1273.

834 Mishra, G.J., Kumar, A.U., Tapas, M.R., Oggu, P., Jayakumar, K. V., 2023. Evaluating hydrological
835 alterations and recommending minimum flow release from the Ujjani dam to improve the Bhima River
836 ecosystem health. *Water Science and Technology* 88, 763–777. <https://doi.org/10.2166/wst.2023.236>

837 Moriasi, D.N., Gitau, M.W., Pai, N., Daggupati, P., 2015. Hydrologic and water quality models:
838 Performance measures and evaluation criteria. *Trans ASABE* 58, 1763–1785.
839 <https://doi.org/10.13031/trans.58.10715>

840 Mulligan, R.P., Mallinson, D.J., Clunies, G.J., Rey, A., Culver, S.J., Zaremba, N., Leorri, E., Mitra, S., 2019.
841 Estuarine Responses to Long-Term Changes in Inlets, Morphology, and Sea Level Rise. *J Geophys
842 Res Oceans* 124, 9235–9257. <https://doi.org/10.1029/2018JC014732>

843 Nash, J.E., Sutcliffe, J. V, 1970. River flow forecasting through conceptual models part I—A discussion of
844 principles. *J Hydrol (Amst)* 10, 282–290. [https://doi.org/10.1016/0022-1694\(70\)90255-6](https://doi.org/10.1016/0022-1694(70)90255-6)

845 NC DEQ, 2009. Final Neuse River Basin wide water quality plan. Raleigh. Page: 1-514. No volume.

846 NC DEQ, 1994. Tar-Pamlico River basin wide water quality management plan. Division of Environmental
847 Management, Water Quality Section Raleigh, North Carolina. Page: 1-284. No volume.

848 NC Wildlife, 2018. Goose Creek Game Land Management Plan.

849 Neill, B.C.O., Tebaldi, C., Vuuren, D. Van, Eyring, V., Hurt, G., Knutti, R., Kriegler, E., Lamarque, J.,
850 2016. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. *Geosci Model Dev* 1–
851 35. <https://doi.org/10.5194/gmd-2016-84>

852 Neitsch, S.L., Arnold, J.G., Kiniry, J.R., Williams, J.R., 2011. Soil & Water Assessment Tool Theoretical
853 Documentation Version 2009. Texas Water Resources Institute 1–647.
854 <https://doi.org/10.1016/j.scitotenv.2015.11.063>

855 Nguyen, B.Q., Kantoush, S.A., Tran, T.-N.-D., Binh, D. Van, Vo, N.D., Saber, M., Sumi, T., 2023. Response
856 of Hydrological to Anthropogenic Activities in a Tropical Basin. pp. 269–278.
857 https://doi.org/10.3850/978-90-833476-1-5_iahr40wc-p1339-cd

858 Nguyen, B.Q., Tran, T.N.D., Grodzka-Łukaszewska, M., Sinicyn, G., Lakshmi, V., 2022. Assessment of
859 Urbanization-Induced Land-Use Change and Its Impact on Temperature, Evaporation, and Humidity
860 in Central Vietnam. *Water (Switzerland)* 14. <https://doi.org/10.3390/w14213367>

861 Nguyen, T. V., Dietrich, J., Dang, T.D., Tran, D.A., Van Doan, B., Sarrazin, F.J., Abbaspour, K., Srinivasan,
862 R., 2022. An interactive graphical interface tool for parameter calibration, sensitivity analysis,
863 uncertainty analysis, and visualization for the Soil and Water Assessment Tool. *Environmental
864 Modelling and Software* 156. <https://doi.org/10.1016/j.envsoft.2022.105497>

865 Noor, R., Arshad, A., Shafeequ, M., Liu, J., Baig, A., 2023. Combining APHRODITE Rain Gauges-Based
866 Precipitation with Downscaled-TRMM Data to Translate High-Resolution Precipitation Estimates in
867 the Indus Basin. *Remote Sens (Basel)* 15, 318. <https://doi.org/10.3390/rs15020318>

868 Noori, R., Maghrebi, M., Jessen, S., Bateni, S.M., Heggy, E., Javadi, S., Noury, M., Pistre, S., Abolfathi,
869 S., AghaKouchak, A., 2023. Decline in Iran's groundwater recharge. *Nat Commun* 14.
870 <https://doi.org/10.1038/s41467-023-42411-2>

871 O'Donoghue, S., Lehmann, M., Major, D., Major-Ex, G., Sutherland, C., Motau, A., Haddaden, N., Kibria,
872 A.S., Costanza, R., Groves, C., Behie, A., Johnson, K., 2021. Adaptation to climate change in small
873 coastal cities: The influence of development status on adaptation response. *Ocean Coast Manag* 211.
874 <https://doi.org/10.1016/j.ocecoaman.2021.105788>

875 Omojola, A., Dettinger, M.D., Diego, S., 2012. Climate change and cities: first assessment report of the
876 Urban Climate Change Research Network. *Choice Reviews Online* 49, 49-3876-49-3876.
877 <https://doi.org/10.5860/choice.49-3876>

878 Osmond, D.L., Hoag, D.L.K., Luloff, A.E., Meals, D.W., Neas, K., 2015. Farmers' Use of Nutrient
879 Management: Lessons from Watershed Case Studies. *J Environ Qual* 44, 382–390.
880 <https://doi.org/10.2134/jeq2014.02.0091>

881 P. W. Gassman, M. R. Reyes, C. H. Green, J. G. Arnold, 2007. The Soil and Water Assessment Tool:
882 Historical Development, Applications, and Future Research Directions. *Trans ASABE* 50, 1211–1250.
883 <https://doi.org/10.13031/2013.23637>

884 Parajuli, R., Thoma, G., Matlock, M.D., 2019. Environmental sustainability of fruit and vegetable
885 production supply chains in the face of climate change: A review. *Science of the Total Environment*.
886 <https://doi.org/10.1016/j.scitotenv.2018.10.019>

887 Park, E., Loc, H.H., Van Binh, D., Kantouch, S., 2022. The worst 2020 saline water intrusion disaster of the
888 past century in the Mekong Delta: Impacts, causes, and management implications. *Ambio* 51, 691–
889 699. <https://doi.org/10.1007/s13280-021-01577-z>

890 Park, T., Hashimoto, H., Wang, W., Thrasher, B., Michaelis, A.R., Lee, T., Brosnan, I.G., Nemani, R.R.,
891 2023. What Does Global Land Climate Look Like at 2°C Warming? *Earths Future* 11, 1–16.
892 <https://doi.org/10.1029/2022EF003330>

893 Peng, S., Wang, C., Li, Z., Mihara, K., Kuramochi, K., Toma, Y., Hatano, R., 2023. Climate change multi-
894 model projections in CMIP6 scenarios in Central Hokkaido, Japan. *Sci Rep* 13, 1–18.
895 <https://doi.org/10.1038/s41598-022-27357-7>

896 Pignotti, G., Rathjens, H., Cibin, R., Chaubey, I., Crawford, M., 2017. Comparative analysis of HRU and
897 grid-based SWAT models. *Water (Switzerland)* 9, 272. <https://doi.org/10.3390/w9040272>

898 Porter, J.R., Shu, E., Amodeo, M., Hsieh, H., Freeman, N., Chu, J., 2021. Community Flood Impacts and
899 Infrastructure: Examining National Flood Impacts Using a High Precision Assessment Tool in the
900 United States. *Water (Basel)* 13, 25–31. [https://doi.org/https://doi.org/10.3390/w13213125](https://doi.org/10.3390/w13213125)

901 Raftery, A.E., Zimmer, A., Frierson, D.M.W., Startz, R., Liu, P., 2017. Less than 2 °c warming by 2100
902 unlikely. *Nat Clim Chang* 7, 637–641. <https://doi.org/10.1038/nclimate3352>

903 Ren, J., Wang, W., Wei, J., Li, H., Li, X., Liu, G., Chen, Y., Ye, S., 2023. Evolution and prediction of
904 drought-flood abrupt alternation events in Huang-Huai-Hai River Basin, China. *Science of the Total
905 Environment* 869. <https://doi.org/10.1016/j.scitotenv.2023.161707>

906 Rosenzweig, C., Neofotis, P., 2013. Detection and attribution of anthropogenic climate change impacts.
907 *Wiley Interdiscip Rev Clim Change* 4, 121–150. <https://doi.org/10.1002/wcc.209>

908 Saadi, Z., Alias, N.E., Yusop, Z., Iqbal, Z., Houmsi, M.R., Houmsi, L.N., Ramli, M.W.A., Muhammad,
909 M.K.I., 2024. Application of relative importance metrics for CMIP6 models selection in projecting
910 basin-scale rainfall over Johor River basin, Malaysia. *Science of the Total Environment* 912.
911 <https://doi.org/10.1016/j.scitotenv.2023.169187>

912 Saeedi, M., Kim, H., Nabaei, S., Brocca, L., Lakshmi, V., Mosaffa, H., 2022. A comprehensive assessment
913 of SM2RAIN-NWF using ASCAT and a combination of ASCAT and SMAP soil moisture products
914 for rainfall estimation. *Science of the Total Environment* 838.
915 <https://doi.org/10.1016/j.scitotenv.2022.156416>

916 Sanjay Mankar, T., Mane, S., Mali, S.T., Tapas, M.R., 2020. Analysis and Development of Watershed for
917 Ruikhed Village, Maharashtra-A Case Study. *International Research Journal of Engineering and
918 Technology*. Page: 2265-2270. Volume 7. Issue 8.

919 Shafeeqe, M., Hafeez, M., Sarwar, A., Arshad, A., Khurshid, T., 2023a. Quantifying future water saving
920 potential under climate change and groundwater recharge scenarios in Lower Chenab Canal, Indus
921 River Basin. *Theor Appl Climatol*. <https://doi.org/10.1007/s00704-023-04621-y>

922 Shafeeqe, M., Luo, Y., Arshad, A., Muhammad, S., 2023b. Assessment of climate change impacts on
923 glacio hydrological processes and their variations within critical zone. *Natural Hazards* 115, 2721–
924 2748. <https://doi.org/10.1007/s11069-022-05661-9>

925 Song, Y.H., Chung, E.S., Shahid, S., 2022. Differences in extremes and uncertainties in future runoff
926 simulations using SWAT and LSTM for SSP scenarios. *Science of the Total Environment* 838.
927 <https://doi.org/10.1016/j.scitotenv.2022.156162>

928 Svoboda, M., Lecomte, D., Hayes, M., Heim, R., Gleason, K., Angel, J., Rippey, B., Tinker, R., Palecki,
929 M., Stooksbury, D., Miskus, D., Stephens, S., 2002. THE DROUGHT MONITOR. *Bull Am Meteorol
930 Soc* 1181–1190. <https://doi.org/10.1175/1520-0477-83.8.1181>

931 SWAT+, 2020. CHAPTER FILE.CIO SWAT + INPUT DATA : Variable name. Swat+ Input/Output File
932 Documentation. Page: 1-222. No volume.

933 SWAT+, 2018. Inputs_Swatplus.

934 Tan, L., Zhang, X., Qi, J., Sun, D., Marek, G.W., Feng, P., Li, Baogui, Liu, D.L., Li, Baoguo, Srinivasan,
935 R., Chen, Y., 2023. Assessment of the sustainability of groundwater utilization and crop production
936 under optimized irrigation strategies in the North China Plain under future climate change. *Science of
937 the Total Environment* 899. <https://doi.org/10.1016/j.scitotenv.2023.165619>

938 Tapas, M., Etheridge, J.R., Howard, G., Lakshmi, V.V., Tran, T.N.D., 2022a. Development of a Socio-
939 Hydrological Model for a Coastal Watershed: Using Stakeholders' Perceptions, in: AGU Fall Meeting
940 Abstracts. pp. H22O--0996.

941 Tapas, M.R., Kumar, U., Mogili, S., Jayakumar, K. V., 2022b. Development of multivariate integrated
942 drought monitoring index (MIDMI) for Warangal region of Telangana, India. *Journal of Water and
943 Climate Change* 13. <https://doi.org/10.2166/wcc.2021.065>

944 Tapas, M., Etheridge, J. R., Tran, T.-N.-D., Le, M.-H., Hinckley B., Lakshmi, V., 2023. Satellite-based
945 rainfall datasets and autocalibration techniques' effects on SWAT+ flow prediction. September 19,
946 2023. <https://doi.org/10.22541/au.169510515.57261841/v1>

947 Tran, T.-N.-D., & Lakshmi, V., 2022. The land use changes impacts on socio-economic drivers and
948 simulation of surface and groundwater in the Eastern Shore of Virginia, the United States. AGU Fall
949 Meeting Abstracts, 2022, H42D-1270.

950 Tarboton, D.G., 2011. A tutorial for using TauDEM to delineate a single watershed.

951 Tebaldi, C., Debeire, K., Eyring, V., Fischer, E., Fyfe, J., Friedlingstein, P., Knutti, R., Lowe, J., O'Neill,
952 B., Sanderson, B., Van Vuuren, D., Riahi, K., Meinshausen, M., Nicholls, Z., Tokarska, K., Hurtt, G.,
953 Kriegler, E., Meehl, G., Moss, R., Bauer, S., Boucher, O., Brovkin, V., Yhb, Y., Dix, M., Gualdi, S.,
954 Guo, H., John, J., Kharin, S., Kim, Y.H., Koshiro, T., Ma, L., Olivié, D., Panickal, S., Qiao, F., Rong,
955 X., Rosenbloom, N., Schupfner, M., Séférian, R., Sellar, A., Semmler, T., Shi, X., Song, Z., Steger, C.,
956 Stouffer, R., Swart, N., Tachiiri, K., Tang, Q., Tatebe, H., Voldoire, A., Volodin, E., Wyser, K., Xin,
957 X., Yang, S., Yu, Y., Ziehn, T., 2021. Climate model projections from the Scenario Model
958 Intercomparison Project (ScenarioMIP) of CMIP6. *Earth System Dynamics* 12, 253–293.
959 <https://doi.org/10.5194/esd-12-253-2021>

960 Thibeault, J.M., Seth, A., 2014. Changing climate extremes in the Northeast United States: observations
961 and projections from CMIP5. *Clim Change* 127, 273–287. <https://doi.org/10.1007/s10584-014-1257-2>

963 Thrasher, B., Wang, W., Michaelis, A., Melton, F., Lee, T., Nemani, R., 2022. NASA Global Daily
964 Downscaled Projections, CMIP6. *Sci Data* 9, 1–6. <https://doi.org/10.1038/s41597-022-01393-4>

965 Toimil, A., Losada, I.J., Nicholls, R.J., Dalrymple, R.A., Stive, M.J.F., 2020. Addressing the challenges of
966 climate change risks and adaptation in coastal areas: A review. *Coastal Engineering*.
967 <https://doi.org/10.1016/j.coastaleng.2019.103611>

968 Tolson, B.A., Shoemaker, C.A., 2007. Dynamically dimensioned search algorithm for computationally
969 efficient watershed model calibration. *Water Resour Res* 43. <https://doi.org/10.1029/2005WR004723>

970 Tran, T.N.D., Ahmed, Z., Vo, N.D., 2021a. APPLICATION OF HYDRODYNAMIC MODELLING TO
971 ASSESS THE EFFICIENCY OF HURRICANE PROTECTION MEASURE AT XOM RO DIKE,
972 PHU YEN PROVINCE, VIETNAM, in: 2nd Conference on Sustainability in Civil Engineering
973 (CSCE'20), Department of Civil Engineering Capital University of Science and Technology,
974 Islamabad Pakistan.

975 Tran, T.-N.-D., Nguyen, Q.B., Zeeshan, A., 2021b. Application of Plaxis for Calculating the Construction
976 Stability and Soft Embankment in Protecting Ha Thanh, in: 2nd Conference on Sustainability in Civil
977 Engineering (CSCE) 2020. pp. 202–210.

978 Tran, T.-N.-D., Do, S.K., Nguyen, B.Q., Tran, V.N., Grodzka-Lukaszewska, M., Sinicyn, G., Lakshmi, V.,
979 2024. Investigating the Future Flood and Drought Shifts in the Transboundary Srepok River basin
980 Using CMIP6 Projections. *IEEE J Sel Top Appl Earth Obs Remote Sens* 17, 7516–7529.
981 <https://doi.org/10.1109/JSTARS.2024.3380514>

982 Tran, T.-N.-D., Le, M.-H., Zhang, R., Nguyen, B.Q., Bolten, J.D., Lakshmi, V., 2023a. Robustness of
983 gridded precipitation products for vietnam basins using the comprehensive assessment framework of
984 rainfall. *Atmos Res* 293, 106923. <https://doi.org/10.1016/j.atmosres.2023.106923>

985 Tran, T.-N.-D., Nguyen, B.Q., Grodzka-Łukaszewska, M., Sinicyn, G., Lakshmi, V., 2023b. The role of
986 reservoirs under the impacts of climate change on the Srepok River basin, Central Highlands of
987 Vietnam. *Front Environ Sci* 11. <https://doi.org/10.3389/fenvs.2023.1304845>

988 Tran, T.N.D., Nguyen, B.Q., Vo, N.D., Le, M.H., Nguyen, Q.D., Lakshmi, V., Bolten, J.D., 2023c.
989 Quantification of global Digital Elevation Model (DEM) – A case study of the newly released
990 NASADEM for a river basin in Central Vietnam. *J Hydrol Reg Stud* 45.
991 <https://doi.org/10.1016/j.ejrh.2022.101282>

992 Tran, T.N.D., Nguyen, B.Q., Zhang, R., Aryal, A., Grodzka-Łukaszewska, M., Sinicyn, G., Lakshmi, V.,
993 2023d. Quantification of Gridded Precipitation Products for the Streamflow Simulation on the Mekong
994 River Basin Using Rainfall Assessment Framework: A Case Study for the Srepok River Subbasin,
995 Central Highland Vietnam. *Remote Sens (Basel)* 15. <https://doi.org/10.3390/rs15041030>

996 Tran, T.-N.-D., Nguyen, B. Q., Tran, V. N., Le, M.-H., Bolten, J., Do, S. K., Doan, V. B., Do, H. X., Arshad,
997 A., Kantouch, S. A., Lakshmi, V., 2023e. Quantification of Climate Change impacts on the Srepok
998 River, Mekong River basin. AGU. <https://doi.org/10.22541/essoar.170365224.48937662/v1>

999 Tran, T.N.D., Nguyen, Q.B., Nguyen, T.T., Vo, N.D., Nguyen, C.P., Gourbesville, P., 2022a. Operational
1000 Methodology for the Assessment of Typhoon Waves Characteristics. Application to Ninh Thuan
1001 Province, Vietnam, in: Springer Water. Springer Nature, pp. 887–902. https://doi.org/10.1007/978-981-19-1600-7_55

1003 Tran, T.N.D., Nguyen, Q.B., Vo, N.D., Marshall, R., Gourbesville, P., 2022b. Assessment of Terrain
1004 Scenario Impacts on Hydrological Simulation with SWAT Model. Application to Lai Giang
1005 Catchment, Vietnam, in: Springer Water. Springer Nature, pp. 1205–1222.
1006 https://doi.org/10.1007/978-981-19-1600-7_77

1007 Tran, T. N. D., Nguyen, B. Q., Le, M.-H., Lakshmi, V. (Venkat), Bolten, J. D., & Aryal, A., 2022c.
1008 Robustness of Gridded Precipitation Products in Hydrological Assessment for Vietnam River basins.
1009 AGU Fall Meeting Abstracts, 2022, H22M-07.

1010 Tran, T.N.D, Nguyen, Q.B., Tam, D., Le, L., Nguyen, T.D., Vo, N.D., Gourbesville, P., 2022d. Evaluate the
1011 Influence of Groynes System on the Hydraulic Regime in the Ha Thanh River, Binh Dinh Province,

1012 Vietnam, in: Advances in Hydroinformatics. pp. 241–254. https://doi.org/10.1007/978-981-19-1600-7_15

1014 Trang, N.T.T., Shrestha, S., Shrestha, M., Datta, A., Kawasaki, A., 2017. Evaluating the impacts of climate
1015 and land-use change on the hydrology and nutrient yield in a transboundary river basin: A case study
1016 in the 3S River Basin (Sekong, Sesan, and Srepok). *Science of the Total Environment* 576, 586–598.
1017 <https://doi.org/10.1016/j.scitotenv.2016.10.138>

1018 Trenberth, K.E., Dai, A., Van Der Schrier, G., Jones, P.D., Barichivich, J., Briffa, K.R., Sheffield, J., 2014.
1019 Global warming and changes in drought. *Nat Clim Chang* 4, 17–22.
1020 <https://doi.org/10.1038/nclimate2067>

1021 Ulpiani, G., 2021. On the linkage between urban heat island and urban pollution island: Three-decade
1022 literature review towards a conceptual framework. *Science of the Total Environment*.
1023 <https://doi.org/10.1016/j.scitotenv.2020.141727>

1024 Umar, M., Khan, S.N., Arshad, A., Aslam, R.A., Khan, H.M.S., Rashid, H., Pham, Q.B., Nasir, A., Noor,
1025 R., Khedher, K.M., Anh, D.T., 2022. A modified approach to quantify aquifer vulnerability to pollution
1026 towards sustainable groundwater management in Irrigated Indus Basin. *Environmental Science and*
1027 *Pollution Research* 29, 27257–27278. <https://doi.org/10.1007/s11356-021-17882-9>

1028 UN Population Division, 2018. *World Urbanization Prospects: The 2018 Revision*.

1029 U.S. Census Bureau, 2020. Nation's Urban and Rural Populations Shift Following 2020 Census [WWW
1030 Document]. <https://www.census.gov/programs-surveys/decennial-census/decade/2020/2020-census->
1031 *results.html*. No Page. No volume.

1032 U.S. Census Bureau, 2022. Nation's Urban and Rural Populations Shift Following 2022 Census [WWW
1033 Document]. <https://www.census.gov/newsroom/press-releases/2022/urban-rural-populations.html>.
1034 No Page. No volume.

1035 USGS, 2020. Land change monitoring, assessment, and projection. U.S. Geological Survey Fact Sheet
1036 2020, 1–4. <https://doi.org/10.3133/fs20203024>

1037 Villarini, G., Smith, J.A., 2010. Flood peak distributions for the eastern United States. *Water Resour Res*
1038 46. <https://doi.org/10.1029/2009WR008395>

1039 Wan, X., Wang, W., Liu, J., Tong, T., 2014. Estimating the sample mean and standard deviation from the
1040 sample size, median, range and/or interquartile range. *BMC Med Res Methodol* 14, 135.
1041 <https://doi.org/10.1186/1471-2288-14-135>

1042 Wang, T., Tu, X., Singh, V.P., Chen, X., Lin, K., 2021. Global data assessment and analysis of drought
1043 characteristics based on CMIP6. *J Hydrol (Amst)* 596, 126091.
1044 <https://doi.org/10.1016/j.jhydrol.2021.126091>

1045 Wood, A.W., Leung, L.R., Sridhar, V., Lettenmaier, D.P., 2004. Hydrologic implications of dynamical and
1046 statistical approaches to downscaling climate model outputs. *Clim Change* 62, 189–216.
1047 <https://doi.org/10.1023/B:CLIM.0000013685.99609.9e>

1048 Wood, A.W., Maurer, E.P., Kumar, A., Lettenmaier, D.P., 2002. Long-range experimental hydrologic
1049 forecasting for the eastern United States. *Journal of Geophysical Research: Atmospheres* 107, ACL 6-
1050 1-ACL 6-15. <https://doi.org/10.1029/2001JD000659>

1051 Xu, X., Yun, X., Tang, Q., Cui, H., Wang, J., Zhang, L., Chen, D., 2023. Projected seasonal changes in
1052 future rainfall erosivity over the Lancang-Mekong River basin under the CMIP6 scenarios. *J Hydrol*
1053 (Amst) 620, 129444. <https://doi.org/10.1016/j.jhydrol.2023.129444>

1054 Yin, D., Harris, C., Tran, T. N. D., Tapas, M., Etheridge, J. R., Moysey, S. M., & Lakshmi, V. V. (2024,
1055 February). Effects of Sea-Level Rise and River Flow Variation on Estuarine Salinity in a Changing
1056 Climate: Insights from the Pamlico River Estuary, USA. In 2024 Ocean Sciences Meeting. AGU.

1057 Yin, Y., Wu, Y., Bartell, S.M., Cosgriff, R., 2009. Patterns of forest succession and impacts of flood in the
1058 Upper Mississippi River floodplain ecosystem. *Ecological Complexity* 6, 463–472.
1059 <https://doi.org/10.1016/j.ecocom.2009.08.004>

1060 Yun, X., Tang, Q., Li, J., Lu, H., Zhang, L., Chen, D., 2021. Can reservoir regulation mitigate future climate
1061 change induced hydrological extremes in the Lancang-Mekong River Basin? *Science of the Total
1062 Environment* 785, 147322. <https://doi.org/10.1016/j.scitotenv.2021.147322>

1063 Zhang, T., Yang, J., Winrich, A., Will, R.E., Zou, C.B., 2024. Trade-off of ecosystem productivity and water
1064 use related to afforestation in southcentral USA under climate change. *Science of The Total
1065 Environment* 915, 170255. <https://doi.org/10.1016/j.scitotenv.2024.170255>

1066 Zhang, W., Zheng, C., Chen, F., 2019. Mapping heat-related health risks of elderly citizens in mountainous
1067 area: A case study of Chongqing, China. *Science of the Total Environment* 663, 852–866.
1068 <https://doi.org/10.1016/j.scitotenv.2019.01.240>

1069 Zhang, Y., Liu, H., Qi, J., Feng, P., Zhang, X., Liu, D.L., Marek, G.W., Srinivasan, R., Chen, Y., 2023.
1070 Assessing impacts of global climate change on water and food security in the black soil region of

1071 Northeast China using an improved SWAT-CO2 model. *Science of the Total Environment* 857.
1072 <https://doi.org/10.1016/j.scitotenv.2022.159482>

1073 Zhong, R., Zhao, T., Chen, X., Jin, H., 2022. Monitoring drought in ungauged areas using satellite altimetry:
1074 The Standardized River Stage Index. *J Hydrol (Amst)* 612, 128308.
1075 <https://doi.org/10.1016/j.jhydrol.2022.128308>

1076 Zhou, Z., Ding, Y., Fu, Q., Wang, C., Wang, Y., Cai, H., Liu, S., Huang, S., Shi, H., 2023. Insights from
1077 CMIP6 SSP scenarios for future characteristics of propagation from meteorological drought to
1078 hydrological drought in the Pearl River Basin. *Science of the Total Environment* 899.
1079 <https://doi.org/10.1016/j.scitotenv.2023.165618>