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ABSTRACT

Broken foreland basins are caused by crustal-scale contractional basement structures that compartmentalize (or
break) a contiguous retroarc or collisional foreland basin into smaller disconnected basins. Broken foreland
basins differ from their unbroken counterparts in their deformational, depositional, and geodynamic framework.
Whereas contiguous (unbroken) foreland basins are generated mainly by regional flexural loading due to
shortening of supracrustal cover strata and uppermost basement in organized ramp-flat thrust systems, broken
foreland basins are governed principally by isolated topographic loads and structural tilting associated with
widely spaced crustal-scale reverse faults that accommodate intraplate basement shortening. These structural
contrasts foster either décollement-style fold-thrust belts (orogenic wedges) with large integrated erosional
drainage systems (watersheds) spanning diverse sediment source regions (including thin-skinned fold-thrust
belts, elevated hinterland zones, accreted terranes, and magmatic arcs) or independent foreland block uplifts
with local drainage systems dominated by basement sources. Although the genesis of broken foreland basins has
been uniquely attributed to flat slab subduction, these basins are also sensitive to inherited structural, strati-
graphic, thermal, and rheological configurations, as well as synorogenic mass redistribution in relationship to
climate, erosion, sediment transport efficiency, and sediment accumulation.

Despite the many modern and ancient examples, questions persist over the underlying geodynamic processes
that promote development of a broken or compartmentalized foreland basin instead of a single regionally unified
flexural foreland basin. Additional uncertainties and misconceptions surround the criteria used to define broken
foreland basins and their linkages to subduction dynamics (chiefly slab geometry), strain magnitude, and
structural reactivation. Here we review the tectonic framework of broken foreland basins—with emphasis on
South and North America (Pampean and Laramide provinces)—and propose that their genesis can be ascribed to
a combination of: (i) underlying conditions in the form of tectonic inheritance, including precursor structural,
stratigraphic, thermal, and rheological heterogeneities and anisotropies; and (ii) mechanical triggers, such as
increased stress, enhanced horizontal stress transmission, and/or selective crustal strengthening or weakening.

1. Introduction

related retroarc foreland basins and collision-related peripheral fore-
land basins, broken foreland basins were originally recognized by

Broken foreland basins are a fundamental but commonly overlooked Dickinson (1976) as an endmember type of sedimentary basin in zones
component of contractional orogenic systems. Along with subduction- of continental crustal shortening (Fig. 1). He defined broken foreland
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Fig. 1. Schematic cross sections comparing (A) a contiguous (unbroken) foreland basin (after DeCelles and Giles, 1996) with (B) a broken foreland basin. Note that

both nonmarine and marine conditions are possible.

basins as zones of subsidence “formed where basement is involved in
foreland deformation to cause block uplifts and basement-cored folds sepa-
rating isolated basinal depressions; this style of deformation may occur in
either peripheral or retroarc settings.” Broken foreland basins form in
continental interior regions in response to isostatic and dynamic forces,
including flexural subsidence during intraplate reverse faulting and
long-wavelength dynamic subsidence induced by mantle flow and me-
chanical interactions with a subducting or underthrusting plate (Cross,
1986; Dickinson et al., 1988; Mitrovica et al., 1989; Liu et al., 2014).
Further accommodation space may be generated by local footwall tilting
adjacent to crustal-scale reverse faults and by drainage closure dictated
by topographic barriers (McQueen and Beaumont, 1989; Jordan, 1995;
Horton, 2012; Simpson, 2014). Broken foreland provinces are com-
partmentalized by positive topographic features developed above
basement-cored block uplifts (generally fault-bounded structural highs
or arches) that deform the adjacent basin margins. Broken foreland
basins are readily identified in modern systems and have been proposed
for ancient systems involving continental collision or subduction-related
Andean-type (Cordilleran) orogenesis (e.g., Suttner et al., 1981; Kluth
and Coney, 1981; Schwartz, 1982; DeCelles, 1986; Hendrix, 2000;
Ramos et al., 2002; Li and Li, 2007; Liu et al., 2007; Ramos and Folguera,
2009; Hain et al., 2011; Martin-Gonzalez and Heredia, 2011; Strecker
et al., 2012; Coutand et al., 2016; Fang et al., 2016; Kusky et al., 2016;
Leary et al., 2017).

Many broken foreland basins result from the structural partitioning
(or breaking) of a larger predecessor basin that developed adjacent to an
orogenic wedge, including not only antecedent retroarc and peripheral
foreland basins along ocean-continent and continent-continent conver-
gent plate boundaries, respectively, but also pro- and retro-wedge basins
flanking doubly vergent thrust wedges in continental collision zones
(Dickinson, 1974, 1976; Naylor and Sinclair, 2008; Ingersoll, 2012,
2019). Contiguous (unbroken) foreland basins exhibit regional deposi-
tional continuity over hundreds of kilometers and are generally coupled
with a tapered orogenic wedge containing a thin-skinned fold-thrust belt
characterized by organized ramp-flat fault systems above a regional
décollement (Fig. 1A). In contrast, the development of broken foreland
basins as smaller features with limited depositional continuity is more
often affiliated with thick-skinned deformation involving independent
faults with a single major ramp that penetrates to middle or lower
crustal levels (Fig. 1B). In retroarc systems, basin compartmentalization
and intraforeland deformational processes have been linked to shifts in
subduction geodynamics, including shallowing of a subducting slab to a
subhorizontal (flat) orientation (e.g., Bird, 1984; Gutscher et al., 2000;
Liu et al., 2008; Martinod et al., 2010; Eakin et al., 2014; Wagner et al.,
2017; Axen et al., 2018; Bishop et al., 2018; Horton, 2018a). Flat slab
subduction is widely recognized as an important tectonic process that

shaped the modern Andes of South America and the U.S. Rocky Moun-
tains during the Late Cretaceous—Paleogene Laramide orogeny of west-
ern North America (Coney and Reynolds, 1977; Dickinson and Snyder,
1978; Constenius, 1996; Bird, 1998; Ramos et al., 2002; Dickinson,
2004; Ramos, 2009; Ramos and Folguera, 2009; Carlotto, 2013; Yonkee
and Weil, 2015; Horton et al., 2022). However, because other precursor
conditions or discrete catalysts may induce intraplate deformation
within continental interiors (Lacombe and Bellahsen, 2016; Giambiagi
et al., 2022; Horton and Folguera, 2022), flat slab subduction is not
singularly required for the genesis of broken foreland basins. Additional
influences on the formation of broken foreland basins include inherited
structural, stratigraphic, rheological, and thermal properties as well as
operative surface processes that regulate erosion and deposition in
response to variations in climate, sediment transport efficiency, and
accommodation.

The purpose of this paper is to review the tectonic framework of
broken foreland basins and explore the underlying structural, geo-
dynamic, and surface processes that govern their development. We
outline the plate tectonic, structural, stratigraphic, accommodation, and
sediment routing configuration for broken foreland basins, with
emphasis on retroarc systems in North and South America (Fig. 2),
noting that many features are shared by collision-related peripheral
systems. In our assessment, we propose two sets of circumstances
conducive to the development of broken foreland basins: first, favorable
conditions inherited from the preceding geologic history; and second,
specific catalysts during orogenesis that trigger distributed intraforeland
shortening. We postulate that basin genesis can be attributed to the net
effects of: (i) tectonic inheritance in the form of preexisting structural,
stratigraphic, rheological, and thermal conditions; and (ii) mechanical
triggers that may include elevated stress, long-distance stress trans-
mission, and/or crustal strengthening or weakening within the intra-
plate regions that host broken foreland basins.

2. Definition of broken foreland basins

A broken foreland basin (Fig. 1) is defined here as: (a) region of
sediment accommodation that forms in an intraplate continental setting
inboard of a retroarc or collisional orogenic belt; (b) the basin is com-
partmentalized (partitioned or fragmented) by positive topographic
features produced by discrete basement-involved contractional struc-
tures; (c) accommodation is regulated by flexural loading and fault-
block tilting with subordinate dynamic subsidence and sediment infill-
ing (ponding) within internally drained areas. Multiple criteria differ-
entiate broken foreland basins from their unbroken counterparts
(Table 1).

Contiguous (unbroken) foreland basins display considerable regional
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Table 1

Key elements of contiguous (unbroken) and broken foreland basins.
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Basin type:

Contiguous foreland basin

Broken foreland basin

Basin dimensions
Basin fill architecture

Basin margin
configuration

Bounding fault
geometries

Shortening magnitude

Accommodation
mechanisms

Accumulation rates

Depositional
environments
Stratigraphic patterns

Drainage systems and
sediment routing

Sediment source regions

Provenance evolution

Precursor basin
conditions

Basin evolution

Examples

Long wavelength: ~100-300 km wide x >500-1000 km long.
Asymmetric, with a single depocenter 3-10 km thick.

Contractional structures along proximal margin; sedimentary pinchout/
onlap onto distal margin (forebulge or craton).

Ramp-flat fold-thrust structures above decollements within sedimentary
cover or at basement-cover interface.

>20-50% shortening in thin-skinned fold-thrust belt flanking the basin.

Flexure due to thrust loading during regional shortening in the fold-thrust
belt and crustal thickening; dynamic subsidence relate to interactions with
subducting/underthrusting plate.

>100-500 m/Myr (>0.1-0.5 mm/yr)

Marine: shallow marine, coastal, delta. Nonmarine: fluvial megafan,
fluvial.
Common upsection stratigraphic shift from distal to proximal facies.

Large integrated erosional drainage networks spanning diverse sediment
source regions.
Fold-thrust belt, magmatic arc, accreted terranes, suture zones.

Early-stage: chiefly magmatic arc, accreted terranes, suture zones.
Late-stage: fold-thrust belt.

Retroarc: extensional basin or post-extensional thermal sag. Collisional:
subduction trench or passive margin.

Continuous basin development and cratonward advance throughout
contractional orogenesis (>50-100 Myr).

North American Cordilleran foreland; Himalayan foreland (India-Asia
collision); Zagros foreland (Arabia-Eurasia collision); Appalachian
foreland; pre-late Miocene Alpine (broader European) foreland.

Short wavelength: <50-100 km wide x 100-300 km long; commonly
associated with a series of similar basins.

Variably symmetric or asymmetric, with one or more depocenters <1-3 km
thick.

Contractional structures along most basin margins, either forelimb or
backlimb settings.

Solitary basement-involved uplifts bound by reverse faults, including
emergent and non-emergent (blind) geometries.

<10-20% shortening along basement-involved structures within broken
foreland province.

Distant flexural loading by fold-thrust belt; flexural loading and local
footwall (block) tilting by basement-involved reverse faulting; dynamic
subsidence related to interactions with subducting/underthrusting plate;
sediment ponding due to endorheic conditions imparted by topographic
barriers.

Generally <200 m/Myr (<0.2 mm/yr), except near proximal tilted basin
margins.

Principally nonmarine: alluvial fan, fluvial, lacustrine.

Variable stratigraphic trends related to intermittent closed versus open
drainage.

Small drainage networks restricted to basement sources from
intraforeland, basement-cored block uplifts.

Distant fold-thrust belt, magmatic arc, accreted terranes, suture zones.
Local basement-cored uplifts.

Early-stage: fold-thrust belt and hinterland sources. Late-stage:
stratigraphic cover and basement of local intraforeland uplifts.
Commonly a predecessor contiguous (unbroken) foreland basin, or
erosional intraplate (cratonic) setting.

Commonly restricted to late-stage contractional orogenesis and post-
orogenic erosion (<50 Myr).

Sierras Pampeanas (Pampean), northern Patagonia, and Peru foreland
basement provinces of South America; Laramide and Ancestral Rocky
Mountains, North America; Variscan foreland, Europe; North China Craton

and other central Asian basin systems.

continuity (commonly >100-300 km across strike and > 1000 km along
strike) without structural or topographic disruption (DeCelles and Giles,
1996). In contrast, broken foreland basins are spatially restricted entities
confined by crustal-scale contractional structures that may collectively
form a continuous or discontinuous network of topographic barriers
(Fig. 2). Although many systems contain basin-margin and intrabasinal
structures, broken foreland regions are distinguished by intrabasinal
structures with sufficient structural relief to generate positive topo-
graphic features at the Earth's surface, including topographic or bathy-
metric barriers (in nonmarine or marine systems, respectively) that
segregate individual broken foreland basins.

Within a single orogenic system, a broken foreland province may
constitute a family of compartmentalized basins with shared structural
arrangements and possible episodic depositional connectivity among
adjacent basins (Fig. 2). Broken foreland basins often follow a common
temporal transition that involves breaking a retroarc or collisional
foreland by crustal-scale basement deformation that structurally parti-
tions a contiguous basin into a series of disconnected smaller basins.
Many broken foreland basins succeed a predecessor unbroken foreland
basin and are ultimately incorporated into an expanding orogenic sys-
tem during late-stage deformation, and thus susceptible to erosional
removal during post-orogenic rebound and erosion. These final phases
of orogenesis and post-orogenic erosion may explain why few ancient
foreland basins remain intact, including basins associated with Phan-
erozoic orogens and Precambrian mobile belts (e.g., North American
Cordilleran foreland, Appalachian foreland, Variscan foreland, Alpine
foreland, North China Craton, and basins generated during Precambrian
supercontinent assembly) (Dickinson, 1974; Coney, 1976; Rodgers,
1987; Kuhlemann and Kempf, 2002; Willett and Schlunegger, 2010;
Cather et al., 2012; Allen et al., 2015; Kusky et al., 2016; Cawood et al.,
2018; Howell et al., 2020).

The best-known examples of broken foreland basins include modern

and ancient components of the retroarc regions of western North
America and South America (Figs. 2 and 3) (Dickinson, 1976; Jordan
et al., 1983; Dickinson et al., 1988; Ramos et al., 2002; Ingersoll, 2012,
2019). The following text considers selected aspects of these systems,
including: the plate tectonic, structural, and topographic configurations
(in map view and cross section); sediment accumulation histories; time-
stratigraphic patterns; depositional environments and facies; sediment
routing and provenance; and the ultimate tectonic drivers and me-
chanics of broken foreland basins.

3. Pampean and Laramide broken foreland provinces
3.1. Structural framework

3.1.1. Pampean broken foreland, South America

The Sierras Pampeanas province represents a modern broken fore-
land province inboard of the Andean orogenic belt (Fig. 2A). Situated in
the retroarc region of west-central Argentina at 27°-33°S, the Pampean
broken foreland spans ~750 km along strike (N-S) and ~ 500 km across
strike (E-W). Deformation has penetrated ~800 km inboard of the
modern trench, reaching halfway across the South American continent
at these latitudes (Ramos et al., 2002). This intraforeland province
comprises a series of topographically distinct late Cenozoic basins
bordered by a network of ~12 NNW- to NNE-trending ranges that
constitute the Sierras Pampeanas (Jordan et al., 1983; Fielding and
Jordan, 1988; Jordan, 1995; Ramos, 1999a). These basement ranges are
the product of W- and E-directed contractional structures that are
geometrically and kinematically distinct from the east-directed thin-
skinned structures involving Phanerozoic cover strata in the Pre-
cordillera fold-thrust belt to the west (Fig. 2A).

Most of the basement-cored uplifts are controlled by solitary faults,
with some exhibiting strike lengths of 200-400 km. These range-
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Fig. 2. (Top) Map of the Circum-Pacific orogenic system (after Dickinson, 2004) showing locations of broken foreland basin systems in South America and North
America, and corresponding maps (Figs. 2A and 2B) and cross sections (Fig. 3). (A) Geologic map of the Pampean broken foreland partitioned by contractional
structures and individual ranges of the Sierras Pampeanas adjacent to the Precordillera fold-thrust belt of the southern central Andes, South America (after Ramos
et al., 2002). (B) Map of the Laramide province in the western U.S.A. showing major structures, basement-cored block uplifts, basins, and post-orogenic volcanic
fields of the Late Cretaceous-Paleogene broken foreland of the Cordilleran fold-thrust belt, North America (after Dickinson et al., 1988). Locations of map (Fig. 6A)
and cross sections (Figs. 6B, 7A, and 9B) and stratigraphic sections with sediment accumulation records (Fig. 8) are indicated.
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2000; Bellahsen et al., 2016). (B) Schematic cross section of the North American Cordillera and Laramide broken foreland at ~50 Ma (after Yonkee and Weil,

2011, 2015).

bounding faults dip 35°-70° near the surface, commonly split into
several splay faults in the uppermost crust (<5 km depth), and have
listric geometries at depth (Fig. 3A) (Gonzalez Bonorino, 1950; Jordan
and Allmendinger, 1986; Ramos et al., 2002; Alvarado and Ramos,
2011). The principal faults have been seismically imaged to mid-crustal
depths (>15-30 km) and some may penetrate into the lower crust
(Cominguez and Ramos, 1995; Zapata, 1998; Cristallini et al., 2004;
Alvarado et al., 2005; Verges et al., 2007). Most faults are interpreted to
reactivate preexisting basement-involved faults or fabrics of pre-
Cenozoic age (e.g., Schmidt et al., 1995; Martino et al., 2016; Zapata
et al., 2020; Ortiz et al., 2021). Reverse displacement accounts for ~2-8
km of structural relief across individual faults, with roughly 10-20 km of
cumulative horizontal shortening (~2%) across the Sierras Pampeanas
(Jordan and Allmendinger, 1986; Ramos et al., 2002). Although strike-
slip displacement is negligible, transtensional and transpressional
deformation occurred near the northern and southern tips of over-
lapping (possibly en echelon) contractional structures and along trans-
verse structures oblique to the regional N-S tectonic strike (Alvarado and
Beck, 2006; Meigs et al., 2006; Seggiaro et al., 2014; Quiroga et al.,
2021).

3.1.2. Laramide broken foreland, North America

The Laramide province of western North America represents an
ancient broken foreland province that formed far inboard of the north-
trending Cordilleran retroarc orogenic belt during Late Creta-
ceous-Paleogene subduction of the oceanic Farallon plate (Fig. 2B).
Intraplate deformation affecting Precambrian crystalline basement
reached cratonic regions up to 1000-1500 km east of the former sub-
duction trench. The Laramide province corresponds to the modern
Rocky Mountains in the USA, spanning ~1500 km along strike (N-S)
and ~ 600 km across strike (E-W) at 32°-46°N (Yonkee and Weil, 2015).
The Laramide foreland was partitioned by ~20 basement-involved

faults and related folds into a series of broken foreland basins (Dick-
inson et al., 1988; Lawton, 2019). An anastomosing network of
contractional structures exhibits a wide range of orientations, with
predominantly N- to NW-trending ranges developed above E/NE- or W/
SW-dipping structures (but with important exceptions such as the E-
trending Uinta Range above N- and S-dipping structures) that are
disconnected from the thin-skinned thrust-belt structures that mainly
involve sedimentary rocks of the Cordilleran orogenic wedge to the west
(Figs. 2B and 3B).

Most Laramide uplifts are linked to a single major reverse fault that
penetrates Precambrian basement and displays strike lengths of several
tens of kilometers, commonly up to 150-300 km (Kelley, 1955; Berg,
1962; Love, 1970; Tweto, 1979; Love and Christiansen, 1985; Black-
stone, 1993a; Erslev, 1993). Some fault tips remain blind (non-emer-
gent), with only large doubly plunging folds present at the surface.
Seismic data show that most range-bounding reverse faults exhibit
moderate dip values (30°-40°) and, where resolved, penetrate down to
middle or lower crustal levels (~25-35 km) (Smithson et al., 1979;
Gries, 1983; Allmendinger, 1992). Individual faults record maximum
displacements of 5-15 km, resulting in a cumulative horizontal short-
ening of 40-50 km (~10-15%) across the province (Brown, 1988;
Blackstone, 1993b; Stone, 1993; Hoy and Ridgway, 1997; Yonkee and
Weil, 2015). Although the Laramide broken foreland contains many
obliquely oriented structures, kinematic fault-slip and layer-parallel
shortening analyses suggest a relatively uniform WSW-ENE compres-
sion direction (Erslev, 1993; Bird, 1998; Erslev and Koenig, 2009; Neely
and Erslev, 2009; Yonkee and Weil, 2015) with local strike-slip defor-
mation focused on transverse structures. The wide range of intraforeland
orientations for Laramide basement arches may reflect contractional
reactivation of heterogeneous inherited sutures, faults, and fabrics of
chiefly Precambrian age (e.g., Brown, 1988; Stone, 2002; Worthington
et al., 2016; Bader, 2018).
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3.2. Plate tectonic configuration

3.2.1. Pampean broken foreland, South America

The late Cenozoic evolution of the Pampean broken foreland is
strongly correlated with the geometry of the subducting oceanic slab
beneath the South American plate. Along the western continental
margin, the Nazca slab dips relatively uniformly ~30° eastward and
penetrates to lower mantle depths of 1000-1100 km (Cahill and Isacks,
1992; Portner et al., 2020; Rodriguez et al., 2021). This pattern, how-
ever, is disrupted in several regions of subhorizontal (flat) slab sub-
duction and corresponding spatial gaps in the Andean magmatic arc. At
27°-33°S, the flat Pampean segment of the Nazca slab is situated at
~100-120 km depth with an E-W width of up to ~300-400 km
(Fig. 3A); this flat slab is situated medially between steeper, generally
~30° east-dipping segments of the contiguous Nazca slab near the
trench and beneath the distal eastern foreland (Anderson et al., 2007;
Gans et al., 2011). To the north and south, the Pampean flat slab is
flanked by a uniformly east-dipping Nazca slab and active magmatic arc
(Barazangi and Isacks, 1976; Jordan et al., 1983; Cahill and Isacks,
1992; Ramos, 1999Db).

The spatial and temporal correspondence between the Sierras Pam-
peanas and the flat slab segment suggests that the basement-cored up-
lifts are related to the geometry of the subducting Nazca slab. However,
the lack of a thick package of sedimentary cover rocks in the foreland
region east of the thin-skinned Precordillera fold-thrust belt may have
further promoted basement-involved deformation within the foreland
(Allmendinger et al., 1983). The Pampean flat slab has been credited to
subduction of the thick buoyant oceanic crust composing the aseismic
Juan Fernandez Ridge (Pilger, 1981; Gutscher et al., 2000; Ramos, 2009;
Ramos and Folguera, 2009). A late Miocene onset of flat-slab conditions
has been estimated at 12-10 Ma on the basis of plate reconstructions and
the progressive inboard advance and ultimate cessation of arc magma-
tism (Kay et al., 1988; Yanez et al., 2001; Kay and Mpodozis, 2002;
Ramos et al., 2002). Thermochronological data indicate accelerated
exhumation at this time within the orogenic wedge, with more broadly
dispersed cooling ages across the Sierras Pampeanas likely due to
complex pre-Andean thermal histories and the low magnitude (mostly
<2 km) of late Cenozoic exhumation (Levina et al., 2014; Fosdick et al.,
2015; Ortiz et al., 2021). Several uplifts within the Pampean foreland
show modest bedrock cooling prior to slab flattening (Coughlin et al.,
1998; Bense et al., 2013; Lobens et al., 2013; Zapata et al., 2020),
although the regional stratigraphic continuity across multiple basins
was not disrupted until late Miocene time (Capaldi et al., 2020;
Mackaman-Lofland et al., 2022).

3.2.2. Laramide broken foreland, North America

Structural partitioning of the Cordilleran foreland basin during the
Laramide orogeny has been ascribed to the mechanical effects of flat slab
subduction. The shift from steep to shallow subduction is preserved in
the inboard sweep of arc magmatism, which has tracked the progressive
advance of the leading edge of the growing zone of flat-slab subduction
(Coney and Reynolds, 1977; Dickinson and Snyder, 1978; Constenius,
1996; Bird, 1998; Constenius et al., 2003; Saleeby, 2003; Erslev, 2005;
Fan and Carrapa, 2014; Yonkee and Weil, 2015; Copeland et al., 2017;
Chapman et al., 2018; Lawton, 2019). The roughly 80-40 Ma phase of
flat slab subduction matches the late Campanian-Eocene timing of
intraplate shortening and exhumation in Wyoming and Colorado, the
principal segments of the Laramide broken foreland (Fig. 2B).

Several studies have suggested a pre-flat slab (prior to ~80 Ma) onset
of basement involvement in the northern Laramide province, in south-
western Montana, where most basement structures spatially overlap or
are in proximity (<50-150 km) to the frontal thin-skinned structures of
the Cordilleran fold-thrust belt (Suttner et al., 1981; Schwartz, 1982;
DeCelles, 1986; Lageson and Schmitt, 1994; Carrapa et al., 2019; Garber
et al., 2020; Orme, 2020; Vuke, 2020). Others have similarly proposed
early phases of Laramide basement deformation up to 300 km inboard of
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the fold-thrust belt, principally on the basis of unconformities or local
condensed sections within the Upper Cretaceous interval of the Cordil-
leran foreland basin (including the Moxa Arch, San Rafael Swell, Rock
Springs Uplift, Douglas Creek Arch, Uncompahgre Uplift, Sierra Madre
Uplift, and Rawlins Uplift of Wyoming, Utah, and Colorado; Lawton,
1986; Miall and Arush, 2001; Leva Lopez and Steel, 2015; Rudolph et al.,
2015; Minor et al., 2022). However, the regional Upper Cretaceous
stratigraphic continuity across the Western Interior Seaway and the lack
of fault-proximal facies adjacent to these basement-cored features sug-
gests that any surface expression of these blocks prior to the late Cam-
panian was restricted to highly localized areas and generated limited
structural relief. In sharp contrast, late Campanian-Eocene shortening
during flat-slab subduction (~80-40 Ma), with a possible peak during
Paleocene-early Eocene time (~66-49 Ma), generated large contrac-
tional structures (many with >5-10 km structural relief and > 50 km
strike lengths) across the Laramide broken foreland that led to exhu-
mation of Phanerozoic sedimentary rocks and underlying Precambrian
basement.

The temporal framework for Laramide deformation derives largely
from stratigraphic, sedimentologic, and vertebrate and invertebrate
biochronologic data that indicate abrupt shifts in stratigraphic thick-
nesses and sedimentary facies due to basement-involved deformation (e.
g., Dorr et al., 1977; Dickinson et al., 1988; Lillegraven, 1993; Gunnell
et al., 2009; Lynds and Slattery, 2017; Minor et al., 2022). An absolute
geochronological context is provided by isotopic ages that constrain
regional magmatism and the depositional ages of synorogenic Laramide
basin fill (e.g., Tweto, 1975; Snyder et al., 1976; Coney and Reynolds,
1977; Dickinson and Snyder, 1978; Bryant et al., 1989; Armstrong and
Ward, 1993; Constenius, 1996; Constenius et al., 2003; Chapin et al.,
2004; Smith et al., 2003; Chapman et al., 2018). Erosional unroofing of
Paleozoic-Mesozoic cover strata and exposure of Precambrian crystal-
line basement, as recorded by sandstone and conglomerate clast com-
positions, paleocurrents, detrital geochronological data, and bedrock
thermochronological data (Cerveny and Steidtmann, 1993; Omar et al.,
1994; DeCelles et al., 1991a, 1991b; Cather, 2004; Kelley and Chapin,
2004; Carroll et al., 2006; Cather et al., 2012, 2019; May et al., 2013;
Peyton and Carrapa, 2013; Fan and Carrapa, 2014; Bush et al., 2016;
Stevens et al., 2016), provide direct evidence for the ~80-40 Ma main
phase of Laramide orogenesis and associated growth of positive topo-
graphic barriers within the broken foreland province (Figs. 2B and 3B).

4. Designation of the Andean retroarc foreland
4.1. Andean topographic front vs. foreland deformation front

The Andean orogenic belt provides an opportunity to evaluate the
modern configuration of a retroarc foreland region and the scope of
structural and sedimentary processes within late Cenozoic broken
foreland basins (Fig. 4). In present-day South America, three separate
broken foreland provinces are readily defined by the structural disrup-
tion and topographic compartmentalization of an otherwise uninter-
rupted foreland basin. The Peruvian (5°-14°S), Pampean (27°-33°S),
and northern Patagonian (45°-48°S) broken foreland regions are
recognized through the delineation of two key tectonomorphic ele-
ments—the Andean topographic front and the foreland deformation
front—both in map view (Fig. 4) and in trench-normal cross sections
(Fig. 5).

First, the Andean topographic front is defined by the sharp break be-
tween the Andean fold-thrust belt and the foreland plains (Figs. 4 and 5).
Along the ~8000 km length of the Andes, this modern topographic
break corresponds to the frontal (easternmost) surface-breaking fault of
the thin-skinned fold-thrust belt, generally an east-directed thrust,
although antithetic west-directed backthrusts and triangle zones are also
present. With few exceptions, this boundary is mutually defined on the
basis of topographic relief and mapped late Cenozoic faults, including
several active faults (Proyecto Multinacional Andino, 2009; Veloza
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et al., 2012; McClay et al., 2018; Costa et al., 2020; Styron and Pagani,
2020; Horton et al., 2022).

Second, the foreland deformation front is defined by the maximum
inboard extent of late Cenozoic structures (Figs. 4 and 5). Although
locally discontinuous, this feature is marked by contractional faults or
folds that generate positive surface topography at the greatest distances
from the subduction trench. The late Cenozoic age of these structures is
confirmed by seismic activity and/or the involvement of Neogene rock
units (Proyecto Multinacional Andino, 2009; Veloza et al., 2012;
Anselmi et al., 2015; Folguera et al., 2015; Costa et al., 2020; Styron and
Pagani, 2020; Horton et al., 2022). Along the length of the orogenic
system, the foreland deformation front either coincides with the Andean
topographic front or is positioned farther inboard within the surround-
ing low-relief foreland plains (Fig. 4).

Systematic identification of these two late Cenozoic tectonomorphic
features enables a clear discrimination of broken versus unbroken seg-
ments of the Andean foreland basin. Specifically, a contiguous or un-
broken foreland is defined where the foreland deformation front
coincides with the Andean topographic front, with no major

intraforeland structures. Examples include (i) the narrow retroarc fold-
thrust belt in the northern Andes of southern Colombia and Ecuador
(2°N-5°S) and (ii) the wide fold-thrust belt in the central Andes of
southern Peru, Bolivia and northernmost Argentina (15°-25°S) (Fig. 4),
where broad low-relief foreland plains are represented by (i) the Putu-
mayo and Oriente basins (Fig. 5A) and (ii) the Madre de Dios, Beni, and
Chaco basins (Fig. 5C), respectively. Conversely, a broken foreland is
defined where the foreland deformation front is positioned significantly
inboard of the Andean topographic front, including the intraforeland
positive topography generated by separate basement-involved struc-
tures of Peru (5°-14°S; Fig. 5B), west-central Argentina (27°-33°S;
Fig. 5D), and southern Argentina (45°-48°S).

The positions of the Andean topographic front and foreland defor-
mation front (Figs. 4 and 5) have varied over the Late Creta-
ceous—Cenozoic history of crustal shortening. Accurate delineation of
these two key elements in time and space will enable tracking of the
cratonward advance of the fold-thrust belt and identification of possible
earlier phases of broken foreland conditions within the Andean orogenic
system.
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4.2. Andean broken foreland provinces

In South America, three major broken foreland provinces are defined
by substantial gaps between the positions of the Andean topographic
front and foreland deformation front. In the Peruvian (5°-14°S),
Pampean (27°-33°S), and northern Patagonian (45°-48°S) broken
foreland regions (Fig. 4), the foreland deformation front reaches
orthogonal distances up to 800 km from the trench, and up to 400 km
inboard of the Andean topographic front (Fig. 5). The roughly 200-400
km cross-strike widths for the broken foreland provinces are compatible
with typical wavelengths for Andean flexural depocenters (e.g., Horton
and DeCelles, 1997; Chase et al., 2009). These broken foreland regions,
which constitute about one-third of the modern foreland system of South
America (Fig. 4), contain isolated topographic features linked to
basement-involved contractional structures.

These broken foreland regions are structurally partitioned by a series
of basement structures that generate positive topographic features that
protrude above the regional foreland plains to varying degrees. In the
broken foreland of Peru (including the Sierra del Divisor along the Peru-
Brazil border), the surface expressions of the basement highs reach up to
400 m above a continuous foreland plain (delimited by the Ucayali and
Jurua river systems) at 200-300 m elevation (Fig. 5B). In contrast,
Pampean basement highs rise up to 1500-2500 m above a series of
segregated basins with basin floors variably situated between 100 and
1200 m elevation (Fig. 5D). The more-accentuated topographic relief
and basin compartmentalization in the Pampean segment could reflect
greater vertical displacement (throw) on intraforeland structures and/or
reduced sediment accumulation relative to the Peruvian segment. The
basement-involved structures in Peru are comparable in magnitude to
Pampean structures, with maximum throws of 2-5 km along individual
faults (Oliveira et al., 1997; Hermoza et al., 2006; Wanderley-Filho
et al., 2010; Baby et al., 2018; McClay et al., 2018). However, amplified
foreland accumulation in Peru (up to 3-6 km) could be the product of
enhanced erosion and more-efficient sediment transport from the An-
dean orogenic wedge to the foreland, thus reducing topographic relief
between adjacent basins and ranges, as well as the relief among suc-
cessive basin floors.

In comparison to the Peruvian and Pampean segments, the northern
Patagonian broken foreland lacks large zones of active sediment accu-
mulation (e.g., Bilmes et al., 2013; Echaurren et al., 2016). Although
broken by intraforeland basement structures that involve Neogene
sedimentary and igneous rocks (Proyecto Multinacional Andino, 2009;
Costa et al., 2020; Horton et al., 2022 and references therein), most
shortening and foreland sedimentation within northern Patagonia
occurred during Miocene orogenesis (Orts et al., 2012; Ramos et al.,
2015; Folguera et al., 2018). The Patagonian retroarc region is situated
500-1000 m above sea level and is subjected to minor erosion, with
modern Andean sediment bypassing the foreland and reaching offshore
Atlantic basins (Ramos, 2005; Orts et al., 2015; Ghiglione et al., 2016;
Horton, 2022). The variable accommodation situations in the three
broken foreland provinces underscore the complex interactions among
sediment accumulation, erosion, and bypass. These contrasts may be
attributable to different geodynamic, structural, or climatic settings,
which show large variations along the western margin of South America
(Mpodozis and Ramos, 1990; Ramos, 1999b, 2009; Horton, 1999,
2018a, 2018b, 2022; Montgomery et al., 2001).

4.3. Modern depositional systems

Evaluation of modern erosional and depositional systems in an active
broken foreland in South America (Fig. 6) illustrates the range of sedi-
mentary processes and environments within broken foreland basins. A
suite of ~10 topographically distinct basins occupy the lowland areas
(mostly 200-600 m above sea level) adjacent to the ranges that form the
Sierras Pampeanas (with most crestlines up to 1-4 km high). These
broken foreland basins contain Cenozoic basin fill up to 3000 m in
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thickness. Map-view interpretations based on satellite images and digital
elevation data enable the identification of modern erosional regions, as
defined by incised bedrock fluvial systems, within the Precordillera fold-
thrust belt and the basement-cored uplifts of the western Pampean
foreland in Argentina (Fig. S1). Within the ~30,000 km? map area
(Fig. 6A), active depositional systems include alluvial fan, braided
fluvial channel, fluvial megafan, fluvial overbank/floodplain, playa
lake, and eolian dune field environments.

The erosional drainage networks and corresponding depositional
systems within the independent basement ranges of the foreland are
sharply different from their counterparts in the thin-skinned Pre-
cordillera fold-thrust belt. The Sierra Pie de Palo and Sierra Valle Fértil
basement ranges are dominated by a series of small drainages (<500
kmz) that feed local alluvial fans (<50 kmz) that coalesce into a
mountain-front bajada. Conversely, within the thrust belt, sediment
loads derived from large drainage catchments (>5000 km?) debouch
onto the westernmost foreland as separate fluvial megafans with depo-
sitional areas >500 kmz, far in excess of local alluvial fans (Damanti,
1993; Milana, 2000; Horton and DeCelles, 2001).

In addition to sourcing local alluvial fans, the basement uplifts of the
Pampean broken foreland constitute topographic barriers that affect
fluvial and local lacustrine systems. These elongate topographic highs
guide the courses of river systems that navigate through the Pampean
foreland, forming axial (longitudinal rivers) parallel to NNW-trending
ranges such as the Sierra Valle Fértil. Intersections among topographic
highs are commonly restricted to narrow gaps between adjacent topo-
graphic highs, such as the ~10 km wide zone between alluvial fans from
the Pie de Palo and Sierra Valle Fértil (Fig. 6A). In some cases, these gaps
are closed by constructional alluvial fans or uplifted bedrock, forming
topographic sills that impound drainage systems and form lakes.

Both emergent (surface-breaking) and non-emergent (blind or sub-
surface) contractional faults exert considerable influence on foreland
depositional systems. The Pie de Palo represents a N-trending, doubly
plunging anticline formed above blind crustal-scale reverse faults with
upper-crustal splays that only locally breach the surface along the ~80
km length of the fold (Jordan and Allmendinger, 1986; Fielding and
Jordan, 1988; Smalley et al., 1993; Zapata, 1998; Vergés et al., 2007). In
a departure from earlier studies, Bellahsen et al. (2016) used structural,
seismic, and geomorphic data to demonstrate that shallow east-dipping
faults along the western margin of the Pie de Palo are antithetic to a
deeply rooted, west-dipping master fault that principally controlled the
growth of the range (Fig. 6B). Toward the foreland, the NNW-trending
Sierra Valle Fértil formed above an emergent east-dipping reverse
fault that persists along strike over a ~ 350 km distance (Ramos et al.,
2002; Ortiz et al., 2021). Although the Pie de Palo and Sierra Valle Fértil
are among the smallest and largest structures within the Pampean
foreland, respectively, both systems successfully form 2500-3000 m
high topographic barriers (Fig. 6) that similarly deflect fluvial and eolian
systems (Capaldi et al., 2019; Garzanti et al., 2022).

Most of the modern lakes and eolian systems in the proximal
Pampean foreland have developed in broad floodplain regions adjacent
to braided river systems that ultimately drain to the Atlantic Ocean
(Garzanti et al., 2021). These settings include local overbank areas
adjacent to small streams and much larger inter-megafan areas situated
between the major outlet rivers that feed fluvial megafans in the most
proximal foreland. Most of the lakes represent ephemeral playa systems
related to seasonal overbank flooding. Large eolian dune fields originate
from windblown materials derived from fluvial channels and deflated
floodplain areas. A prominent example is the 2000 km? Medanos Grande
dune field (Fig. 6), in which sediments derived from the active Rio San
Juan and Rio Tunuyan fluvial channels and adjacent floodplains are
transported northward and confined by topographic barriers formed by
the Pie de Palo and Sierra Valle Fértil basement ranges (Capaldi et al.,
2019). This dune field represents an isolated western satellite of the
broad Pampean Sand Sea of central Argentina (Iriondo, 1999; Tripaldi
and Forman, 2016; Garzanti et al., 2022).
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5. Intraforeland structure and basin architecture
5.1. Structural configuration

Regional cross sections across an ancient broken foreland in North
America highlight some of the structural geometries associated with
basement-involved intraplate deformation and the evolution of inter-
vening basins (Fig. 7). A ~ 600 km regional cross section through
Wyoming (Fig. 7A) shows the spatial transition from the Cordilleran
fold-thrust belt to the Laramide broken foreland and a series of basement
block uplifts (the Wind River Range, Casper Arch, and Black Hills Uplift)
and successive basins (the Green River, Wind River, and Powder River
basins) (Love and Christiansen, 1985; Stone, 1993; Yonkee and Weil,
2015). The frontal thrust belt is defined by thin-skinned structures ar-
ranged into a foreland-directed imbricate fan that deformed thick
(>5-10 km) Phanerozoic cover strata above a single shared décollement
near the basement-cover interface. In contrast, the broken foreland is
typified by basement-involved intraforeland structures that are each
controlled by a single principal fault with common splay faults at
shallow levels within a relatively thin (<2 km) sedimentary cover
(Fig. 7B; Berg, 1962; Smithson et al., 1979; Gries, 1983; Brown, 1988;
Blackstone, 1990, 1993b; Allmendinger, 1992; Stone, 1993; Hennings
and Hager, 1996: Lillegraven, 2015). Laramide basement structures
show variable foreland- and hinterland-dipping geometries, as clearly
expressed in regional maps (Fig. 2B), but individually they share several
common characteristics, as summarized in a schematic crustal cross
section (Fig. 7C; Erslev et al., 2001; Erslev, 2005).

Each basement-cored uplift exhibits a topographic and structural
asymmetry expressed as a steep forelimb and gentle backlimb (Fig. 7C).
This anatomy is assigned to a single controlling fault with a broadly
listric geometry in which the fault penetrates crystalline basement at a
moderate dip and soles into a subhorizontal décollement within the
middle to lower crust. At shallow levels (and commonly observed at the
surface), most master faults and subsidiary splay faults are expressed as
steeply dipping features that yield complex geometries with sheared
limbs and steep to overturned footwall units. On the forelimb, near-
surface geometries entail: (i) low-angle footwall splays (e.g., short-cut
faults, out-of-basin thrusts, and out-of-syncline thrusts) that follow an-
isotropies within the sedimentary cover or shallow basement; (ii)
basement-involved backthrusts (including wedge faults and the gener-
ation of triangle zones); and (iii) shallow backthrusts confined to the
sedimentary cover (including rabbit-ear anticlines) (Fig. 7C). On the
backlimb, secondary structures either synthetic or antithetic to the main
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fault form in the sedimentary cover and shallow basement in response to
tightening above the deeper ramp.

The comparable geometries of many Laramide basement arches
suggest that their controlling faults may share a deep crustal shear zone
(or regional décollement) that approximates the brittle-ductile transi-
tion for continental basement rocks of granitic composition (Oldow
et al., 1989; Erslev, 1993; McQuarrie and Chase, 2000). These widely
spaced structures, however, lack a single preferred direction of tectonic
transport (or vergence), and contain many secondary structures anti-
thetic to the master faults responsible for individual basement uplifts.
This pattern of diffuse intraplate shortening with no preferred vergence
may reflect the uniformly thin pre-orogenic sedimentary cover across
the region (i.e., no inherited supracrustal stratigraphic wedge; Boyer,
1995) and the diversity of preexisting basement discontinuities (igneous
and metamorphic fabrics; faults, and sutures; Yonkee and Weil, 2015).

5.2. Basin configuration

The architecture of compartmentalized basins within a broken
foreland is closely linked to the geometry of the bounding structures
(Fig. 7). Most importantly, basin development is largely dictated by
position on the steep forelimb or the gentle backlimb of a single crustal-
scale basement-cored uplift (Fig. 7C). Most basin depocenters are situ-
ated in footwall positions near the forelimbs of major reverse faults,
consistent with greater flexural loading in proximity to topographic
loads. These forelimb basin margins also have the highest degree of
structural disruption, with commonly steep to overturned units and
growth strata produced by progressive tilting of proximal basin fill
adjacent to the primary bounding structure (Bryant et al., 1989;
DeCelles et al., 1991b; Lageson and Schmitt, 1994; Zapata and All-
mendinger, 1996a; Hoy and Ridgway, 1997). In contrast, basin devel-
opment along the gently dipping backlimb generally marks the distal
basin margin, with stratigraphic onlap or pinchout onto the corre-
sponding gentle topographic slope.

These contrasts in forelimb versus backlimb setting impart several
distinct configurations for potential broken foreland basins. First,
asymmetric basins may form between opposing basin-margin structures
defined by the forelimb of one structure and the backlimb of a separate
structure (e.g., Wind River Basin, Fig. 7A); such basins exhibit asym-
metric, wedge-shaped cross-sectional profiles reminiscent of foredeeps,
but at a more localized scale (e.g., Hagen et al., 1985; Yang and Dorobek,
1995). A second option represents a basin situated between two facing
forelimbs of separate basin-directed structures (e.g., Green River Basin,
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Fig. 7A), yielding a relatively symmetric basin with similar depocenters
along opposite margins (e.g., Cobbold et al., 1993; Cunningham, 2005).
A third possibility constitutes a broad, low-relief “sag” or saucer-shaped
basin positioned on the backlimbs of two separate structures that dip
toward the central basin (e.g., Powder River Basin, Fig. 7A), generating a
modest topographic low containing basin fill of limited thickness (Yin
and Ingersoll, 1997).

The structural controls on basin geometry (Fig. 7C) also influence
surface topographic gradients, and thus depositional systems within
individual basins and among separate basins. Proximal and distal facies
will be preferentially focused along forelimb and backlimb basin mar-
gins, respectively. The maximum topographic lows, which are prone to
axial fluvial or lacustrine deposition, tend to form near basin centers or
forelimbs, away from gently inclined backlimbs. In addition, the con-
trasting structural arrangements may play a pivotal role in the mode and
magnitude of accommodation within different sectors of a broken
foreland.

5.3. Accommodation mechanisms

Broken foreland basins are affected by a variety of accommodation
mechanisms ranging from local to continental-scale processes. We
emphasize five modes of accommodation generation (Table 1), recog-
nizing the likelihood of variations among these factors as a function of
plate tectonic setting, geodynamic parameters, structural architecture,
and various influences on the supply and transport of sediment.

(1) Flexural subsidence is driven by intraplate crustal thickening and
proximal loading by basement blocks bounding broken foreland basins
(Hagen et al., 1985; Dickinson et al., 1988; Hall and Chase, 1989; Heller
and Liu, 2016; Hindle and Kley, 2021). The amount of accommodation
generation scales with the magnitude of topographic loading. Although
horizontal shortening may be secondary to vertical motions in broken
foreland provinces, the large vertical displacements on individual faults
generate considerable structural relief and hence sufficient topographic
loads to generate crustal flexure.

(2) Additional flexural subsidence may be the product of loading by a
thin-skinned fold-thrust belt bordering the broken foreland province
(Kauffman and Caldwell, 1993; DeCelles, 2004; Yonkee and Weil, 2015;
Gentry et al., 2018). Such accommodation corresponds with the prox-
imity and size of the thrust-belt load. Foreland structural partitioning
may ultimately be accompanied by a reduction in thrust-belt shortening
and/or weakening of foreland lithosphere, possibly suggesting a
diminished role of thrust-belt induced flexure over time (Gao et al.,
2016; Saylor et al., 2020).

(3) Long-wavelength dynamic subsidence across a broken foreland is
generally affiliated with mantle flow or coupling between the overriding
continental plate and a subducting/underthrusting plate. The mechan-
ical interactions involved in dynamic subsidence are sensitive to the age,
composition, density, thickness, and overall geometry (particularly the
dip) of the subducting slab (Cross, 1986; Mitrovica et al., 1989; Liu et al.,
2014; Li and Aschoff, 2022).

(4) Motion along crustal-scale reverse faults generates structural
tilting of compartmentalized, fault-bounded blocks (beams) within a
broken foreland, independent of flexural or dynamic processes. Ac-
commodation in proximal forelimb basin settings is amplified by foot-
wall block tilting toward the bounding structure (McQueen and
Beaumont, 1989; Jordan, 1995; Fernandez-Lozano et al., 2011; Simp-
son, 2014). In contrast, backlimb settings are likely to experience low-
magnitude uplift as the hangingwall block is tilted during translation
along a crustal-scale ramp.

(5) Broken foreland basins are well suited to accommodation gen-
eration through endorheic (internal drainage) conditions imparted by
topographic barriers. Sediment accumulation or “ponding” in such
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closed basins requires long-term preservation of basin-margin topog-
raphy, as common in structurally partitioned plateau regions where
uplift exceeds erosive stream power (Métivier et al., 1998; Sobel et al.,
2003; Horton, 2012; Li et al., 2020).

6. Broken foreland sedimentation
6.1. Sediment accumulation and chronostratigraphic patterns

Sediment accumulation rates within a broken foreland reflect tem-
poral variations in short- and long-wavelength accommodation along
with local subsidence or uplift directly related to structural geometry.
Variable sediment accumulation histories are recorded in broken fore-
land systems (Dickinson et al., 1988; DeCelles et al., 1991a, 1991b;
Steidtmann and Middleton, 1991; Lillegraven, 2015; Vuke, 2020), as
exemplified by successive basins across the Wyoming segment of the
Laramide province (Fig. 7A). Fan and Carrapa (2014) report accumu-
lation histories for the Green River, Wind River, and Powder River ba-
sins (Fig. 8A) indicative of sustained continuous accumulation during
two stages of Laramide deformation in this region at ~71-58 Ma and ~
58-50 Ma (stage 1 and stage 2, respectively). Whereas the Green River
and Wind River basins show a pronounced acceleration in sediment
accumulation (a roughly 50-100% increase) from stage 1 to stage 2, no
significant change is recorded in the relatively thinner Maas-
trichtian-Eocene succession of the Powder River Basin. This discrepancy
for the Powder River Basin may represent (i) limited flexure owing to its
more inboard position, farther from the Cordilleran thrust-belt load,
and/or (ii) diminished subsidence due to its backlimb structural posi-
tion, in contrast to rapid flexure and footwall tilting in the forelimb
settings of the Green River and Wind River basins (Figs. 7A and 8A).
These differences underscore the importance of distinct structural con-
figurations, including the proximity to crustal loads, in determining
variations in sediment accumulation.

Many broken foreland basins, including the Laramide and Pampean
broken forelands (Fig. 2), are successors to precursor contiguous (un-
broken) foreland basins. The inception of a broken foreland is commonly
expressed as an increase in local accommodation within more inboard
positions (e.g., Reynolds et al., 1990; Ramos and Folguera, 2009). This
shift, however, depends on the cumulative effect from multiple accom-
modation mechanisms (section 5.3). For some localities, a switch from
an unbroken to broken foreland may have a limited effect on the pace of
sedimentation (e.g., Fan and Carrapa, 2014; Capaldi et al., 2020). A
potentially more direct measure of broken foreland conditions may
involve spatial changes in sedimentation caused by new accommodation
generation in distal foreland locations toward the plate interior.

The Pampean broken foreland recorded late Cenozoic compart-
mentalization of the predecessor foreland basin and a large inboard
advance of accommodation. Several time-space patterns are revealed by
available accumulation histories derived from thick Neogene strati-
graphic records of the proximal to distal foreland (including the Man-
antiales, Talacasto, Albarracin, proximal Bermejo (Mogna), and distal
Bermejo (Pie de Palo) basin localities; Verges et al., 2001; Milana et al.,
2003; Ciccioli et al., 2014; Levina et al., 2014; Amidon et al., 2016; Collo
et al., 2017; Pinto et al., 2018; Capaldi et al., 2020; Mackaman-Lofland
et al., 2020). First, the generally Oligocene to early Miocene onset of
rapid foreland sedimentation is 5-10 Myr earlier in the most proximal
(westernmost) sector (Fig. 8B; curves A and B), consistent with an
inboard (eastward) advance of accommodation (Fig. 8B; curves C-F) in
an originally unified foreland basin controlled by progressive flexural
loading in the Principal Cordillera and Frontal Cordillera of the Andean
orogen (Jordan et al., 1996, 2001; Irigoyen et al., 2000; Giambiagi et al.,
2001; Levina et al., 2014; Horton and Fuentes, 2016; Buelow et al.,
2018; Stevens Goddard and Carrapa, 2018; Capaldi et al., 2020;
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Fig. 9. (A) 3D block diagram showing depositional environments and associated facies for broken foreland basins (after Lawton, 2019). (B) Schematic cross sections
showing multiphase evolution (steps 1-3) of a basement-involved intraforeland uplift in the southern Colorado segment of the Laramide broken foreland (northern
Sangre de Cristo Range; Bush et al., 2016) and (C) detrital zircon U-Pb age distributions showing corresponding shifts (steps 1-3) from the regional provenance of a
contiguous (unbroken) foreland basin to the local provenance of a broken foreland basin (Bush et al., 2016).

Mackaman-Lofland et al., 2020, 2022). The absence of a thick ante-
cedent clastic succession of Eocene age contradicts interpretations of
important shortening and flexural subsidence by ~40-35 Ma (e.g.,
Coughlin et al., 1998; Fosdick et al., 2017; Lossada et al., 2017). Second,
the phase of maximum accumulation within each succession occurred
progressively later in distal (eastern) localities (Fig. 8B; curves C-E); this
time-transgressive pattern is the combined product of advancing
deformation within the Precordillera fold-thrust belt and initial intra-
foreland shortening (Reynolds et al., 1990; Jordan et al., 1993; Fosdick
et al., 2015; Ortiz et al., 2021). Third, the onset of rapid accumulation
within distal segments of the broken foreland basin appears to broadly
coincide (at ~6-4 Ma) with a decrease in accommodation generation in
proximal regions (Fig. 8B; curves D and F), possibly attesting to the
increased role of intraforeland crustal loading relative to topographic
loading within the flanking Precordillera fold-thrust belt (Capaldi et al.,
2020; Mackaman-Lofland et al., 2022).

A chronostratigraphic (Wheeler) diagram across the Andean fore-
land of west-central Argentina (Fig. 8C) shows the time-stratigraphic
and sedimentary facies record of a switch from an integrated
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(unbroken) foreland basin to a structurally partitioned series of sub-
basins. The W-E profile (Fig. 8C) highlights past transitions between net
accumulation and nondeposition or erosion (including the local onset
and local termination of sedimentation), with four components identi-
fied. (1) Initial flexural foredeep conditions were first recorded in
western localities by a chiefly Oligocene-early Miocene inception of
sediment accumulation. (2) The eastward advance of flexural foredeep
accommodation and corresponding shift from moderate to rapid accu-
mulation (Fig. 8B) coincided with the eastward advance of Miocene
deformation into the Precordillera thin-skinned fold-thrust belt. (3) A
late Miocene shift from accumulation to erosion in western sectors
represents incorporation of the proximal foredeep into the advancing
fold-thrust belt. (4) An abrupt stepwise disruption of the once-
contiguous foredeep marked the latest Miocene-Pliocene initiation of
intraforeland shortening, which compartmentalized zones of deposition
from discrete zones of erosion above actively growing basement uplifts.
Although this multiphase history has been previously demonstrated
from various structural and stratigraphic datasets (Fielding and Jordan,
1988; Jordan, 1995; Ramos et al., 2002; Levina et al., 2014; Capaldi
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et al., 2020; Mackaman-Lofland et al., 2020), the construction of a
chronostratigraphic (Wheeler) diagram (Fig. 8C) helps elucidate the
accommodation shifts and missing parts of the stratigraphic record that
pinpoint the shift to a broken foreland situation.

6.2. Sediment routing, provenance, and drainage reorganization

Broken foreland basins record major changes in sediment prove-
nance, sediment dispersal, and drainage configurations. Whereas
contiguous foreland basins may have subsurface structural highs that
affect spatial patterns in accommodation, these non-emergent (blind)
features do not alter sediment routing patterns. In contrast, broken
foreland systems are the product of structural partitioning by emergent
basement structures that induce not only shifts in accommodation pat-
terns, but also form barriers to sediment dispersal (Fig. 6A).

Depositional systems and facies distributions in nonmarine broken
foreland settings (Fig. 9A) are principally guided by major structures
that dictate topographic slopes, zones of erosion, and zones of sediment
accumulation (e.g., Flores and Ethridge, 1985; Beck et al., 1988;
DeCelles et al., 1991a; Flemings and Nelson, 1991; Steidtmann and
Middleton, 1991; Lawton, 2019). This structural influence generally
leads to lacustrine or axial fluvial systems parallel to bounding faults and
folds, with alluvial fan and fan-delta systems restricted to basin margins
along the flanks of topographic highs.

The emergence of structural highs further modifies landscape evo-
lution during progressive exhumation of weak sedimentary cover rocks
into stronger (less erodible) crystalline basement lithologies, which can
lead to decelerated erosion, diminished sediment flux, and enhanced
relief (Flowers and Ehlers, 2018; Bernard et al., 2019). An associated
shift in sediment delivery to the flanking basin can be manifest as
changes in grain size and depositional facies (DeCelles et al., 1991b;
Carroll et al., 2006).

The growth of structurally controlled topographic barriers revises
surface slopes, basin hydrography, and may lead to complete drainage
isolation as internally drained (closed) basins. Even without complete
drainage isolation, cases of drainage reorganization will affect the hy-
drologic linkages between adjacent basins, with alternating cutoff and
reestablishment of drainage connectivity (e.g., Dickinson et al., 1988;
Meétivier et al., 1998; Davis et al., 2008; Smith et al., 2014; Saylor et al.,
2017; Lawton, 2019).

In addition to sediment routing, a fundamental shift accompanies the
creation of small drainage networks on newly developed topographic
features above basement-cored uplifts. This trend is well defined by
geomorphic and provenance studies of active broken forelands (Dam-
anti, 1993; Capaldi et al., 2017; Garzanti et al., 2021, 2022). Expected
provenance signatures of foreland compartmentalization would entail a
temporal shift from regional-scale drainage networks spanning large
segments of the fold-thrust belt to localized drainages limited to
restricted ranges within the broken foreland. Such an example is re-
ported for the stepwise growth of a basement uplift along the defor-
mation front of the Laramide province, where the Sangre de Cristo
Range was uplifted during motion on a range-bounding contractional
fault system (Fig. 9B; Lindsey, 1998; Bush et al., 2016).

Detrital zircon U-Pb age distributions for Upper Cretaceous-Eocene
basin fill in the Raton basin of southern Colorado and northern New
Mexico (Fig. 9C) show the erosional exhumation of the Sangre de Cristo
Range (Bush et al., 2016). Pre-deformational age distributions show
exclusive derivation from the Cordilleran fold-thrust belt (as denoted by
200-1300 Ma ages) and magmatic arc (<200 Ma ages). During early
Laramide deformation, the detrital signatures show initial unroofing of
Precambrian basement rocks of the Rocky Mountain province with a
combination of far-traveled thrust-belt (<1300 Ma) and locally sourced
basement (>1300 Ma) detritus. During advanced Laramide deforma-
tion, the detrital signatures show elimination of Cordilleran magmatic
arc detritus (<200 Ma) and exclusive derivation from local basement
(>1300 Ma). These upsection provenance trends (Fig. 9C) constrain the
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sequential structural evolution (Fig. 9B) by showing the unambiguous
evolution from (i) regional drainage systems that encompassed the
Cordilleran orogenic system to (ii) small local drainages with short
transport distances from a single basement uplift (Sangre de Cristo
Range) within the Laramide broken foreland province (Cather, 2004;
Bush et al., 2016). Other parts of the Laramide province show a com-
parable shift from regional to local sourcing, with recognition of the
potential complications involved in recycling of older foreland basin fill
(e.g., Fan et al., 2011; May et al., 2013; Pecha et al., 2018; Lawton,
2019).

7. Driving mechanisms of foreland partitioning

We propose two sets of requirements for the development of broken
foreland basins: first, favorable conditions inherited from the preceding
geologic history and, second, specific catalysts during orogenesis that
trigger heterogeneous intraforeland shortening. We propose that basin
genesis can be linked to: (i) tectonic inheritance in the form of preex-
isting structural, stratigraphic, rheological, and thermal configurations;
and (ii) mechanical triggers that may include elevated stress, enhanced
stress transmission, fluid influx, or irregular strengthening and weak-
ening within the intraplate regions that host broken foreland basins.

7.1. Conditions

In considering the necessary components for the generation of
broken foreland basins, we offer perspectives on some underlying con-
ditions that may promote intraforeland partitioning. Recognizing that
most broken foreland regions have a rich geologic heritage, we utilize
the concept of tectonic inheritance to explore the role of precursor
structural, stratigraphic, rheological, and thermal parameters in guiding
basement-involved deformation (Fig. 10). We regard these four ele-
ments within a broad framework of potentially overlapping variables
that may influence deformation, individually or collectively, but are not
uniquely sufficient to induce a broken foreland configuration.

7.1.1. Structural inheritance

Structural reactivation of preexisting faults, fabrics, and sutures
(Fig. 10A) is a common theme in intraplate settings. The Pampean
foreland recorded reactivation of pre-Andean structures consisting of
Cretaceous normal faults, Paleozoic faults, and Precambrian faults, su-
tures, and metamorphic fabrics (e.g., Schmidt et al., 1995; Martino et al.,
2016; Zapata et al., 2020; Ortiz et al., 2021; Wimpenny, 2022). Reac-
tivated structures in the Laramide province include Precambrian su-
tures, faults, and igneous and metamorphic fabrics, as well as late
Paleozoic basement-involved faults related to development of the
Ancestral Rocky Mountains (e.g., Brown, 1988; Bryant and Nichols,
1988; Nelson, 1993; Marshak et al., 2000; Stone, 2002; Neely and Erslev,
2009; Chapin et al., 2014; Worthington et al., 2016; Bader, 2018).
Although selective fault reactivation and basin inversion are also com-
mon in thin-skinned fold-thrust belts that mainly affect cover strata (e.
g., Cristallini and Ramos, 2000; Giambiagi et al., 2008; Macellari and
Hermoza, 2009; Parra et al., 2012; McGroder et al., 2015; Fuentes et al.,
2016; Perez et al., 2016; Hafiz et al., 2019; Mackaman-Lofland et al.,
2019; Horton et al., 2020; Mora et al., 2020), the emphasis here is on
antecedent structures that affected deeper levels of crystalline basement
within the plate interior.

7.1.2. Stratigraphic inheritance

Basement deformation may be fostered in intraplate regions by the
absence of the thick stratigraphic prisms that host thin-skinned ramp-
flat structural systems (Fig. 10B). The pre-orogenic stratigraphic cover
within continental plate interiors tends to be markedly thinner and more
laterally uniform than correlative plate-margin successions in thin-
skinned fold-thrust belts. In Argentina, basement structures are prefer-
entially developed in eastern foreland regions that lack the thick
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Paleozoic stratigraphic package of the flanking thin-skinned fold-thrust
belt within the Andes (Allmendinger et al., 1983; Kley et al., 1999;
McQuarrie, 2002; Jacques, 2003; Pearson et al., 2013). In the Laramide
foreland, the uniformly thin (<1-2 km) pre-deformational (pre-Cam-
panian) stratigraphic cover likely helps explain the lack of a preferred
vergence direction within basement structures (Erslev, 1993; Yonkee
and Weil, 2015; Parker and Pearson, 2021).

7.1.3. Rheological inheritance

The rheological framework, in the form of spatially variable strength
parameters, helps dictate areas of strain localization along mechanical
anisotropies and heterogeneities within broken foreland regions
(Fig. 10C). Strong intraplate regions that show progressively higher
yield strength with depth in continental crust and mantle lithosphere are
prone to decoupling at relatively deeper levels (Barrionuevo et al., 2021;
Ibarra et al., 2021). This scenario contrasts with plate-margin regions
characterized by mid-crustal weaknesses that facilitate decoupling be-
tween the upper and lower crust (Giambiagi et al., 2015, 2022; Lacombe
and Bellahsen, 2016; Wolf et al., 2021). Foreland crust and mantle
lithosphere with high integrated strength will favor solitary crustal-scale
ramps rather than multiple shallow décollements in upper crust. This
pattern is not unique, however, as rheology is also strongly dependent
on the age, thickness, composition, temperature, and fluid conditions
within the crust and lithosphere (Mouthereau et al., 2013; Pfiffner,
2017; Martinod et al., 2020). Rheological contrasts may account for an
observed delay in strain localization in which the locus of shortening
ultimately shifts from a principal décollement along the basement-cover
interface within the fold-thrust belt to deeper basement levels in the
foreland (e.g., Lacombe and Mouthereau, 2002; Madritsch et al., 2008;
Lacombe and Bellahsen, 2016; Tavani et al., 2021).

7.1.4. Thermal inheritance

The initial thermal structure can affect strain patterns in convergent
orogens, including not only near-trench or magmatic arc localities, but
also more-distal inboard regions (Fig. 10D). The inherited thermal
configuration is largely governed by earlier magmatism, sedimentary
burial, and crustal/lithospheric thinning or thickening. Pre-orogenic
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heating of continental crust results in thermal weakening that affects
the strength profile and may promote or impede basement involvement
during orogenesis (Lacombe and Bellahsen, 2016). A thermally weak-
ened retroarc region may experience enhanced dislocation creep in the
lower crust and an increased potential to decouple lower from upper
crustal deformation, possibly limiting inboard stress transmission to the
distal foreland. In contrast, a cool foreland lithosphere with a lower
geothermal gradient, possibly aided by the presence of a strong litho-
spheric mantle keel, may lead to distributed shortening, with potential
localization along preexisting faults and basement weaknesses. These
conditions may result in relatively distributed shortening with deeply
rooted structures equally involving upper and lower crustal levels (e.g.,
Yonkee and Weil, 2015; Giambiagi et al., 2022). Along-strike and across-
strike variations in both pre- and synorogenic thermal processes help
shape orogenic topography and may lead to temporal changes in
structural style (e.g., Isacks, 1988; Whitman et al., 1996; Beaumont
et al., 2006; Wolf et al., 2021).

7.2. Catalysts

The aforementioned conditions—including inherited structural,
stratigraphic, rheological, and thermal parameters (section 7.1)—are
conducive but likely insufficient to exclusively prompt broken foreland
development. In addition to tectonic inheritance, we suggest that a
separate catalyst or trigger may be required to structurally and topo-
graphically partition a foreland region into a series of broken foreland
basins. Below we outline four potential catalysts that are categorized
according to stress, thermal, fluid, and strength-related processes
(Fig. 11). Given the interdependence of these variables in subduction
zone settings (e.g., Hyndman et al., 2005; Currie and Hyndman, 2006;
Van Keken et al., 2011), we recognize that these triggers may operate
independently or collectively.

7.2.1. Stress trigger

The initiation of a broken foreland may be triggered by a shift to
elevated stress conditions within intraplate regions (Fig. 11A), a hy-
pothesis supported by modern and ancient estimates of differential
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Fig. 11. Concept of mechanical triggers in which
shifts in key parameters help catalyze intraplate

basement deformation and attendant development of
broken foreland basins. (A) Increased stress, which

enhances long-distance stress transmission. (B)
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stresses within continental plate interiors (e.g., Raimondo et al., 2014;
Beaudoin et al., 2020; Stephenson et al., 2020; Lacombe et al., 2021).
The precise mechanisms may be attributable to in-plane stresses during
increased end loading along distant plate boundaries (e.g., Ziegler et al.,
1995, 2002; Cunningham, 2005; Kley and Voigt, 2008; Silva et al.,
2018). Alternatively, heightened intraplate shear stresses may be the
product of enhanced coupling due to a diminished thickness of trench-
fill sediments (Lamb and Davis, 2003; Hu et al., 2021) or greater basal
traction due to regional coupling with a shallowly subducting/under-
thrusting plate with resulting local mantle flow (Bird, 1984, 1998; Jones
et al.,, 2011). Further, temporal changes in fluid pressure (Amrouch
et al.,, 2010; Beaudoin et al., 2014; Lacombe et al., 2021) and the
thickness of sedimentary cover strata (Jones et al., 2011; Ballato et al.,
2019) may lead to variable stress conditions that promote or suppress
brittle failure during progressive shortening.

7.2.2. Thermal trigger

The activation of basement-involved deformation may be related to
long-distance transmission of plate-margin stresses toward the plate
interior, as triggered by regional crustal/lithospheric cooling and the
attendant increase in continental strength (Fig. 11B). Flat slab subduc-
tion generates major thermal effects that are not limited to abrupt
refrigeration of the forearc, but also lead to cooling and hence litho-
spheric strengthening above the flat slab (Henry and Pollack, 1988;
Gutscher et al., 2000; Manea and Manea, 2011; Behr and Smith, 2016).
The time scales involved with the thermal perturbations induced by flat
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lithosphere. After James and Sacks, 1999; Hum-
phreys, 2009; Behr and Smith, 2016; Axen et al.,
2018; Beaudoin et al., 2020; Lacombe et al., 2021.

buildup of

slab subduction are dependent on various factors, including the thick-
ness, composition, thermal conductivity, and conductive versus
convective modes of heat transfer within the asthenospheric wedge and
overriding plate (e.g., Liu and Currie, 2016; Axen et al., 2018; Liu et al.,
2021). Modifications to the thermal profile of the foreland crust and
lithosphere may have prompted inboard stress transmission for several
hundreds of kilometers in both the Laramide and Pampean broken
foreland provinces (Dumitru et al., 1991; Gutscher, 2002; Collo et al.,
2017; Christiansen et al., 2022; Rodriguez Piceda et al., 2022).

7.2.3. Fluid trigger

Intraforeland basement deformation may be triggered by enhanced
fluid flux and associated strain localization (Fig. 11C). In the case of flat
slab subduction, an influx of slab-derived hydrous fluids (slab dew-
atering) has been interpreted to induce hydration of the overriding
lithosphere (Wagner et al., 2005; Behr and Smith, 2016) and selectively
weaken segments of the Laramide broken foreland (Saylor et al., 2020).
Such fluid-induced weakening may be maximized above the leading
hinge of the subducted slab, at the inboard transition from the flat slab
segment to the steep deeper segment (James and Sacks, 1999; Hum-
phreys et al., 2003; Humphreys, 2009; Currie and Beaumont, 2011;
Thacker et al., 2022). This spatial focusing may lead to an advancing
front of fluid-induced weakening that would facilitate progressive strain
localization through the diachronous activation or reactivation of
structures toward the plate interior.
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7.2.4. Strength-related trigger

Several processes capable of catalyzing an increase or decrease in
plate strength may trigger the onset of broken foreland conditions
(Fig. 11D). Of many possibilities, four options are listed here. First, zones
of lithospheric thinning within the foreland may be weakened suffi-
ciently to promote basement deformation (e.g., Ziegler et al., 1995).
Second, shifts between felsic and mafic compositions, possibly related to
the buildup and removal of dense lithospheric roots, may variably cause
weakening or strengthening that would influence intraplate shortening;
such processes are more likely to affect magmatic arc and hinterland
regions (Babeyko et al., 2006; Wang and Currie, 2017; Comeau et al.,
2021). Third, the breakoff of a subducting/underthrusting slab or
development of a slab window during oceanic ridge subduction may
foster weakening capable of focusing intraplate deformation (Buiter
et al., 2002; Bradley et al., 2003). Fourth, mechanical or strain weak-
ening from alteration and grain size reduction during fault slip, reac-
tivation of basement weaknesses, and/or progressive linkage of fault
segments may further reduce overall strength and help trigger foreland
deformation (Beaumont et al., 2006; Liu et al., 2021).

8. Discussion: Drivers, caveats, and opportunities
8.1. Role of flat slab subduction

The process of flat slab subduction satisfies many of the proposed
conditions and catalysts (sections 7.1 and 7.2; Figs. 10 and 11) that bring
about the development of broken foreland basins. This profound
connection reinforces decades of investigations on the structure, strati-
graphic framework, and geodynamic setting of modern and ancient
systems (e.g., Dickinson and Snyder, 1978; Coney and Reynolds, 1977;
Dickinson et al., 1988; Jordan, 1995; Constenius, 1996; Bird, 1998;
Ramos et al., 2002; Ramos, 2009; Finzel et al., 2011; Yonkee and Weil,
2015; Bishop et al., 2017; Horton et al., 2022). Flat slab subduction is a
fundamental tectonic process with implications for sedimentary basin
evolution, continental deformation, arc magmatism, crustal evolution,
and craton growth and destruction (e.g., Smithies et al., 2003; Li and Li,
2007; Humphreys, 2009; Kusky et al., 2014; Wu et al., 2019; Capaldi
et al., 2021; Gianni and Pérez Lujan, 2021). Past phases of flat slab
subduction are likely common, and may be somewhat aliased in the
geologic record by a restricted duration, limited strike length, surface
erosion, subduction erosion, or igneous/structural overprinting (e.g.,
Sandeman et al., 1995; Kay et al., 2005; Kay and Coira, 2009; Ramos and
Folguera, 2009; Folguera and Ramos, 2011; Wagner et al., 2017; Perez
and Levine, 2020; Runyon et al., 2022).

Nevertheless, we caution against interpretations in which the genesis
of broken foreland basins is entirely attributed to flat slab subduction.
Specifically, we disagree with the suggestion that the occurrence of
intraplate shortening necessitates a phase of flat slab subduction,
without consideration of other potential processes. Such overemphasis
on flat slab subduction likely stems from simplicity, in that continental
deformation hundreds or thousands of kilometers from plate boundaries
can be difficult to explain from a conventional view of plate tectonics
with rigid plate interiors (Dewey and Bird, 1970). Importantly, a range
of additional explanations for intraplate deformation have been identi-
fied, including increased compressional stresses along plate margins,
more-effective horizontal transmission of such stresses, and forces
originating within plate interiors (Burov and Cloetingh, 2009; Rai-
mondo et al., 2014; Stephenson et al., 2020; Lacombe et al., 2021).
Therefore, a geologic record of intraplate deformation or a broken
foreland does not, a priori, require a contemporaneous flat slab sub-
duction history.

With these caveats, we recommend further scrutiny when assessing
the variety of processes that accompany flat slab subduction—namely
the broad range of conditions and catalysts (section 7). We highlight four
underlying conditions associated with preexisting elements—referred to
as (1) structural inheritance, (2) stratigraphic inheritance, (3)
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rheological inheritance, and (4) thermal inheritance (Fig. 10) (Lacombe
and Bellahsen, 2016; Horton and Folguera, 2022). We also discuss
several catalysts or mechanical triggers: (1) increased stress, (2) long-
distance stress transmission within a cooled plate, (3) enhanced fluid
flux localizing failure within a plate interior, and (4) changes in strength
related to plate thickness, composition, or mechanical (strain) weak-
ening (Fig. 11).

8.2. Broken foreland systems in the geologic record

The modern Andean foreland provides a proof of concept for a simple
classification scheme based on two key tectonomorphic elements—the
Andean topographic front and the foreland deformation front (Fig. 4).
Unbroken foreland regions are defined where these two tectonomorphic
elements are co-located, and broken foreland provinces are defined
where they diverge (Fig. 5). Thus, the boundaries of the structurally
partitioned, or broken, provinces within the Andean foreland are
demarcated through the delineation of the Andean topographic front
and the foreland deformation front. Andean broken foreland regions are
up to 400 km wide and reach up to 800 km inboard of the subduction
trench (Figs. 2-5).

This rationale provides a sound foundation for defining ancient
broken foreland basins in the geologic record, provided the positions of
the thrust-belt topographic front and foreland deformation front can be
determined through growth structures, depositional systems, and
exhumational histories from thermochronological or sediment prove-
nance studies. In practice, most cases offer a clear separation between
upper-crustal thrust-belt structures and intraforeland basement struc-
tures; although both systems involve crystalline basement, the former
embody an integrated family of ramp-flat structures, whereas the latter
constitute widely spaced crustal-scale structures. For example, the Lar-
amide broken foreland is well defined as the zone between the Cordil-
leran thrust front and the Laramide deformation front, a region up to
~600 km wide that reached up to 1000-1500 km inboard of the former
subduction trench (Figs. 2B and 3B).

Although numerous criteria are employed in basin classification
(Table 1), we recognize several areas of potential complexity in the
discrimination of broken foreland basins from other basin types. The
first issue concerns non-compressional stress regimes. The distal zones of
some foreland basins may be disrupted by non-contractional structures,
including extensional faults generally related to plate bending in the
distal foredeep or forebulge (e.g., Gustason, 1989; Bradley and Kidd,
1991; Delgado et al., 2012; Tavani et al., 2015; Enriquez St. Pierre and
Johnson, 2022). Such faults are commonly limited to the subsurface and
therefore do not generate the topographic compartmentalization
required for designation as a broken foreland basin. Potential exceptions
include large-magnitude normal or strike-slip faults that generate posi-
tive surface topography in the distal foreland during contemporaneous
foredeep sedimentation (e.g., Krzywiec, 2001; Cunningham, 2005;
Gianni et al., 2015; Sun and Dong, 2020).

Two additional complexities are discussed below. First, complica-
tions in basin categorization may be introduced by a potential structural
connection between the thin-skinned fold-thrust belt and intraforeland
uplifts (section 8.3). Second, the burial of actively growing intraforeland
arches by high-volume sedimentation may preclude the surface struc-
tural expression necessary for foreland partitioning (section 8.4).

8.3. Identification of structural style

Most broken foreland basins are affiliated with widely spaced
intraforeland structures that are deeply rooted in crystalline basement
(Figs. 2 and 3). In most cases, each basement uplift is tied to a single
master fault defined by a deeply penetrating fault ramp, rather than an
array of interconnected ramp-flat structures that form an organized fold-
thrust belt and orogenic wedge (Fig. 7). However, potential ambiguity
may arise in situations where basement-involved structures of the
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foreland are geometrically and kinematically linked to the thin-skinned
fold-thrust belt. Possible ancient candidates from North America include
basement arches that overlap spatially with the frontal structures of the
thin-skinned thrust system: for example, (i) the Uinta, Gros Ventre, and
subsurface Moxa arches near the Idaho-Wyoming thrust front (Royse
et al., 1975; Dorr et al., 1977; Kraig et al., 1987; Bradley and Bruhn,
1988; Bryant and Nichols, 1988; Yonkee and Weil, 2011) and (ii)
overlapping Laramide basement and Cordilleran thrust belt structures in
southwestern Montana (Ruppel and Lopez, 1984; Schmidt et al., 1988).
Ancient broken foreland basins in South America are best expressed in
the structural record of basement uplifts in northern Patagonia, which
may be connected in the subsurface to structures in the Andean
fold-thrust belt (e.g., Orts et al., 2012; Gianni et al., 2015; Echaurren
et al., 2016; Folguera et al., 2018; Horton, 2018a; Butler et al., 2020).
Past broken foreland settings have also been proposed for selected parts
of the eastern Andes on the basis of anomalous Paleogene stratigraphic
and provenance trends, but with limited evidence for coeval contrac-
tional structures of large magnitude (e.g., Bayona et al., 2013, 2020; del
Papa et al., 2013; Montero-Lépez et al., 2018).

For modern examples in South America, the proximity of the thin-
skinned Andean thrust front to opposing basement structures suggests
either overlap of two contrasting structural styles, or complex geometric
linkages within a hybrid structural style (Figs. 2, 3, and 6). Examples
from flat slab provinces (Figs. 4 and 5) include interactions among the
eastern front of the Precordillera fold-thrust belt and westernmost Si-
erras Pampeanas in Argentina (von Gosen, 1992; Smalley et al., 1993;
Zapata and Allmendinger, 1996b; Zapata, 1998; Meigs et al., 2006;
Vergés et al., 2007; Venerdini et al., 2020) and the Subandean thrust
front and intraforeland uplifts of Peru (Macellari and Hermoza, 2009;
Espurt et al., 2008; Gautheron et al., 2013; Baby et al., 2018; McClay
et al., 2018). Comparable late Cenozoic occurrences are observed in
continental collisional systems, including the Shillong Plateau of the
Himalayan foreland (e.g., Yin et al., 2010; Coutand et al., 2016) and the
Mazatagh high (Bachu Uplift) of the Tarim Basin (Wang et al., 2014;
Suppe et al., 2019; Li et al., 2020; Chen et al., 2022). These cases raise
the possibility of local uncertainty in broken versus unbroken foreland
basin designations.

We suggest that most potential ambiguity arises from structural as-
sessments at different scales. For example, a collection of variably ori-
ented basement structures with opposing vergence directions in a single
broken foreland may ultimately root into a single deep shear zone (or
décollement) in the lower crust or uppermost mantle (Oldow et al.,
1989; Erslev, 1993; Meyer et al., 1998; Tapponnier et al., 1990).
Although ostensibly similar to imbricate fan and backthrust (or triangle
zone) geometries within a thin-skinned thrust belt, these deeply rooted
structural systems within most broken forelands are decoupled at much
deeper levels (>20-30 km depths), with larger spacing between suc-
cessive structures (>20-100 km), and greater diversity in structural
orientation and tectonic transport. These foreland provinces are distin-
guished by isolated structural highs and lack the regional topographic
continuity and foreland-sloping upper surface expressed in the thin-
skinned fold-thrust belts of most orogenic wedges (e.g., Yonkee and
Weil, 2011, 2015; Horton et al., 2022).

8.4. Influence of sediment accumulation

The contrast between broken and unbroken conditions directly re-
lates to the topographic expression of basement-involved structures
(Fig. 1). Positive foreland topography is a key component in the defi-
nition of a broken foreland basin, given that all basin regions have some
degree of small-scale faulting, folding, and fracturing. The definition of a
broken foreland, therefore, excludes deformed foreland regions with
low-magnitude deformation incapable of generating positive topog-
raphy at the Earth's surface.
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However, we acknowledge the possibility of special cases in which
the delivery of extremely large volumes of sediment consistently buries
active intraforeland structures of considerable magnitude. These sys-
tems would display intraforeland basement highs, but they would be
recorded as zones of diminished accommodation rather than net uplift.
Subsurface examples from retroarc and peripheral foreland settings
show that multiple intraforeland structures represent reactivated fea-
tures that were intermittently active over long periods (>50 Myr), but at
sufficiently low rates that they principally remained zones of net sedi-
ment accumulation rather than uplift or erosion; specific cases include
the Zagros foreland basin (Sherkati and Letouzey, 2004; Lalami et al.,
2020), the Sacha-Shushufindi and Capiron-Tiputini systems in the
northern Andean Oriente foreland of Ecuador (Balkwill et al., 1995;
Baby et al., 2013) and the Izozog Arch in the central Andean Chaco
foreland of Bolivia (Uba et al., 2006; Stewart et al., 2018).

Alternatively, late syndeformational to post-deformational sedimen-
tation may lead to burial of relict topographic highs generated by
formerly active faults; examples include the establishment of late-stage
connections among Laramide basins (Lillegraven and Ostresh, 1988;
Montagne, 1991; Smith et al., 2014; Lawton, 2019) and the unification of
the Midland and Delaware basins within the late Paleozoic Ancestral
Rocky Mountain foreland (Ewing, 2019; Fairhurst et al., 2021). More-
over, entirely post-orogenic sedimentation may generate successor basins
that fill in preexisting topography at a regional scale (e.g., Dickinson
etal., 1988; Graham et al., 1993; Hendrix, 2000; Carroll et al., 2010), thus
reducing relief and expanding the cumulative area of a basin system.

We maintain that topographic or bathymetric disruption (in non-
marine or marine systems, respectively) is an essential component of
broken foreland basins, as it affects many surface processes related to the
generation, transport, and deposition of sediment. In practice, once
intraforeland uplifts have structurally partitioned a foreland region and
generated positive topographic or bathymetric relief, it would be most
logical to adopt the broken foreland terminology. Otherwise, in extreme
cases, modest changes in the ratio of sediment accumulation to vertical
uplift could induce abrupt temporal fluctuations in topographic
expression that could be construed as rapid alternations between broken
and unbroken conditions.

8.5. Paleodrainage and basin connectivity

A broken foreland network of anastomosing ranges with broad
intervening basins (Figs. 2 and 6) leads to complex evolution of fluvial
drainage networks (watersheds), with phases of isolation and connec-
tivity among adjacent basins. This leads to pronounced inter-basinal
complexity and variability in the reconstruction of depositional sys-
tems. These variations led Dickinson et al. (1988) to classify three modes
of Laramide broken foreland basins, consisting of ponded basins and
axial basins within the interior of the Laramide province, and perimeter
basins formed around its periphery. The dynamic interactions among
these basins, including multiple phases of isolation and intermittent
linkage with adjacent basins, are not only the product of variations in
surface uplift and the establishment of topographic barriers, but also the
processes of erosion and sediment accumulation, which could overtop
topographic sills between adjacent basins. In addition, climate varia-
tions reflected in changes in temperature, rainfall, and sediment trans-
port efficiency further influence basin deposystems and interbasin
connectivity.

Given the elaborate drainage configurations and sediment routing
possibilities, broken foreland basins are well suited for reconstruction of
past sediment transport pathways. Recent studies demonstrate the power
of provenance techniques such as detrital zircon U-Pb geochronology to
define major shifts in paleodrainage (e.g., Fan et al., 2011; May et al.,
2013; Perez and Horton, 2014; Bush et al., 2016; Gao et al., 2020; Stevens
Goddard et al., 2020; Smith et al., 2020; Capaldi et al., 2020; Mackaman-
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Lofland et al., 2022). Several trends emerge from such studies. First,
broken foreland basins may be fed by large integrated erosional drainage
systems spanning diverse sediment source regions within orogenic
wedges, which include chiefly sedimentary rocks within thin-skinned
fold-thrust belts and igneous and metamorphic rocks from elevated hin-
terland provinces, accreted terranes, and continental-margin magmatic
arcs (e.g., Fuentes et al., 2011; Saylor et al., 2011; Laskowski et al., 2013;
Garber et al., 2020; Rosenblume et al., 2021). Second, broken foreland
provinces may be dominated by far-traveled sediment from trans-
continental drainages with headwaters in cratonic or orogenic systems far
removed from the geologic elements responsible for basin formation (e.
g., late Paleozoic supply of Appalachian-Ouachita detritus to the Ances-
tral Rocky Mountains: Thomas et al., 2017; Gao et al., 2020; Leary et al.,
2020; Lawton et al., 2021). Third, sediment delivery to broken foreland
basins may be limited to isolated foreland block uplifts with local
drainage systems confined to crystalline basement rock units (e.g., local
derivation of basement detritus within Pampean and Laramide basins
(Fig. 9); Bush et al., 2016; Capaldi et al., 2017; Stevens Goddard et al.,
2020; Smith et al., 2020; Garzanti et al., 2022).

The sedimentary records of broken foreland basins offer valuable
insights into the dynamic evolution of drainages and drainage divides,
including drainage reversal and drainage reorganization at regional and
continental scale. Modern and ancient broken foreland basins offer op-
portunities to employ field data to test a range of geomorphic models
related to competition among drainage networks (Bonnet, 2009; Willett
et al., 2014; Whipple et al., 2017; Viaplana-Muzas et al., 2018; Struble
et al., 2021). Such intraplate basins are also instrumental in evaluating
suggestions of large-scale drainage reversal in the genesis of the Amazon
River (Shephard et al., 2010; Sacek, 2014), Laramide transcontinental
sediment routing to the Gulf of Mexico basin (Mackey et al., 2012;
Snedden and Galloway, 2019), and the use of river drainage analysis to
detect continental-scale tectonic uplift histories (e.g., Rodriguez Trib-
aldos et al., 2017; Fernandes et al., 2019).

8.6. Climate and erosion

Broken foreland basins (Fig. 1) are particularly sensitive to variations
in climate and erosion, with implications for sediment routing and
erosional and depositional mass budgets. Individual basement-cored
ranges are not only capable of forming barriers to surface transport of
water and sediment, but also may substantially alter regional orographic
effects and thus impact climate. The orographic barriers may lead to
aridification, drainage closure, and diminished stream power, such that
continued rock uplift further perpetuates long-lived topographic bar-
riers (e.g., Métivier et al., 1998; Sobel et al., 2003; Coutand et al., 2006;
Carroll et al., 2010). However, climate has become widely appreciated
as a major control on topography, relief generation, and tectonic uplift
in many orogenic systems, including broken foreland basins (e.g.,
McMillan et al., 2006; Heller et al., 2011; Hilley and Coutand, 2010;
Strecker et al., 2012; Ghiglione et al., 2019). Despite many modern and
ancient examples, discrimination of the interactions and potential
cause-effect relationships among climate, erosion, and tectonics have
remained elusive.

Mass redistribution is considerably reduced in broken foreland sys-
tems characterized by closed drainages, arid climate, and fluvial systems
with limited erosive power. Such systems will be governed by intra-
basinal sedimentation with limited sediment transport to peripheral
regions beyond the foreland deformation front. This large-scale mass
retention may promote shifts in the deformation front position, struc-
tural vergence, and overall orogenic architecture (e.g., Métivier et al.,
1998; Horton, 1999; Sobel et al., 2003; Norton and Schlunegger, 2011;
Armijo et al., 2015). More generally, if entire orogenic wedges and
flanking broken-foreland basement provinces may collectively operate
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as self-organized, critically tapered systems (Oldow et al., 1989; Erslev,
1993; DeCelles, 2004; DeCelles and Graham, 2015), confinement of
mass to the broken foreland may help regulate the pace and magnitude
of deformation advance. This raises the possibility that climate and
erosion may be instrumental as potential drivers capable of guiding both
the structural and sedimentary development of broken foreland systems.

9. Conclusions

(1) Broken foreland basins are fundamental components of many
contractional orogenic systems (Figs. 1-3). Multiple criteria
distinguish broken foreland basins from their unbroken coun-
terparts, including basin dimensions, bounding structural geom-
etries, deformation style, shortening magnitude, stratigraphic
arrangement, accommodation mechanisms, depositional envi-
ronments, sediment source regions, drainage networks, sediment
routing patterns, provenance evolutionary schemes, and basin
lifespans (Table 1).

The late Cenozoic basin architecture and structural anatomy of
the Andes and its adjacent foreland demonstrate the utility of
accurate determination of two key contemporaneous ele-
ments—the topographic front of the fold-thrust belt and the
foreland deformation front (Figs. 4 and 5). Recognition of these
features in modern systems and temporally constrained ancient
systems will enable identification of broken foreland basins in
both retroarc and collisional orogens.

Plate tectonic and geodynamic configurations demonstrate the
importance of flat slab subduction in the ancient Laramide
broken foreland of North America and the modern Pampean
broken foreland of South America (Figs. 2 and 3). However, flat
slab subduction is not uniquely required to induce intraplate
deformation and broken foreland conditions.

Delineation of broken foreland basins in the geologic record is
important for reconstructions of plate convergence, mechanical
interactions along plate boundaries, continental deformation, arc
magmatism, crustal evolution, craton growth and destruction,
and the long-term preservation or elimination of synorogenic
strata in foreland settings. Similarly, within the stratigraphic re-
cord, broken foreland basins provide insights into the in-
teractions among sediment supply, accommodation, climate,
paleodrainage, and synorogenic mass redistribution, as reflected
in patterns of erosion, transport, and accumulation.

(5) We propose two sets of circumstances conducive to the devel-
opment of broken foreland basins: first, favorable conditions
inherited from the preceding geologic history; and second, spe-
cific catalysts during orogenesis that trigger distributed intra-
foreland shortening. We postulate that basin genesis can be
ascribed to: (i) tectonic inheritance in the form of preexisting
structural, stratigraphic, rheological, and thermal conditions
(Fig. 10); and (ii) a mechanical trigger that may include elevated
stress, long-distance stress transmission, or variable crustal
strengthening or weakening within the intraplate regions that
host broken foreland basins (Fig. 11). This framework builds
upon previous studies that variably emphasize the role of cool,
thick, strong lithosphere, preexisting crustal weaknesses, and
competing effects of thermal processes (cooling) and fluid pro-
cesses (lithospheric hydration) during flat slab subduction.
Future efforts are required to better understand the precusor
conditions and discrete catalysts in time and space. In considering
inherited conditions, there are debates over the controls on se-
lective reactivation of particular structural or stratigraphic an-
isotropies and heterogeneities (over other candidate features),
the strength of fault zones over time, and the rates and processes

(2

—

3

-

4

—

(6

(7



B.K. Horton et al.

governing rheological and thermal changes. In terms of catalysts,
uncertainties persist over the magnitude, time scales, and crustal/
lithospheric positions of the shifts in intraplate stresses, fluid
flow, strengthening, and weakening that trigger intraforeland
basement deformation and the genesis of broken foreland basins.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.earscirev.2022.104193.
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