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ARTICLE INFO ABSTRACT
Keywords: A >15-20 km-thick succession in southern Bolivia forms the most-complete stratigraphic record in western
Detrital zircon provenance Gondwana. Upper Neoproterozoic—Carboniferous clastic rocks record ~300 Myr of marine, nonmarine, and

Pre-Andean basin evolution
Western Gondwana
Paleogeography of southern Bolivia
Famatinian magmatic arc
Transpampean Arch

glacially influenced sedimentation in diverse basin systems generated by variable tectonic regimes along the
western edge of Gondwana during active and passive-margin conditions. New provenance results help resolve
key uncertainties regarding source regions and sediment dispersal patterns. The findings are integrated with
spatial variations in stratigraphic thicknesses to evaluate regional patterns of basin subsidence, magmatism, and
deformation during long-term evolution of the western Gondwanan margin in the central Andes.

Detrital zircon U-Pb geochronological data for 17 sandstone samples reveal sedimentary input from Pre-
cambrian cratonic basement provinces and pre-Andean basement, magmatic arc, and fold-thrust belt source
regions. The basement age signatures indicate derivation from the flanking Brasiliano (900-560 Ma) and
Pampean (650-500 Ma) provinces to the south and east, and the distal Rio de la Plata craton (2400-2000 Ma)
along the eastern South American margin ~1000-1500 km to the southeast. Although the greater Amazonian
craton was not a major contributor, subordinate Amazonian signatures from the Sunsas (1300-950 Ma) province
to the east and northeast selectively fed the northern basin regions of the central Andes. Despite the lack of
Paleozoic igneous rocks in Bolivia, detrital zircons of Ordovician age attest to the pre-Andean influence of the
subduction-related Famatinian magmatic arc. Limited Devonian-Carboniferous igneous material was contributed
locally from western pre-Andean highlands or regionally by axial northward transport from selected igneous
sources in Argentina and Chile. Episodic recycling of Neoproterozoic-Paleozoic basin fill, including a sharp
reappearance of Famatinian-age detritus, can be linked to periods of Paleozoic crustal shortening and foreland
sedimentation ascribed to Famatinian, Ocloyic, Chanic, or Gondwanide phases of deformation.

The spatial distribution of sediment sources along with temporal shifts in sediment routing highlight several
stages in the paleogeographic evolution of the western Gondwanan margin preserved in the central Andes. Initial
regional subsidence spanned a multiphase Neoproterozoic to early Paleozoic history of Rodinia breakup,
Brasiliano-Pampean orogenesis, and post-orogenic back-arc extension prior to final late Paleozoic amalgamation
of Gondwana. The early Paleozoic onset of subduction and Famatinian arc magmatism led to high-magnitude
subsidence (>10-15 km) likely driven by Ordovician slab rollback in an extensional back-arc basin. There-
after, intermittent Paleozoic contraction in a poorly understood pre-Andean system (best expressed in the Eastern
Cordillera of Bolivia and neighboring segments of northern Argentina and southern Peru) generated transient
topographic loads that produced superimposed flexural foreland and successor basin systems.
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Fig. 1. (A) Map of the major tectonic provinces of South America, which are distinguished by the principal metamorphic/igneous ages (listed in the key). (B) Map of
the study region in west-central South America showing sample locations in southern Bolivia relative to modern Andean tectonic provinces. Adapted from Loewy

et al. (2004), Rapela et al. (2007), Favetto et al. (2015), Ramos (2010a), Ibanez-Mejia et al.
geological map (after Choque and Almendras, 2012) with detrital zircon sample locations.

(2015), Chew et al. (2016); Cordani et al. (2010b). (C) Southern Bolivia
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Fig. 1. (continued).

1. Introduction

Contrasting tectonic, magmatic, and sedimentary processes helped
shape the pre-Andean paleogeography of the western Gondwanan
margin and later growth of the Andean orogenic belt. Several major
geologic transitions are expressed within the central segment of South
America at ~10-25°S latitude (Fig. 1). Within the continental interior,
the Precambrian Amazonian craton contrasts with separate basement
provinces of variable age in southern South America (Cordani et al.,
2003; Cordani and Teixeira, 2007; Rapela et al., 2007; Casquet et al.,
2018). Along the western margin, the central Andes are distinguished by
the presence of the Arequipa basement terrane (Coira et al., 1982;
Loewy et al., 2004; Ramos, 2008). In Bolivia, the central Andes also lack
strong records of Paleozoic tectonomagmatic events such as the Fama-
tinian and Gondwanide orogenic episodes that profoundly affected other
Andean regions (Ramos, 1988, 2009, 2018; Vujovich et al., 2004;
Cawood, 2005; Rapela et al., 2016). These dissimilarities influenced not
only the Neoproterozoic-Paleozoic evolution of western Gondwana but
also the subsequent construction of the Andean orogenic belt and
adjacent foreland, where major along-strike variations are observed in
structural and stratigraphic records (Kley et al., 1999; McGroder et al.,
2015; Horton, 2018a, 2018b).

The >15-20 km-thick succession of Bolivia provides a long-lived
record of erosional exhumation and sediment dispersal from major
cratonic and pre-Andean orogenic provinces during Neoproterozoic-
Paleozoic evolution of diverse basin systems (Isaacson and Dia-
z-Martinez, 1995; Sempere, 1995; Starck, 1995; Jaillard et al., 2000;

Suarez-Soruco, 2000). Several key issues remain unresolved. (1)
Whereas Precambrian rocks in the South American interior are consid-
ered the most likely sources of sediment, there are no estimates of the
relative contributions of northern (Amazonian) versus southern base-
ment provinces. (2) Further uncertain is the influence of pre-Andean
subduction-related magmatism and deformation (including the Fama-
tinian, Ocloyic, Chanic, and Gondwanide orogenic episodes) on Paleo-
zoic sediment dispersal and basin filling. (3) The importance of
glaciation and erosional recycling of Paleozoic basin fill remains un-
clear. (4) Finally, despite the exceptional stratigraphic thickness, the
regional geometries and mechanisms of basin subsidence have not been
fully explored.

In this paper, we present detrital zircon U-Pb geochronological re-
sults for 17 Paleozoic sandstones (~1700 analyses) from southern
Bolivia and integrate these data with published U-Pb results for neigh-
boring zones of the central Andes. This provenance information is
combined with isopach data, paleocurrents, and regional chronostrati-
graphic constraints to reconstruct the paleogeography, sediment
dispersal patterns, and basin accommodation mechanisms in the central
Andes during evolution of the western Gondwanan margin. Our study
further highlights uncertainties regarding subduction geometries, tec-
tonic configurations, and the potential role of tectonic inheritance on
later Andean orogenesis.

2. Geologic setting

The central Andes and adjacent foreland represent a spatial
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transition between contrasting geologic elements of northern and
southern South America (Figs. 1 and 2). The Amazonian craton of
northern South America contains an Archean-Paleoproterozoic nucleus
flanked to the west by successively younger basement provinces,
including the Mesoproterozoic Sunsas (Grenville) and Neoproterozoic
Brasiliano (Pan-African) belts (e.g., Litherland and Bloomfield, 1981;
Cordani et al., 2003, 2010a, 2010b; Cordani and Teixeira, 2007; Basei
et al., 2010). In contrast, southern South America contains varied
basement terranes consisting of the Paleoproterozoic Rio de la Plata
craton along the eastern continental margin flanked to the west by the
Mesoproterozoic-Neoproterozoic Pampean orogenic belt (Ramos, 1988;
Litherland et al., 1989; Rapela et al., 2007; Casquet et al., 2018). The
west-central (central Andean) segment of South America is underpinned
by Paleoproterozoic-Mesoproterozoic basement rocks of the Arequipa
terrane (Loewy et al., 2004; Ramos, 2008; Casquet et al., 2010).

The central Andes exhibit the thickest Phanerozoic sedimentary
cover and maximum orogenic width (Horton et al., 2022). The
pre-Andean history has been attributed to a complex combination of
Neoproterozoic-Mesozoic passive and active-margin conditions with
contrasting tectonic regimes (tensile, contractile, strike-slip, and neutral
stress conditions) and pronounced phases of Paleozoic glaciation (Fig. 2;
Franz et al., 2006; Reimann et al., 2010; Anderson, 2011). Later growth
of the central Andes was accommodated by principally Cenozoic retro-
arc shortening, with associated orogenic exhumation and foreland basin
sedimentation.

At ~21°S, the central Andes consist of several north-trending tec-
tonomorphic zones and basin systems (Fig. 1C). In the west, these zones
include the Peru-Chile trench, Coastal Cordillera (Mesozoic magmatic
arc), Longitudinal Valley (modern forearc, overprinting a late Paleozoic
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arc), Precordillera (Paleogene arc), Western Cordillera (Neogene arc),
and the Altiplano-Puna plateau (Neogene hinterland basin). In the east,
the Eastern Cordillera defines a bivergent thrust belt that exhumes
Ordovician rocks overlain unconformably by Jurassic-Neogene strata
(Kley et al., 1997; DeCelles and Horton, 2003; McQuarrie et al., 2005).
To the east, the Interandean Zone and Subandean Zone define a
thin-skinned fold-thrust belt composed of Silurian-Cretaceous rocks
blanketed by Cenozoic fill of the Chaco foreland basin (Kley, 1996; Uba
et al., 2009; Calle et al., 2018).

3. Neoproterozoic-Paleozoic stratigraphic framework

The >15-20 km-thick Neoproterozoic-Paleozoic stratigraphic suc-
cession of southern Bolivia (Fig. 3) recorded principally marine sedi-
mentation along the western margin of Gondwana. Neoproterozoic to
mid-Cambrian accumulation of >3 km of deep-water turbidites to
shallow-marine clastic and limited carbonate deposits produced the
Puncoviscana Formation (Jezek et al., 1985; Litherland et al., 1989;
Omarini et al., 1999; Acenolaza and Toselli, 2009; Escayola et al., 2011).

A >12 km thick upper Cambrian-Ordovician section (Fig. 3) of
fluvial, deltaic, and deep-marine deposits documented a rapidly sub-
siding basin (Suarez-Soruco, 1976, 2000; Sanchez and Salfity, 1999;
Acenolaza, 2003; Egenhoff, 2007; Augustsson et al., 2011). Westward
progradation of the continental margin (~2 km thick Sama and
Iscayachi Formations) was followed by Ordovician igneous activity in
the Famatinian magmatic arc and mud-rich deep-sea fan deposition
(~10 km thick Cieneguillas, Agua y Toro, Marquina, and additional
Formations) in a back-arc setting. Sparse Ordovician volcaniclastic de-
posits in western Bolivia (Tistl, 1985; Avila-Salinas, 1992, 1996)
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Fig. 2. Chart displaying comparative ages, lithologies, and tectonic events recorded by basement units and cover strata within six representative regions (R1-R6) of
west-central South America (after McGroder et al., 2015). Note the mostly continuous Neoproterozoic-Carboniferous succession in southern Bolivia (R1).
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Fig. 3. Generalized Neoproterozoic-Paleozoic stratigraphic column for southern Bolivia depicting lithologies, unconformities, and 18 sample locations (sample 1 is
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correlate with Famatinian volcanic and marine clastic strata of northern
Argentina and Chile (Castanos and Rodrigo, 1978; Coira et al., 1982,
2009; Ramos, 1988; Bierlein et al., 2006). Late Ordovician basin closure
was associated with fold-thrust deformation and low-grade meta-
morphism during the 460-440 Ma Ocloyic orogeny (Fig. 3; Mon and
Salfity, 1995; Bahlburg and Hervé, 1997; Egenhoff, 2007; Moya, 2015),
which may be considered the final phase of the broadly defined
Cambrian-Ordovician Famatinian orogeny (Ramos, 2018; Otamendi
et al., 2020).

Upper Ordovician-Lower Silurian deposits (>1.4 km Cancaniri For-
mation) recorded an apparent deepening of the marine back-arc basin
(Suarez-Soruco, 2000; Gagnier et al., 1996; Schonian and Egenhoff,
2007). The overlying Silurian-Devonian sand-rich marine units
(>3.5 km thick Tarabuco-Santa Rosa, Huamampampa and Iquiri For-
mations) recorded progradation to the ENE away from an orogenic
highland with little or no arc magmatism (Fig. 3; Gohrbandt, 1992;
Isaacson and Diaz-Martinez, 1995; Arispe and Diaz-Martinez, 1996;
Limachi et al., 1996; Miranda et al., 2003).

A sea-level fall and regional glaciation induced deep dissection of
Upper Devonian rocks and subsequent Carboniferous deposition of
glacially influenced fluvial, deltaic, lacustrine and shallow marine de-
posits (>2 km Machareti and Mandiyuti groups) (Fig. 3; Starck, 1995; di
Pasquo, 2007; Grader et al., 2008; Wicander et al., 2011; Anderson,
2011; Bache et al., 2012). The absence of Devonian-Carboniferous strata
across much of the Altiplano-Puna plateau and Eastern Cordillera of
western Bolivia and northernmost Argentina may be attributable to
regional shortening and uplift of a mid-Paleozoic structural high, the
Transpampean Arch (Tankard et al., 1995; McGroder et al., 2015).

Collectively, the clastic sediments that dominate the Neoproterozoic-
Carboniferous succession in the central Andes may derive from a range
of source regions, including Precambrian cratonic provinces, additional
Precambrian basement rocks in the Andes and adjacent foreland, Neo-
proterozoic metasedimentary cover rocks, and igneous and recycled
sedimentary materials in pre-Andean magmatic arc and fold-thrust belt
source regions.

4. Potential sediment source regions

To identify and track sediment sources through time, we summarize
the cratonic provinces, basement terranes, and sedimentary assemblages
that may have supplied sediment to Neoproterozoic-Paleozoic basins
along the western Gondwanan margin (Fig. 1).

4.1. Amagonian craton (2500-950 Ma)

To the east and northeast of the central Andean study area, the
Amazonian craton (Fig. 1A) consists of an Archean-Paleoproterozoic
nucleus (>2000 Ma) flanked to the west by successively younger base-
ment provinces, including the Ventuari-Tapajos (2000-1800 Ma), Rio
Negro-Juruena (1800-1600 Ma), Rondonia-San Ignacio (1600-1300
Ma), and Sunséds-Aguapei (1300-950 Ma) provinces (Litherland et al.,
1989; Geraldes et al., 2001; Bettencourt et al., 2010; Teixeira et al.,
2010). Isolated exposures of the Rio Apa craton are considered the
southernmost continuation of the Amazonian craton (Cordani et al.,
2010b; Faleiros et al., 2016). The Sunsas province, consisting of granitic
intrusions, mafic sills, and metasedimentary rocks, lies in closest prox-
imity to the Andes and is partially buried by Cenozoic foreland basin fill.
Widespread 1300-950 Ma detrital zircons in the northern and central
Andes suggest that Sunsas basement forms a continuous ~5000 km long
belt in the present Andean foreland from ~10°N to ~25°S (e.g., Chew
et al., 2007; Santos et al., 2008; Ramos, 2010a; Teixeira et al., 2010;
Ibanez-Mejia et al., 2015).

4.2. Brasiliano belt (~900-560 Ma)

East of the study region, widely distributed 900-560 Ma granitic and
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volcanic rocks of the Neoproterozoic Brasiliano belt weld the Amazo-
nian craton to the San Francisco, Rio de la Plata and other cratonic rocks
of South America (Fig. 1A) (Litherland et al., 1989; Geraldes et al., 2001,
2015; Cordani et al., 2003). Along the eastern continental margin, the
Dom Feliciano belt contains granitic and metasedimentary rocks formed
during Brasiliano orogenesis (Oriolo et al., 2016; Hueck et al., 2018).
The Brasiliano belt also encompasses the NE-trending Transbrasiliano
lineament and is partially correlative with associated sedimentary rocks
of the Paraguay belt, a fold-thrust system contemporaneous with
Pampean orogenesis during the late Neoproterozoic (Litherland and
Bloomfield, 1981; Campanha et al., 2010; Cordani et al., 2010a; Walde
et al., 2015; D’el-Rey Silva et al., 2016).

4.3. Rio de la Plata craton (2400-2000 Ma)

To the southeast, the Rio de la Plata craton forms the largest Pre-
cambrian crustal province in southern South America, with Paleo-
proterozoic igneous and metamorphic rocks formed at 2400-2000 Ma
(Fig. 1A). In the Andean foreland of Argentina, the NNE-trending
structural boundaries of the Rio de la Plata craton are overlapped by
Neoproterozoic-lower Cambrian metasedimentary rocks of the Punco-
viscana Formation (Rapela et al., 2007; Favetto et al., 2015; Girelli et al.,
2018).

4.4. Pampean orogen and Puncoviscana basin (~650-500 Ma)

The mostly buried Pampean orogenic belt (or Pampia terrane)
beneath the central Andean foreland is situated between the Sunsas
province (westernmost Amazonian craton) and the Arequipa basement
of the westernmost central Andes (Fig. 1A). The Pampean orogen is
dominated by 555-500 Ma igneous and metamorphic ages super-
imposed on precursor Precambrian basement with Nd model ages
(TDM) of ~1800, 1600-1300, and/or 1300-950 Ma (Litherland et al.,
1989; Franz et al., 2006; Schwartz et al., 2008; Ramos et al., 2010;
Pepper et al., 2016). Pampean basement is overlain by clastic low-grade
metasedimentary rocks of the Neoproterozoic—lower Cambrian Punco-
viscana Formation (Jezek et al., 1985; Becchio et al., 1999; Acenolaza
et al., 2002; Suarez-Soruco, 2000). Published detrital zircon ages for the
Puncoviscana basin suggest 1300-950 Ma and 700-530 Ma grains
derived from Sunsas and Pampean-Brasiliano basement rocks (e.g.,
Adams et al., 2011; Escayola et al., 2011; Einhorn et al., 2015).

4.5. Arequipa block (2100-1000 Ma)

West of the study region, the Arequipa-Antofalla terrane forms
Paleoproterozoic (2100-1800 Ma) and Mesoproterozoic (1300-1000
Ma) granitic basement of the forearc and western flank of the central
Andes at 14-26°S (Fig. 1A) (Lehmann, 1978; Tosdal, 1996; Loewy et al.,
2004; McLeod et al., 2013; Jiménez, 2018). This basement block was
affected by a 1300-1000 Ma Sunsas-Grenville tectonothermal event and
700-400 Ma magmatism during Pampean and Famatinian orogenesis
(Becchio et al., 1999; Lucassen et al., 2000; Worner et al., 2000; Loewy
et al., 2004; Franz et al., 2006; Casquet et al., 2010; Pankhurst et al.,
2016; Rapela et al., 2016).

4.6. Famatinian magmatic arc (500-460 Ma) and Ocloyic orogeny
(460-440 Ma)

In the central Andes, the north-trending Famatinian belt (Fig. 1A)
represents a pre-Andean magmatic arc formed during Ordovician
growth and retreat of an east-dipping subduction zone (e.g., Ramos,
2010a; Ducea et al., 2015; Otamendi et al., 2017; Rapela et al., 2018).
Subduction-related igneous activity at 500-460 Ma was widespread in
western Argentina, but the northern continuation of Famatinian
magmatic arc is poorly resolved, with no major igneous sources docu-
mented in Bolivia. Famatinian magmatism was followed by 460-440 Ma
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shortening and metamorphism associated with the Late Ordovi-
cian-Silurian Ocloyic orogeny, which involved consolidation of the
offshore Famatinian arc and Arequipa block against west-central South
America (Mon and Salfity, 1995; Bierlein et al., 2006).

4.7. Paleozoic basin fill

Paleozoic sedimentary rocks west of the study region are considered
a potential source of recycled clastic material originally derived from the
aforementioned basement and magmatic-arc sources. Evidence for such
Pre-Andean recycling derives from several relationships within the
central Andes. In western localities, Devonian-Carboniferous deposits
are largely absent from the Altiplano of Bolivia, potentially due to
nondeposition or erosion across a regional structural high that involved
uplifted Arequipa basement (Isaacson and Diaz-Martinez, 1995). Simi-
larly, a regional unconformity in which various Mesozoic units overlap
Ordovician deep-water deposits across the Eastern Cordillera of Bolivia
and northernmost Argentina documents the absence of Silur-
ian—Carboniferous units that are preserved in adjacent regions (Kley,
1996; Kley et al., 1997; Anderson et al., 2017). The erosional removal of
thick Paleozoic clastic deposits may have occurred during a single phase
of exhumation, or incrementally during the successive Famatinian,
Ocloyic, Chanic, and Gondwanide episodes of deformation.

5. Methods

Detrital zircon U-Pb geochronological results for 17 sandstone
samples from Cambrian to Carboniferous units of southern Bolivia
(19-22°S) clarify the depositional ages and sediment provenance within
diverse basin settings developed along the long-lived pre-Andean
margin (Figs. 1-3; Table S1, Supplementary data).

Detrital zircons were separated using standard methods of rock
crushing, grinding, water table, heavy liquid, and magnetic separation.
U-Pb analyses were conducted at the University of Texas at Austin using
laser ablation inductively coupled plasma mass spectrometry (LA-ICP-
MS) following procedures outlined by Levina et al. (2014) and Horton
et al. (2016). For each sample, ~120 non-polished, tape mounted,
randomly selected detrital zircon grains were analyzed using a Photo-
nMachine Analyte G.2 Excimer laser (30 pm laser spot size) with a
large-volume Helex sample cell and a Thermo Element2 ICP-MS. Cor-
rections for depth-dependent and elemental fractionation were accom-
plished by co-analysis of interspersed GJ1 as a primary zircon standard
(600.4 + 0.1 Ma; Jackson et al., 2004). In addition, Plesovice (337.2 +
0. 4 Ma; Slama et al., 2008) was analyzed as a secondary standard to
monitor procedural performance. U-Pb data were then reduced using
the Iolite data reduction software VizualAge (Paton et al., 2010; Petrus
and Kamber, 2012).

U-Pb ages and 2¢ uncertainties are reported for analyses with <10%

Pampean  Brasiliano
4 Y
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206p}, /2381 uncertainties, <20% discordance, and <5% reverse discor-
dance (Table S1, Supplementary data). Reported ages represent
206py, /2381 ages for grains younger than 950 Ma and 2°7Pb,/2%°Pb ages
for older grains. Estimates of maximum depositional age (Fig. S1, Sup-
plementary data) were derived from grains yielding <5% discordant
206ph,/238y and 297Pb/?3U ages. Calculations of maximum depositional
age (MDA) involved the weighted mean of the youngest concordant ages
(n > 3) that overlapped within 2¢ error (Dickinson and Gehrels, 2009),
an unmixed routine to model the individual youngest significant peak (n
< 6), and a TuffZirc age that identifies the youngest mode (Coutts et al.,
2019). Systematically, the preferred MDA was in accordance with
available bio-stratigraphic age constraints.

U-Pb results are displayed as probability density functions and age
histograms, and are organized by stratigraphic level (Figs. 4-5). For
diagnosing key provenance signatures, the plotted age spectra are pre-
sented into two columns, with 300-2000 Ma (right) and 300-800 Ma
(left) age ranges, and >2000 Ma age populations shown (insets) where
significant. For statistical comparison of U-Pb spectra, we employed a
multidimensional scaling (MDS) plot (Fig. 6), which displays the D
values from the Kolmogorov-Smirnov test (K-S test) (Saylor and Sundell,
2016). This two-dimensional plot identifies greater similarity for sam-
ples that spatially cluster together and less similarity for those that plot
farther apart. To evaluate whether the MDS plot accurately represents
dissimilarity between samples (goodness of fit), a Shepard plot is pre-
sented, with a stress factor = 0 for a perfect goodness of fit and >0.2 for a
poor goodness of fit. After cross-correlating the geologic criteria, the
MDS plot facilitates definition of three geographic source regions char-
acterized by a fair goodness of fit (stress = 0.130) (Fig. 6).

6. Detrital zircon U-Pb geochronology

U-Pb results are presented for 18 samples from upper Neo-
proterozoic to Carboniferous strata (Figs. 3-6), including 17 new sam-
ples from southern Bolivia and a single published sample (Escayola
et al.,, 2011) from northernmost Argentina. Cumulative U-Pb age dis-
tributions (Fig. 4) for all samples (N = 18, n = 1727 ages) depict the
major components, classified according to age ranges that are repre-
sentative of key source regions (Fig. 1).

The dominant cratonic and pre-Andean basement sources include (1)
late Ediacaran to Cambrian (650-500 Ma) ages of the Pampean belt and
(2) Tonian to mid-Ediacaran (900-560 Ma) ages from the Brasiliano
province. The major pre-Andean igneous and metamorphic sources are
represented by (1) Famatinian (500-460 Ma) and (2) Ocloyic (460-440
Ma) age components. Additional, less-common sources include the
western Amazonian craton, as defined by (1) Mesoproterozoic
(1300-950 Ma) ages from the Sunséas-Arequipa belt and Paleoproter-
ozoic (2000-1350 Ma) ages from the Rondonia-San Ignacio or Rio Apa
province. A single sample records the exceptionally rare appearance of

2L Sunsés- Rondonia-San Ignacio Rio de la

- 150 Arequipa Rio Apa Plata
2 N = 18 samples
g 100 n =1727 ages
< 50 |

1] T T T T T T T T T T T T B T"‘Ta\ﬁgl‘ T T T f T T )

500 1000 1500 2000 2500 3000
Detrital Zircon U-Pb Age (Ma)
Ocloyic (460-440 Ma) Famatina (500-460 Ma) Pampean (650-500 Ma) Brasiliano (900-560 Ma)

Sunsas-Arequipa (1300-950 Ma)

Rondonia-San Ignacio-Rio Apa (2000-1350 Ma)

Rio de la Plata (2400-2000 Ma)

Fig. 4. Probability density plot with age histogram showing the composite U-Pb zircon age distribution for the 18 Paleozoic samples considered in this study. Color
shading highlights the potential sediment source regions and associated tectonic episodes of west-central South America.
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Fig. 5. Normalized probability density plots with age histograms (25 Myr bin size) and pie diagrams showing U-Pb age distributions for Neoproterozoic-Paleozoic
samples from southern Bolivia. Color shading highlights the presence of particular age categories, in stratigraphic order (with Neoproterozoic-Cambrian basement
rocks at the base and Carboniferous deposits at the top). Thicker black vertical line divides the datasets into two columns, with 300-2000 Ma (right) and 300-800 Ma
(left) age ranges, and >2000 Ma age populations (insets) shown where significant. Horizontal black lines divide samples with similar provenance sources; vertical
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southern Bolivia, showing three discrete clusters of potential sediment sources (rectangular fields): Neoproterozoic-Ordovician samples indicative of eastern sediment
sources, Devonian samples derived from western regions, and Silurian and Carboniferous samples from southeastern and probable western sources.

Archean age (2200-2000 Ma) detritus from the Rio de la Plata craton.

The U-Pb results for the 18 samples (Fig. 5) are described in five
separate age groups, according to similarities in U-Pb age distributions
that reflect comparable sediment source regions (Fig. 6). The results also
allow general assessments of maximum depositional age (MDA) for five
samples (Fig. S1, Supplementary data), which reinforce past bio-
stratigraphic age assignments.

6.1. Neoproterozoic—earliest Ordovician (samples 1-3)

In lowermost stratigraphic levels, upper Neoproterozoic-lowermost
Ordovician strata (samples 1-3, Fig. 5A-C) shows signatures of cratonal
sources to the east. Sample 1 (sample VLE07-109 of Escayola et al.,
2011) from the upper Neoproterozoic-lower Cambrian Puncoviscana
Formation contains dominantly 620-600 Ma Brasiliano ages, along with
multicomponent 1300-950 Ma Sunsds and minor 2000-1350 Ma
Rondonia-San Ignacio or Rio Apa signatures (Fig. 5A). This age distri-
bution reflects eastern sources including the Brasiliano province and
western Amazonian craton, consistent with west-directed paleocurrents
(Jézek et al., 1985; Acenolaza and Toselli, 2009).

Samples 2 and 3 (Fig. 5B and C) from the upper Cambrian Sama
Formation and basal Ordovician Iscayachi Formation are defined by age
peaks of 720-540 Ma and scattered 900-720 Ma and 560-520 Ma sig-
natures derived almost exclusively from the Brasiliano province. A
subordinate Pampean signature is defined by 550-520 Ma U-Pb zircon
ages that complement an emergent 520-490 Ma peak indicative of
Cambrian magmatism (MDA of 507.5 + 2.6 Ma; Fig. S1A), in accor-
dance with the middle-late Cambrian bio-stratigraphic age and strati-
graphic position above the trilobite-bearing Lizoite and Campanario
Formations (Acenolaza, 2003; Egenhoff, 2007).

6.2. Ordovician (samples 4-6)

Within the thick Ordovician section, samples 4-6 (Fig. 5D-F) record
the introduction of coeval magmatic arc signatures that complement
multicomponent detrital signatures from established and new basement
sources. The Lower Ordovician Cieneguillas Formation (sample 4,
Fig. 5D) exhibits a restricted 550-480 Ma age distribution consistent
with local input from Pampean basement (Augustsson et al., 2011;
Aparicio-Gonzalez et al., 2014) and the introduction of Early Ordovician
ages from the newly established Famatinian arc.

The Lower Ordovician Agua y Toro Formation (sample 5, Fig. 5E)
and Upper Ordovician Marquina Formation (sample 6; Fig. 5F) mark the
return of eastern cratonic detritus, with broadly distributed age spectra
that include Brasiliano (720-540 Ma) and Sunsés (1300-950 Ma) sig-
natures. Sample 6, however, contains a greater proportion of pre-
Andean source material, with 560-440 Ma ages corresponding to
more-proximal Pampean, Famatinian, and Ocloyic signatures. The
Cambrian-Ordovician age components are consistent with pre-Andean
source regions involving contemporaneous arc magmatism, erosion of
Pampean basement, and recycling of clastic fill from the Puncoviscana
and other Cambrian-Ordovician basins (Egenhoff, 2007; Augustsson
et al., 2015; Einhorn et al., 2015).

Three Ordovician samples (samples 4-6; Fig. 5D-F) include latest
Cambrian-Early Ordovician ages from the coeval magmatic arc (Fig. S1),
yielding MDA values of 483.2 + 5.9 Ma (sample 4, Fig. S1B), 491.9 +
3.1 Ma (sample 5, Fig. S1C), and 475.6 + 4.1 Ma (sample 6, Fig. S1D).
These ages are consistent with reported bio-stratigraphic ages for Bolivia
(Suarez-Soruco, 2000; Erdtmann et al., 1995) and the correlative Santa
Rosita Formation in Argentina (Basei et al., 2010; Toselli et al., 2012).
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6.3. Silurian (sample 7)

The Lower Silurian Cancaniri Formation (sample 7, Fig. 5G) shows a
distinctive age distribution indicative of proximal and distal sediment
source regions. Late Neoproterozoic—-Cambrian ages present in this
Silurian sample are comparable to signatures in underlying units.
However, in contrast to Ordovician samples, there are no syndeposi-
tional ages and no strong Famatinian-Ocloyic age peaks, suggesting no
direct link to the extinct Famatian magmatic arc and associated meta-
morphic belt. The glacially influenced Cancaniri Formation (sample 7,
Fig. 5G) is further distinguished by the singular appearance of
2200-2000 Ma detritus likely derived from the Rio de la Plata craton,
consistent with long-distance (>1500 km) transport potentially linked
to large ice sheets (e.g., Starck et al., 2021).

6.4. Devonian (samples 8-12)

Fluvial to shallow-marine Devonian units (samples 8-12; Fig. 5H-L)
show detrital zircon U-Pb age signatures attributable to proximal
western sources of recycled sedimentary basin fill, older magmatic arc
rocks, and pre-Andean basement. Relative to underlying formations, the
five samples from the Devonian Santa Rosa, Huamampampa, and Iquiri
Formations record an increase in widely distributed (or cosmopolitan)
age components (Fig. 5). This includes the appearance and sustained
presence of a dominant 500-440 Ma Famatinian-Ocloyic age signature,
strong 560-500 Ma Pampean-Cambrian age peaks, and a broad range of
subordinate 720-560 Ma Brasiliano ages. Devonian samples also show
an increased proportion of the 1350-950 Ma Sunsas-Arequipa signature
relative to underlying units.

The coeval occurrence of Ordovician and Mesoproterozoic ages
points to sediment derivation from western sources that included the
relict Famatinian arc and Arequipa basement. Additional proximal
sources included basin fill and Pampean basement of late Neo-
proterozoic to Silurian age. The dominance of these pre-Andean sources
over eastern cratonic sources is expressed in the discrete MDS clustering
of Devonian samples relative to other samples (Fig. 6). A highly
restricted set of roughly 410-370 Ma zircons suggest some degree of
syndepositional Devonian magmatism, although the location and
geologic context for such magmatism is unknown.

6.5. Carboniferous (samples 13-18)

Glacially influenced nonmarine and marine strata within the
Carboniferous succession (samples 13-18, Fig. 5L-Q) yield similar
detrital zircon age distributions indicative of a major provenance switch
from western pre-Andean sources to chiefly Precambrian sources to the
south and east. Six samples from the Pennsylvanian Tupambi, Tarija,
Chorro, and Escarpment Formations (samples 13-18; Figs. 5 and 6)
consistently show major 640-560 Ma Brasiliano age peaks and subor-
dinate 560-520 Ma Pampean, 1300-950 Ma Sunsas-Arequipa, and
360-300 Ma Carboniferous ages.

A distinct shift from dominantly Paleozoic to dominantly Precam-
brian age peaks is manifest in the nearly complete elimination of
Famatinian-Ocloyic ages and the reintroduction of major Brasiliano age
components consistent with Pampean and Puncoviscana sources to the
south and east. MDS comparisons of the internally consistent detrital
zircon populations of Carboniferous samples with underlying samples
demonstrate a sharp distinction from Devonian units and a shared
provenance with the Silurian Cancaniri Formation (Figs. 5 and 6). This is
consistent with a pronounced reduction in western sources (such as the
relict Famatinian magmatic arc) and the enhanced influence of cratonal
sources to the southeast that were previous contributors during Silurian
basin evolution. A distal glacial provenance from the south/southeast is
supported by the regional orientation of glacially carved paleovalleys of
Carboniferous age (Starck, 1995; Tankard et al., 1995).

Although limited, Famatinian-Ocloyic and Carboniferous age zircons
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(Fig. 5) suggest modest recycling of older basin fill and/or minor input
from western pre-Andean highlands. A single sample from the Tupambi
Formation yields a MDA of 340.2 + 5.3 Ma (sample 14, Fig. S1E),
slightly older than palynological age estimates (e.g., Rocha-Campos
et al.,, 1977; di Pasquo, 2007; Wicander et al., 2011), indicative of
renewed syndepositional arc magmatism along the western continental
margin.

7. Sediment dispersal patterns and paleogeographic
reconstructions

The integration of new and published detrital zircon U-Pb results
(Fig. 7; Tables S1 and S2) provides the foundation for generalized map-
view reconstructions of sediment provenance patterns and paleogeog-
raphy along the pre-Andean margin (Fig. 8). The geochronological re-
sults derive from six central Andean regions (R1-R6) between 9° and
26°S: southern Bolivia (R1, this study); northern Argentina (R2);
northern Chile (R3); northwestern Andean Bolivia (R4); southern Peru
(R5); and northernmost coastal Chile to southernmost coastal Peru, R6).
Our emphasis in employing this expanded U-Pb database is to utilize
Neoproterozoic to Carboniferous stratigraphic variations in key detrital
signatures (Figs. 5-6) to discriminate sediment source regions through
time (Fig. 8).

To evaluate changes in basin geometry, the expanded provenance
results are assessed in coordination with isopach maps that show the
regional distribution of stratigraphic thicknesses. Although not available
for all time slices, previously published Silurian, Devonian, and
Carboniferous isopach maps were key for this evaluation (Isaacson and
Sablock, 1988; Gohrbandt, 1992; Reutter et al., 1994; Wiens, 1995;
Choque and Almendras, 2012). Available stratigraphic, paleocurrent,
and structural data are integrated into five paleogeographic map-view
reconstructions (Fig. 8) and schematic reconstructions depicting
east-west cross-sectional profiles (Fig. 9). Although shown at a regional
scale, the proposed sedimentary and tectonic configurations are most
directly applicable to the southern Bolivia (R1) study region at 21-23°S.

7.1. Neoproterozoic—Cambrian: eastern cratonic sources to a clastic
continental shelf

Upper Neoproterozoic—-Cambrian deposits recorded westward sedi-
ment transport to a newly established continental shelf that succeeded
precursor extensional basins (Fig. 8A). Detrital zircon populations
(Figs. 5 and 7) show a combination of: (1) distributed Paleoproterozoic
to mid-Neoproterozoic ages indicative of distal eastern sediment sources
such as the Amazonian craton (chiefly the Sunsés belt) and Rio de la
Plata craton; and (2) late Neoproterozoic-Cambrian ages from more
local sources in the Brasiliano and Pampean belts, including the
Pampean magmatic arc (Fig. 8A) (e.g., Jezek et al., 1985; Acenolaza and
Toselli, 2009; Ramos et al., 2010; Adams et al., 2011; Escayola et al.,
2011; Toselli et al., 2012; Rapela et al., 2016; Casquet et al., 2018). The
local sources were most prevalent in northern Argentina and southern
Bolivia (R1 and R2), where a clastic continental shelf succeeded the
extensional Puncoviscana basin. Farther north (R4), distal cratonic
sources fed a segment of the continental shelf that developed after
abandonment of the Tucavaca aulacogen (Litherland et al., 1989;
Babinski et al., 2013).

Shallow-marine deposition was followed by final Brasiliano-
Pampean magmatism, deformation, and low-grade metamorphism of
Puncoviscanan-Tucavaca basin fill, which created a regional unconfor-
mity within the Cambrian succession (Fig. 3). Across the central Andes,
the thick Paleozoic succession deposited above this unconformity (R1-
R5; Fig. 2) shows markedly different depositional systems, sediment
routing patterns, and provenance signatures (Fig. 7).
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Fig. 7. Composite probability density functions, age histograms and pie diagrams for Neoproterozoic and Paleozoic rocks in the central Andes (regions R1 to R6)
generated using detritalPy algorithm (Sharman et al., 2018). The age distributions are normalized, with color shading highlighting distinct age groups representative
of different sediment source regions. Horizontal black lines separate samples from different rock successions. Fig. 8F depicts the geographic area of the U-Pb data
regions; R1, this study. Table S2 available in the Supplementary data lists the references for detrital zircon studies synthesized in this figure.

7.2. Ordovician: magmatic arc and cratonic sources to a deep marine
back-arc basin

Deposition of the >12 km-thick Ordovician clastic succession
involved sediment input from the opposing western and eastern flanks of
a deep-marine back-arc basin (Fig. 8B). Continued derivation from
eastern sources is registered by Neoproterozoic-Cambrian age groups
indicative of Pampean and Brasiliano sources, with potential local
recycling of metasedimentary Puncoviscana basin fill (Fig. 5C-F). In
contrast, the sharp introduction of syndepositional Ordovician zircons

11

attests to input from the newly developed Famatinian magmatic arc in
offshore regions to the west (Fig. 5D-F and S1). In southern Bolivia and
northern Argentina (R1 and R2), the shale-rich Ordovician succession
(Fig. 3) was dominated by deep-marine turbiditic systems with deltaic
and shallow-marine systems restricted to eastern localities (e.g.,
Egenhoff and Lucassen, 2003; Egenhoff, 2007; Moya, 2015).

Sediment delivery from the eastern and western flanks was com-
plemented by longitudinal transport along the N-trending axis of the
Famatinian backarc basin (Fig. 8B). Farther north, in northern Bolivia
and southern Peru (R4 and R5), Ordovician deposits recorded greater
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Fig. 8. Schematic paleogeographic reconstructions showing the Neoproterozoic to Carboniferous configuration of tectonic provinces, accreted terranes, and active
sedimentary basins in west-central South America. Each panel (A-E) shows the map-view distribution of metamorphic and igneous activity with respect to sub-
duction zones. The inferred basin configuration is represented by the present-day exposures of stratigraphic units (shaded color polygons), stratigraphic thicknesses
(isopach data), and sediment transport pathways (arrows). Also shown are the positions of glacial systems.

(A) Neoproterozoic-Cambrian: eastern sediment sources (Brasiliano belt, Amazon craton, and Pampean magmatic arc) fed the Puncoviscana and Tucavaca-Paraguay
basins. Sources of data for basement and basinal configuration: Gohrbandt (1992); Loewy et al. (2004); McLeod et al. (2013); Cordani et al. (2010b); Ramos et al.
(2010); Basei et al. (2010). Paleocurrent data primary sources: Jezek et al., 1985; Acenolaza and Toselli (2009). (B) Ordovician: a >10 km thick back-arc basin was
fed by clastic sediment from the Famatinian magmatic arc in the west and Brasiliano and Amazon cratonic sources in the east, during regional extension, trench
rollback, and re-accretion of Arequipa-Antofalla to western South America. Sources of data for basinal configuration and magmatism distribution: Gohrbandt, 1992;
Avila-Salinas (1992); Sempere (1995); Suarez-Soruco (2000); Choque and Almendras (2012); Loewy et al. (2004); Egenhoff (2007); Coira et al. (2009); Pankhurst
et al. (2016); Miskovic et al. (2009); Reimann et al. (2010); Chew et al. (2016). Paleocurrent data primary sources: Egenhoff (2007); Reimann et al. (2010). Thickness
data source: Wiens, 1995. (C) Silurian: a southeastern source (Rio de la Plata) marked sediment delivery during the Early Silurian glaciation. Eastward growth of the
orogen and erosion of relict Famatinian magmatic arc with minor contributions from the Amazonian craton supplemented sediments to initial deep marine basin,
which were distributed axially north and northwestward. Primary sources of stratigraphic data: Sempere (1995); Arispe and Diaz-Martinez (1996); Coira et al.
(2009); Diaz-Martinez and Grahn (2007); Schonian and Egenhoff (2007). Paleocurrent data primary sources: Sempere (1995); Limachi et al. (1996); Schonian and
Egenhoff (2007); Reimann et al. (2010). Thickness data sources: Gohrbandt, 1992; Reutter et al. (1994); Wiens (1995). (D) Devonian: a >4 km thick
westward-thickening foreland basin received sediments from a dominantly western source, the Famatinian magmatic arc was extinct by this time, but the broad
orogenic growth of the Transpampean Arch shed sediments axially to the north and northeast, as fingerprinted by Famatinian, Ocloyic, and cosmopolitan Pampean,
Brasiliano, and Sunsés-Arequipa ages. Primary sources of outcrop and subcrop data: Gohrbandt, 1992; Sempere (1995); Arispe and Diaz-Martinez (1996); Bahlburg
and Hervé (1997); Coira et al. (2009); Dalenz et al. (2016); Pankhurst et al. (2016). Paleocurrent data primary sources: Bell (1982); Limachi et al. (1996); Reimann
et al. (2010). Thickness data sources: Isaacson and Sablock, 1988; Gohrbandt, 1992; Wiens (1995). (E) Carboniferous: sediment sources in the south and east fed a
>1 km thick successor to foreland basin with substantial Neoproterozoic Pampean and Puncoviscana ages during the late Paleozoic age. Glacially influenced marine
and nonmarine deposits record NNW-trending longitudinal transport from southern Gondwanan ice sheets. Minor Famatinian and Carboniferous syndepositional
zircon ages support renewed subduction and eastward pre-Andean orogenic growth. Primary sources of data: Tankard et al. (1995); Bahlburg and Hervé, 1997; Starck
and del Papa (2006); Miskovic et al. (2009); Bache et al. (2012); Chew et al. (2016); Pankhurst et al. (2016). Thickness data sources: Gohrbandt, 1992; Reutter et al.
(1994); Wiens (1995). (F) Location of six studied regions (R1-R6) with published U-Pb detrital zircon results that help constrain sediment dispersal patterns. (G)
Explanation of patterns and symbols used in the paleogeographic maps.

input from Mesoproterozoic—Cambrian sources to the east, including the 7.3. Silurian-Devonian: relict magmatic arc, orogenic, and cratonic
Amazonian craton (Fig. 7; Reimann et al., 2010). sources to foreland basin

The Silurian-Devonian succession reflects erosion of a relict
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magmatic arc and emerging pre-Andean highlands in the west, along
with distal cratonic sources to the southeast (Fig. 8C-D). The diverse
provenance is shown by cosmopolitan U-Pb age distributions
(Fig. 5G-K) that include major Ordovician (Famatinian-Ocloyic) and
late Neoproterozoic-Cambrian (Pampean) age signatures with broadly
distributed Neoproterozoic (Brasiliano) and Mesoproterozoic (Sunsds-
Arequipa) ages. Growth of a contractional orogenic belt to the west
(Transpampean Arch), potentially during the Chanic phase of defor-
mation, was responsible for exhumation of the relict Famatinian arc,
Ocloyic metamorphic belt, and Arequipa basement (Fig. 8). These
western sources distributed sediment eastward and axially northward to
fluvial, deltaic, narrow continental shelf, and deep submarine canyons
and fan environments within an adjacent, westward-thickening Silurian-
Devonian foreland basin (Padula et al., 1967; Isaacson, 1975; Gohr-
bandt, 1992; Diaz-Martinez and Grahn, 2007; Augustsson et al., 2015).

A continued, albeit diminished, role of eastern sources is evidenced
in Precambrian ages that can be attributed to the Amazonian craton
(Sunsas and Rio Apa belts), with minimal influence of the Rio de la Plata
craton (Fig. 8C). Finally, although syndepositional detrital zircons are
rare, minor pre-Andean magmatism of Devonian age is indicated by
U-Pb zircon ages from this study (Fig. 5 and S1) and igneous pebbles,
diamictite matrix, and sandstones of Carboniferous successions of
western Bolivia (Arntzen et al., 2018; Lopez et al., 2018).

7.4. Carboniferous: orogenic and cratonic sources during regional
glaciation

Carboniferous accumulation of glacially influenced marine and
nonmarine deposits was influenced by pre-Andean highlands and
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regionally extensive ice sheets of southern Gondwana (Fig. 8E). An
abrupt increase in Neoproterozoic detritus is consistent with contribu-
tions from Pampean and Puncoviscana sources to the south and east
(Fig. 5L-Q). Erosion of these source regions is evidenced by longitudinal
transport in NNW-trending glacially carved valleys with >500 m-relief
(Tankard et al., 1995; Starck, 1995; Starck and del Papa, 2006; di Pas-
quo, 2007; Bache et al., 2012). Distal derivation of age-equivalent de-
posits farther to the south and east (in Argentina and Brazil) highlights
the long-distance transport of sediment from southern Gondwanan ice
sheets during the late Paleozoic ice age (e.g., Griffis et al., 2018; Crad-
dock et al., 2019; Starck et al., 2021).

In contrast to Devonian deposits, detrital provenance results for
clastic fill within the Carboniferous successor to foreland basin show
diminished input from a western magmatic arc (Figs. 5 and 6). However,
the continued influence of the broad Transpampean Arch is recorded by
westward thinning and pinchout of Carboniferous strata to the west
(Fig. 2). Westward onlap onto this post-deformational (post-Chanic)
basement high during neutral tectonic conditions was followed by
renewed shortening and eastward deformation advance during Gond-
wanide orogenesis (Anderson et al., 2021). Moreover, the presence of
syndepositional zircons of Carboniferous age (Fig. 5 and S1) supports
the suggestion that isolated alpine glaciers nucleated on pre-Andean
highlands may have provided local input from western orogenic sour-
ces (Fig. 8E) (e.g., Diaz-Martinez, 1996; Isbell et al., 2012).

8. Discussion

Insights from detrital geochronological results (Figs. 4-6) combined
with past provenance datasets (Fig. 7) and paleogeographic constraints
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tions for southern Bolivia-northern Argentina (~22-23°S).

(Fig. 8) highlight key stages in the pre-Andean history of sediment
dispersal and basin evolution along the western Gondwanan margin.
These stages are represented in schematic Neo-
proterozoic-Carboniferous cross-section reconstructions that identify
the major tectonic events that have dictated the spatial and temporal
distribution of sediment sources (Fig. 9). This synthesis, which focuses
on the southern Bolivia to northern Argentina (~22-23°S) segment of
the central Andes, not only confirms the overall accretionary character
of the plate margin, but also indicates a complex pattern of contrasting
pre-Andean tectonic regimes. The following discussion addresses the
broader implications for evolution of the western margin of Gondwana,
including drivers for subsidence patterns across west-central South
America.

8.1. Neoproterozoic-Cambrian: post-extensional Brasiliano-Pampean
orogenesis and metamorphism

The Neoproterozoic—-Cambrian record involved multiple tectonic
events that shaped the sedimentary and structural configuration of the
central Andes. Deposition of a >3 km-thick marine succession (Figs. 2
and 3) initiated in the late Neoproterozoic within the Puncoviscana-
Tucavaca basin, a regional extensional basin or passive continental
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margin (Fig. 9A) (Ramos et al., 2010), which received sediment from
eastern cratonic sources (Amazonian and Rio de la Plata cratons),
basement sources (Brasiliano and Pampean blocks), and coeval
magmatic sources (Pampean magmatic arc) (Fig. 5A and B, 7, and 8A).

Closure of this basin during final Brasiliano-Pampean orogenesis and
low-grade metamorphism generated a regional angular unconformity
within the Cambrian record (Figs. 2 and 3) that provides a critical
baseline for the ensuing Paleozoic evolution of central Andean regions
(Fig. 9B) (Basei et al., 2010; Ramos, 1988, 2008; Rapela et al., 1998;
Lucassen et al., 2000; Suarez-Soruco, 2000; Ramos et al., 2010; Escayola
etal., 2011). Following mid to late Cambrian extensional collapse of the
Pampean orogen, subduction, arc magmatism, and regional subsidence
commenced along this segment of the western Gondwanan margin
(Fig. 9C) (Sanchez and Salfity, 1999; Acenolaza, 2003; Augustsson et al.,
2011).

8.2. Ordovician: back-arc extension, Famatinian arc magmatism, and
Ocloyic orogenesis

The >12 km-thick Ordovician succession (Figs. 2 and 3) chronicled
accumulation in a deep-marine back-arc basin associated with extension
in the overriding plate of a retreating subduction system (Fig. 9D)
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(Egenhoff, 2007). Deep-sea fans and flanking deltaic systems were fed
mud-rich sediments by opposing eastern sources (exhumed
Brasiliano-Pampean basement and recycled Puncoviscana basin fill) and
a western magmatic arc (Fig. 5C-F and 8B). The Famatinian magmatic
arc was established in an offshore position above an east-dipping sub-
duction zone that spanned much of western Gondwana (e.g., Miskovic
et al., 2009; Horton et al., 2010; Romero et al., 2013; Chew et al., 2016).

Fault-controlled and thermal subsidence accompanied tholeiitic
magmatism, calc-alkaline magmatism, and volcanogenic massive sulfide
mineralization generated by back-arc extension during trench rollback
and westward arc retreat (e.g., Coira et al., 1982, 2009; Tistl, 1985;
Rapela et al., 1998; Arce-Burgoa, 2007; Egenhoff, 2007; Niemeyer et al.,
2018). The termination of back-arc extension and extinction of Fama-
tinian arc magmatism is marked by the Ocloyic orogeny, with a corre-
sponding angular unconformity in the Upper Ordovician-Lower Silurian
section of Bolivia and northern Argentina (Figs. 2 and 3). Ocloyic
deformation involved shortening and eastward translation of the
fringing Famatinian magmatic arc and underlying continental basement
of the Arequipa terrane (Coira et al., 1982, 2009; Mon and Salfity, 1995;
Bahlburg and Hervé, 1997; Moya, 2015). In central Peru, similar closure
of a narrow ocean basin induced collision of the continental Paracas
terrane against South America with attendant metamorphism (Willner
et al., 2014; Ramos, 2018).

8.3. Silurian-Devonian: initiation of pre-Andean foreland basin

Silurian-Devonian tectonic reorganization in central Andean regions
involved a shift to a contractional or transpressional setting associated
with initial development of an asymmetric foreland basin (Fig. 9E)
(Sempere, 1995; Schonian and Egenhoff, 2007). In Bolivia, a >4 km
thick, westward-thickening foreland succession of mostly nonmarine
and shallow marine strata (Figs. 2 and 3) received sediment from new
orogenic sources and relict magmatic-arc sources in the west (princi-
pally Arequipa basement and Ordovician Famatinian arc rocks), and
subordinate Precambrian sources (Brasiliano-Pampean and Punco-
viscana rocks) in the south/southeast (Fig. 5G-K and 8C-D).

Although the absence of widespread arc magmatism suggests the
cessation of large-scale subduction, uplift of the Transpampean Arch
(largely coincident with the present Altiplano-Puna plateau) during the
Chanic orogenic phase is evidenced through regional stratigraphic and
sediment dispersal patterns (Padula et al., 1967; Tankard et al., 1995;
Blanquat et al., 1998; Ramos, 2010b; McGroder et al., 2015; Hervé et al.,
2018). The evolution from a narrow Silurian foredeep (Fig. 8C) to a
broad Devonian basin (Fig. 8D) suggests the eastward advance of flex-
ural subsidence during the progressive shortening and crustal loading
within the Transpampean contractional orogen (Gohrbandt, 1992;
Limachi et al., 1996; Schonian and Egenhoff, 2007; Diaz-Martinez and
Grahn, 2007; Dalenz et al., 2016).

8.4. Carboniferous: retroarc successor to foreland basin during regional
glaciation

The >2 km-thick Carboniferous section recorded glaciomarine and
nonmarine deposition in a successor to foreland basin during renewed
subduction, arc magmatism, and orogenic exhumation (Fig. 9D)
(Tankard et al., 1995; Starck and del Papa, 2006; Pankhurst et al., 2016).
Detrital signatures indicate principally pre-Andean (Brasiliano-Pampean
and Puncoviscana) and cratonic sources to the south and east, along
with the appearance of a new syndepositional magmatic arc to the west
(Fig. 5L-Q and 8 E). Westward thinning of Carboniferous basin fill at-
tests to the continued role of the Transpampean Arch, a basement high
that remained active during the Gondwanide orogeny and was ulti-
mately overlapped during latest Paleozoic-Mesozoic time (Tosdal, 1996;
Loewy et al., 2004; Pankhurst et al., 2016). Deformation in southern
Bolivia involving east- and west-vergent thrust faulting and low-grade
metamorphism concentrated at ~320-290 Ma (Miiller et al., 2002;
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Jacobshagen et al., 2002; Anderson et al., 2021).

Regional glaciation during the late Paleozoic ice age is considered to
have been the principal control on Carboniferous sediment delivery to
the region, with large N to NNW-directed transport from southern
Gondwana (Fig. 8E). The renewal of arc magmatism in central Andean
regions is consistent with proposals of a late Paleozoic initiation of the
east-dipping subduction geometry (Oliveros et al., 2020, and references
therein) that persisted during the Mesozoic and culminated in Cenozoic
Andean orogenesis.

9. Conclusions

The integration of detrital zircon U-Pb results with existing strati-
graphic and geochronological databases helps shed light on the Neo-
proterozoic-Carboniferous paleogeography of eroding source regions,
sediment dispersal pathways, and basin development along the western
Gondwanan margin in the central Andes of west-central South America.

1. Analysis of the >15-20 km thick clastic succession in southern
Bolivia provides an understanding of sediment routing and subsi-
dence patterns in relationship to evolving topographic highlands
during variable tectonic regimes. Major sediment sources in the east
included Proterozoic basement belts (Brasiliano and Pampean oro-
gens) and more-distal Mesoproterozoic to Archean cratonic regions
(Amazonian craton and Rio de la Plata craton). The chief sources in
the west included various pre-Andean magmatic arcs (notably the
Famatinian arc), retroarc fold-thrust belts (linked to Famatinian-
Ocloyic, Chanic, or early Gondwanide orogenesis), and western
basement terranes (Arequipa block). The geochronological results
provide records of the onset and cessation of separate phases of
subduction and arc magmatism along the western edge of South
America, as well as the accompanying tectonic regimes that varied
among extensional, contractional, and neutral conditions.

2. Diverse basin settings included extensional (rift) and passive-margin
basins, extensional back-arc basins, retroarc foreland basins, and
subsequent successor basins, with phases of marine and nonmarine
sedimentation that were variably dominated by tectonic, magmatic,
or glacially generated sediment. Contrasting subsidence mechanisms
included: (a) processes in extensional basins linked to normal fault-
ing and the thinning and cooling of continental lithosphere; (b)
regional isostatic (flexural) subsidence driven by horizontal short-
ening and crustal thickening; and (c) possible successor basin con-
ditions during post-deformational, neutral tectonic regimes.

3. Neoproterozoic extension generated a continental shelf fed by west-
directed clastic transport from eastern cratonic sources (Amazonian
and Rio de la Plata cratons), basement sources (Brasiliano and
Pampean blocks), and coeval magmatic sources (Pampean magmatic
arc) (Figs. 5, 7 and 8). Basin closure during final Brasiliano-Pampean
orogenesis involved mid-Cambrian shortening, low-grade meta-
morphism, and genesis of a regional angular unconformity (Figs. 2
and 3) that provided the foundation for subsequent Paleozoic basin
evolution (Fig. 9).

4. Ordovician accumulation of a >12 km thick deep-marine succession
occurred in an extensional back-arc basin in a retreating subduction
system (Fig. 9). Most sediment was derived from the Famatinian
magmatic arc in a western offshore position above the east-dipping
subduction zone that spanned much of western Gondwana. Late
Ordovician Ocloyic shortening resulted in uplift and exhumation of
the extinguished magmatic arc and underlying continental basement
of the Arequipa terrane.

5. Silurian-Devonian shortening-induced uplift of a western basement
high (the Transpampean Arch) governed the development of an
asymmetric foreland basin (>4 km thick) in which relict magmatic
arc and orogenic sources fed eastward transverse and northward
axial fluvial and shallow marine depositional systems. Although the
absence of arc magmatism suggests the cessation of subduction,
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eastward deformation advance during this Chanic orogenic phase
prompted a shift from a narrow Silurian foredeep to a broad Devo-
nian foreland basin (Fig. 8).

6. Carboniferous sedimentation involved a complex shift from a post-
deformational (post-Chanic) successor basin to a renewed foreland
basin produced by Gondwanide shortening. Regional glaciation
dominated Carboniferous sediment delivery, with chiefly pre-
Andean basement (Puncoviscana, Pampean, and Brasiliano) sour-
ces and cratonic sources to the south and east eroded by large ice
sheets emanating from southern Gondwana (Fig. 8). The appearance
of syndepositional zircons recorded the establishment of a magmatic
arc and east-dipping subduction zone along the western Gondwanan
margin (Figs. 5 and 8), which regulated Mesozoic and Cenozoic
phases of basin growth and Andean orogenesis.
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