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ABSTRACT Coastal herbivorous fishes consume macroalgae, which is then degraded
by microbes along their digestive tract. However, there is scarce genomic information
about the microbiota that perform this degradation. This study explores the potential of
Kyphosus gastrointestinal microbial symbionts to collaboratively degrade and ferment
polysaccharides from red, green, and brown macroalgae through in silico study of
carbohydrate-active enzyme and sulfatase sequences. Recovery of metagenome-assem-
bled genomes (MAGs) from previously described Kyphosus gut metagenomes and
newly sequenced bioreactor enrichments reveals differences in enzymatic capabilities
between the major microbial taxa in Kyphosus guts. The most versatile of the recovered
MAGs were from the Bacteroidota phylum, whose MAGs house enzyme collections
able to decompose a variety of algal polysaccharides. Unique enzymes and predicted
degradative capacities of genomes from the Bacillota (genus Vallitalea) and Verrucomi-
crobiota (order Kiritimatiellales) highlight the importance of metabolic contributions
from multiple phyla to broaden polysaccharide degradation capabilities. Few genomes
contain the required enzymes to fully degrade any complex sulfated algal polysaccharide
alone. The distribution of suitable enzymes between MAGs originating from different
taxa, along with the widespread detection of signal peptides in candidate enzymes, is
consistent with cooperative extracellular degradation of these carbohydrates. This study
leverages genomic evidence to reveal an untapped diversity at the enzyme and strain
level among Kyphosus symbionts and their contributions to macroalgae decomposition.
Bioreactor enrichments provide a genomic foundation for degradative and fermentative
processes central to translating the knowledge gained from this system to the aquacul-
ture and bioenergy sectors.

IMPORTANCE Seaweed has long been considered a promising source of sustainable
biomass for bioenergy and aquaculture feed, but scalable industrial methods for
decomposing terrestrial compounds can struggle to break down seaweed polysacchar-
ides efficiently due to their unique sulfated structures. Fish of the genus Kyphosus feed
on seaweed by leveraging gastrointestinal bacteria to degrade algal polysaccharides
into simple sugars. This study reconstructs metagenome-assembled genomes for these
gastrointestinal bacteria to enhance our understanding of herbivorous fish digestion and
fermentation of algal sugars. Investigations at the gene level identify Kyphosus guts as an
untapped source of seaweed-degrading enzymes ripe for further characterization. These
discoveries set the stage for future work incorporating marine enzymes and microbial
communities in the industrial degradation of algal polysaccharides.

KEYWORDS Kyphosus, fish gut microbiome, macroalgal polysaccharides, sulfatase

he Kyphosus genus of herbivorous fish, commonly referred to as nenue or rudderfish,
graze primarily on macroalgae (1). Kyphosus fish serve important ecological roles by
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controlling algal cover in Indo-Pacific (2) and Caribbean coral reefs (3), thereby mediating
coral-algal competition, overall coral growth, and benthic community composition
(4). Their diverse diet includes macroalgae from the three major taxonomic groups:
Rhodophyta (red), Chlorophyta (green), and Ochrophyta (brown) (1). Polysaccharides
constitute as much as 60% of macroalgal cells by weight (5) and serve roles in both
cell structure and energy storage (6). The complex network of linkages in structural
polysaccharides resists degradation from chemical and enzymatic stressors and serves as
a physical defense mechanism for algal cells (7).

Algal polysaccharides differ from common polysaccharides found in land plants due
to the addition of sulfate ester groups (8). Structural polysaccharides from red algae
include agar, carrageenan, porphyran, and xylan, which all contain such sulfate groups
(9). Brown algae contain the sulfated polysaccharide fucoidan for structure as well
as unsulfated alginate as a storage polysaccharide (9). Green algae contain sulfated
polysaccharides such as xylan and ulvan but also contain large amounts of unsulfated
cellulose common in land plants (9). Algal polysaccharides are depolymerized primarily
through the enzymatic activity of bacterial glycoside hydrolases (GHs) and polysacchar-
ide lyases (10), two classes of carbohydrate-active enzymes (CAZymes) (11). Sulfated
polysaccharides are particularly recalcitrant to digestion because an additional enzyme
class, the sulfatases, is necessary for complete degradation. Full enzyme pathways for
the breakdown of various algal polysaccharides have been proposed (9, 12) that include
both required CAZyme and sulfatase activities. However, not all algal polysaccharides
have well-defined degradation pathways or unique associated CAZymes that enable
a high-level connection between gene presence and catabolized substrates. Likewise,
sulfatase classes within the SulfAtlas database (13) are primarily classified based on
evolutionary history rather than substrate specificity or enzymatic activity, so our ability
to evaluate pathway completeness in silico is limited.

Once complex carbohydrates are broken into subunits by CAZymes and sulfatases,
they are utilized by gut microbiota in fermentation reactions to produce short-chain fatty
acids (SCFAs) (14). The SCFAs acetate, propanoate, and butyrate have been previously
measured in high quantities in Kyphosus hindguts (15) and are utilized by the host fish
for energy (16). Previous work has suggested correlations between SCFA profiles and
bacterial composition (15), but there is no genomic work in algivorous fish pinpointing
which microbiota contribute to host nutrition in this way and what pathways are utilized
to produce these essential SCFAs.

Our overall understanding of the role of gut microbiota in digestion is still limited
in most fishes (17), including Kyphosus, in part due to a focus on community composi-
tion and diversity rather than function. The genetic study of Kyphosus gut symbionts
has been limited to 16S rRNA (15, 18) and metabolomic (18) investigations until the
incorporation of shotgun metagenomics in a few recent studies (19, 20). What func-
tional profiling has been done in fish guts often relies on extrapolation from ampli-
con-based taxonomic distributions (21-24), and no study has yet generated a large
collection of metagenome-assembled genomes (MAGs) from an algivorous fish gut. A de
novo genomic investigation of Kyphosus symbionts has the potential to reveal degrada-
tive capacities that cannot be extrapolated from taxonomic lineage or relatedness to
database representatives.

Discoveries from better-studied human gut and terrestrial herbivore systems provide
suggestions for how Kyphosus symbionts might gain and use such gene pathways.
Human gut bacteria have acquired enzymes that degrade sulfated algal polysaccharides
through horizontal gene transfer (25, 26). Horizontal gene transfer of antibiotic resistance
genes has also been observed in fish gut biofilms (27), but this phenomenon has not yet
been reported for carbohydrate-active enzymes in any fish gut symbiont microbe. Once
acquired, CAZymes and sulfatases potentially originating from one or multiple organisms
may then decompose algal polysaccharides in complex, stepwise pathways. A coopera-
tive division of labor strategy, in which partial breakdown products from one bacterial
population serve as a degradative substrate for other bacteria in the community, has

Month XXXX Volume 0 Issue 0

mBio

10.1128/mbi0.00496-24 2

Downloaded from https://journals.asm.org/journal/mbio on 18 April 2024 by 98.155.108.147.


https://doi.org/10.1128/mbio.00496-24

Research Article

been proposed to occur in human gut microbiota (28) and has been suggested as a
way to improve polysaccharide degradation in engineered communities (29). The degree
to which collaboration may occur in the herbivorous fish gastrointestinal tract remains
unknown.

Exploring functional diversity not only improves our understanding of herbivorous
fish digestion but may also enable concrete applications in the fields of aquaculture
and bioenergy. Most aquaculture is currently sustained through compound feeds that
are composed of fishmeal and fish oils from wild-caught fish (30). Although innovations
in aquaculture feed have lowered the trophic levels of captive carnivorous fish and
improved overall feed efficiency (31), concerns about sustainability and food security
remain. Wan et al. (32) argue that the discovery of efficient methods to degrade complex
polysaccharides and enhance nutrient digestibility is a key knowledge gap and barrier
limiting macroalgae inclusion into commercial aquafeeds (32). Macroalgal feed additives
are also known to counteract methanogenesis in terrestrial ruminants (33) and thus can
be applied to reduce methane emissions from livestock husbandry. However, deficien-
cies in ruminant microbiome digestive capacities may influence the future develop-
ment and long-term success of seaweed dietary supplementation strategies. Research
on Kyphosus symbionts and their enzymes can inspire commercializable and scalable
methods to break down these barriers in the industry.

Innovations exploiting the experimental propagation of enrichment cultures with
Kyphosus symbionts can harness these microbial communities for further study and
experimentation with commercial outputs in the bioenergy sector as well as the
development of macroalgal feed supplements. While a few bacterial isolates have been
recovered and sequenced from kyphosid guts (34), no previous study has enriched
entire communities from these fishes to investigate their hydrolytic and fermentative
capabilities. Hydrolysis of carbohydrates, proteins, and lipids into their monomeric
components is a key step in biogas and bioethanol production from macroalgae (35,
36), and the degradation of algal polysaccharides is often the rate-limiting step in
anaerobic digestion (37). Milledge et al. (38) call for future studies to look beyond
commercially available enzymes to discover candidates that can more efficiently degrade
algal polysaccharides (38). The Kyphosus gut, with its understudied functional diversity
and degradative pathways, offers an untapped source of such enzyme and inoculum
candidates.

This study leverages metagenome-assembled genomes from Kyphosus vaigiensis,
Kyphosus cinerascens, and Kyphosus hawaiiensis gut symbionts and inoculated bioreactor
enrichments to connect whole-genome degradative potential of algal polysaccharides
to accurate taxonomic lineages and functional roles. The addition of genomes from
bioreactor enrichments explores leveraging the metabolic capacities of Kyphosus gut
consortia in industrial processes. This work extends previous studies of taxonomic-level
biogeography (18) and contig-level gene associations (15, 20) in this system using
high-quality MAGs, which enables differentiation between processes that can potentially
be executed within a single cellular compartment (individual microbial species/popula-
tion) and those likely to require cooperative action by multiple cells from different
species (community impacts). Discoveries in this study provide the foundation for
genome-level understanding of microbial contributions to herbivorous fish digestion
and beget future investigations to apply these findings toward applications in the
aquaculture and bioenergy sectors.

MATERIALS AND METHODS
Sample description and metagenomic assembly

DNA was extracted from liquid samples from 10 anaerobic bioreactors inoculated
with gut content from either “Fish 6" (K. cinerascens) or “Fish 7" (K. hawaiiensis; Table
S1) using methods previously described (18) and propagated to enrich degradative
properties. Samples were taken 9-10 days after inoculation and incubation at 30°C. A
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35 psu Artificial Sea Water (ASW) solution was prepared by dissolving and autoclaving
40 g/L of Instant Ocean sea salts (Instant Ocean, Spectrum Brands, Blacksburg, VA). The
Basal Salts Medium solution was then prepared by dissolving and autoclaving 90 mM
MgSO4, 6 mM K,CO3, 6 mM CaCOs3, 20 mM MgCOs, and 1/10 of the final volume of
ASW in ultrapure water. Anoxic cultures of 50 mL were processed in a portable anae-
robic chamber containing sterile Basal Salts Medium in 150 mL serum bottles, crimp
sealed with a rubber septum. These ionic concentrations were selected to simulate the
estimated osmolarity of seawater as it passes through the midgut and hindgut (39).
Approximately 1 g of fish gut section contents were placed in the bottles along with
the indicated substrate (Table S1) and sealed, with no additional feedstock added before
sequencing. Substrate selection was focused on polysaccharides and algal species of
particular relevance to bioenergy and bioproduct production.

Samples were sequenced using Illumina NovaSeq 6000 technology (lllumina, San
Diego, CA). Read trimming was performed using Trimmomatic v. 0.36 (40) with the
following parameters: adapter-read alignment settings 2:30:10, LEADING:10, TRAIL-
ING:20, HEADCROP:12, SLIDINGWINDOW:4:15, and MINLEN:200. Taxonomic composition
of metagenomic reads was determined using Kraken v. 2.0.9 (41), with taxonomic
assignment using a protein database based on all amino acid sequences in the NCBI
nr database (42) as of April 2022. Cleaned reads were assembled in metaSPAdes v. 3.13
(43) with a minimum contig retention size of 2,000 nucleotides.

Gene calling and functional annotation

Gene boundaries were predicted using prodigal v. 2.6.2 (44) and annotated using prokka
v. 1.12 (45). Genes were assigned to CAZy classes from the doCAN HMMdb v. 10 database
(46) based on the CAZy database (11) and to sulfatases classes from the SulfAtlas
v. 2.3 database (13), using methods previously described (20). Signal peptides were
identified using SignalP v. 6 (47) with default parameters. Additional enzyme classes were
annotated with KofamKOALA (48).

Enzyme novelty was evaluated using DIAMOND blastp (49) searches against the
NCBI nr database (42) as of April 2022. Some CAZyme classes were grouped into the
category of “peptidoglycanases” using the division proposed by Lépez-Mondéjar et al.
(50). Distributions of annotated proteins were compared to free-living relatives from the
OceanDNA database (51).

Metagenomic binning and biosynthetic gene cluster prediction

Metagenomic binning was performed from both newly assembled bioreactor metage-
nomes described above and in vivo gut metagenomes from K. vaigiensis, K. cinerascens,
and K. hawaiiensis lumen contents previously described in Podell et al. (20). Lumen
contents were used to maximize microbial biomass while reducing the amount of
recovered eukaryotic host DNA. Binning was done through MetaWRAP v. 1.3.2 (52) with
a minimum completeness cutoff of 0.7 and a maximum contamination cutoff of 0.05 as
determined by CheckM v. 1.0.12 (53). MAG taxonomy was determined using GTDB-Tk v.
1.5.1 (54) with release 202 of the Genome Taxonomy Database (55).

Viral contigs and prophages were identified using DeepVirFinder v. 1.0 (56) using a
g-score cutoff of 0.94. Viral sequence completeness was determined using CheckV v. 1.5
(57), retaining only regions marked as “high-quality” or “complete.” Viral sequences were
assigned to host taxonomies using the software VPF-Class (58).

Biosynthetic gene clusters (BGCs) were predicted for each MAG using antiSMASH v.
6.1 (59). Predicted products and BGC classes were annotated using BiG-SLiCE v. 1.1.1 (60).
Gene cluster distances were calculated using the BiG-FAM webservice v. 1.0.0 (61), using
a novelty distance cutoff of 900 following previous studies (61-63). Short-chain fatty acid
gene clusters were annotated using gutSMASH v. 5.0.0 (64).
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Phylogenomics and enzyme phylogenetics

A phylogenetic tree of MAGs was generated using PhyloPhlAn v. 3.0.2 (65) using a
concatenated universal set of 400 marker genes (66). MAGs containing at least 100
marker genes underwent concatenated alignment using MAFFT v. 7.505 (67). The
phylogenetic tree was built using RaxML v. 8.2.12 (68) and visualized using R v. 4.2.0
(69) packages treeio v. 1.20.0 (70), ggtree v. 3.4.0 (71), and ggtreeExtra v. 1.6.0 (72).

Multiple sequence alignments for genes belonging to CAZy class GH86 were made
using MUSCLE v. 3.8.31 (73) and visualized using the R package ggmsa v. 1.2.0 (74).
Gene trees were created using FastTree v. 2.1.10 (75). Additional reference genes were
included in the tree based on DIAMOND blastp matches to the NCBI nr database as of
April 2022. Protein domains were analyzed with the CDD webservice (76). Three-dimen-
sional protein structures for CAZymes were predicted using ColabFold v. 1.3.0 (77) and
visualized using ChimeraX v. 1.3 (78). Residue conservation was visualized using the
WebLogo (79) webservice.

RESULTS
A (meta)genome catalog of enrichable symbionts in the Kyphosus gut

New data derived from K. cinerascens and K. hawaiiensis enrichment cultures expand the
diversity of previous K. cinerascens, K. hawaiiensis, and K. vaigiensis gut metagenomes
(20). This more complete catalog of Kyphosus gut microbiota provides additional details
on the metabolic potential of taxa that were rare in the in vivo gut metagenome
samples and highlights potential challenges in harnessing gastrointestinal microbiota
for industrial processes. The fish inoculum species, gut location, and feedstock that were
combined to establish each enrichment sample are described in Table S1. The taxonomic
classification of unassembled metagenomic reads revealed high-level consistency at the
phylum level between the in vivo gut microbiomes (20) and enrichment samples (Fig.
1). Bacillota, Bacteroidota, and Gammaproteobacteria constitute the dominant bacterial
lineages in most samples, although the Desulfovibrionales order (phylum Thermodesulfo-
bacteriota) was highly abundant in two enrichment samples.

Seventy-four medium- and high-quality MAG bins were obtained from newly
assembled enrichment metagenomes, along with 137 new bins from previously
described wild fish gut metagenomes (Fig. S1). These MAGs all met the minimum of 70%
completion and a maximum of 5% redundancy standards (80). Assembly statistics for
enrichment metagenomes are shown in Table S2, and MAG summary metrics outlined
by the Genomic Standards Consortium (80) are provided in Table S3. Consistent with
the unassembled read-based taxonomic profiles of the metagenomes, most MAGs were
assigned to the phyla Bacillota (78 MAGs), Bacteroidota (72 MAGs), the class Gammapro-
teobacteria (31 MAGs), or the order Desulfovibrionales (13 MAGs), along with phylum
Verrucomicrobiota (6 MAGs). The enrichments provide information on microbial members
that were not as abundant in the fish gut metagenomes and vice versa. In one exam-
ple, bins containing the Verrucomicrobiota order Kiritimatiellales were recovered in K.
cinerascens gut samples but not in enrichment metagenomes. These dissimilarities were
also reflected in nucleotide similarities, as only 9 of the 74 (12%) enrichment MAGs match
MAGs generated from in vivo fish gut metagenomes at the species level. Enrichment
samples averaged approximately 6% eukaryotic reads, while adult fish gut samples
averaged 13%, and juvenile fish gut samples averaged 46%, possibly due to the technical
limitations of collecting ample microbial biomass from smaller fish.

Viral and archaeal sequences comprised less than 0.5% of all unassembled metage-
nomic reads, with 69 viral contigs and 3 prophages identified as either high quality or
complete. Within these viral elements, 30 auxiliary metabolic genes found on poten-
tial prophage regions were annotated as CAZymes and 13 as sulfatases, suggesting a
potential role for viral dissemination of these genes across the bacterial community.
The taxa Bacillota, Bacteroidota, and Gammaproteobacteria were the most frequently
predicted viral hosts (Table S4), which is consistent with the taxonomic abundances of
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FIG 1 Taxonomic distribution of enrichment and fish gut samples. Unassembled metagenomic reads were classified using Kraken2. (A) Enrichment samples

are labeled with inoculant fish taxa, gut region, and bioreactor feed. (B) Wild fish gut metagenomic samples previously assembled by Podell et al. (20). Shapes

along the x-axis denote the species of Kyphosus whose gut was either (A) used as the inoculant or (B) directly sequenced. Abbreviations: Gl, midgut; HG, hindgut;

medley, a combination of Ulva, Sargassum, and Agardhiella seaweed.

classified unassembled metagenomic reads and recovered MAGs. Despite the presence
of numerous auxiliary metabolic genes annotated as mediating more general polysac-
charide degradation, none of the viral sequences we detected appeared to specifically
target large, complex sulfated macroalgal polysaccharides.

Genome capacities reveal metabolic specialization among gut symbionts of
Kyphosus fish

The distribution of CAZymes and sulfatases was correlated with the phylogeny of fish
gut and enrichment MAGs, as shown using a concatenated marker gene tree (Fig. 2A).
This assessment revealed that among the MAGs generated in this study, the Bacteroidota
genomes contained the majority of CAZymes and sulfatases (Fig. 2B). Algal degrada-
tion-specific CAZyme-rich genomes among the MAGs from other phyla were restricted
either to a single order, Kiritimatiellales (Verrucomicrobiota), or a single genus, Vallita-
lea (Bacillota). Recovered Gammaproteobacteria and Desulfovibrionales genomes lacked
enzymes required for digesting sulfated algal polysaccharides despite the relatively
high abundance of these taxonomic groups in classified unassembled reads and the
recovered MAGs. However, the Gammaproteobacteria MAGs contained more peptidogly-
canases than other taxa, suggesting a potential niche in digesting alternative dietary
components. This analysis also showed that CAZymes targeting ulvan, a green algal
polysaccharide, were less prevalent among the symbiotic MAGs associated with wild
fish than CAZymes targeting red and brown algae-associated polysaccharides (Fig.
2B), consistent with previous results quantifying relative amounts of these algae types
consumed by the Kyphosus fish included in this study (20). The most abundant phyla
yielded binned MAGs from both in vivo and enrichment samples (Fig. 2C).
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A search was performed for genes involved in mannitol metabolism to deter-
mine whether this sugar alcohol, known to be abundant in brown algae, might
be used for fermentation. In support of this hypothesis, genes predicted to encode
mannitol 2-dehydrogenases, mannitol-1-phosphate 5-dehydrogenases, mannitol-spe-
cific phosphotransferase system (PTS) enzymes, and mannitol operon repressors were
detected in both MAGs and metagenomes from natural fish gut samples as well as
enrichment cultures (Table S5). This metabolic potential was not lineage-specific, as
MAG representatives from Bacteroidota, Bacillota, Gammaproteobacteria, and Verruco-
microbiota all contained these genes, and 22% of our recovered MAGs contained at
least one of the two major enzyme classes thought to contribute to mannitol to
fructose conversion in Kyphosus guts (19). Even though not all genes were present in
all samples, it was not possible to conclude whether differences between samples might
be significant due to unavoidable variability in overall community complexity, assembly
efficiency, MAG completeness, and uneven representation of less abundant taxa.

An assessment of SCFA production gene pathways of recovered MAGs using
gutSMASH (64) revealed that most of the Kyphosus gut symbiotic taxa (67% of fish gut
MAGs and 77% of enrichment MAGs) can potentially contribute to host nutrition through
the production of SCFAs (Fig. 3). One hundred thirty-nine genomes from analyzed
kyphosid fish gut microbial communities contained pathways for producing acetate,
but only six genomes contained pathways for butyrate production. The pyruvate formate
lyase and pyruvate:ferredoxin oxidoreductase pathways were the most abundant overall,
present in 126 MAGs, while Bacteroidota contained the most gene clusters (39) related to
propanoate production.

The overall prevalence of acetate production pathways was lower than that
previously reported in human gut microbiota (81). The total absence of some alternate
fermentation pathways from our MAGs, such as choline utilization, suggests that those
processes are not core to dominant members of the Kyphosus gut microbiome. Only one
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genome from this study contained fermentation pathways involving the degradation
of amino acids such as glycine, threonine, and lysine, suggesting that Kyphosus gut
microbiota do not rely directly on dietary proteins for energy. Such lessened reliance on
nitrogen-based substrates for fermentation is consistent with a low-protein, algae-based
diet rich in available polysaccharides and limited in available nitrogen.

Functional adaptations to life in the Kyphosus gut

Adaptations to environmental conditions in herbivorous fish gut microbes are reflected
in the high abundance of CAZyme classes specifically targeting algal polysaccharides
(20). Figure 4A shows that the amino acid sequences of CAZyme classes abundant in
the MAGs of this study are well conserved across Kyphosus gut symbiont genomes.
However, such enzymes are poorly represented in both specialty and general databases
of previously described sequences, with closest enzyme homologs averaging less than
60% sequence identity for most of the highlighted CAZyme classes. Similar trends are
observed for the sulfatase subclasses in Kyphosus gut symbiont genomes (Fig. 4B). Both
cases demonstrate the extent that this study expands known sequence diversity within
these enzyme classes, underscoring unusual domains that may not be captured by
current databases.

The discovery of novel enzyme sequences in these enzyme classes presents
numerous opportunities to expand our understanding of marine polysaccharide
degradation. One example using the phylogeny of CAZy class GH86, consisting of
B-agarases and f-porphyranases, illustrates previously unappreciated cryptic variability
within this enzyme family. A gene tree of class GH86 CAZyme examples from this study
plus closest GenBank homologs (Fig. 5A) shows that many of these genes are associated
with Bacteroidota, consistent with the high abundance of CAZymes and sulfatases found
among MAGs from this phylum in Kyphosus guts (Fig. 2). Binned MAG genes annotated
as B-porphyranases all originate from hindgut or enrichment samples, consistent with
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FIG 4 Kyphosus gut symbionts encode CAZymes and sulfatases divergent from other data sets and environments. Percent identity of binned (A) CAZymes and
(B) sulfatases to best blast matches found in the following databases: all genes from MAGs in this study (blue), the GenBank nr database (gray), and either (A) the
CAZy database or (B) the SulfAtlas database (white). CAZyme classes are colored based on the degradation of red, green, or brown algal polysaccharides. Each

group is labeled by the number of genes with that enzyme annotation found in our MAGs.

previously reported physiological localization of polysaccharide degradation capabili-
ties (20). Surprisingly, two GH86 genes recovered in Bacillota MAGs from bioreactor
enrichments and two Bacillota homologs from the NCBI nr database nested within a
clade of genes from phylum Verrucomicrobiota. This unexpected pattern of association
between genes from very distant microbial taxa has not been described in prior literature
and may be indicative of horizontal gene transfer.

Amino acid insertions in this unique clade might either extend the signal peptide
or contribute additional catalytic functionality (82). Among NCBI nr homologs, only
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FIG 5 A B-agarase/B-porphyranase gene tree highlights an undescribed protein domain present in multiple phyla. (A) A gene tree of binned GH86 enzymes,

with gene names colored by genome taxonomy. Nodes with black diamonds represent collapsed outgroup clades lacking the extra domain. A multiple sequence

alignment is appended to the right of the tree, with colored vertical lines representing conserved amino acid positions and white vertical lines representing gaps.

(B) The predicted protein structure of GH86 enzyme R2_26_16226, with conserved CAZy domains highlighted in gray, the predicted signal peptide in green, and

the conserved new domain in pink. An uncollapsed version of the gene tree is included in Fig. S2, and a motif logo of the domain is presented in Fig. S3.

genes from the hydrothermal vent genome Vallitalea pronyensis (WP_212695143.1 and
WP_212695474.1) (83) contained this pattern of approximately 168 amino acids. No
other entries in the GenBank nr database contained sequences matching this region
at greater than 50% amino acid identity (Fig. S2). Outside of the clade containing this
novel domain, variability occurs primarily in the putative signal peptide region at the
N-terminus of the protein, while the downstream porphyranase domain itself is far more
conserved. Figure 5B displays the predicted three-dimensional structure of a Kyphosus
symbiont GH86 enzyme, with the additional uncharacterized region positioned between
the predicted signal peptide and annotated catalytic f-agarase and (-porphyranase
domains. Although the function of this domain cannot be determined bioinformatically,
it provides an interesting subject for further enzymatic characterization. Potentially
novel properties might include modified substrate specificity, substrate concentration
dependence, catalytic efficiency, and/or tolerance of different abiotic conditions.

MAG sequences were interrogated using antiSMASH BGC detection software to
determine whether Kyphosus gut-associated microbes might encode any unusual
secondary metabolites. The majority of Bacillota, Bacteroidota, Verrucomicrobiota, and
Gammaproteobacteria MAGs from both fish gut inocula and bioreactor enrichments
encoded BGCs typical of taxonomic relatives found in other vertebrate gut environ-
ments, such as lanthipeptides, beta-lactones, and arylpolyenes (84, 85). However, BGCs
were not particularly abundant in our MAG catalog relative to other similar genomes.
Our recovered Gammaproteobacteria, Bacillota, and Bacteroidota average fewer BGCs per
genome than a random set of seawater MAGs representing each taxonomic group from
the OceanDNA database. Thus, our host-associated MAGs may contain fewer BGCs per
genome than their free-living relatives.

A total of 307 BGCs were annotated within our MAGs (Fig. 6). Twenty-three annota-
ted BGCs were determined to be complete, meaning they were not located on contig
edges, based on BiG-FAM analysis of antiSMASH predictions (61). Twenty BGCs represent
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putative novel gene cluster families, with BiG-FAM distances exceeding the standardized
cutoff score of 900 (Fig. 6B). These novel gene cluster families may represent unique
natural products or enzymes specialized to the Kyphosus gut environment. Complete
biosynthetic gene cluster annotations, novelty assessment, and associated taxonomy are
included in Table S6.

Community digestion of complex algal polysaccharides

Polysaccharide digestive capabilities vary among MAGs from different microbial taxa
in the Kyphosus fish gut community, as shown in Fig. 7. Despite overall microbiome-
wide diversity, the MAGs generated in this study show that few individual genomes
contain all of the enzymes necessary to completely degrade even a single type of
complex algal polysaccharide, let alone the huge variety of natural variants characteristic
of marine macroalgae (86) that might be ingested by generalist herbivorous fishes.
Each microbial genome instead contains a limited assortment of enzymes capable of
partially degrading a selection of different carbohydrate moieties, including potentially
incomplete breakdown products generated by other microbes. Combined pangenomic
capabilities of several taxonomic groups appear to contain complementary collections
of exported CAZymes that might facilitate adaptation to unpredictable variability in
available polysaccharide content. Figure 7 summarizes predicted macroalgal digestion
capabilities observed within individual MAGs for the most abundant taxonomic groups.
The collaborative potential for all MAGs within each metagenomic sample is illustrated in
Fig. S4.

Potential contributions to shared, community-wide degradation of algal polysacchar-
ides through extracellular enzymes vary according to both microbial cell taxonomy and
targeted substrate. More than 90% of CAZymes that target macroalgal polysaccharides
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while yellow bars mark the absence of a signal peptide on all appropriate CAZyme candidates within a MAG.

from Bacteroidota MAGs contain signal peptides that indicate export or integration into
the cellular membrane. In contrast, CAZymes in Bacillota MAGs largely lack these signal
peptides in enzymes predicted to degrade fucoidan and agar but have more abundant
signal peptides within the smaller set of CAZymes targeting xylan and alginates. Few
Bacillota MAGs contain all of the enzymes required to fully degrade complex algal
polysaccharides such as porphyran, suggesting that cells from this taxonomic group
might scavenge partial breakdown products degraded extracellularly by other taxa.

Verrucomicrobiota polysaccharide digestion enzymes appear to be more specialized
toward red algae, with genomes consistently containing CAZymes predicted to digest
agar, carrageenan, and porphyran. However, MAGs from this phylum seem to be lacking
enzymes predicted to target green or brown algal polysaccharides. Gammaproteobac-
teria MAGs appear to have more enzymes involved in the digestion of non-sulfated
polysaccharides, such as alginate, and occasionally enzymes involved in agar degrada-
tion. Thus, the Gammaproteobacteria symbionts analyzed here may have specialized in
polysaccharide types that are easier to digest.

DISCUSSION

The recovery and characterization of 211 MAGs from Kyphosus gut and enrichment
metagenomes connect detailed taxonomic classification with the potential of the major
microbial contributors to digest complex algal polysaccharides. Algal polysaccharide-tar-
geting enzymes from this study are divergent in sequence from previously sequenced
and characterized representatives from other environments, clarifying prior assump-
tions about the metabolic capacities of this system using 16S rRNA or community

Month XXXX Volume 0 Issue 0

10.1128/mbi0.00496-2412

Downloaded from https://journals.asm.org/journal/mbio on 18 April 2024 by 98.155.108.147.


https://doi.org/10.1128/mbio.00496-24

Research Article

composition. This study confirms and expands upon earlier work showing that certain
members of the Bacillota and Verrucomicrobiota lineages are unexpectedly richer in
some CAZyme and sulfatase enzyme classes than their respective taxonomic relatives
(20). These CAZyme-rich MAGs provide the first genomic evidence supporting prior
observations of laminarin, carrageenan, and alginate degradation in Kyphosus guts (87,
88). Differences between source inocula and the metagenomes of bioreactor enrich-
ments starting from Kyphosus gut bacteria highlight potential challenges in harnessing
this microbiota for bioenergy preprocessing of macroalgal feedstocks.

This study describes specific genes encoding SCFA production pathways in the
genomes of fish gut microbiota. Microbial fatty acids serve as a key metabolite in
gut-brain communication (89) and are a major source of available carbon for the host
(90). SCFA pathway diversity is unexpectedly low for a system previously shown to
contain high SCFA concentrations in vivo (16). However, this observation is consistent
with a few dominant lineages, primarily the Bacteroidota, producing high amounts of
SCFAs from the breakdown products of algal polysaccharides. Prior chemical work has
observed that propanoate is more abundant than butyrate in Kyphosus guts (16), and our
pathway enzyme abundance information at the genome level supports these observa-
tions (Fig. 3). Metabolic capacities in our Kyphosus metagenomes also match previous
observations that bony fishes with carbohydrate-rich diets consistently lack branched
SCFAs and have low rates of protein fermentation by gut bacteria (91).

Mannitol has been suggested as a major source of fermentation substrate in some
algivorous fishes, based on the large percentage of mannitol in some brown macroalgae,
observed degradation of mannitol by Kyphosus guts (92), and the relative accessibility
of this compound compared to complex sulfated algal polysaccharides. The presence
of both mannitol 2-dehydrogenase (EC 1.1.1.67) and D-mannitol-1-phosphate dehydro-
genase (EC 1.1.1.17) genes in our MAGs, the latter of which was initially proposed by
Seeto et al. (93) but not found in recent metagenomic investigations of Kyphosus guts
by Stevenson et al. (19), suggests that mannitol utilization may differ more between
individual fish and algivorous species than previously thought.

Other observations in prior work on Kyphosus (16) noted rates of sulfate reduction
higher than methanogenesis, although both processes were negligible compared to
SCFA production. This aligns with the low abundance of Desulfovibrionales and the near
complete absence of Archaea in our metagenomes, consistent with observations that
dietary red macroalgae inhibit methanogenesis and thus the success of gut Archaea
(33). Both sulfate reduction and methanogenesis appear to be minor sources of energy
available for Kyphosid host absorption, compared to fermentation by Bacteroidota and
Bacillota.

Although Kiritimatiellales MAGs recovered from K. cinerascens fish guts contain more
enzymes targeting algal polysaccharides than other members of their phyla, these
taxa were not recovered from enrichment metagenomes. However, this should not be
problematic for enrichment processing if the dominant Bacteroidota contain CAZymes
with overlapping specificities for the same substrates, as suggested in Fig. 7. Additional
work comparing MAGs from lumen and mucosal samples may provide additional
insights into metabolic capacities that might be more abundant in the transient vs
permanent resident fraction of the microbiome (19). Future enzyme-focused work will
be needed to characterize sample-specific polysaccharide degradative chemistry in order
to parse the specific roles of each taxa. Vallitalea and Verrucomicrobiota enzymes may
encode some unique functionalities, as suggested by the extra domain present in their
B-porphyranase sequences (Fig. 5). Isolation and in vitro characterization of bioinformat-
ically predicted enzyme activities will be necessary to fully integrate these discoveries
into aquaculture and bioenergy applications.

Metagenomic data from the MAGs in this study suggest that few individual cells have
the genomic potential to independently degrade all of the complex sulfated polysac-
charide substrates present in marine macroalgae. However, secreted and extracellularly
exposed transmembrane CAZymes may enable collaborative interactions between fish
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gut microbes to facilitate complete digestion of these molecules, without the high
metabolic cost of encoding a complete, independent repertoire in every genome. A
division of labor strategy cannot be fully confirmed without in vitro tests (94), although
the first condition of genomically encoded functional complementarity appears to
hold true between Kyphosus symbionts based on bioinformatic criteria. In one similar
study, gene-based observations of complementarity for marine lignocellulose-degrading
bacteria align with in vitro observations that support a division of labor hypothesis
(95). Future work involving cultured representatives and enriched microcosms will be
required to pin down the ecological strategies used by symbionts in this system.

This study provides a new baseline for Kyphosus microbiota at the genome level but
begets many new questions requiring additional experimentation. Further work that
connects enrichment composition, feedstock polysaccharide composition, and physical
configuration parameters to chemical measurements of degraded polysaccharides will
help determine which phyla are required for complete polysaccharide breakdown. The
incorporation of novel enzyme sequences identified here may warrant the creation of
new subclasses, based on classification techniques such as sequence similarity networks
(96). Isolation and characterization of divergent proteins with unexpected new domains
may reveal new enzymatic properties unique to this system. Metatranscriptomic analyses
utilizing the genome catalogs presented here will enable detailed analysis of substrate-
specific metabolic pathway expression and species collaboration. Kyphosus digestive
systems have long been studied as models for herbivorous fish gut fermentation and
can now be explored further using these additional techniques to deliver a deeper
understanding of their degradative and fermentative capabilities.

Conclusion

The new metagenome-assembled genomes recovered from herbivorous fish guts and
corresponding bioreactors described here provide a genomic catalog of Kyphosus
gut symbionts highlighting untapped diversity in enzymatic and collaborative poten-
tial in the degradation of algal polysaccharides. The extensive sequence divergence
of enzymes encoded within these genomes from previously characterized CAZyme
family examples supports the promise of herbivorous fish guts as a source of novel
and industrially relevant enzymes. Expansion of these discoveries will not only clarify
ecological interactions but have the potential to improve the applicability of macroalgae
in the bioenergy and aquaculture sectors.
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