
J
H
E
P
0
7
(
2
0
2
4
)
1
5
9

Published for SISSA by Springer

Received: April 8, 2024
Accepted: June 17, 2024
Published: July 18, 2024

The geometry of GTPs and 5d SCFTs

Guillermo Arias-Tamargo ,a Sebastián Francob,c and Diego Rodríguez-Gómezd,e

aTheoretical Physics Group, The Blackett Laboratory, Imperial College London,
Prince Consort Road London, SW7 2AZ, U.K.

bPhysics Department, The City College of the CUNY,
160 Convent Avenue, New York, NY 10031, U.S.A.

cPhysics Program and Initiative for the Theoretical Sciences, The Graduate School and University
Center, The City University of New York,
365 Fifth Avenue, New York NY 10016, U.S.A.

dDepartment of Physics, Universidad de Oviedo,
C/ Federico Garcia Lorca 18, 33007 Oviedo, Spain

eInstituto Universitario de Ciencias y Tecnologias Espaciales de Asturias (ICTEA),
C/ de la Independencia 13, 33004 Oviedo, Spain

E-mail: guillermo.arias.tam@gmail.com, sfranco@ccny.cuny.edu,
d.rodriguez.gomez@uniovi.es

Abstract: We make progress in understanding the geometry associated to the Generalized
Toric Polygons (GTPs) encoding the Physics of 5d Superconformal Field Theories (SCFTs),
by exploiting the connection between Hanany-Witten transitions and the mathematical
notion of polytope mutations. From this correspondence, it follows that the singular geometry
associated to a GTP is identical to that obtained by regarding it as a standard toric diagram,
but with some of its resolutions frozen in way that can be determined from the invariance
of the so-called period under mutations. We propose the invariance of the period as a new
criterion for distinguishing inequivalent brane webs, which allows us to resolve a puzzle posed
in the literature. A second mutation invariant is the Hilbert Series of the geometry. We
employ this invariant to perform quantitative checks of our ideas by computing the Hilbert
Series of the BPS quivers associated to theories related by mutation. Lastly, we discuss the
physical interpretation of a mathematical result ensuring the existence of a flat fibration over
P1 interpolating between geometries connected by mutation, which we identify with recently
introduced deformations of the corresponding BPS quivers.

Keywords: Field Theories in Higher Dimensions, String Duality, Supersymmetric Gauge
Theory

ArXiv ePrint: 2403.09776

Open Access, © The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP07(2024)159

https://orcid.org/0000-0002-0713-789X
mailto:guillermo.arias.tam@gmail.com
mailto:sfranco@ccny.cuny.edu
mailto:d.rodriguez.gomez@uniovi.es
https://doi.org/10.48550/arXiv.2403.09776
https://doi.org/10.1007/JHEP07(2024)159


J
H
E
P
0
7
(
2
0
2
4
)
1
5
9

Contents

1 Introduction 1

2 Geometric engineering and brane webs 3
2.1 M-theory on CY3 3
2.2 Brane webs and GTPs 6
2.3 Mirror construction 11

3 Hanany-Witten transitions and polytope mutations 15
3.1 Hanany-Witten in the mirror 15
3.2 Polytope mutations 18
3.3 Mutation invariants 21

4 5d SCFTs, GTPs, and the period 23
4.1 The period and the classification of brane webs 23
4.2 Hanany-Witten and geometric deformations 26
4.3 Seiberg-Witten curves for GTPs 26

5 BPS Quivers and the Hilbert series 27
5.1 The E1 example 28

6 Additional examples 30
6.1 The E2 theory 30
6.2 The E0 theory 33
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1 Introduction

Constructing interacting UV complete Quantum Field Theories (QFTs) in d > 4 is notoriously
hard. In the particular case of d = 5 it is fair to say that the existence of consistent non-
supersymmetric interacting QFTs has not been clearly established (see e.g. [1–6]). The
situation is much better for the case of supersymmetric theories, since in that case, using
the power of String/M theory, it is possible to conclusively construct 5d interacting and
consistent SCFTs. It turns out that these theories are very interesting. Since 5d SCFTs do not
have marginal deformations, they are intrinsically strongly coupled and often exhibit rather
exotic properties, including for instance global symmetries of exceptional type. Moreover,
upon compactification, they can provide new perspectives on strong coupling phenomena
in lower dimensions.
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Within String/M theory there are various approaches to constructing 5d SCFTs, perhaps
most saliently through geometric engineering them in M-theory on a 3d Calabi-Yau (CY)
M [7–9] (see e.g. [10–27] for recent work) and on the worldvolume of 5-brane webs in Type
IIB String Theory [28] (see also [29–34]). In recent years, significant efforts have been
devoted to understanding 5d QFTs using these methods, as well analytic tools such as
supersymmetric localization.

Regarding the 5-brane web avatar, it has been realized that, in order to explicitly show
properties of 5d SCFTs such as the full Higgs branch, it is necessary to think of the web as
ending on 7-branes. This has two immediate consequences. On one hand, when more than
one 5-brane ends on a 7-brane, the 7-brane imposes non-trivial supersymmetric boundary
conditions –which go by the name of s-rule– which constrain the Coulomb branch of the
5d SCFTs. On the other hand, since the position of the 7-brane along the prong of the
web defined by the 5-branes ending on it (the leg of the web) is not a parameter in the 5d
SCFT, one may imagine crossing the 7-brane to the other side of the web. Since 7-branes
come with a branch cut, as it sweeps part of the web it changes the type of a subset of
the remaining 7-branes and 5-branes, sometimes leading to 5-brane creation through the
celebrated Hanany-Witten (HW) effect [35]. Thus, one may have two different looking webs
describing the same 5d SCFT. Indeed, due to this fact, the program of classifying 5d SCFTs
through classifying the possible brane webs has proven to be very hard.

When all of external legs of the web consist of a single 5-brane ending on the corresponding
7-brane, the latter can actually be neglected. In that case, it turns out that there is a relation
with the geometric engineering approach when M is toric. Reducing on a T 2 inside the toric
fiber, M-theory becomes Type IIB String Theory with 5-branes along the locus where the T 2

pinches off, which is precisely the corresponding 5-brane web. Thus, the brane web is the toric
skeleton of the CY3, and can be regarded as the diagram graph-dual to the toric diagram of
M. However, in the generic case of an arbitrary number of 5-branes ending on each 7-brane,
the geometric engineering description is not known. The notion of Generalized Toric Polygon
(GTP) has been developed to describe these more general cases [29, 36, 37]. GTPs look like
standard toric diagrams but are decorated with white and black dots, encoding how 5-branes
may terminate on the same 7-brane if the corresponding external segments in the GTP are
separated by a white dot. Moreover, a rule for supersymmetrically triangulate (actually
“polygonate”) the interior of a GTP according to the s-rule has been proposed. While GTPs
look very close to standard toric diagrams (and reduce to these when all dots are black),
their geometric interpretation has not been fully established.1 The purpose of this paper is
to make progress on these questions, notably by establishing a connection to a branch of
Mathematics that has emerged over the last decade, largely in parallel with the interest in
the Physics community regarding 5d SCFTs, and deals with essentially the same problem.

Specifically, as suggested in [39], in this paper we will argue that the mathematical notion
of mutation turns out to precisely correspond to HW crossing of branes. Note that HW
transitions typically lead to GTPs, even if the starting point is a standard toric diagram.
Yet, from the mathematical point of view, the decoration of the GTP with white dots is
irrelevant: it simply describes the singular toric variety as if no decoration was present.

1Recent progress, on which we will elaborate, includes [38–41].
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Moreover, two toric varieties whose toric polytopes are related by mutation can be regarded
as members of a flat fibration over P1, which implies that, geometrically, the HW transition
can be regarded as a deformation of the starting CY3. This establishes that the (singular)
toric variety geometrically engineering the 5d SCFT in M-theory is simply that associated
to the GTP forgetting its white dot decoration. Exploiting the established invariants under
mutation developed in the mathematical literature –which will also enable us to refine previous
classifications of 5-brane webs– we will demonstrate that the white dot decoration has the
effect of freezing possible resolutions of the geometry in a precise way.

Moreover, we will offer quantitative evidence of this proposal by studying the BPS quiver
of the 5d SCFT compactified on S1. This quiver is identical to the fractional brane quiver
for Type IIB D3-branes probing the toric CY3 variety M. Thus, following the proposal
above, for an arbitrary 5d theory encoded in an arbitrary GTP, we will read off the BPS
quiver by simply forgetting the decoration of the GTP and regarding it as a standard toric
diagram. This is an easy task, given the substantial brane tiling machinery developed for this
purpose [42, 43]. We will see that the partition function counting gauge-invariant operators
of the BPS quiver matches, upon using the appropriate prescription, the Hilbert series of the
variety. The latter has been shown to be invariant under mutation, and the agreement of
quiver partition functions will be a non-trivial check of our ideas.

This paper is organized as follows. In section 2 we give a lightning review of the two
approaches to construct 5d SCFTs which we consider, namely geometrically engineering them
in M-theory and on 5-brane webs in Type IIB String Theory. In section 3, we describe the
identification of Hanany-Witten transitions in 5-brane webs with the mathematical notion
of polytope mutation. This allows us to introduce two quantities, the so-called period and
the Hilbert series, which are invariant under this transformation. In section 4, we explore
the physical implications of the invariance of the period. This will allow us to recover, from
first principles, the recipe for the Seiberg-Witten (SW) curves in [44], as well as to resolve a
puzzle posed in [45] concerning the classification of 5-brane webs. In section 5, we turn to
the invariance of the Hilbert series, which provides a quantitative consistency check of the
perspective advocated in this paper. We offer further examples in section 6. We conclude in
section 7 with a summary of our results and a discussion of the open problems and future
perspectives raised by our work.

2 Geometric engineering and brane webs

In this section we review three of the main approaches to construct 5d N = 1 SCFTs and
their interrelation. First we begin by considering their geometric engineering via M-theory
on a local Calabi-Yau threefold. Second, we study their construction via webs of 5-branes in
flat space; in simple cases the correspondence with the geometric setup is well known. Last,
we will review the mirror construction of the original M-theory CY.

2.1 M-theory on CY3

Let us now focus on the first of these three setups, namely consider M-theory on a three
(complex) dimensional, non-compact, canonical, Gorenstein singularity. Following the stan-
dard terminology in the literature, we will refer to it as a local CY3, and denote it by M.

– 3 –
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Since the geometry is non-compact, gravity is decoupled, and this system is described by a
5d SCFT living in the 5 directions transverse to the singularity [7–9].

In this situation, there is a correspondence between the field theory and the geometrical
data. Let us denote by M̃ a (partial) crepant resolution of M. This geometry has a set of non-
compact divisors that arise directly from those in M, as well as a set of compact exceptional
divisors that arise from the resolution. Together, they form the extended Kähler cone of
M̃, which we denote K(M̃). In the low energy field theory description, they correspond
to the 5d extended Coulomb branch; more precisely compact cycles correspond to proper
Coulomb branch VEVs, while non-compact cycles map to (real) mass deformations. In fact,
real masses can be understood as VEVs for scalars in background vector multiplets for global
symmetries, hence the name of extended Coulomb branch.

In the rest of the paper, we will be focusing on the case where the Calabi-Yau is toric,
which translates to the field theory having at least a U(1)3 global symmetry. This means
that generically complicated geometric notions can be simplified in terms of combinatorics,
since the complexified torus (C∗)3 acts on a dense subvariety of M. Indeed, among many
other features, this allows to trade the defining equations of M as an algebraic variety for its
toric fan, which is a collection of vectors in a Z3 lattice specifying the weights of the torus
action. In these terms, the Calabi-Yau condition is seen as the fact that all these vectors end
on the same 2d plane. This further streamlines the combinatorics, as it is now sufficient to
focus on the 2d polygon defined by the endpoints of the vectors in the toric fan.

In these terms, the discussion regarding the extended Coulomb branch of the 5d theory
simplifies. The singular Calabi-Yau M corresponds to a polygon such that only external
lattice points (that is, along the perimeter) are joined by edges. Its resolution M̃ corresponds
to a triangulation of the polytope for M; the variety is completely resolved if every internal
point is joined by lines of the polytope. The lattice points themselves correspond to divisors
of the geometry.2 From the discussion above, it follows that internal points are mapped
to proper Coulomb branch deformations of the 5d theory (compact cycles), while external
points correspond to mass deformations (non-compact cycles). The number of internal points
of the polygon is the rank of the 5d SCFT.

BPS states of the 5d theory can be understood in M-theory. M2-branes wrapping certain
holomorphic 2-cycles are identified with W-bosons and instanton particles, and M5-branes
wrapping 4-cycles give rise to instanton strings. Making this map more precise would require
introducing a ruling for the compact divisors, but we will not do that here as we will not
make use of it. Instead, it is easier to look at the BPS states from the dual Type IIA
picture as follows.

We can consider compactifying one of the field theory directions on a circle, obtaining a
so-called 4d KK theory, described by Type IIA String Theory on the CY3. The different BPS
states of the theory correspond to the bound states of D0-D2-D4 branes supersymmetrically
wrapped in M̃. Such bound states are captured by the BPS quiver, which coincides with
the fractional brane quiver of the CY3 singularity [46]. This object has been thoroughly
studied in the past in the case of toric CY3’s. This allows us to import the heavy machinery

2One should note that when modding out by principal divisors in order to find the divisor class group, not
all points correspond to independent divisor classes.
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Figure 1. Toric diagram for the E1 theory before and after the resolution.

developed to describe Type IIB D3-branes probing toric CY3’s in terms of brane tilings [43]
(see [47, 48] for comprehensive reviews) to construct the BPS quiver for (compactified) 5d
SCFTs geometrically engineered by the CY3.

One interesting consequence of this correspondence is that it is possible to go both ways.
We just discussed how to reach the BPS quiver starting from the geometry. But taking the
BPS quiver as a starting point, one can also obtain the CY3 geometry M that engineers
the 5d SCFT in M-theory. Indeed, given a BPS quiver we may regard it as a 4d N = 1
quiver for D3-branes probing a CY3, and computing the geometry of the moduli space of
vacua of the 4d theory, we recover the original Calabi-Yau.

2.1.1 The E1 example

Let us illustrate these concepts with some detail in the simple example of the E1 theory,
to which we will come back throughout this work. This theory is engineered by M-theory
on the complex cone over the Hirzebruch surface F0 = P1 × P1, and will be denoted by
C(F0). Both F0 and C(F0) are toric varieties.3 The (dual of the) toric fan of C(F0) can
be projected to the hyperplane at height 1 obtaining a 2d integral polygon known as the
toric diagram, which we depict in figure 1.

This specifies for us the weights of the toric action, which is then (u, v, w, t) →
(t1t3u, t2t3v, t3

t1
w, t3

t2
t). From this we recognize the equations corresponding to two copies of

P1 over the complex plane. This variety can also be regarded as a Z2 orbifold of the conifold.
This singular variety has four toric divisors Di, i = 1, . . . , 4 given by setting each of the

4 complex coordinates equal to zero. After the blowup, we have an additional exceptional
divisor De. These divisors are not all linearly independent: after modding out by principal
divisors, one finds the relations

[D1] − [D3] = 0 ,

[D2] − [D4] = 0 , (2.1)
[De] + [D1] + [D2] + [D3] + [D4] = 0 .

Therefore we conclude that there are two linearly independent divisors, which we take to be
[De] and, say, [D1]. One can compute their volumes by integrating the Kähler form of C(F0).
The volume of the (compact) exceptional divisor corresponds to the proper Coulomb branch
modulus, and the volume of the (non-compact) toric divisor to the extended Coulomb branch

3In the Physics literature CY3 geometries which are a complex cone over a 2d base C(B) are often denoted
by simply the 2d base B.
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Figure 2. Brane tiling and quiver diagram for C(F0).

modulus; together, they generate the extended Kähler cone of C(F0).4 Indeed, we find that
its dimension is 2, as expected for a theory with gauge and global symmetry of rank 1.

The BPS quiver coincides with the fractional brane quiver for D3-branes probing C(F0).
This quiver and its superpotential can be easily computed using the standard technology
of dimer models, as shown in figure 2.

The corresponding superpotential is

W = −X12X23X34X41 + X41Y12X23Y34 + X12Y23X34Y41 − Y12Y23Y34Y41 . (2.2)

From the field content and the superpotential, one can compute the complete F-terms
satisfied by the chiral fields, and it is possible to see that the moduli space of the quiver
in 2 precisely reproduces the toric diagram in 1.

It is worth noting that the fractional brane quiver associated to a toric CY cone is
not unique, as there can be multiple Seiberg dual phases. In the example of C(F0) at
hand there is another phase, obtaining by Seiberg-dualizing any node in the quiver in 2
(all nodes are equivalent).

2.2 Brane webs and GTPs

The duality between M-theory on T 2 and Type IIB on S1 implies that a 5d theory can be
engineered both via pure geometry in M-theory, as described above, or through a brane
web in flat space in Type IIB [49]. Translating between the two setups is a well understood
problem when the geometry is a toric CY3. In this case, the edges of the toric diagram,
which correspond to 2d faces of the toric fan, signal that two of the three circles in (C∗)3

are pinched. In the dual Type IIB setup, this pinching is seen as a discontinuity of the B2
and C2 fields which, in turn, signals the presence of a charged 5-brane.

More precisely, if a (p, q) complex 2-cycle of the torus pinches, it will correspond to
a (p, q)-5-brane. The conclusion is that, given a toric diagram for the M-theory CY3, the
dual of this graph (sometimes referred to as the toric skeleton) is directly the 5-brane web

4More precisely the Kähler parameters live in H2(C(F0),R). The divisors live in H4(C(F0),Z) and their
Poincaré duals in H2(C(F0),Z), and taking into account the volume leads to the desired coefficients for the
cohomology group.
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Figure 3. Toric diagram and brane web for SU(2) SQCD with 1 flavor.

in Type IIB. As an illustration, figure 3 shows the toric diagram and brane web for SU(2)
SQCD with 1 flavor.

More generally, 5-brane webs in Type IIB String Theory have been thoroughly studied by
themselves starting with [28]. Choosing the axio-dilaton τ = i, a (p, q) 5-brane wraps (01234)
and looks like a segment or line with slope q/p on the (56) plane. 5-branes can join, provided
(p, q) charge is conserved at every intersection, forming a web on the (56) plane. Note that
if (p, q) are not coprime, the corresponding segment describes n = gcd(p, q) 5-branes with
charges (p/n, q/n). To fix some notation, we will always consider the 5-brane charges (p, q) to
be coprime, and we will refer to the number of parallel 5-branes n as the multiplicity of the leg.

These configurations can be extended by adding 7-branes spanning (01234789) and
located at a point on the plane of the web with no further breaking of supersymmetry, such
that every leg of the web can terminate on an appropriate 7-brane. To be explicit, a 7-brane
is described by its [p, q] charge. Once again we assume gcd(p, q) = 1 so that we describe a
single 7-brane, on which several (p, q) 5-branes can end; and we write the total charge vector
of the leg as n(p, q). The addition of the 7-branes allows the visualization of the Higgs branch
of the 5d theory as “sliding” sub-webs in the (789) directions. Moreover, the 7-branes impose
boundary conditions on the web which restrict the number of Coulomb branch deformations
and are constrained by the supersymmetry of the configuration through the so-called s-rule.
To see this, let us consider a 5-brane web with L external legs, and where each external leg
ends on the corresponding [pi, qi] 7-brane and has multiplicity ni, with i = 1, · · · , L. Thus,
we can denote each 7-brane by a vector ℓi = [pi, qi], and for definiteness, choose to label them
anti-clock wise. Note that in these conventions, charge conservation reduces to ∑niℓi = 0.
The self-intersection of the web is defined as [50, 51]5

I =

∣∣∣∣∣∣
∑
i≤j

ni nj ⟨ℓi|ℓj⟩

∣∣∣∣∣∣−
∑

i

n2
i , ⟨ℓi|ℓj⟩ = det(ℓi, ℓj) . (2.3)

The condition for the web to be supersymmetric is

I ≥ −2 . (2.4)

5It is important to stress that the formula in (2.3) is valid for irreducible webs, that is, those which are not
the superimposition of various individual webs.
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There is a relation between the self-intersection of the web and the dimension of the Coulomb
branch of the 5d theory, given by

dC = I + 2
2 , (2.5)

so that the so that the SUSY condition translates to the Coulomb branch having non-negative
dimension dC ≥ 0.

Since 7-branes are point like in the (56) plane, they come with a branch cut for the
axio-dilaton that they source, which is specified by their [p, q] charge. The associated
monodromy matrix is6

M(p,q) =
(

1 − pq p2

−q2 1 + pq

)
. (2.6)

We assume a “standard presentation” for the web, where all branch cuts are assumed
to run away from the web, not crossing any brane. For instance, we can take them to run
“radially” along the direction of the prong corresponding to the leg.

Given a web ending on 7-branes, there are two possible types of motions of the 7-branes:
a) we can move the 7-branes changing the asymptotic positions of the external legs attached
to them, or b) we can move the 7-branes along the external legs without changing their
asymptotic position. Let us discuss the consequences of each of these alternatives.

(a) Moving the 7-branes changing the asymptotic position of the external legs corresponds
to a mass deformation of the 5d SCFT. Interestingly, these deformations may open
Higgs branch directions. Indeed, moving two 7-branes such that two or more external
legs of the brane web coincide leads to a 5-brane segment which is free to move in
the direction perpendicular to the plane of the web, corresponding to a Higgs branch
VEV in the 5d theory, as discussed above. Integrating out this massive mode we are
left with a web where two parallel 5-branes end in the same 7-brane. This results on
some moduli of the theory becoming frozen: in fact, together with the requirement that
every time that 5-branes meet the junction needs to be supersymmetric, more moduli
can get frozen beyond the position of the external legs. As an example, consider the
webs shown in figure 4. Requiring that the rightmost junction of the web on the r.h.s.
satisfies I ≥ −2 implies that there is only one free Coulomb branch moduli.

(b) Consider instead moving a 7-brane along the corresponding external leg. Such motion
does not correspond to an observable of the 5d theory. In particular, we can consider
moving the 7-brane across the web. In order to keep its monodromy cut pointing in
outwards, we have to rotate it into the opposite direction, sweeping in the process
“half of the web” and transforming the 7-branes that are crossed accordingly. To be
more explicit, suppose we cross the i-th brane with charge vector ℓi. Then, for the

6We use conventions such that when the branch cut sweeps counter-clockwise an [r, s] 7-brane, the latter
gets transformed into an M(p,q)[r, s]T 7-brane. If, instead, the cut sweeps the 7-brane clockwise, it acts
with M−1

(p,q).

– 8 –
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Figure 4. Brane web where two 5-branes end on the same 7-brane after a Higgs branch flow.

Figure 5. Brane web where two 5-branes end on the same 7-brane after a HW transition.

transformed 7-branes, their charge vector transforms as ℓj → Mℓi
ℓj = ℓj + ⟨ℓi|ℓj⟩ ℓj , so

that the full transformation of the web is

ℓj →


ℓj , j ≤ i ,

−ℓi , j = i ,

ℓj + ⟨ℓi|ℓi⟩ ℓj , j > i .

(2.7)

As a result, through the Hanany-Witten effect, the number of 5-branes ending on the
7-brane needs to be changed so as to satisfy charge conservation. More explicitly, the
multiplicities must transform as

nj →


nj , j ≤ i ,

−ni +∑
k>j nk ⟨ℓi|ℓk⟩ , j = i ,

nj , j > i .

(2.8)

Figure 5 shows an example of this process, which starts from the web for the T3 theory
and moves one of the [1,0] 7-branes from the left to the right of the web.

We see that we have found two different ways to arrive at the same brane web. Note
that the two webs in figure 5 are physically equivalent, while the ones in figure 4 are not
(a Higgs branch flow has occurred).

It is possible to associate a cousin of the toric diagram for the case when multiple 5-branes
end on the same 7-brane [29]. This object has been dubbed Generalized Toric Polygon (GTP)

– 9 –
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Figure 6. GTP for the brane web in figures 4 and 5.

in the literature and is obtained by replacing a black dot with a white dot whenever it splits
a segment corresponding to two 5-branes that are stuck together as in figure 6, corresponding
to the web in figure 5. Note that in terms of the web, the effect of the s-rule due to the ending
on 7-branes is to constrain the possible Coulomb branch deformations. Rules to account for
that in terms of a “poligonation” of the GTP have been proposed in [29, 38].

Returning to the relation to geometric engineering, the duality between M-theory on
a CY3 and a 5-brane web in Type IIB along the directions of the pinching of the torus
only holds for webs without the 7-branes. In the case of webs with all external legs of
multiplicity equal to 1, the external 7-branes can be neglected as they do not impose any
(supersymmetry) constraint on the possible deformations. Thus, we can alternatively describe
the corresponding SCFTs through a 5-brane web in Type IIB or as M-theory on the CY3
whose toric skeleton coincides with the web. However, for generic multiplicities the question is:
what does the GTP correspond to in the M-theory geometric engineering language? Progress
in this direction was made in [38]: in the particular case where white dots appear only on
one side of the GTP, it is possible to understand them by exploiting the reduction from
M-theory to Type IIA. In the toric case, one side of the toric diagram corresponds to a (real)
codimension-4 A-type du Val singularity, and after reduction on S1 it appears as the D6
brane of Type IIA. In this setup, it is possible to give a nilpotent VEV to the stack of branes
which are then forced to remain stuck together (a construction known as a T-brane [52]).
After lifting back to M-theory, the conjecture is that the defining equations for the geometry
look the same as for the toric diagram, except that fewer deformations are available.

In this work, we will argue that this is also the case for more generic GTPs, i.e. containing
white dots in several sides as well as the interior. We will do so by exploiting mirror symmetry.
We will see that while the geometric counterpart of the HW transition (analogous to figure 5)
is complicated to write down for the original M-theory CY3 M, it is straightforward to
implement it for its mirror. This, in turn, allows us to identify the moduli that become
frozen in general (analogous to figure 4).

2.2.1 The E1 example

Let us illustrate this discussion using the E1 example. The corresponding web is shown
in figure 7.

In this case, all external legs have multiplicity 1, which means that we are in the realm of
standard toric diagrams. Indeed, the dual graph to figure 7 is the resolved toric diagram of
figure 1. The proper Coulomb branch modulus corresponds to the vertical distance between
the two parallel (1,0) 5-branes in the opened-up face; this is the mass of the fundamental
string stretching between them. The extended Coulomb branch modulus corresponds to a
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Figure 7. Web for the E1 theory.

Figure 8. Equivalent web for the E1 theory after the Hanany-Witten transition.

deformation that moves the external legs horizontally, changing the mass of the D-string
stretched between the two (0,1) 5-branes. Both proper and extended Coulomb moduli
are Kähler moduli. They are distinguished because in one case we are not modifying the
boundary conditions of the web (the face can open up while keeping the 7-branes fixed),
while in the second one we are modifying them (moving some of the 7-branes transverse
to the corresponding leg). Note also that while there are four external legs, two of their
positions are fixed by charge conservation at every 5-brane junction, plus a third one from
an overall translation, leaving us in total with two parameters for the extended Coulomb
branch, which matches the geometric engineering result.

We may imagine now moving one of the 7-branes along the corresponding leg until it
crosses the web. Without loss of generality (all 7-branes are equivalent), we choose the
[−1, 1] one to cross. Moving the branch cut clock-wise, the [1, 1] 7-brane turns into a [−1, 3]
7-brane as it is swept by it. The resulting web is shown in figure 8, together with the dual
diagram, which is the toric diagram for C(F2).

2.3 Mirror construction

Let us first focus on the realm of standard toric diagrams. Given a toric CY3 M there is
a well-known construction for its Hori-Vafa mirror partner W [53]. The toric geometry of
the original M is encoded in its toric diagram, which can be regarded as a convex rational
polytope ∆ in the lattice Z2. Associated to ∆ one can construct a Laurent polynomial
by assigning to each point in ∆ ∩ Z2 with coordinates (m, n) the monomial xmyn (where
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x, y ∈ C∗) with a generic coefficient c(m,n). The resulting polynomial is

P (x, y) =
∑

(m,n)∈∆∩Z2

c(m,n)x
myn . (2.9)

The mirror geometry is then constructed as a double fibration over a complex plane C
parametrized by w as

W =

P (x, y) = w ,

uv = w .
(2.10)

There are three remarks. First, strictly speaking, this construction only works for ∆’s with
at least one internal point. These are called Fano polytopes, and in the remainder of this
paper we will stick to that case, which implies that the 5d theory has rank greater or equal
than 1. Second, note also that the Laurent polynomial P (x, y) depends on the choice of
origin of the lattice. While the choice of the origin is irrelevant for many applications and
therefore hardly ever considered, it will become important in our discussion below, where it
plays a crucial role in defining mutations of said polynomials. Finally, while it looks that
we have as many free coefficients c(m,n) as points in the polytope, in fact we can always
freely fix 3 of them, by using rescalings in x, in y, and an overall SL(2,Z) transformation.
We will often make use of this freedom.

Let us unpack the main features of the geometry of W . For w ̸= 0, uv = w parametrizes
a copy of C, with an S1 associated to the phase of the free complex coordinate (which can be
taken to be u or v); this S1 collapses to zero size at w = 0. In turn, for fixed w, the curve
P (x, y) − w = 0 defines a Riemann surface whose genus equals the number of internal points
in ∆. We can look for the critical points of P , i.e. for points (xI , yI) such that

∂P

∂x

∣∣∣
(xI ,yI)

= ∂P

∂y

∣∣∣
(xI ,yI)

= 0 . (2.11)

They have the meaning that on top of every wI = P (xI , yI), there is an S1 in the Riemann
surface that pinches off. Thus, the segment [0, wI ] on the w-plane connecting the 0 to wI ,
together with the S1 × S1 associated to the two cycles above (one on the Riemann surface
and pinching off at w = wI and the other one on the uv-plane and pinching off at w = 0)
defines a topological S3

I . The number of critical points, and therefore of such S3
I ’s, is equal to

the area of the toric diagram (in units of fundamental triangles). Moreover, this collection
of spheres forms a basis of H3(W,Z), so the class of the T 3 toric fiber can be written as
a formal linear combination of the S3

I ’s.
The fiber on top of w = 0 is of special importance, which can be understood at an intuitive

level by the fact that the S3
I ’s intersect on top of it. Let us denote by Σ the corresponding

Riemann surface P (x, y) = 0. It contains the information of both the 5d theory as well as
the corresponding BPS quiver, via the so called amoeba and co-amoeba projections [33].

The amoeba projection of Σ is defined as

AΣ = {(log |x|, log |y|) , s.t. P (x, y) = 0} , (2.12)

– 12 –



J
H
E
P
0
7
(
2
0
2
4
)
1
5
9

and it looks like a thickened version of the toric skeleton of the original CY3 M. Let us
review how this comes about. Consider an edge of the toric diagram composed of a single
segment connecting the points with coordinates (a1, b1), (a2, b2), so that the corresponding
leg is, up to a sign, (p, q) = (b2 − b1, a1 − a2). The equation P = 0 can be written as
c2xa2yb2 − c1xa1yb1 = P ′, where P ′ contains the contribution of all dots in the toric diagram
other than the selected two. We can further write cx−qyp − 1 = P ′′, where P ′′ = P ′/c1xa1yb1

and c = c2
c1

. Crucially, P ′′ can be regarded the contribution of all monomials as if the origin
was set in the point (a1, b1). Since the toric diagram is convex, all points lie to one side
(depending on the particular choice of edge) of (a1, b1). Thus, if we write x = c

1
q tp, y = tq,

P ′′ is a polynomial with all positive/negative (depending on the side to which the rest of the
points, as described before, lie) powers of t. Thus, in the appropriate limit t → 0,∞ P ′′ → 0,
while the l.h.s. obviously vanishes as well. Now, through the amoeba map above we have

AΣ ∼ (pτ + p0, qτ) , τ = log t , p0 = 1
p

log c ; (2.13)

which corresponds to a infinite spike along the (p, q) direction whose position is encoded in c.
In particular, this shows that changes in c map to changes of the positions of the external
legs, that is, to mass deformations in the 5d SCFT. More generally, the coefficients c(m,n) in
P (x, y) are mapped to the extended Coulomb branch of the low energy theory. This is the
familiar statement that mirror symmetry exchanges complex and Kähler moduli.

Physically, the Riemann surface Σ also makes an appearance as the analogue of the
Seiberg-Witten curve for the 5d theory compactified on a circle. As described originally
in [28], one writes (x5, x6) for the coordinates in the plane of the web in Type IIB, and
(x4, x10) for the coordinates on the T 2 where we compactify M-theory to make use of the
duality between the two setups. Then the SW curve is given precisely by P (x, y) = 0, where
the coordinates are given by

x = exp
[2π

R
(x5 + ix4)

]
, y = exp

[2π

R
(x6 + ix10)

]
, (2.14)

with R the radius of the torus.7 The various masses of BPS states of the 4d KK theory
are computed using the usual SW technology, namely by integrating the differential λ =
log x d(log y) over the corresponding cycles.

The geometry of W also contains the information about the BPS quiver through the
coamoeba projection of Σ. This is defined as the projection onto the angular parts of (x, y),

A∨
Σ = {(arg x, arg y) , s.t. P (x, y) = 0} . (2.15)

This projection lives on a T 2 and knows precisely how the S3
I ’s intersect one another on top

of the fiber at w = 0. Using the fact that the BPS quiver is identical to the fractional brane
quiver for Type IIB D3-branes probing the original geometry, the BPS quiver appears through
string dualities: the system of D3-branes probing M (in Type IIB) becomes, after three T-
dualities, a system of D6-branes on W wrapping the S3

I ’s (in Type IIA). On Σ, the D6-branes
7Since we have fixed τ = i, which corresponds to the modular parameter of the M-theory torus, we are

only left with specifying the base length R.
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Figure 9. Amoeba and coamoeba projections for the Riemann surface for F0.

look like 1-cycles, each of them surrounding a puncture associated to a leg of the amoeba, and
intersecting one another according to the coamoeba. The combinatorics of this intersection
pattern is captured by the brane tiling, which in turn specifies the 4d N = 1 theory living on
the branes. We refer the reader to [33, 54] for detailed discussions of this construction.

2.3.1 The E1 example

Let us revisit our trusty E1 example. The toric diagram was depicted in figure 1. From the
associated Laurent polynomial, we find the mirror partner to C(F0),w = P (x, y) = c0 + c1x + c2y + c3

1
x + c4

1
y

w = uv
, (2.16)

where u, v ∈ C and x, y ∈ C∗. As discussed after (2.10), we have the freedom to fix three of
the complex coefficients ci = 1. In particular, we see that we have two complex structure
moduli, as expected.

The equation P (x, y) = 0 is the Riemann surface above the origin of the w-plane. It
is straightforward to determine its amoeba and coamoeba projections for specific values
of ci. Figure 9 shows cartoons of the amoeba and coamoeba projections of Σ for a choice
of coefficients.8

We immediately see that the shape of the amoeba corresponds to the brane web in Type
IIB. Even though the exact map between c’s and (extended) Coulomb branch parameters
is relatively complicated, one can see that by varying the c’s it is possible to independently
tune the size of the central hole (Coulomb branch VEV) and the horizontal distance between
legs (mass parameter, in this case corresponding to inverse squared gauge coupling).

In the coamoeba the S3
I ’s are projected to S1’s on T 2. These are wrapped by D6-branes,

and we see that their pattern of intersections reproduces the brane tiling shown in figure 2.

8The coefficients in this example give rise to the so-called Phase 1 of C(F0), given by figure 2 and (2.2).
Varying these coefficients, it is possible to obtain a qualitatively different coamoeba, which corresponds to
Phase 2. In other words, the new coamoeba gives rise to the corresponding brane tiling or, equivalently, the
quiver and superpotential. Detailed discussions of different choices of the coefficients, and the different toric
phases (including specific analyses of C(F0)), can be found in [33, 54].
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3 Hanany-Witten transitions and polytope mutations

This section contains the main point of this paper, the implementation of the Hanany-Witten
transition of the brane web in terms of the geometry, which is particularly easily visualized
in the mirror W . The corresponding operation is known in the mathematical literature as a
polytope mutation. The connection between Hanany-Witten transitions an polytope mutations
was already noted and investigated in [39]. In this paper, however, we consider a refined
version of polytope mutation which, among other things, also specifies the transformation
of the Laurent polynomial. This prescription enables the mapping of moduli across the
transition, allowing the determination of instances when they become frozen.

3.1 Hanany-Witten in the mirror

Consider a polytope ∆ and its associated Laurent polynomial P (x, y). As a warm-up, let
us illustrate our construction with a four-sided polytope with two parallel sides such that
the distance between them is 2 (in lattice units). Without loss of generality, we can use
an appropriate SL(2,Z) transformation such that one of the parallel edges is on the x axis
and the other one is at y = 2, as illustrated in figure 10.

Picking the origin of the lattice in the interior of ∆, i.e. with y = 1, the corresponding
polynomial takes the following form

P (x, y) =1
y

P−1(x) + y0P0(x) + yP1(x) (3.1)

=xa

y

n−∏
i=1

(x − xi) + P0(x) + y xb
n+∏
j=1

(x − x̃j) . (3.2)

The exponents a and b resulting from the factorization of P±1 can be either positive or
negative, and they depend on the precise choice of origin along the x axis. Figure 10 shows
the general form of ∆.

As discussed in the previous section, this polynomial specifies a geometry W whose
amoeba projection (of the Riemann surface Σ) has vertical asymptotes along the bottom edge
at positions xi and along the top edge at positions x̃j . The dual IIB brane web will have n−
semi-infinite NS5-branes at the bottom and n+ NS5-branes at the top, respectively at positions

x5,i = R

2π
log xi , x̃5,j = R

2π
log x̃j , (3.3)

after using (2.14).
Let us now consider the following change of coordinates:

(x, y) → (x, (x − x1)y) . (3.4)

It is immediate to see what are the consequences for the Laurent polynomial (3.1). The
(x − x1) factor in P−1(x) cancels, and it appears in P1(x) instead. We obtain

P (x, y) → xa

y

n−∏
i=2

(x − xi) + P0(x) + y xb (x − x1)
n+∏
j=1

(x − x̃j) . (3.5)
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(0,0)

(0,1) (0,1) (0,1)

(0,-1) (0,-1) (0,-1) (0,-1) (0,-1)

(a,-1)

(b,1)

(a+n   ,-1)-

(b+n   ,1)+

(-2,b-a)

(2,a+n  -b-n  )+-

Figure 10. Polytope associated to the polynomial (3.1) for a = −1, b = −2, n+ = 3 and n−=5. The
origin is shown in red. We show the vectors normal to every edge on the boundary.

(0,0)

(0,1) (0,1) (0,1)

(0,-1) (0,-1) (0,-1) (0,-1)

(a,-1)

(b,1)

(a+n   -1,-1)-

(b+n   +1,1)+

(-2,b-a)

(2,a+n  -b-n  -2)+-

(0,1)

Figure 11. Mutated polytope obtained from figure 11 by the change of variables in (3.4). The
mutation implements a Hanany-Witten transition in the dual web.

The resulting polytope is shown in figure 11. In terms of the dual Type IIB brane web,
we have sent the external leg at position x1 from the bottom to the top of the brane web.
Moreover, this automatically changes the slope of the edge at the rightmost side of the
polytope.9 This is precisely the effect of sweeping the monodromy in the Hanany-Witten
transition resulting from moving the 7-brane at the end of the leg across the web.

We can use the same type of coordinate transformations to implement more general
HW transitions. For example, in order to send one of the legs from the top to the bottom

9While the explicit example in the figure was chosen such that before and after mutation both of the sides
of ∆ that are not parallel to the x-axis consist of a single edge (namely they do not cross over intermediate
lattice points), our discussion extends without changes to the case in which these sides contain multiple edges.
Moreover, the fact that the two lateral edges end up being parallel after the mutation is just a non-generic
feature of this specific example.
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of the web, we would use the transformation

(x, y) →
(

x,
y

x − x̃j

)
. (3.6)

Similarly, if we want to send several 7-branes across the web, we can employ the transformation

(x, y) → (x, p(x) y) , (3.7)

with the restriction that p(x) is a divisor of P−1(x). This requirement ensures that the
corresponding monomials cancel, and physically has the meaning that we are picking the
subset of the legs that appear as factors in P−1(x).

An interesting new phenomenon arises when the length of the polytope ∆ in the direction
of y is greater than 2. Consider, for example, an example of height 3, and pick the origin
such that the Laurent polynomial is

P (x, y) = 1
y

P−1(x) + P0(x) + yP1(x) + y2P2(x) , (3.8)

and take (x − x1) a prime factor of P−1(x).
Then the coordinate transformation (x, y) → (x, (x−x1)y) sends P2(x) → P2(x)(x−x1)2.

We observe that we have fewer free complex coefficients than the naive counting from the
number of monomials. In the dual Type IIB picture, this means that two of the external
legs created by the HW transition are fixed to be together at the same position x1. We
interpret this as the fact that two 5-branes end on the same 7-brane, and correspondingly,
that we have a white dot in the corresponding GTP.

Having a height 3 polytope, allows us to pick different vertical positions for the origin.
More generally, the distance between the origin and the edge we want to mutate can take
different values. We now discuss the important role of the choice of origin. Returning to
the example at hand, depending on the choice of origin, we can shift the entire polytope
vertically, i.e. shift the y powers in the Laurent polynomial. In particular, we can make an
alternative choice for which P (x, y) becomes

P (x, y) = 1
y2 P−2(x) + 1

y
P−1(x) + P0(x) + yP1(x) . (3.9)

Comparing to and (3.5) and figure 10, we have moved the polytope downwards by one lattice
unit in the y direction. Equivalently, we have picked the origin to be one unit further from
the lower edge. Now, if we want to send y → (x− x1)y we also need to require that (x− x1)2

divides P−2(x) to ensure that the desired cancellations happen and the final result is also a
Laurent polynomial. This means that before the coordinate transformation, we must have
two legs of the web frozen together, which become just one leg after the transition. This
is the first instance where we notice that the choice of origin of the lattice is related to
whether the white dot is present in the GTP before or after the HW transition, a point
to which we will return later.

The transformations (3.4), (3.6), (3.7) are examples of so called mutations of Laurent
polynomials, which in turn implies mutations of their Newton polytopes. The key point is
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Figure 12. Polytope for the E1 theory obtained from figure 1 via an SL(2,Z) transformation. The
origin is indicated in red.

that the polytope mutation is implemented by a change of variables in the corresponding
Laurent polynomial. As such, it provides a more refined description than the mere mutation
of the points in the polytope. These mutations have been discussed in the pure mathematics
literature quite extensively starting with [55]. As we will illustrate in examples below,
mutations on edges that are not horizontal can be obtained directly by appropriate changes of
variables or, equivalently, by first applying an SL(2,Z) transformation to turn the edge under
consideration horizontal. In the next subsection, we will review some of the mathematical
terminology and results, so that we can then import them to Physics.

3.1.1 The E1 example

Let us illustrate the previous discussion in the example of the E1 theory. Instead of starting
with the polytope in figure 1, it is slightly more convenient to perform a global SL(2,Z)
transformation to align one side of the polytope with the x axis, as shown in figure 12.

The corresponding Laurent polynomial reads

P (x, y) = 1
y

(x − c1) + 1 + y

(1
x
− 1

c2

)
, (3.10)

where we have already fixed three of the coefficients, and the remaining two are directly
identified with the position of the external legs of the web. Now we perform the following
mutation,

(x, y) → (x, (x − c1)y) , (3.11)

and find

P (x, y) → 1
y

+ 1 + y

(1
x
− 1

c2

)
(x − c1) , (3.12)

whose polytope is shown in figure 13, which corresponds to C(F2) (up to an overall rotation,
it is the one in figure 8). In particular, note once again that the mutation of the Laurent
polynomial automatically knows about the action due to sweeping the monodromy cut of
the 7-brane across half of the web –this is a completely generic fact. In this example, the
HW transition does not generate a white dot in the toric diagram; accordingly, none of
the moduli in (3.12) are frozen.

3.2 Polytope mutations

As mentioned above, HW transitions translate, in the mirror, to the notion of mutation
defined in the mathematical literature [55]. The starting point is a toric diagram in the
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Figure 13. Polytope obtaines from figure 12 by mutating it on the lower horizontal edge.

standard sense –that is, with no decoration of white dots– which can be regarded as a rational
polytope ∆ in Z2. We assume that the toric diagram contains the origin in its interior,
which in turn implies that it has at least one internal point. This amounts to restricting
to 5d SCFTs of rank greater or equal than 1. In the mathematical literature, it is also
often required that the vertices are primitive, which means that their coordinate vectors
consist of coprime numbers.10 However, we will not make this requirement here. Given one
such ∆, we can always write the corresponding Laurent polynomial P (x, y) as a Laurent
polynomial in y, whose coefficients are Laurent polynomials in x. Since the origin is in the
interior of ∆, P (x, y) contains a finite number of terms with negative and positive powers
for both y and x. We can write

P (x, y) =
N+∑

n=−N−

Pn(x)yn , (3.13)

where N− and N+ are the maximum negative and positive powers of y, respectively. Pn(x)
are Laurent polynomials in x, whose degrees need to satisfy that the corresponding Newton
polygon is convex. A mutation is then a birrational transformation of the form [55]

µ : (x, y) → (x, α(x) y) , (3.14)

where α(x) is a Laurent polynomial such that αi(x) divides P−i(x). Clearly, the transformation
in (3.4) or its generalization (3.7) are particular cases of (3.14). Thus, the physical avatar of
the mathematical notion of mutation is crossing 7-branes in a 5-brane web.

Note that, in order for αi to divide P−i, some conditions must be met. First, there
are requirements on the degree of the polynomials Pi. Let us consider the case of α(x) a
polynomial of degree 1. In that case, it is clear that P−i must be at least a polynomial of
degree i in x. Moreover, the coefficients of the polynomial must be tuned so as to have the
relevant number of common roots, as was discussed already around (3.9). All in all, this
selects a triangle of points (n points at lattice distance n from the origin). In total, the
triangle will have base N− and height N− with respect to the origin, as depicted in figure 14.

Then, the action of mutation is to insert a triangle on the other side with respect to the
origin, only that this time with its base of length and height are equal to N+. Finally, if α

is a polynomial of arbitrary degree d, then we can always factor it, and a similar argument
would hold for each of the d monomials. That is, we would end with d triangles of equal base

10Note that vertices being primitive or not depends on the choice of origin. We will see examples of this
below.
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(0,0)

N   -

N   -

Figure 14. The triangle selected in the mutation. The dashed line represents the rest of the diagram,
whose precise shape is not relevant, as long as it is convex. The red dot represents the origin.

and height N− before the mutation, that would transform into d triangles of equal base and
height N+ after it. This allows us to translate the action of the mutation directly in terms of
the polytope, without the need to go through the Laurent polynomial as an intermediate step.

The way this is made precise in the mathematical literature is by introducing the notion
of a primitive T-cone. A primitive T-cone is a cone formed by the origin and a an external
side (or a collection of edges on a side) of lattice length N which is at lattice distance N from
the origin. The triangles in figure 14 and discussed above are examples of this construction.
A primitive T-cone of base N is naturally identified with a 7-brane with N 5-branes ending
on it. Let us stress that the definition of primitive T-cone gives a physical meaning to the
position of the origin of the polytope, as the height, and therefore the base length of the
corresponding primitive T-cone, depends on it. This phenomenon was already discussed
above in terms of the mutation of Laurent polynomials. In pure polytope language, the
mutation amounts to removing one primitive T-cone from one side of the polytope and adding
a new primitive T-cone to the other side. Since generically the other side of the polytope
is at a different lattice height N+ ̸= N−, the resulting primitive T-cone will generically be
of different length N+, which is the manifestation of the Hanany-Witten effect. In fact, one
can be fully precise and describe the effect of the mutation combinatorially (see e.g. [56]),
precisely finding (2.7). This shows, as anticipated in [39], that the mathematical notion of
mutation precisely coincides with the HW transitions in brane webs.

Note that, with a choice of origin such that N+ is much bigger than N− (or vice versa),
the initial polytope ∆ and its mutation, which we will denote µ(∆), may differ a lot in
size (in plain words, one of them may have much more points than the other, precisely as
a consequence of the HW effect). This is not a problem precisely due to the fixing of the
various complex coefficients c(n,m) when connecting both sides of the mutation. As observed
above, in the geometry of the mirror W, this is understood as the freezing of some of the
complex moduli, while in the original CY3 M it translates as a freezing of the Kähler moduli;
precisely in such a way as to preserve the extended Coulomb branch of the 5d SCFT.

Importantly, this freezing of moduli does not affect the functional dependence of P (x, y)
on the variables x and y, and thus the geometry of the mirror W . Correspondingly, we argue
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that the geometry M corresponding to a GTP is the same as for the standard toric diagram
(namely, with no white dot decoration) except that some of its Kähler moduli are frozen.
This is consistent with the proposal in [38], and we will come back to it in section 4.

3.3 Mutation invariants

In the mathematical literature, an important question is how to determine when two polytopes
can be connected via a sequence of mutations. To that end, three invariant quantities have
been defined: the singularity content, the classical period and the Hilbert series [57]. We
will not discuss the first invariant, except to mention that it corresponds to how each of the
edges looks as a codimension 4 singularity (see [58] for more details). The second two, to
which we now turn, can be computed from the Laurent polynomial P (x, y) associated to the
polytope; we should note that the choice of origin will be relevant in general. Lastly, one
word on notation: we will often denote either the period or the Hilbert series by the name of
the CY3 variety whose toric diagram is ∆. In what follows, we will always assume that the
definition of the polytope ∆ already incorporates the choice of origin.

• The (classical) period is defined in terms of the Laurent polynomial P (x, y) associated
to ∆ as

π∆(t) = 1
(2πi)2

∮
|x|,|y|=1

dx dy

x y

1
1 − t P (x, y) , (3.15)

where the variables x, y ∈ C∗. In the context at hand, it has been argued that
the classical period defined above coincides with the quantum period and it is a
generating function for Gromov-Witten invariants of the original Calabi-Yau M [59, 60].
As such, and given the relation of Gromov-Witten invariants with Gopakumar-Vafa
invariants [61, 62], it is natural to expect that the period contains the information about
the counting of Higgs branch BPS states of the 5d SCFT, which indeed is invariant
under HW moves. It would be very interesting to further explore this connection and
precisely characterize the contributing states. Again we remark that π∆(t) generically
depends on the choice of origin of the polytope.

• The Hilbert series of the variety M. Since we can label the variety by the polytope ∆,
we will write Hilb∆(t). It turns out that this can be easily computed as the Ehrhart
series of the dual polytope ∆◦ [57]. The dual polytope is defined as

∆◦ = {u ∈ Q2 / u · v ≥ −1 , ∀ v ∈ ∆} . (3.16)

In practice, it is sufficient to consider the inequalities obtained when v are the vertices
of ∆. Note that the dual polytope need not be integral. Then,

Hilb∆(t) = Ehr∆◦(t) =
∑
n=0

|n∆◦ ∩ Z2| tn . (3.17)

In words, |n∆◦ ∩ Z2| is the number of integral lattice points in the n times enlarged
copy of ∆◦. Once again, note that this quantity depends on the choice of origin inside
the polytope. In our physical setup, this Hilbert Series is the Hilbert Series of the
moduli space of vacua of the 4d theory living in the worldvolume of D3-branes probing
the Calabi-Yau.
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These quantities are invariant under mutation ∆ → µ(∆), namely

π∆(t) = πµ(∆)(t) , Hilb∆(t) = Hilbµ(∆)(t) . (3.18)

An important remark is that the period π∆(t) depends in general on the coefficients ci,
and therefore the fact that it is invariant under mutation is yet another indication that for
generic toric geometries the complex moduli becoming frozen is the appropriate interpretation
of the white dot in the GTP.

Moreover, it has been conjectured [63–65] (see also [60]) that whenever the period of two
polytopes ∆1 and ∆2 coincide, then: 1) there exists a sequence of mutations connecting the
two polytopes and 2) there exists a flat fibration of geometries interpolating between M∆1

and M∆2 . In physical terms, the first result can be used to determine when two brane webs,
or their associated geometries, can be connected via a collection of HW transitions or their
corresponding mutations. On the other hand, the second result implies that there exists a
geometry (in general non-toric) that continuously describes the HW transition.

3.3.1 The E1 example

In the E1 example, the period associated to the polytope corresponding to C(F0) is

πC(F0)(t) =
∫

dx dy

x y

1
1 − t

[
1
y (x − c1) + 1 + y

(
1
x − 1

c2

)] . (3.19)

The integral can be computed as a series expansion in t by expanding the geometric series
in the integrand. The first few orders in the series are

πC(F0)(t) = 1 + t +
(

3 + 2c1
c2

)
t2 + O(t3) . (3.20)

The fact that the mutation (3.11) preserves the period follows trivially from implementing it
as a change of variables in the integral (3.19): the change in the Haar measure is absorbed
by the Jacobian of the change of variables. In fact, the same argument also applies for
generic mutations of Laurent polynomials; instead, it is the reverse implication that is
highly non-trivial.

The second invariant can be computed as follows. The polytopes ∆C(F0) and ∆C(F2) have
vertices {(1,−1), (0,−1), (−1, 1), (0, 1)} and {(0,−1), (−1, 1), (1, 1)}, respectively.11 There-
fore, the dual polytopes are

∆◦
C(F0) = {(a, b) ∈ Q2 s.t. − 1 ≤ b ≤ 1 , b − 1 ≤ a ≤ b + 1} , (3.21)

∆◦
C(F2) = {(a, b) ∈ Q2 s.t. b ≤ 1 , −b − 1 ≤ a ≤ b + 1} . (3.22)

From this, it is straightforward to scale the size of the dual polytopes and count the
number of internal integral lattice points at each n as in (3.17), finding that they are indeed
the same and equal to

HilbC(F0) = HilbC(F2) = 1 + 6t + t2

(1 − t)3 . (3.23)
11Here we consider the polytopes for these geometries given in figures 12 and 13, which are related by

mutation.
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4 5d SCFTs, GTPs, and the period

We have seen that there is a deep connection between the mathematical theory of mutations
and the physics of 5d SCFTs and their engineering in String Theory. Let us make a quick
summary of the discussion above:

• There are two ways in which to reach a brane web corresponding to a GTP: a Hanany-
Witten transition (as in figure 4) and a Higgs branch flow (as in figure 5).

• The HW transition corresponds to a mutation of the geometry. One can easily keep track
of the various moduli by looking at the geometry of the mirror W and, in particular,
see that the extended Coulomb branch of the 5d SCFT is preserved.

• The Higgs branch flow corresponds to freezing some of the moduli in M-theory geometric
engineering (complex moduli in the mirror W , Kähler moduli in the original M) while
keeping the geometry otherwise identical. This process changes the extended Coulomb
branch of the 5d theory, as expected.

Now, we turn to explore some consequences of the mathematical work on mutations in
our physical setup. Here, we will discuss three items:

1. The period π∆(t) can be used to efficiently classify 5d SCFTs coming from brane webs.
In particular, it allows us to determine when two a priori different looking webs can be
related by a sequence of HW transitions.

2. When two toric geometries are related by a mutation, it is possible to build a flat family
of geometries interpolating between the two. This corresponds to the geometric version
of the HW transition in the original M-theory Calabi-Yau M.

3. The mirror geometry W automatically encodes the Seiberg-Witten curve of the 5d
theory on a circle. This can be used to extract the effect of the frozen moduli on the
low energy physical observables [44].

We should remark that in this section we will be considering simple examples as proof
of concept of our methods. It would be very interesting to investigate these problems in
more depth, which we postpone for future work.

4.1 The period and the classification of brane webs

Due to the constraints imposed by supersymmetry in 5 dimensions, the exploration of the
full landscape of theories appears to be an achievable goal, at least for low rank [14, 66].
While most efforts have tackled this problem from a geometric engineering point of view, it is
also possible to attempt a similar program in terms of brane webs [45]. In this context, the
primary challenge lies in discerning whether two brane webs correspond to distinct 5d SCFTs
or if there exists a sequence of duality transformations and HW moves that transforms one
into the other. Several invariants under these transformations have been defined in order to
tackle this problem [32]. They are the total monodromy of the brane web and the asymptotic
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Figure 15. The two webs to compare, taken from [24].

charge invariant. The total monodromy is the product of the monodromies associated to
each 7-brane of the web. In the notation of section 2.2,

Mtot =
∏

ℓ

Mℓ . (4.1)

The asymptotic charge invariant Q is

Q = gcd{⟨ℓi | ℓj⟩ , ∀ i, j} . (4.2)

Interestingly, the fact that these quantities are identical for two webs is necessary but
not sufficient for them to define the same low-energy 5d theory. This raises a puzzle already
at rank 2 [45], namely that the total monodromy and asymptotic charge invariant do not
completely specify the SCFT. The specific exampled discussed in that reference were the
webs labelled by (c) and (e) in figure 3 of [24] and shown in figure 15. These two webs share
the same classifiers, yet they are expected to give rise to different low energy theories.

One immediately sees that the period π∆(t) seems to be precisely the right tool to
perform this task. As we have discussed above, there is strong evidence that whenever the
periods coincide there exists a sequence of mutations connecting the corresponding Laurent
polynomials, and it has been conjectured that this should indeed be true in general [63–
65]. That is, it is to be expected that the identity of periods is a necessary and sufficient
condition for the equivalence of the corresponding polytopes under mutation (and hence
of the associated varieties). In physics terms, this would allow to discriminate whether or
not two webs describe the same 5d theory.
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Indeed, one can check that the two polytopes in figure 15 give rise to different periods.
The computation of the period as a series expansion is straightforward, however two issues
need to be taken into account: the choice of origin (since this example has two internal points)
and a possible non-trivial map of the moduli (the coefficients c(n,m)) from one polytope to the
other. Here, we proceed by brute force. Namely, we consider both possible choices of origin
and check that there is no possible matching of the moduli such that the periods are equal.

Let us denote P i
c(x, y) and P i

e(x, y) the corresponding Laurent polynomials for the two
polytopes, where i = 1, 2 labels the possible choices of origin:

P 1
c (x, y) = C0 + C1y + C2y2 + C3xy + C4

1
y

+ C5
1

xy
, (4.3)

P 2
c (x, y) = D0 + D1y + D2x + D3

1
y

+ D4
1
y2 + D5

1
xy2 , (4.4)

P 1
e (x, y) = E0 + E1y + E2y2 + E3x + E4xy + E5

1
xy

, (4.5)

P 2
e (x, y) = F0 + F1y + F2x + F3

1
y

+ F4
x

y
+ F5

1
xy2 . (4.6)

Note that we have chosen not to fix any values of the complex coefficients. The first few
orders of the periods for each of these polynomials read

πc,1(t) = 1 + C0t +
(
C2

0 + 2C1C4 + 2C3C5
)

t2 +
(
C3

0 + 6C0(C1C4 + C3C5) + 3C1C2
4

)
t3

+
(
C4

0 + 12C2
0 (C1C4 + C3C5) + 12C0C1C2

4 + 6C2
1C2

4 + 24C1C3C4C5 + 6C2
3C2

5

)
t4

+ O(t5) , (4.7)

πc,2(t) = 1 + D0t +
(
D2

0 + 2D1D2
)

t2 +
(
D3

0 + 6D0D1D2 + 3D2
1D2

)
t3

+
(
D4

0 + 12D2
0D1D2 + 12D0D2

1D2 + 12D2
1D2D2 + 6D2

1D2
2

)
t4 + O(t5) , (4.8)

πe,1(t) = 1 + E0t +
(
E2

0 + 2E4E5
)

t2 +
(
E3

0 + 6E0E4E5 + 6E1E3E5
)

t3

+
(
E4

0 + 12E2
0E4E5 + 24E0E1E3E5 + 6E2

4E2
5

)
t4 + O(t5) , (4.9)

πe,2(t) = 1 + F0t +
(
F 2

0 + 2F1F3
)

t2 +
(
F 3

0 + 6F0F1F3
)

t3

+
(
F 4

0 + 12F 2
0 F1F3 + 6F 2

1

(
2F2F5 + F 2

3

))
t4 + O(t5) . (4.10)

Already at fourth order one can explicitly check that there is no map between the
coefficients of Pc(x, y) and Pe(x, y) (allowing for both possible choices of origin) such that
their periods are equal. This shows that indeed these two polytopes are not related by a
mutation, or in other words the two brane webs are not related by a Hanany-Witten move.
Hence, they define two different 5d SCFTs.

This example is a proof of concept of how the periods associated to the polytopes might
be used for classifying 5d SCFTs. Even though we will not pursue this further here, one
could consider proceeding in a systematic fashion by e.g. listing the possible brane webs of
a given rank, or a given number of external legs (in the same spirit of [45]) and computing
Mtot, Q and π(t) to discern if they define the same low energy theory.
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4.2 Hanany-Witten and geometric deformations

Having identified Hanany-Witten transitions in 5-brane webs with the mathematical notion of
mutation of a Laurent polyonomial/Newton polytope allows us to import the results developed
in the mathematical literature. In particular, it has been proven in [63, 64] that two toric
varieties M0 and M∞, whose toric diagrams are related by mutation, can be regarded as
deformations of one another. Technically speaking, such deformation is q-Gorenstein (qG),
meaning that some power of the canonical bundle is principal (hence trivial as a divisor class).
In this language, since the period and the Hilbert series are invariant under qG deformations,
their identity under mutation immediately follows. In fact, following [63], one can think of
the deformation parameter as a P1 coordinate, and regard the deformation as a flat fibration
over P1 where the fiber over 0 is M0 and the fiber over ∞ is M∞. In the particular case of
mutations relating M0,∞ corresponding to toric diagrams (that is, no white dot decorations),
it is natural to identify this deformation with the quiver deformation in [41].

In practice, it is not trivial to write down the explicit expression for the flat family
describing the mutation between two complicated varieties whose brane webs are related by a
HW move. Fortunately, in some examples the deformation can be identified with the classical
smoothing of singularities. This is in fact the case of our E1 example [63]. Focusing on the
slice of the dual of the toric fan at height 1, we can simply consider the 2d compact spaces
F0 and F2 (the construction of the complex cone on top of the 2d compact manifold goes
along for the ride in the smoothing to be discussed below). Then, we consider the variety
Mt given by (y, x, t) ∈ P1 × P2 × C with the equation [67]

y2
0x0 − y2

1x1 − t y0y1x2 = 0 . (4.11)

For t ̸= 0 one can solve this equation writing

x0 = (y1z0 + y1z1)2 , x1 = (y0z0 − y0z0)2 , x2 = 4
t

z0z1y0y1 . (4.12)

This provides a map from P1 × P1 (parametrized by (z, y)) into Mt, showing that for any
t ̸= 0, Mt is isomorphic to F0. In turn, for t = 0 the equation boils down to y2

0x0 − y2
1x1 = 0,

which describes F2. Thus we can regard Mt as a flat fibration of deformations such that
the fiber over any arbitrary non-zero t is F0 with a special fiber at t = 0 given by F2. It
is interesting to note that the fact the generic fiber is isomorphic to F0 is consistent with
the observation, to be discussed below, that for any non-zero quiver deformation as outlined
in [41], the theory flows to one describing F0.

It would be very interesting to make this discussion systematic and to be able to describe
the geometry interpolating between any pair of GTPs related by a mutation explicitly. We
leave this analysis for future work.

4.3 Seiberg-Witten curves for GTPs

As reviewed in section 3, the vanishing locus of the Laurent polynomial associated to a
toric diagram is precisely the SW curve of the 5d SCFT. This gives a physical meaning
to the coefficients of the Laurent polynomial as VEVs along the Coulomb branch/mass
parameters. Our discussion shows that this conclusion extends to generic GTPs, namely, the

– 26 –



J
H
E
P
0
7
(
2
0
2
4
)
1
5
9

SW curve of the 5d theory on the corresponding GTP coincides with the Laurent polynomial
associated to the GTP, a suggestion first put forward by [44]. The effect of the white dot
decoration of the GTP is to reduce the number of independent coefficients. This can be
made fully precise for GTPs which arise from mutation of a toric diagram. We will see
an explicit example in section 6.2.

It is natural to ask how to construct the SW curve for a generic GTP with no reference
to mutation. Our general discussion instructs us to consider the GTP with no decoration and
write down its corresponding Laurent polynomial. For a GTP with i internal points and b

boundary points, the number of independent coefficients is i + b − 3, i of them corresponding
to Coulomb branch VEVs and b − 3 of them corresponding to mass deformations. The GTP
decoration freezes some of these coefficients. Through (2.5), we see that i − dC Coulomb
branch VEVs will be frozen. Moreover, if the GTP has w white points out of the external
b points, w masses will be frozen. Alternatively, the number of independent coefficients in
the SW for the GTP is dc + b − w − 3.

Which specific mass or Coulomb branch parameters become frozen depends on the
locations of the white dots. Recall that the relation between the complex coefficients in
P (x, y) and the masses in the SW curve involves the circle compactification of the brane
web and the change of coordinates (2.14). For two points in the toric diagram connected
by an edge of length 1, and with associated Laurent polynomial

P (x, y) ⊃ c1xpyq + c2xp′yq′ , (4.13)

then the mass resulting from moving the two legs of the web apart from each other is [28]

M = R Ts

2π
log

∣∣∣∣c1
c2

∣∣∣∣ , (4.14)

where Ts is the string tension in type IIB. We see that if we constraint the coefficients to
be c1 = c2, the mass is forced to be zero.

Finally, note that in order to write the Laurent polynomial for the GTP before constraining
any coefficient, an origin has to be chosen. Such choice must be consistent with the external
white dot assignation, even though at this point we do not have a full understanding of
the prescription.

5 BPS Quivers and the Hilbert series

So far, our discussion has focused on 5d SCFTs and their geometric realization in M-theory.
However, as we reviewed in section 2, there is an intimate relation between this and four-
dimensional physics: the BPS quiver of the 5d theory realized as M-theory on a CY3 M
coincides with the 4d theory of branes probing M and, in turn, the moduli space of the 4d
theory gives back the CY3 M. It is then natural to wonder whether there is any implication
of our work at the level of the BPS quiver. The answer to this question is in the affirmative.
As we discussed in section 3.3, there is a second invariant under mutations beyond the
period, namely the Hilbert series Hilb∆(t) (3.17). It turns out that the BPS quiver knows
about this quantity: it coincides with the usual Hilbert Series of its moduli space using
the appropriate prescription.
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As discussed in section 3.3, the Hilbert series of the toric variety can be computed
through the Ehrhart series of the dual polytope. Since the Hilbert series is a generating
function for the number of holomorphic functions of a given degree in the variety, and since
those correspond to gauge-invariant operators (GIOs) in the BPS quiver, it is natural to
guess that the partition function for holomorphic GIOs in the BPS quiver should reproduce
the Hilbert series of the variety.

However, this raises two immediate puzzles. First, the Hilbert series, being invariant
under mutation, must remain the same for two different-looking CY3s; whereas the GIO
partition function would appear to be generally different for distinct CY3s. And second, given
a particular toric diagram, one can construct a number of different GTPs depending on the
assignation of white dots on the external lines (namely, the choice of external multiplicities
in the brane web or, equivalently, the choice of Higgs branch deformations). Indeed, in this
way of creating a GTP one finds generically inequivalent 5d theories with different BPS
quivers. However, as we have thoroughly discussed, the geometry underlying all these cases
is the same, given by regarding the GTP as a standard toric diagram and only freezing
some moduli. The first puzzle tells us that one BPS quiver must be associated to several
Hilbert series, while the second one says that multiple BPS quivers should be associated
to the same Hilbert series of the given geometry.

The solution to both issues turns out to be the same. To compute the Hilbert series of
the variety one must assume a particular grading for the holomorphic functions. Likewise,
to compute the partition function for GIOs one must assume a particular scaling dimension
for each field. It turns out that using the appropriate choice of scaling, the Hilbert series of
the variety will coincide with the partition function for GIOs. Moreover, different choices
of dimensions in the BPS quiver will allow us to select one GTP or the other within the
same undecorated toric diagram.

5.1 The E1 example

To illustrate our discussion, let us consider the E1 example. We have already discussed
most of the important ingredients, as it has been our prototype example throughout the
paper. As we have seen, we can engineer the E1 theory with M-theory on C(F0). Upon
mutation, we could equally choose the variety C(F2). In fact, we have constructed a fibration
of geometries (4.11) such that the general fiber at any t ̸= 0 is F0 which, at t = 0, becomes F2.

Let us now see how this translates into the BPS quiver. The BPS quiver for C(F2)
is shown in figure 16 [68].

The corresponding superpotential is

W = X12X24X41 − X23X34X42 + X23Y12X31 − X12Y23X31

−X13X41Y34 + X42Y23Y34 + X13X34Y41 − X24Y12Y41 . (5.1)

We can introduce the following superpotential deformation [41]

δW = µ (X13X31 − X42X24) , (5.2)

which results in the quiver and superpotential for C(F0), which were given in figure 2 and (2.2).
Note that, as anticipated, for any µ ̸= 0, the quiver becomes that for C(F0), in accordance
with the fact that the generic fiber of the flat fibration smoothing C(F2) is C(F0).
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Figure 16. Quiver diagram for C(F2).

Let us now turn to the Hilbert series of the BPS quivers. It is straightforward to see
that assuming equal dimensions for all fields in the quiver of figure 2, we reproduce the
Hilbert series in (3.23), which was computed as the Ehrhart series of the dual polytope.
For convenience, we write it again

HilbC(F0) = 1 + 6t + t2

(1 − t)3 . (5.3)

In particular, this choice of scaling dimensions coincides with the one arising from a-
maximization [69] had we thought of the BPS quiver as describing a 4d SCFT on D3-branes
probing C(F0).

In turn, considering the BPS quiver for C(F2) in figure 16, we have to use a different
choice of scaling dimensions in order for the Hilbert series to match. If we assume that the
fields {X42, X24, X13, X31} have dimension 2 and the rest dimension 1 (in the appropriate
units), we once again precisely recover (3.23). Note that with this scaling the superpotential
has dimension 4 and the deformation in (5.2) is (classically) marginal as it has also dimension
4; this is consistent in the sense that when performing a HW move one is not triggering
an RG flow.

It is useful to identify the fields with special scaling dimensions in the brane tiling. We
show these fields with thick bars in figure 17. We see that the special fields are those not
touching the two parallel zigzags, which correspond to the parallel branes in the web.

It is worth stressing that this choice of scaling dimension is not the one arising from
a-maximization of the 4d theory describing D3-branes probing C(F2). In that case, we would
have found all dimensions to be equal, leading to

Hilb′
C(F2) = 1 − t + t2 + 2t3 + t4 − t5 + t6

(1 − t)3 (1 + t + t2 + t3)2 , (5.4)

which is different from the expected result in (5.3). It is interesting to trace the origin of the
disagreement. Since C(F2) can be regarded as a Z4 orbifold of C3 with action (1, 1, 2), (5.4)
can be computed by a Molien sum of the C3 Hilbert series. Indeed, one has

Hilb′
C(F2) = 1

4

3∑
k=0

1
(1 − t ei 2π

4 k) (1 − t ei 2π
4 k) (1 − t ei 2π

4 2k)
(5.5)
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Figure 17. Brane tiling for C(F2) with zigzags. Fields with different scaling dimensions are indicated
with thick bars.

One can check that, instead, (5.3) corresponds to

HilbC(F2) = 1
4

3∑
k=0

1
(1 − t ei 2π

4 k) (1 − t ei 2π
4 k) (1 − t2 ei 2π

4 2k)
(5.6)

which follows from implementing the same orbifold but on a C3 where one of the coordinates
has twice the dimension of the other tow. This is implemented at the quiver level by the
chosen scaling.

6 Additional examples

Throughout this paper, we have discussed how mirror symmetry and the mathematical
concept of polytope mutations explain how some of the moduli in the extended Coulomb
branch of a 5d theory become frozen when the compactification of M-theory is associated
to a GTP. We also investigated the consequences for the corresponding BPS quiver. So
far, we have illustrated these points in the context of the E1 theory. In this section, we
present several additional examples.

6.1 The E2 theory

Let us consider the E2 theory, which can be described by the brane web in figure 18.
As a CY3, figure 18 corresponds to C(dP2). Upon crossing the brane labelled by 4 in

figure 18, one obtains figure 19, which corresponds to C(PdP2).
One can easily check that the corresponding Laurent polynomials are related by muta-

tion. Indeed, upon SL(2,Z) rotations to appropriately align the toric diagram, the Laurent
polynomial for figure 18 is

PC(dP2)(x, y) = 1
y

(c1 + x) + (c2 + x) + y

(
c3 + 1

x

)
. (6.1)
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Figure 18. Toric diagram and web for E2.
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21

Figure 19. Equvalent web for E2 after mutation.

Using the following change of variables (x, y) → (x, y (c1 + x)), one finds

PC(P dP2)(x, y) = 1
y

+ (c2 + x) + y

(
c1

1
x

+ (c3c1 + 1) + c3x

)
, (6.2)

which is the Laurent polynomial associated to figure 19. In this case, there are six monomials
before and after the mutation and no frozen complex moduli, we have just reshuffled the
coefficients.

Conversely, in terms of the polytope, it is clear that the toric diagrams in figures 18
and 19 are related by the inversion of a primitive T-cone, which in both cases is of size
one, thus resulting in trivial multiplicities after mutation. It is straightforward to compute
the Hilbert series associated to the geometries, which, as expected since they are connected
by mutation, are equal

HilbC(dP2)(t) = HilbC(P dP2)(t) = 1 + 5t5 + t10

(1 − t5)3 . (6.3)

Let us now turn to quivers. The BPS quiver for figure 19 is shown in figure 20 [68].
The corresponding superpotential is

W = X45X51X13X34 + Y34X42Y23 + X23X35X52 + X12X24X41

−Y23X35X51X12 − X41X13Y34 − X34X42X23 − X45X52X24 . (6.4)

Following [41], let us introduce the deformation

δW = µ (X24 X42 − X51 X13X35) , (6.5)
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Figure 20. Quiver diagram for PdP2.
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Figure 21. Quiver diagram for PdP2.

and redefine

X13 → 1
µ

X13 −
1
µ

X12Y23 , X35 → − 1
µ

X35 + 1
µ

X34X45 . (6.6)

We obtain the quiver in figure 21 and the superpotential

W = X35X51X13 − X13Y34X41 − X35X52Y23 + Y23X34X41X12

+X52X23Y34X45 − X23X34X45X51X12 . (6.7)

This indeed corresponds to the BPS quiver of the 5d theory specified by the geometry in
figure 18.

Let us now turn to the partition function. Starting with the quiver in figure 20, and
assuming scaling 3 for X42, 2 for {X41, X13, X35, X52, X24} and 1 for the rest –which is not the
assignation which would come from the standard a-maximization– one finds precisely (6.3).
On the other hand, starting with the quiver in figure 21 and assuming scaling 1 for all
fields except {X41, X13, X35, X52}, which have scaling 2, we again find (6.3). Once again,
we see that the deformation in (6.5), with the scaling assignations, is classically marginal
(and the re-scaling in (6.6) homogeneous).
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2

(a) (b) (c)

[-2,1]

[1,1]

[1,-2]

[-4,5] [-4,5]

[2,-1] [2,-1]

[1,-2]
[1,-2][1,-2]

Figure 22. (a) Toric diagram and web for the E0 theory. (b) GTP and web for E0 after the
mutation, where we see that we have a white dot. (c) Toric diagram and web for SU(3)3 SQCD, which
corresponds to the other possible choice of origin of the polytope.

6.2 The E0 theory

Let us now consider the more involved example of E0, whose web and toric diagram are
shown in figure 22 (a). As a CY3, it corresponds to C(P2), also often denoted as C(dP0).

Following our general discussion, we can choose the leg corresponding to the 7-brane in
yellow and cross it to the other side, obtaining figure 22 (b). This corresponds to a mutation
of the polytope where the primitive T-cone in yellow changes side and, more interestingly,
size: in this case the resulting brane web has non-trivial multiplicities, as shown figure 22
(b). At the level of the Laurent polynomial, the starting point is

P(a)(x, y) = 1 + c1x + y + 1
xy

. (6.8)

Performing the SL(2,Z) transformation (x, y) → (x
y , 1

y ) to align the side to be mutated
with the x-axis, and performing the mutation (x, y) → (x, y (1 + c1x)), the result is

P(b)(x, y) = 1
y

+ 1 +
(
2c1 + 1

x
+ c2

1x) y2 . (6.9)

We recognize the Laurent polynomial for the polytope in figure 22 (b), with two of its moduli
frozen to specific values in terms of c1. Moreover, one can check that indeed the Hilbert
series –computed as the Ehrhart polynomial of the corresponding ∆◦ for both figures 22
(a) and (b) with the given origin– agrees and reads

Hilb(a)(t) = Hilb(b)(t) = 1 + 7t + t2

(1 − t)3 , (6.10)

It is also straightforward to check the invariance of the period, i.e. πP(a)(t) = πP(b)(t).
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Figure 23. Quiver diagram for C(dP0).

This case actually corresponds to a GTP. Imagine now changing the origin to the other
internal point as shown in figure 22 (c). Then, the primitive cones subtended are of length 1,
which means that now the external multiplicities are all 1 as shown in the web in figure 22
(c) (which, as a 5d theory, corresponds to SU(3)3 SQCD). Computing the Hilbert series for
this case through the Ehrhart series, one finds

Hilb(c)(t) = 1 + 3t + 10t2 + 3t3 + t4

(1 − t)3 (1 + t)2 . (6.11)

Clearly Hilb(a)(t) ̸= Hilb(c)(t), in accordance with the fact that the webs (a) and (c) in
figure 22 are not related by mutation.

Let us now turn to quivers. The original quiver for the figure 22 (a) is that for D3-branes
probing C(dP0), and is shown in figure 23 [70, 71].

The superpotential for this theory is

W = ϵijkXi
12Xj

23Xk
31 . (6.12)

It is straightforward to compute the partition function for this theory assuming equal
scaling for all fields, finding precisely (6.10).

Let us now turn to figure 22 (b). As thoroughly argued, the corresponding geometry
is the one associated to the GTP regarding it as an ordinary toric diagram, neglecting all
white dot decorations. In this particular case, it is the toric diagram of C3/Z2 × Z3 where
the orbifold has weights (1,−1, 0) and (1, 1, 1). Its quiver is shown in figure 24 [72].

The superpotential for this theory is

W = X56X64X45 + X63X32X26 + Y13X35Y51 + X14Y45X51

+X21X13Y32 + Y26Y64X42 − X64X42X26 − Y13X32X21 (6.13)
−Y51X14X45 − Y64Y45X56 − X51X13X35 − Y32Y26X63 .

One can see that assigning scaling 4 to {X21, X14, X42, X35, X56, X63} and 1 to the rest
of the fields, the partition function of the quiver is given by (6.10). In this case, as one
side of the mutation involves a true GTP, the deformation relating the quivers in figures 23
and 24 is not known. Once again, it is interesting to identify the fields with special scaling
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Figure 24. Quiver diagram for the C3/Z2 × Z3 orbifold with weights (1,−1, 0) and (1, 1, 1).
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Figure 25. Brane tiling for C3/Z2 × Z3 with zigzags. Fields with different scaling dimensions are
indicated with thick bars.

dimensions in the brane tiling [72]. We show them with thick bars in figure 25. Once again,
we see that the special fields are those that do not intersect the two parallel zigzags, which
correspond to the parallel branes in the web.

According to our general discussion, the quiver in figure 24 must also correspond to
figure 22 (c). The difference must lie in the scaling dimensions. Indeed, one can now check
that, upon setting all dimensions equal, the partition function for the quiver is precisely (6.11).

We can trace the geometric origin og the chosen dimensions. The polytope in figure 22
(b) and (c) corresponds to the toric diagram of C3/Z2 × Z3 where the orbifold has weights
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Figure 26. Web for the Ẽ1 theory.
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Figure 27. Quiver diagram for dP1.

(1,−1, 0) and (1, 1, 1). Hence, assuming equal scalings for all the C3 coordinates one finds

Hilb(c)(t) = 1
2
∑

u2=1

1
3
∑

v3=1

1
(1 − t uv) (1 − t v

u) (1 − t v) . (6.14)

In turn,

Hilb(b)(t) = 1
2
∑

u2=1

1
3
∑

v3=1

1
(1 − t uv) (1 − t v

u) (1 − t4 v) . (6.15)

6.3 The Ẽ1 theory

Let us now consider the Ẽ1 theory, which can be encoded in the toric diagram and web in
figure 26. The toric diagram corresponds to the cone over dP1.

Computing the Hilbert series of the geometry as the Ehrhart series of the dual polytope
one finds,

HilbC(dP1) = 1 + 6t4 + t8

(1 − t4)3 , (6.16)

Figure 27 shows the BPS quiver for dP1 [70, 71].
The corresponding superpotential is

W = X13Z34Y41 − X12X23X34Y41 + X12X34X41Y23

−Z34X42Y23 − X13X41Y34 + X23X42Y34 .
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One can check that, assigning scaling 2 to {X42, X13} and 1 to the rest of the fields,
one recovers (6.16).

7 Discussion

We have made progress towards the understanding of the geometrical engineering of generic
5d SCFTs and its relation to brane webs, thus enlarging the class of theories for which
both descriptions are available. The key observation is that HW transitions in brane webs
correspond to simple coordinate transformations in the geometry of the mirror, which in
turn allows us to make contact with the mutations introduced in the mathematical literature.
This new connection has very interesting consequences for the Physics of 5d SCFTs (and
may as well have implications for pure Mathematics through new insights from Physics).
Let us briefly summarize our findings.

There exists a mathematical notion of mutation, which can be expressed either at the
level of a polytope or its associated Laurent polynomial. This mutation transforms the
polytope/polynomial according to certain mutation data, which encodes the choice of HW
transition of the corresponding brane web. Regarding the polytope as the toric diagram
of a toric variety, this transformation can be viewed as a deformation connecting two toric
varieties. Moreover, it is such that the periods and the Hilbert series remain invariant. An
important observation is that the choice of origin is crucial when implementing the mutation.
From a polytope perspective, the mutation amounts to selecting a primitive T-cone and
reversing it. In terms of the Laurent polynomial, the choice of origin requires tuning a number
of coefficients –mirroring the primitive T-cone– in the polynomial to implement the mutation.

Our observation is that polytope mutations correspond to HW transitions in webs of
5-branes ending on 7-branes. As usual, the graph dual to a brane web is a GTP. Then, HW
transitions correspond to mutations of the GTP upon identifying the 7-brane to cross, along
with the attached 5-branes, with the primitive T-cone. In this identification, the length of
the base of the cone is the multiplicity of the leg, while the vector normal to the base of
the cone is the [p, q] charge of the 7-brane to cross. A consequence of this correspondence
is that the GTP should be regarded as a standard toric diagram, and that the decoration
with white dots encodes the choice of origin through the selection of primitive T-cones. For
trivial external multiplicities, it was well-known that the GTP is the toric diagram of the
toric CY3 that geometrically engineers the 5d SCFT in M-theory. In this paper, we have
seen that this extends to arbitrary GTPs. The geometry that engineers these theories in
M-theory is the one defined by the GTP interpreted as a toric diagram, i.e. forgetting about
its white dot decoration. The effect of white dots is to freeze some of its moduli.

The correspondence between mutations and HW transitions imply that the period and
the Hilbert series are invariant. We conjecture that their inclusion results in a complete set of
classifiers of brane webs, going beyond the proposal in [32]. Indeed, we used them to resolve
a puzzle raised in [45]. Motivated by these findings, it would be very interesting to perform a
classification attempt similar to the one in [45], but based on the invariance of the period
and the Hilbert series. The period has been related to the Gromov-Witten invariants of the
original CY3 [59, 60]. This suggests that the period is related to the counting of BPS states,
which remain invariant under HW moves. While at present we do not know the precise
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characterization of such states, it would be interesting to clarify exactly what those states
are in the 5d SCFT. Likewise, it would be very interesting to study what states of the 5d
SCFT are counted by the Hilbert series (with the scalings prescribed as in this paper).

We have seen that the Hilbert series can be computed from the BPS quiver, which is
formally identical to the fractional brane quiver for D3-branes probing the associated toric
geometry. Remarkably, this approach provides further quantitative evidence supporting the
conclusion that the geometry associated with a GTP is equivalent to considering the GTP
as a toric diagram. Notably, the choice of origin, and thus the selection of the white dot
decoration, is encoded in the scaling of the fields when computing the GIO partition function.
This aspect was explicitly demonstrated in section 6.2, where the fractional brane quiver for
the toric diagram on the right of figure 22 reproduces, depending on the chosen field scaling,
either the Hilbert series for the toric diagram or that for the GTP in the middle of figure 22,
corresponding respectively to the SU(3)3 5d SCFT or the E0 theory.

As we have seen, white dots encode constraints on the possible resolutions of the geometry,
i.e. Coulomb branch VEVs and masses. This becomes evident when considering the mutation
of the Laurent polynomial. Indeed, starting with a web with trivial external multiplicities,
mutation typically generates a GTP. However, it is clear that the number of coefficients in
the Laurent polynomial remains fixed under mutation. Consequently, the resulting Laurent
polynomial possesses fewer independent coefficients than a priori allowed.

Since the SW curve is the zero locus of the Laurent polynomial [28], it follows that
the effect of white dots is to freeze some of its deformations, thus recovering the results
in [44] from first principles.

7.1 Open questions

Our work suggests various interesting directions for future research. Below, we summarize
some of them.

While our work shed light on the importance of the choice of origin for toric diagrams,
its complete implications remain to be understood. For example, a toric diagram with ni

collinear edges on the i-th side can result in numerous distinct GTPs, each corresponding to
different possible (supersymmetric) white dot decorations. Currently, it is unclear whether
all these possibilities can be solely encoded by the choice of origin, and if so, how. A related
question concerns the status of non-primitive vectors. In the mathematical literature, position
vectors of polytope corners are typically required to be primitive, whereas Physics suggests
the necessity of allowing non-primitive corners. For instance, the toric diagram dual to the
web for SU(N)k SQCD has N − 1 internal collinear points. This implies that for N ≥ 2, no
choice of origin results in primitive vectors for the corners. In this case, it is not clear what
the different choices of origin mean. Note that for each choice, the Hilbert series computed
through the Ehrhart series of the dual polytope yields a different result. Additionally, in
this case, the choices cannot correspond to different multiplicities.

Another surprising finding of this paper is that the choice of origin is encoded in the
BPS quiver through the scaling of fields. Although we have presented evidence for this,
understanding the rationale behind the scaling choice from first principles remains unclear. In
other contexts, such as SCFTs in 4d, 3d, and 2d, the scaling is determined by an extremization
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principle arising from an RG flow (e.g., a-maximization for 4d SCFTs). While in the case at
hand we are dealing with a BPS quiver, which should be understood as Matrix Quantum
Mechanics, one might also anticipate a dynamical assignment of dimensions. It would be
interesting, albeit challenging, to investigate whether some prescription can produce multiple
GTPs (which arise from white dot decorations of a single underlying toric diagram) from
a unique quiver.

In all examples that we have examined where there is a mutation relating two standard
toric diagrams (i.e., without white dots), the corresponding BPS quiver theories are connected
by a superpotential deformation of the type studied in [41], which, with our scalings, is
classically marginal.12 It is natural to conjecture that it is actually marginally relevant, so
that it triggers a flow to the IR geometry. This resonates with Ilten’s geometric perspective
on the deformation, which is described in terms of a flat fibration [63]). For instance, in the
E1 example, for any non-zero deformation parameter, the generic fiber is F0, while only at the
origin do we find F2. It would be interesting how to extend this picture to the non-toric case.13

Additionally, in contrast with the HW transition, the deformation of the BPS quiver
naively seems to be an irreversible process, in harmony with the RG flow picture.14 The
reversibility of the process is naturally implemented in the twin perspective as advocated
in [39, 40], where the HW transition corresponds to (formal) Seiberg duality in a (not
necessarily toric) node of the twin quiver. This is also related to the natural question of
the fate of the various (toric) phases of the BPS quiver, which from the twin point of view
has been discussed in [40]. Note that in [40] different toric phases map to different points in
the extended Coulomb branch where external 7-branes are relatively displaced, in particular
aligning and allowing for broken 5-branes on them. At present it is not understood how
these phases map to the original side where the mutations of this paper occur. It would be
interesting to flesh out the mapping between all these different viewpoints.

Finally, it would be interesting to explore the geometric side of the mutation in further
detail, explicitly constructing the flat family of geometries fibered over a P1. It is natural
to ask whether it is possible to write a metric for the generic element of such interpolating
fibration, and wether extra fluxes are present. In addition, it would be nice to establish
the dictionary between the deformation of the BPS quiver and the geometric deformation,
at least in simple examples.
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