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Abstract 16 

This study addresses the urgent need to understand the impacts of climate change on coastal 17 

ecosystems by demonstrating how to use the SWAT+ model to assess the effects of sea level rise 18 

(SLR) on agricultural nitrate export in a coastal watershed. Our framework for incorporating SLR 19 

in the SWAT+ model includes: (1) reclassifying current land uses to water for areas with elevations 20 

below 0.3 meters based on SLR projections for mid-century; (2) creating new SLR-influenced land 21 

uses, SLR-influenced crop database, and hydrological response units for areas with elevations 22 

below 2.4 meters; and (3) adjusting SWAT+ parameters for the SLR-influenced areas to simulate 23 

the effects of saltwater intrusion on processes such as plant yield and denitrification. We 24 

demonstrate this approach in the Tar-Pamlico River basin, a coastal watershed in eastern North 25 

Carolina, USA. We calibrated the model for monthly nitrate load at Washington, NC, achieving a 26 

Nash-Sutcliffe Efficiency (NSE) of 0.61. Our findings show that SLR substantially alters nitrate 27 
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delivery to the estuary, with increased nitrate loads observed in all seasons. Higher load increases 28 

were noted in winter and spring due to elevated flows, while higher percentage increases occurred 29 

in summer and fall, attributed to reduced plant uptake and disrupted nitrogen cycle 30 

transformations. Overall, we observed an increase in mean annual nitrate loads from 155,000 kg 31 

NO3-N under baseline conditions to 157,000 kg NO3-N under SLR scenarios, confirmed by a 32 

statistically significant paired t-test (p = 2.16×10−10). This pioneering framework sets the stage for 33 

more sophisticated and accurate modeling of SLR impacts in diverse hydrological scenarios, 34 

offering a vital tool for hydrological modelers. 35 
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1. Introduction 40 

Water quality is an important aspect of water resources management (Abbaspour et al., 2007). 41 

Since the 20th century, elevated nitrate levels in water bodies have posed significant threats to 42 

coastal watersheds (Pringle, 2001; Vilmin et al., 2018). While nitrogen-based fertilizers boost 43 

agricultural production, they risk coastal ecosystems (Galloway et al., 2013; Fixen & West, 2002).  44 

High nitrate levels fuel algal blooms, hindering sunlight and benthic plant growth (Wurtsbaugh et 45 

al., 2019). Decomposition of dead algae depletes oxygen, creating low-oxygen zones lethal to 46 

organisms that respire aerobically (Cui et al., 2021; Gerloff & Krombholz, 1966; Jewell & 47 

McCarty, 1971; Seibel, 2011).  48 

Addressing elevated nitrate levels in coastal watersheds—a global issue—costs billions 49 

annually, particularly straining low and middle-income countries and threatening economic 50 

stability and aquatic ecosystem health (Sekhon, 1995; Bernhardt et al., 2005; Craswell, 2021; 51 

Rasiah et al., 2005; Mathewson et al., 2020).  Here, we define ecosystem health as the ability of a 52 

coastal watershed to sustain biological productivity (Sherman, 1994), maintain ecological 53 

processes (O’Brien et al., 2016), support biodiversity (Qian et al., 2023), and meet societal needs 54 

(Christensen et al., 1996), specifically in the context of managing and mitigating excessive nitrate 55 

loading. Nitrate loading is a critical indicator of ecosystem health (Bobbink & Roelofs, 1995) 56 

because elevated nitrate levels can lead to eutrophication, harmful algal blooms, and hypoxia, 57 

which severely disrupt aquatic ecosystems and impair their ability to support diverse biological 58 

communities and provide ecosystem services (Addiscott, 2005; Paerl, 2006). By focusing on 59 

nitrate loading, we address a key factor that influences the overall health and functionality of 60 

coastal watersheds. Addressing nitrate pollution is of global concern and should be a major part of 61 

a country’s plan for conserving or restoring healthy aquatic ecosystems. Climate change and 62 

anthropogenic activities greatly affect the nitrogen cycle (Aryal et al., 2022; Bennett et al., 2014; 63 

Vitousek et al., 1997), altering the rates of nitrogen fixation (Galloway, 1998), mineralization, and 64 

denitrification (Zhu et al., 2015). Nitrogen gas (N2) makes up most of Earth’s atmosphere, 78 65 

percent of its total composition (Hart 1978). Although nitrogen gas is abundant in the atmosphere, 66 

it needs to be converted to ammonia/ammonium (NH3/NH4+) through fixation by microorganisms 67 

before plants and animals can use it (Postgate 1998). Animals obtain nitrogen through eating plants 68 

(Temperton et al., 2007), integrating it into the broader food web (Meunier et al., 2016). When 69 



plants and animals die, the organic nitrogen they contain is broken down by microbes, turning it 70 

back into NH4+ (mineralization) and eventually nitrate (NO3-) via nitrification (Abatenh et al., 71 

2018; Gupta et al., 2017). In addition, denitrifying microbes transorm nitrate tonitrous oxide (N2O) 72 

or N2 gas (Vilar-Sanz et al., 2013).The alterations in the nitrogen cycle and nutrient availability 73 

impact coastal watersheds, especially where nitrogen is the primary limiting nutrient, leading to 74 

challenges for the health of aquatic ecosystems (Rabalais, 2002).  75 

Human activities greatly modify the nitrogen cycle, carbon cycle, and climate (Bernal et 76 

al., 2012). Sea levels are rising due to rising temperatures causing thermal expansion of seawater 77 

and melting glaciers and ice sheets (Karl et al., 2009; Cazenave & Cozannet, 2014).  Sea level rise 78 

(SLR) can cause flooding in low-lying areas, saltwater intrusion, and pose significant threats to 79 

aquatic ecosystems (Knighton et al., 1991; Moftakhari et al., 2015). Increased salinity due to SLR 80 

enhances ammonium bioavailability and affects nitrification and denitrification processes, altering 81 

plant-microbe interactions, the nitrogen cycle, and nitrogen dynamics in watersheds (Ardón et al., 82 

2013; Kirwan & Megonigal, 2013; Waldron et al., 1997).  83 

Coastal communities are more susceptible to the effects of climate change (Oliver-Smith, 84 

2009; Tran & Lakshmi, 2024). For farmers in coastal regions, saltwater intrusion is a pronounced 85 

concern due to its threat to crop growth. The boundary between saltwater and freshwater shifts as 86 

inflow and outflow rates vary, with an increase in saltwater causing this interface to move further 87 

upstream (Michael et al., 2005). This progression leads to saltwater intrusion, resulting in elevated 88 

soil salinity, which disrupts crop growth. This increased salinity inhibits the activities of nitrogen-89 

fixing microbes and interferes with the conversion of organic nitrogen compounds into forms that 90 

plants can easily assimilate (Etesami & Adl, 2021; Kirova & Kocheva, 2021). Consequently, this 91 

disruption in the nitrogen cycle ultimately decreases nutrient availability for crops (specifically for 92 

soybean, which is a major crop type in our study area), thereby affecting their overall yield. 93 

Additionally, high soil salinity can reduce growth or kill crops despite abundant nitrogen 94 

availability (Van et al., 1999), leading to an accumulation of unused nitrogen in soils where 95 

fertilizers are applied (Weissman & Tully, 2020). The effects of SLR are not limited to agriculture, 96 

as a higher SLR rate influences wetland composition and productivity, limiting nitrogen removal 97 

potential (Kirwan & Megonigal, 2013). In urban areas with high proportions of impervious 98 



surfaces, SLR can amplify flood frequency and increase anthropogenic nutrient runoff to 99 

waterways (Macías-Tapia et al., 2021).  100 

Hydrological models are frequently used to assess the potential impacts of climate change 101 

and other anthropogenic influences on nitrogen transport and retention in watersheds (Hattermann 102 

et al., 2006). The Soil and Water Assessment Tool (SWAT) is one of the most widely used models 103 

for this purpose. Developed in the early 1990s, it is a semi-distributed hydrological model 104 

extensively used for water quality (Abbaspour et al., 2007; Arnold et al., 1998) and quantity 105 

analyses (Zhang et al., 2011). SWAT has proven effective in modeling nitrate loads in diverse 106 

watersheds, with applications in places such as the Vamanapuram River Basin, India (Saravanan 107 

et al., 2023), Brittany, France (Conan et al., 2023), the Lower Seyhan Plain, Turkey (Donmez et 108 

al., 2020), and the Des Moines River, United States (Schilling & Wolter, 2009). In recent years, 109 

the release of SWAT+, an enhanced version of SWAT, has gathered attention for its advancements 110 

in understanding interactions within watersheds and sub-watersheds, as well as its improved data 111 

management, analysis, and visualization capabilities (SWAT+, 2020). However, there is a gap in 112 

examining the integration of SLR in the SWAT+ model, likely due to the model’s limited ability 113 

to manage the bidirectional flow (Bieger et al., 2017). 114 

In this study, our primary goal was to use the SWAT+ model to demonstrate a method for 115 

simulating the effects of SLR on nitrogen processing within coastal watersheds, specifically using 116 

nitrate loading to the estuary as an indicator of ecosystem health. We achieved this by identifying 117 

key parameters and input changes in the model, which enabled the simulation of changes in nitrate 118 

transport and retention based on current literature. Additionally, we investigated how SLR 119 

influences nitrate loads in the downstream boundaries of a watershed. The Tar-Pamlico River 120 

Basin, located in eastern North Carolina, USA, is used as a case study, given its historical 121 

challenges with both SLR and elevated nitrate levels over recent decades (Helmers et al., 2022; 122 

NCDEQ, 2014; Ury et al., 2021).  123 

Excessive nitrate loading from the Tar-Pamlico River Basin (Heffernan, 2015; Tapas, 124 

2024), which discharges into the Pamlico Estuary, is causing algae blooms and economic losses 125 

(NCDEQ, 2014; McMahon & Woodside, 1997; Spruill, 1998; Woodside & Simerl, 1995). Previous 126 

studies have examined its hydrology (Phillips, 1989; Tapas, 2024; Tran et al., 2024), nitrate load 127 

(NCDEQ, 2014; Tapas, 2024), and climate change impacts (Hillman, 2019; Tran et al., 2024). Tran 128 



et al. (2024) highlight that low-lying coastal regions are prone to higher flood peaks and more 129 

frequent droughts, necessitating urgent action. Agriculture is the major source of nitrate pollution, 130 

compounded by urbanization (NCDEQ, 2014). Climate change intensifies these issues with 131 

increased rainfall variability, intensity (Tran et al., 2024), and SLR (Mazhar et al., 2022), 132 

complicating water resource management in a coastal watershed (Mazhar et al., 2022; Upadhyay 133 

et al., 2022). The uncertainty in nitrate dynamics with increasing saltwater (Murgulet & Tick, 134 

2016), reduced agricultural productivity (Tarolli et al., 2023), and reduced denitrification rates 135 

(Neubauer et al., 2019) further complicates the management of water resources and ecosystem 136 

health in the basin (NCDEQ, 2014; Spruill, 1998; Tran et al., 2024). Through this work, we aim to 137 

improve the traditional coastal hydrological modeling framework by partially integrating the 138 

complex interactions and changes that arise from modifying nitrogen cycle processes due to SLR. 139 

The primary objective of this study is to develop a methodology to incorporate the partial 140 

effects of sea level rise (SLR) on nitrate dynamics and apply it to a case study of the Tar-Pamlico 141 

River Basin. The specific objectives of this study were to: (1) Develop and optimize a nitrate model 142 

for the Tar-Pamlico watershed using the SWAT+ hydrological model; (2) Demonstrate a novel 143 

approach to incorporating SLR-influenced land use, plant database, and HRUs in SWAT+ based 144 

on the effects of salinity on nitrate processes found in literature, with a focus on agricultural land 145 

uses; and (3) Investigate the effects of SLR on changes in nitrate load to the Pamlico Estuary under 146 

baseline and SLR scenarios. 147 

 148 

2. Materials and Methods 149 

2.1. Study Area 150 

This study focuses on the Tar-Pamlico River basin, a coastal watershed in North Carolina, USA 151 

(Figure 1). As the fourth-largest watershed in the state, the Tar-Pamlico River basin stands out as 152 

one of just four entirely contained within North Carolina, alongside the Cape Fear, Neuse, and 153 

White Oak River basins (NCDEQ, 2023). With its waters ultimately flowing into the Pamlico 154 

Sound, this watershed has a rich diversity of ecosystems and varied habitats (North Carolina 155 

Department of Environmental Quality (NCDEQ), 2023). The Tar-Pamlico covers an expansive 156 

6,400 square miles (16,500 km2) and spans 15 counties. It is home to a population exceeding 157 



470,000 residents. The land use within this watershed is divided among agriculture (27.9%), 158 

forests (33.9%), wetlands (31.9%), pastureland (3.5%), rangeland (1.3%), and urban areas (1.4%) 159 

(Claggett et al., 2015). The freshwater streams and rivers within the basin originate in the Piedmont 160 

region in north-central North Carolina. These waterways flow southeastward and, upon nearing 161 

tidal zones, transform into the expansive (Figure 1), tidally influenced estuary (Keith, 2014), 162 

enhancing its ecological complexity and economic productivity (NC DEQ, 2009, 1994). 163 

The mouth of the Tar-Pamlico River basin, where it flows into the Pamlico Sound, is 164 

characterized by significant agricultural land, wetlands, and forested areas (Heffernan, 2015; 165 

NCDEQ, 2014). This region has a low slope, facilitating hydrological connectivity and making it 166 

particularly susceptible to saltwater intrusion, which threatens agricultural productivity and water 167 

quality (Hillman, 2019; McMahon & Woodside, 1997; Spruill, 1998). This has raised concerns 168 

among farmers, prompting them to use additional fertilizers, which could further harm ecosystem 169 

health. Over the years, increased rainfall variability and intensity have further complicated nitrate 170 

dynamics in this area (Tran et al., 2024; Tapas, 2024), highlighting the critical need for effective 171 

strategies to mitigate the impacts of SLR. 172 



 173 

Figure 1. (a) Digital Elevation Model and geographical characteristics of the Tar-Pamlico 174 

watershed, (b) Location of Tar-Pamlico River Basin in the United States, (c-d) Tar-Pamlico’s 175 

coastal region where we incorporated the effects of SLR [c: saltwater intrusion; d: land 176 

inundation], and (e) Hydrological monitoring stations used for model optimization and cross-177 

validation.   178 



2.2. SWAT+ Model Setup 179 

In this study, we implemented the SWAT+ (version 2.3.3) model (SWAT+ IO Document, 2020) to 180 

simulate hydrological processes throughout the river basin (Figure 2). This tool excels at assessing 181 

dynamics within both watersheds and sub-watersheds. SWAT+ enables the evaluation of how 182 

various hydrological parameters influence watershed dynamics, affecting water quality, 183 

agricultural yields, and nitrogen cycle processes (SWAT+ IO Document, 2020). It allows for 184 

detailed simulation of environmental interactions, aiding the creation of policies and strategies 185 

aimed at mitigating ecosystem health issues (SWAT+ IO Document, 2020). The integration of SLR 186 

effects in the SWAT+ model presents challenges, particularly due to the model’s inability to handle 187 

backflow (Bieger et al., 2017). The tides in the Pamlico River are primarily wind-driven, leading 188 

to less predictable and less consistent tidal effects compared to other tidal systems driven primarily 189 

by gravitational forces (Lagomasino et al., 2013; Xie & Pietrafesa, 1999). Observations at the 190 

Washington station indicate minimal occurrence of backflow in the data collected at 15-minute 191 

intervals (S2 Supplementary Information). Given these conditions, we believe that SWAT+ is 192 

appropriate for use in this study, as the occasional backflow that does occur is characterized by a 193 

low flow rate, which would have minimal impact on the overall nitrate load. 194 



 195 

Figure 2. Framework for assessing the impacts of SLR on ecosystem health with a focus on nitrate 196 

load changes using SWAT+ model. 197 

This study builds upon the foundational work of Tran et al. (2024) by further calibrating 198 

the SWAT+ model for nitrate dynamics. For setting up the SWAT+ model, a variety of data sources 199 

were used to accurately depict watershed characteristics. We obtained watershed boundary data 200 

from the United States Geological Survey (USGS) StreamStats service and incorporated elevation, 201 

land use, and soil type data from the USGS for 2011, the National Land Cover Database (NLCD) 202 

for 2008, and the Soil Survey Geographic Database (SSURGO) for 2015, all at a 90m resolution 203 

(Figure 2). These inputs were processed using QSWAT+ to delineate drainage networks, sub-204 

basins, and Hydrological Response Units (HRUs), crucial for modeling the intricate hydrological 205 

behaviors within the watershed. 206 

We used weather data from the Global Precipitation Mission (GPM) Integrated Multi-207 

satellitE Retrievals for Global Precipitation Measurement Final run Version 6 (GPM IMERGF V6) 208 

(Hou et al., 2014). Additionally, we assimilated agricultural data, including crop types and fertilizer 209 

application rates, from reports by the North Carolina Department of Environmental Quality 210 



(NCDEQ) and the North Carolina Department of Agriculture & Consumer Services (NCDEQ, 211 

2014; NCGAR, 2022), specifically pertaining to the Tar-Pamlico watershed. For detailing the Tar-212 

Pamlico SWAT+ model, we simulated four different crop types—soybean (40%), corn (19%), 213 

cotton (19%), and a general agricultural crop (AGRR, 22%) (NCDEQ, 2014; NCGAR, 2022). The 214 

general agricultural crop type was used for all other crops (e.g., tobacco, sweet potatoes, etc.), and 215 

in SWAT+, we simulated that using the agricultural_land_row (agrr) crop type (SWAT+, 2020). 216 

This information proved essential for more accurate simulations of agricultural runoff and nutrient 217 

transport.  218 

We also integrated wastewater treatment data for the 22 discharges (Supplementary 219 

Information) within the Tar-Pamlico watershed from the National Pollutant Discharge Elimination 220 

System (NPDES) and atmospheric deposition data from the National Atmospheric Deposition 221 

Program (NADP, 2023). We used observed flow and nitrate data in Washington, NC. Observed 222 

flow data was collected from the USGS monitoring station (station ID: 02084472) in Washington 223 

(Tran et al., 2024), as well as from USGS stations ID: 02083500 in Tarboro, NC, and 02084000 in 224 

Greenville, NC (Figure 1). Nitrate concentration data was obtained from NCDEQ (site 225 

21NC01WQ) in Washington, NC. 226 

To calculate the monthly nitrate load, we first calculated the average daily discharge in 227 

Washington for each month. Then, we calculated the average nitrate concentration for each month 228 

from the available nitrate concentration data. We multiplied the average discharge for a specific 229 

month by the average nitrate concentration for the same month and then multiplied it by the total 230 

number of days in that month (Preston et al., 1989). In 2003, there were 357 daily observations, 231 

indicating a high-frequency data collection effort at this location (site 21NC01WQ). However, this 232 

frequency declined sharply. By 2005, the frequency of data collection had decreased, with only 233 

144 daily observations. This trend continued, and by 2010, only 40 observations were recorded. 234 

Eventually, the data collection frequency shifted to a monthly scale, with only about 10 to 13 235 

observations per year from 2011 onwards. This reduction in data collection frequency over time 236 

introduces additional challenges in accurately estimating nitrate loads and concentrations, as fewer 237 

data points are available to capture the variability and trends (Birgand et al., 2011).  238 



2.3. SWAT+ Model Optimization 239 

In this study, we further modified the SWAT+ model for the Tar-Pamlico basin developed by Tran 240 

et al. (2024) to achieve combined accurate flow, nitrate dynamics, plant yield, denitrification, and 241 

HRU-level nitrate export. We simulated the period from January 2001 to December 2019 with a 242 

2-year warm-up period. The calibration was conducted for the period from January 2003 to 243 

December 2011, and the validation was carried out from January 2012 to December 2019. We 244 

calibrated the model for the combined optimization of monthly nitrate load and monthly flow with 245 

observed data from Washington, NC (Figure 1), as described in section 2.2. For optimization, we 246 

maximized the performance index Nash-Sutcliffe Efficiency (NSE) with 5000+ simulations and 247 

additionally evaluated the model's performance using the Kling-Gupta Efficiency (KGE). We used 248 

the SWATrunR package (Schuerz, 2019) to assist with calibrating the model. Our calibration 249 

efforts targeted 23 parameters identified as crucial for accurately representing hydrological and 250 

nitrogen processes (Table 1), based on sensitivity analysis and literature.  251 

For parameter adjustment, we employed three methods: absolute change (x' = x + y), 252 

percent change (x' = y * x / 100), and absolute value (x' = y), where x is the default value, x' the 253 

new value, and y the calibrated parameter value (SWAT+ IO Document, 2020). The choice of 254 

method was influenced by each parameter's resolution and initial range; for instance, basin-level 255 

parameters predominantly used absolute value adjustments. The decision between absolute and 256 

percentage changes depended on the magnitude of the parameter’s range—absolute changes were 257 

preferred for narrow ranges, while percentage changes were favored for wider ranges. This 258 

approach allowed for a broad range of parameter adjustments during model calibration, ensuring 259 

flexibility across varying resolutions and initial ranges.  260 

To further ensure the robustness of our model, we also performed cross-validation (S3 261 

Supplementary Information) for monthly flow at two additional locations: Tarboro, NC (USGS 262 

station ID: 02083500) and Greenville, NC (USGS station ID: 02084000) for the period from 263 

January 2003 to December 2019 (Figure 1; Figure S2 Supplementary Information; Figure S3 264 

Supplementary Information). This additional validation helped verify the model's accuracy and 265 

reliability across different parts of the Tar-Pamlico River Basin. 266 

We also soft-calibrated the model for yield, denitrification, and nitrate export for selected 267 

HRUs representing corn, cotton, soybeans, and general agricultural crops (Etheridge et al., 2014). 268 



Soft calibration in this context involves selecting the top 5% of over 5000 simulations that yielded 269 

the highest combined NSE for monthly nitrate load and monthly flow. From these top 5% 270 

simulations, we chose the best simulation that provided optimal values for yield, denitrification, 271 

and nitrate export for the selected HRUs. The values for yield, denitrification, and nitrate export 272 

were ranges taken from literature relevant to the study area, but not at the selected HRUs during 273 

the simulation period.  Soft calibration is the process of making sure the values for these outputs 274 

are within the expected range. For instance, we selected the simulation that produced yields for 275 

corn (8400-8500 kg ha-1), cotton (1150-1200 kg ha-1), soybeans (2500-2600 kg ha-1), and general 276 

agricultural crops (4000-4100 kg ha-1) in SWAT+ for the Tar-Pamlico watershed (NCDEQ, 2014; 277 

NCGAR, 2022). Detailed information regarding the soft calibration for denitrification and nitrate 278 

export is provided in the supplementary information (S4 Supplementary Information). The 279 

finalized parameter values, based on the initial maximization of NSE for monthly nitrate load and 280 

monthly flow simulation, followed by the soft calibration of yield, denitrification, and nitrate 281 

export, are shown in Table 1. 282 

 283 



Table 1. SWAT+ model optimization parameters details. Note that bsn is Basin, sol is Soil, hru is Hydrological Response Unit, and plt is Plant. 
 

Parameter Parameter Range 
(Unit) Resolution Type of 

Change Description 
Initial calibration 

range 
(min, max) 

Calibrated 
parameter value 

surlag 0.05, 24.0 
(days) bsn Absolute 

Value Surlag controls delay in surface runoff release 0.05, 24 3.574 

cmn 0.001, 0.003 
(-) bsn Absolute 

Value Rate factor for humus mineralization of organic nutrients 0.001, 0.003 0.0018 

cdn 
0.0, 3.0 

(-) bsn 
Absolute 

Value Denitrification rate control 0, 3 2.261 

sdnco 0.0, 1.0 
(-) 

bsn Absolute 
Value 

Denitrification threshold water content 0, 1 0.559 

nperco 0.0, 1.0 
(-) bsn Absolute 

Value Nitrate percolation coefficient 0.01, 1 0.080 

n_updis 0.0, 100.0 
(-) bsn Absolute 

Value 
Nitrogen uptake distribution parameter controlling depth 

distribution of nitrogen uptake in soil 0, 100 49.233 

awc 0.01, 1.0 
(mm H2O mm-1) sol Absolute 

Change 
The difference in soil water content between field capacity and 

permanent wilting point -0.3, 0.3 0.081 

bd 
0.9, 2.5 
(g cm-3) sol 

Absolute 
Change 

Moist bulk density, representing soil's mass-to-volume ratio at or 
near field capacity. -0.4, 0.8 0.271 

k 0.0001, 2000.0 (mm 
hr-1) 

sol Percent 
Change 

Saturated hydraulic conductivity, indicating the ease of water 
movement through soil 

-30, 30 -4.024 

z 0.0, 3500.0 
(mm) sol Percent 

Change Depth from soil surface to bottom of layer -30, 30 1.469 

esco 0.0, 1.0 
(-) hru Absolute 

Change 

Soil evaporation compensation factor which allows modification 
of depth distribution to meet soil evaporative demand, considering 

capillary action, crusting, and cracks. 
-0.3, 0.3 -0.069 

epco 0.0, 1.0 
(-) 

hru Absolute 
Change 

Plant uptake compensation factor which allows adjustment of 
water uptake depth distribution in response to plant transpiration 

demand and soil water availability. 
-0.3, 0.3 -0.114 

biomix 0.0, 1.0 
(-) 

hru Absolute 
Change 

Biological mixing efficiency, determining redistribution of soil 
constituents by biota activity. 

-0.3, 0.3 -0.048 



Parameter Parameter Range 
(Unit) 

Resolution Type of 
Change 

Description 
Initial calibration 

range 
(min, max) 

Calibrated 
parameter value 

latq_co 0.0, 1.0 
(-) 

hru Absolute 
Change 

Coefficient for the Plant ET curve number -0.3, 0.3 0.101 

perco 0.0, 1.0 
(fraction) hru Absolute 

Change 
Percolation coefficient, adjusting soil moisture for percolation to 

occur. -0.3, 0.3 -0.272 

cn2 35.0, 95.0 
(-) hru Percent 

Change Curve number for Condition II runoff potential. -30, 30 12.283 

cn3_swf 0.0, 1.0 
(-) hru Percent 

Change 
Soil water factor for the curve number for condition III runoff 

potential -30, 30 -24.729 

ovn 
0.01, 30.0 

(-) hru 
Percent 
Change Manning's "n" value for overland flow velocity estimation -30, 30 14.865 

canmx 0.0, 100.0 
(mm H2O) 

hru Percent 
Change 

Maximum canopy storage, representing the maximum amount of 
water held in the canopy when fully developed. 

-30, 30 -0.189 

lat_ttime 0.5, 180.0 
(days) hru Percent 

Change 
Lateral flow travel time allows the model to calculate travel time 

based on soil hydraulic properties. -30, 30 -19.100 

revap_min 0.0, 50.0 
(m) aqu Percent 

Change 
Threshold depth of water in shallow aquifer for percolation to 

deep aquifer -30, 30 7.659 

Lai_pot 0.5, 10 
(m2 m-2) Plt Absolute 

Value Potential maximum leaf area index NA 
Corn: 5 

Cotton: 2.5 
Soyb: 2.027 

Harv_idx 0.01, 1.25 
(-) plt Absolute 

Value Harvest index- crop yield/aboveground biomass NA Soyb: 0.418 

  284 



2.4. SLR Incorporation 285 

2.4.1. Framework Design: 286 

We designed a framework to partially simulate the effects of SLR in the SWAT+ model with a 287 

focus on nitrogen cycle processes. We achieved this by systematically adjusting inputs and 288 

parameters to reflect the dynamic impacts of SLR. Although the SWAT+ model functions as a 289 

unidirectional rainfall-runoff model (SWAT+ IO Document, 2020), we focus on altering expected 290 

land uses, enhancing the model’s capability to simulate critical land processes, such as altered 291 

denitrification rates and the reduction of crop yields under SLR conditions.  292 

2.4.2 Land Use Adjustments: 293 

Using mid-century SLR projections from the National Oceanic and Atmospheric Administration 294 

(NOAA, 2022), which forecasts an increase of approximately 0.3 m by 2050, we reclassified all 295 

landcover with elevations less than 0.3 m to water. To account for the effects of saltwater intrusion, 296 

we consider any areas with an elevation of less than 2.4 m to fall within the risk zone of saltwater 297 

intrusion (NOAA, 2022). For areas with elevations under 2.4 m, we used GIS to process the land 298 

use changes by developing a new category labeled as saltwater-intruded land use for each of the 299 

respective land uses. 300 

2.4.3. SWAT+ Database Update: 301 

After incorporating these new land use types, we added the saltwater-influenced crops to the 302 

SWAT+ plant database (Supplementary Information). Using the updated land cover map and the 303 

revised SWAT+ database, we generated new Hydrological Response Units (HRUs) for areas up to 304 

2.4 m above the current mean sea level. For the baseline simulation, we retained the same 305 

parameters for the saltwater-intruded crops as their corresponding conventional crops. We 306 

confirmed that SWAT+ produced consistent outputs for these new crops, matching those of their 307 

parent crops when no parameters were altered. The creation of these new HRUs allowed us to 308 

modify SWAT+ parameters to simulate the impacts of SLR on the nitrogen cycle. 309 

We changed multiple SWAT+ parameters in our initial efforts to simulate the effects of 310 

SLR. We conducted a literature review to identify processes and their corresponding SWAT+ 311 

parameters potentially affected by saltwater intrusion, such as soil pH (Al-Busaidi & Cookson, 312 



2003) and electrical conductivity (Rhoades & Corwin, 1990). From our findings, we adjusted 313 

electrical conductivity (ec.sol) and pH (ph.sol) parameters in the model to account for SLR. 314 

However, despite significant alterations to these parameters, we observed no impact on the 315 

simulated denitrification rate and crop yields. This suggests that these parameters are not directly 316 

linked to the outputs we expected them to alter, and additional factors within the SWAT+ model 317 

would need to be considered to reflect the effects of SLR. 318 

2.4.4 Indirect Approach to Incorporate SLR’s Effects: 319 

To address this challenge, we opted for an indirect approach to incorporating SLR effects. SLR 320 

can decrease denitrification rates by inhibiting the activity and abundance of denitrifying 321 

microorganisms that are adapted to freshwater or low-salinity environments. Salinity has been 322 

shown to lower soil heterotrophic respiration, including denitrification (Chen et al., 2022; Hu et 323 

al., 2014). Salinity can also induce oxidative stress, and interfere with DNA replication, 324 

transcription, and translation in heterotrophic denitrifiers (Chen et al., 2022). These general 325 

microbial stress responses to salinity may also be accompanied by decreases in the abundance and 326 

expression of denitrification genes (Chen et al., 2022; Pan et al., 2023; Wang et al., 2018). These 327 

changes are thought to be mediated through physiological (e.g., altered solute potential), and 328 

abiotic mechanisms (e.g., displacement of soil-bound NH4+) (Pan et al., 2023). Additionally, 329 

saltwater intrusion can change the composition of the microbial nitrogen cycling community, 330 

favoring dissimilatory nitrate reduction to ammonium (DNRA) over denitrification (Neubauer et 331 

al., 2019).  332 

We introduced new soil nutrient layers in our model to better simulate denitrification rates 333 

and plant yield (SWAT+ IO Document, 2020) under SLR. The parameters altered were the 334 

coefficient for adjusting concentrations based on depth (exp_co) and the fraction of active soil 335 

humus (fr_hum_act). In the preliminary analysis, we found that increasing the exp_co parameter 336 

decreased denitrification, and decreasing fr_hum_act decreased denitrification. Increasing the 337 

exp_co parameter likely reduces denitrification by limiting the depth at which there are high 338 

concentrations of nitrate, meaning the high nitrate concentrations stay above the soil horizon where 339 

conditions are ideal for denitrification to occur. Decreasing fr_hum_act reduces denitrification by 340 

lowering the proportion of active humus that supports microbial activity essential for the 341 

denitrification process (SWAT+ IO Document, 2020).  342 



We developed two new soil nutrient layers: one for saltwater-intruded agricultural crops 343 

and another for the rest of the saltwater-intruded land use. This distinction was necessary because, 344 

in general, simulated denitrification rates in wetland regions are  lower than in agricultural regions, 345 

due to higher N availability in agricultural soils (Groffman et al., 2019). By creating specific soil 346 

nutrient layers for these distinct land uses, we aimed to capture the unique responses of each land 347 

type to saltwater intrusion, ensuring a more accurate simulation of denitrification processes and 348 

crop yield outcomes. The soil nutrient layers were applied at the HRU resolution for the respective 349 

land use (SWAT+ IO Document, 2020). The expected decrease in denitrification was simulated 350 

along with an excessive decrease in yield, thus we adopted a multiparameter approach to further 351 

fine-tune denitrification and plant yield by altering other HRU-specific parameters such as curve 352 

number (cn2), plant uptake compensation factor (epco), soil evaporation compensation factor 353 

(esco), available water capacity (awc), plant ET curve number coefficient (latq_co), and potential 354 

maximum leaf area index (lai_pot) (Table 1 and Section 3.2).  355 

We selected these parameters based on our preliminary analysis of how they affected yield 356 

and denitrification under SLR conditions (Supplementary Information). We did not find significant 357 

literature on how much the parameters mentioned above should change under SLR conditions. For 358 

each parameter, the SLR calibration range was chosen based on the expected impact of increased 359 

salinity, aiming to simulate environmental changes realistically, which is further discussed in 360 

section 3.2. Increased salinity generally leads to reduced soil moisture retention, higher 361 

evaporation rates, altered plant water uptake, and modified runoff characteristics, all of which were 362 

considered in setting the calibration ranges. We then performed a soft calibration with 2000 363 

simulations to adjust plant yield and denitrification for SLR conditions using the parameter 364 

changes described above. We used SWATrunR (Schuerz et al., 2022) to alter these parameters 365 

specifically for newly created saltwater-affected HRUs, aligning plant yield and denitrification 366 

rates with literature under SLR scenarios, which is further discussed in section 3.2. This innovative 367 

framework is intended to serve as a pioneering step for hydrological modelers, setting the stage 368 

for more sophisticated and accurate modeling of SLR impacts. 369 

2.5. Hypothesis and Statistical Testing: 370 

In the context of assessing the impacts of climate change on coastal ecosystems, understanding 371 

how sea level rise (SLR) affects nutrient dynamics is crucial. Elevated nitrate levels pose 372 



significant risks to water quality and ecosystem health, particularly in coastal agricultural 373 

watersheds. The hypothesis tested in this study was that there is no significant difference in the 374 

mean monthly nitrate loads between the baseline and SLR conditions in the Tar-Pamlico basin. 375 

This null hypothesis posits that the implementation of SLR scenarios would not lead to a 376 

statistically significant change in the amount of nitrate transported monthly from the watershed 377 

into the estuary, compared to the current baseline conditions. By testing this hypothesis, we aimed 378 

to determine whether the anticipated effects of SLR, such as reduced yield and denitrification, 379 

would have measurable impacts on nitrate load to the Pamlico estuary. To test this hypothesis, we 380 

conducted a paired t-test, a statistical method widely used in previous SWAT studies for hypothesis 381 

testing (Du et al., 2009; Pereira et al., 2016; Santos et al., 2018), comparing the mean monthly 382 

nitrate loads under baseline and SLR conditions to determine whether the observed differences 383 

between the two scenarios were statistically significant. 384 

3. Results and Discussion 385 

3.1. Model Optimization 386 

We modified the Tar-Pamlico coastal watershed's SWAT+ model used in Tran et al., 2024. First, 387 

we improved it for combined optimization of monthly flow and monthly nitrate load at 388 

Washington, NC (Figure S1 Supplementary Information; Figure 3). We had to make some trade-389 

offs to achieve a higher combined performance index (NSE) for monthly flow and nitrate load 390 

rather than optimizing each individually to its highest possible values. For monthly flow 391 

optimization (Figure S1 Supplementary Information), we achieved good performance indices, 392 

considering the coastal watershed (Upadhyay et al., 2022), with an NSE of 0.49 and a KGE of 0.66 393 

during calibration, and an NSE of 0.55 and a KGE of 0.7 during validation (S2 Supplementary 394 

Information). For monthly nitrate load calibration (Figure 3), the model demonstrated a good level 395 

of accuracy within the coastal Tar-Pamlico watershed, achieving an NSE of 0.61 and a KGE of 396 

0.77 (Figure 3). These metrics suggest a strong agreement between observed and simulated data, 397 

indicating that the model is well-calibrated (Upadhyay et al., 2022) and capable of simulating the 398 

dynamics governing nitrate transport and retention. 399 

We found lower performance indices for the validation period for nitrate load (Figure 3); 400 

the model's performance metrics declined to an NSE of 0.33 and a KGE of 0.39, indicating 401 



moderate accuracy considering a coastal watershed (Upadhyay et al., 2022). This decline likely 402 

resulted from increased uncertainty in observed nitrate loads associated with the change in nitrate 403 

sampling frequency post-2010 (Birgand et al., 2011), as well as variations in hydrology and rain 404 

events that were not fully captured by the model. It is important to consider that model evaluation 405 

guidelines should be adjusted based on factors such as the quality and quantity of measured data, 406 

model calibration procedure, simulation time step, and project scope and magnitude (Moriasi et 407 

al., 2007). Additionally, we had to compromise higher performance index simulations with those 408 

of lower performance index to achieve better simulations for plant yield, denitrification, and nitrate 409 

export from agricultural lands, which played a significant role in this paper (S4 Supplementary 410 

Information). Therefore, despite the lower metrics, the model still demonstrated its capacity to 411 

provide reasonable nitrate load predictions under varying conditions (Moriasi et al., 2007; 412 

Upadhyay et al., 2022).  413 

To further ensure the robustness of our model, we conducted cross-validation (S3 414 

Supplementary Information) at two additional locations within the Tar-Pamlico River Basin: 415 

Tarboro, NC (USGS station ID: 02083500) and Greenville, NC (USGS station ID: 02084000). 416 

This cross-validation was performed for monthly flow for the period from January 2003 to 417 

December 2019 (Figure S2 Supplementary Information; Figure S3 Supplementary Information). 418 

The model showed a strong performance at these additional sites, achieving an NSE of 0.69 at 419 

Tarboro, NC (Figure S2 Supplementary Information), and 0.7 at Greenville, NC (Figure S3 420 

Supplementary Information). By including these additional sites, we were able to evaluate the 421 

model's performance across different areas within the watershed, providing a more comprehensive 422 

assessment of its accuracy and reliability. The inclusion of multiple validation points allowed us 423 

to verify that the model is well set up for running multiple scenarios (Arsenault et al., 2018). 424 



 425 

Figure 3. Monthly nitrate load optimization results. 426 

3.2. Modeling the Effects of SLR on Nitrogen Processes 427 

As mentioned in Section 2.5, simulating the ramifications of SLR on watershed processes, with a 428 

particular focus on the adjustment of plant yield and denitrification were not as straightforward as 429 

expected. Saltwater intrusion disrupts normal plant physiological processes, impeding nutrient 430 

uptake and causing osmotic stress in plants, which is reflected in the reduced yields observed 431 

(Okon, 2019; Safdar et al., 2019).  432 

SLR reduces potential leaf area (by around 30%) by flooding coastal areas, increasing soil 433 

salinity, and altering vegetation, leading to sparse foliage (Bond-Lamberty et al., 2023), which we 434 

adjusted using the potential maximum leaf area index (lai_pot) parameter in SWAT+. Additionally, 435 

we modified several other key parameters through soft calibration to fine-tune plant yield and 436 

denitrification at HRU levels (Table 2). These parameters include Available Water Capacity (awc), 437 

which was reduced (Table 2) to reflect changes in soil water retention capacity due to increased 438 

salinity. Salinity can decrease AWC by decreasing the soil's ability to retain water due to the 439 

osmotic effect, which makes it harder for plants to extract water from the soil (Cousin et al., 2022; 440 

Safadoust et al., 2024). Additionally, high salt concentrations can lead to soil structure degradation, 441 

further limiting water availability (Bronick & Lal, 2005).  442 

The Soil Evaporation Compensation Factor (esco) was increased (Table 2) to account for 443 

elevated evaporation rates in salt-affected soils, influencing soil moisture dynamics and nitrate 444 



transport (Hosseini & Bailey, 2022; Tirabadi et al., 2022). Salinity increases the soil evaporation 445 

compensation factor (esco) by enhancing capillary action, which draws water closer to the soil 446 

surface, and by promoting crusting, which reduces infiltration and increases surface evaporation 447 

(Nachshon, 2018). The Plant Uptake Compensation Factor (epco) was modified from -0.114 to -448 

0.042 to reflect changes in plant root water uptake under saline conditions, impacting the overall 449 

water balance and nitrate uptake by plants. The Plant ET Curve Number Coefficient (latq_co) was 450 

adjusted from 0.101 to 0.279 to capture changes in evapotranspiration rates due to altered 451 

vegetation structure and water availability under SLR scenarios (Yang et al., 2022). The Curve 452 

Number (cn2) was increased to reflect changes in surface runoff potential under different land 453 

cover conditions influenced by SLR. Salinity increases the cn2 by decreasing soil infiltration rates 454 

and increasing surface runoff (Hosseini & Bailey, 2022; Sorando et al., 2019). Saline soils often 455 

have poorer structure, leading to crusting and reduced permeability, which results in higher runoff 456 

potential (Bronick & Lal, 2005). 457 

Even though SWAT+ is not capable of simulating backflow, the hydrological parameter 458 

changes discussed in this section should enable the model to more accurately simulate processes 459 

in response to SLR when viewed at the monthly or annual scale. It is highly unlikely to be accurate 460 

at the daily time scale. This SLR-calibrated SWAT+ model offers valuable insights into the 461 

intricate interplay between SLR and watershed processes governing nitrate export. 462 



Table 2. Parameters altered to simulate plant yield and denitrification changes under SLR. [a: corn, b: cotton, c: soybean, d: general 463 

agricultural crop]. 464 

Parameter 
Potential Parameter 

Range 
(Unit) 

Resolution Type of Change Default value Freshwater 
landuse calibration 

SLR calibration 
range 

SLR-
incorporated 

parameter 

awc 0.01, 1.0 
(mm H2O mm-1) 

sol Absolute Change 0.14 0.081 -0.3, 0.08 -0.021 

esco 0.0, 1.0 
(-) hru Absolute Change 0.95 -0.069 -0.3, 0.3 0.038 

epco 0.0, 1.0 
(-) hru Absolute Change 0.5 -0.114 -0.3, 0.3 -0.042 

latq_co 
0.0, 1.0 

(-) hru Absolute Change 0.01 0.101 -0.3, 0.3 0.279 

cn2 35.0, 95.0 
(-) 

hru Percent Change  12.283 13, 20 17.834 

Lai_pot 0.5, 10 
(m2 m-2) 

Plt Absolute Value 
 

6 (a) 
4 (b) 
5 (c) 
3 (d) 

5 (a) 
2.5 (b) 

2.027 (c) 
3 (d) 

 

3.5 (a) 
1.75 (b) 
1.419 (c) 
2.1 (d) 

 465 



3.2.1 Modeling the Effects of SLR on Crop Yield 466 

In this study, we simulated the impacts of SLR on the yields of four distinct crop types (Figure 467 

4)—general agricultural, corn, cotton, and soybean—quantified in kilograms per hectare (kg ha-1). 468 

Our simulation used SLR projections for midcentury (NOAA, 2022), but the model was run for 469 

the period from Jan 2001 to Dec 2019 using SWAT+. This modeling approach provides a snapshot 470 

of potential impacts based on historical climate and hydrological data while incorporating future 471 

SLR scenarios. 472 

In our simulation, crop yields under SLR conditions exhibited significant reductions across 473 

various land uses within the HRUs compared to baseline scenarios based on the literature. It is 474 

important to note that our calibration process focused on a few representative HRUs of each crop 475 

type (Figure S9 Supplementary Information), while Figure 4 captures the results from all HRUs. 476 

The average reductions in yields were 36% for general agricultural crops, 23% for corn, 36% for 477 

cotton, and 33% for soybeans going from freshwater conditions to saltwater conditions. This 478 

variability reflects the significant impact of SLR on crop productivity across different HRUs. As 479 

expected, due to calibration, these findings are consistent with previous literature on the impacts 480 

of salinization on crop yields (Gibson et al., 2021) 481 

Figure 4. Simulated effects of SLR on annual average crop yields.  482 



3.2.2 Simulated Effects on Denitrification Rate  483 

Adjustments to model parameters for SLR-influenced land uses were specifically designed to 484 

simulate the impacts of increased salinity on denitrification. For general agricultural crops, 485 

denitrification rates showed significant decreases, ranging from about 37% to nearly 70%, with an 486 

average decrease of around 53% (Figure 5). In corn, the reductions were slightly less variable, 487 

ranging from approximately 38% to 66%. Cotton demonstrated a broader range of decreases, from 488 

32% to over 72%, with an average reduction of 55%. Soybeans experienced the most substantial 489 

impacts, with denitrification rate declines ranging from about 59% to 76%, and an average 490 

decrease of 67% (Figure 5). This variability in denitrification changes across different crops and 491 

HRUs can be attributed to the fact that the model was not uniformly calibrated for denitrification 492 

changes in all HRUs, resulting in diverse responses under the simulated conditions of SLR. 493 

Additionally, local conditions such as soil type, moisture content, and microbial activity levels also 494 

influence denitrification rates, leading to further variability in the simulated changes. 495 

The parameter modifications led to reductions consistent with earlier findings in the 496 

literature (Hofstra & Bouwman, 2005; Qian et al., 1997). The observed decrease in soil nitrate 497 

processing capabilities under SLR conditions, linked to increased soil salinity inhibiting microbial 498 

activity essential for nitrogen cycling, could further complicate microbial community structures 499 

and potentially reduce denitrification efficiency (Mazhar et al., 2022; Spivak et al., 2019). This 500 

underscores the complexity of interactions between environmental changes and biological 501 

processes, highlighting the need for detailed modeling and management strategies to mitigate the 502 

adverse effects on agricultural productivity and ecosystem health. 503 



Figure 5. Impacts of SLR on annual average denitrification across different agricultural crops, in 504 

which AGRR is general agricultural crop, COTS is cotton, and SOYB is soybean. 505 

3.3. Nitrate Load to the Pamlico Estuary  506 

We conducted a comparison of the monthly nitrate load at the Pamlico Estuary under the baseline 507 

and SLR scenarios. We compared the model results for both scenarios from January 2003 to 508 

December 2019. This analysis aimed to quantify the variations in nitrate loads across different 509 

months, providing a clearer understanding of how rising sea levels could affect nutrient export to 510 

this coastal environment. Both datasets exhibit significant variability and peaks over time. 511 

The results reveal notable variations in the seasonal nitrate loads when comparing the 512 

baseline with the SLR scenarios (Figure 6). Winter and spring exhibited higher nitrate loads 513 

compared to summer and fall. This pattern is likely influenced by increased precipitation during 514 

the colder months (Sayemuzzaman & Jha, 2014), which enhances runoff (Moraglia et al., 2022) 515 

and nitrate leaching (Oh & Sankarasubramanian, 2012), whereas the growing vegetation in warmer 516 

months can assimilate more nutrients (Tian et al., 2014), thereby reducing nitrate available for 517 

export.  518 



 519 

Figure 6. Seasonal variation in nitrate load (kg NO3-N) differences between SLR and baseline 520 

scenarios. The percent changes and differences are all positive, indicating an increase under SLR 521 

conditions. 522 

The data showed that nitrate loads consistently increase across all seasons under SLR 523 

conditions, with the most substantial increases during winter and spring (Figure 6). SLR modifies 524 

nitrate availability and transport, especially during peak precipitation periods, which typically 525 

occur during the winter and spring seasons in the study region. These periods are characterized by 526 

increased precipitation, resulting in elevated surface runoff and higher flows (Stuart et al., 2011). 527 

SLR alters the water table (Hay et al., 1990) and inundates low-lying coastal areas (Mohd et al., 528 

2018), exacerbating surface runoff (Wang et al., 2011) and leading to higher flows during heavy 529 

rains (Rotzoll & Fletcher, 2013). Historical data indicates that precipitation patterns in the Tar-530 

Pamlico River Basin have shown increased variability and intensity over the years, further 531 

influencing nitrate dynamics (Tang et al., 2012; Tran et al., 2024). 532 

These changes facilitate rapid nitrate movement from terrestrial sources to estuarine and 533 

marine environments, underscoring SLR's impact on nitrate loss (Munksgaard et al., 2019; Voss et 534 

al., 2015; Wang et al., 2017). The percent change in nitrate loads indicates higher increases during 535 

fall (1.8%) and summer (1.6%) compared to spring (1.4%) and winter (0.73%) under SLR 536 

scenarios (Figure 6). This increase during summer and fall can be attributed to saltwater intrusion 537 

increasing soil salinity (Bayabil et al., 2021), disrupting nitrogen cycling (Nelson & Zavaleta, 538 



2012), and reducing nitrate uptake by crops (He et al., 2018), while altering hydrological dynamics 539 

to increase nitrate mobility (Donner & Kucharik, 2003). Increased salinity can disrupt microbial 540 

denitrification processes and can result in more residual nitrates leaching into waterways (Arce et 541 

al., 2013). Additionally, seasonal agricultural practices misaligned with changing environmental 542 

conditions may further contribute to nitrate export. Salinity impacts can alter plant growth cycles 543 

by inhibiting germination and slowing development, leading to misalignment with farmers' 544 

fertilizer application timings for specific crops. When fertilizers are applied based on the expected 545 

growth cycle of the crop, but plants develop slower or unevenly due to salinity stress, nutrients 546 

may not be effectively absorbed, resulting in increased nutrient runoff and nitrate load to the 547 

estuary (Conrad & Marinos, 2024; Shainberg & Shalhevet, 2012). 548 

3.4. Statistical Analysis of Nitrate Load Under Baseline and SLR Conditions 549 

To assess the impact of sea level rise (SLR) on nitrate loads in the Pamlico estuary, we tested the 550 

hypothesis that there is no significant difference in the mean monthly nitrate loads between 551 

baseline and SLR conditions. To test this hypothesis, we conducted a paired t-test comparing the 552 

mean monthly nitrate loads under baseline and SLR conditions. The baseline condition had a mean 553 

monthly nitrate load of 155,200 kg N, while the SLR condition had a mean nitrate load of 157,100 554 

kg N, with each set comprising 204 observations. The Pearson Correlation coefficient of 0.99 555 

indicated a very high degree of linear correlation between the paired samples, which is expected 556 

since the measurements under both scenarios pertain to the same time points (Cohen et al., 2009). 557 

The paired t-test yielded a t-statistic of -6.6869, reflecting a significant difference between 558 

the means. The negative t-statistic suggests that the nitrate load under SLR conditions is higher 559 

than under baseline conditions. The two-tailed p-value of approximately 2.16×10−10 indicates that 560 

this difference is highly statistically significant, far below the conventional alpha level of 0.05. 561 

Based on these results, we reject the null hypothesis that there is no significant difference 562 

in the mean monthly nitrate loads between the baseline and SLR conditions. This outcome provides 563 

strong evidence that SLR significantly increases nitrate loads in the Pamlico estuary from the Tar-564 

Pamlico basin. These findings highlight the impact of SLR on nitrate availability and transport, 565 

particularly the increase during fall and summer seasons. Understanding these interactions is 566 

crucial for developing effective management strategies to mitigate the impacts of nutrient loading 567 

and protect aquatic ecosystems in the context of ongoing climate change (Hamilton et al., 2016). 568 



4. Limitations and future works 569 

This study acknowledges the limitations of SWAT+, particularly its inability to simulate backflow 570 

and the complexity of the nitrogen cycle, which has conflicting literature on the impacts of SLR 571 

on denitrification. Tidal influence has not been explicitly accounted for in this study. We recognize 572 

that our approach to modeling land processes under SLR conditions may not be definitive. 573 

However, this research represents an important first step towards integrating SLR impacts into the 574 

SWAT+ framework, providing a foundation for further refinement and development by 575 

hydrological modelers. Future research should focus on using the SLR-incorporated SWAT+ 576 

model to simulate how changes in climate precipitation and temperature would alter nitrate 577 

dynamics and to evaluate the performance of agricultural best management practices under SLR 578 

conditions. 579 

5. Conclusions 580 

This study presents a novel methodology to incorporate SLR into the SWAT+ model and simulate 581 

its impacts on ecosystem health. To simulate SLR effects in SWAT+, we reclassified low-lying 582 

land uses to water and adjusted parameters for low-elevation areas to model increased soil salinity's 583 

impact on crop yield and denitrification rates. We compared the nitrate export to the Pamlico 584 

estuary from the Tar-Pamlico River basin under both SLR and baseline conditions. These 585 

adjustments for the effects of SLR on hydrological parameters and inputs significantly enhance 586 

the model's ability to project changes in nitrate loads due to SLR.  587 

The findings reveal that SLR significantly influences nitrate loads at the monthly scale, 588 

leading to increased nitrate transport to the Pamlico Estuary in all seasons. We observed higher 589 

nitrate load increases in spring and winter, attributed to elevated flows. In contrast, the highest 590 

percentage increases in nitrate loads were found in summer and fall, likely due to reduced plant 591 

uptake and altered nitrogen cycles. Incorporating SLR into the SWAT+ model enabled analysis of 592 

how altered hydrological dynamics and increased salinity affect agricultural productivity and 593 

ecosystem health. 594 
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