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A search for nonresonant Higgs boson pair production in the bb̄bb̄ final state is presented. The analysis
uses 126 fb−1 of pp collision data at

ffiffiffi
s

p
¼ 13 TeV collected with the ATLAS detector at the Large Hadron

Collider, and targets both the gluon-gluon fusion and vector-boson fusion production modes. No evidence
of the signal is found and the observed (expected) upper limit on the cross section for nonresonant Higgs
boson pair production is determined to be 5.4 (8.1) times the Standard Model predicted cross section at
95% confidence level. Constraints are placed on modifiers to the HHH and HHVV couplings. The
observed (expected) 2σ constraints on the HHH coupling modifier, κλ, are determined to be ½−3.5; 11.3#
(½−5.4; 11.4#), while the corresponding constraints for the HHVV coupling modifier, κ2V , are ½−0.0; 2.1#
(½−0.1; 2.1#). In addition, constraints on relevant coefficients are derived in the context of the Standard
Model effective field theory and Higgs effective field theory, and upper limits on the HH production cross
section are placed in seven Higgs effective field theory benchmark scenarios.
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I. INTRODUCTION

The discovery of the 125 GeV Higgs boson (H) [1–4] at
the Large Hadron Collider (LHC) has prompted a broad
research program to investigate its properties and compare
the measurements with the Standard Model (SM) predic-
tions. Of particular interest is the search for nonresonant
Higgs boson pair production, also known as di-Higgs ðHHÞ
production. This process has a strong dependence on the
Higgs self-coupling, which is a key ingredient of the
electroweak symmetry breaking mechanism and a sensitive
probe for physics beyond the SM (BSM physics) in various
scenarios, such as two-Higgs-doublet models [5], composite
Higgs models [6], twin Higgs models [7], and the minimal
supersymmetric extension of the SM [8,9]. The Higgs self-
coupling also plays a fundamental role in understanding the
stability of the universe [10].
The dominant SMHH production process is gluon–gluon

fusion (ggF). Its cross section, for a Higgs boson mass
mH ¼ 125 GeV, calculated at next-to-next-to-leading order
(NNLO) including finite top-quark-mass effects [11], is
31.05 fb at a center-of-mass energy

ffiffiffi
s

p
¼ 13 TeV. The

two dominant leading-order Feynman diagrams contributing
to this process are shown in Fig. 1, where Fig. 1(a) is

commonly referred to as the box diagram and Fig. 1(b) as
the triangle diagram. The triangle diagram introduces the
dependence on the trilinear Higgs self-coupling, λ, shown by
the red vertex in Fig. 1(b), which can be expressed in terms of
its modifier, κλ.

1 In the SM, these two diagrams interfere
destructively. As a result, the HH production cross section
and kinematic properties depend critically on the value of κλ.
The HH production process with the second-highest

cross section in the SM is vector-boson fusion (VBF),
with a calculated value of 1.73 fb at next-to-next-to-next-
to-leading order (N3LO) [12], for mH ¼ 125 GeV atffiffiffi
s

p
¼ 13 TeV. Figure 2 illustrates the Feynman diagrams

involved in di-Higgs production via vector-boson fusion at
leading order (LO). The coupling modifiers κλ, κV , and κ2V
are respectively shown at the HHH, HVV, and HHVV
interaction vertices, where V stands for the gauge vector
bosons W or Z. In the SM, the divergences in the Figs. 2(b)
and 2(c) diagrams exactly cancel out due to perturbative
unitarity. As κV and κ2V depart from their SM value of one,
this canceling out no longer occurs, introducing a linear
dependence of the cross section on the effective center-of-
mass energy of the incoming vector bosons [13]. Therefore,
the Higgs bosons produced in non-SM κV=κ2V scenarios are
expected to be more energetic and more central in the
detector on average. This increase in the energy of Higgs
bosons with increasing deviation from the SM continues up*Full author list given at the end of the article.
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1A coupling modifier, κ, is defined as the ratio of the modified
coupling to its SM value, κ ¼ c=cSM. By definition, κ ¼ 1
denotes the value of the coupling predicted by the SM.
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to the scale of some new physics, which is required to
unitarize the total amplitude.
The analysis described in this paper targets the HH

process in the bb̄bb̄ final state, in both the ggF and VBF
production modes, using the data collected by ATLAS
between 2016 and 2018, during Run 2 of the LHC.
Assuming the SM branching ratio of 58.2% for H → bb̄
[14,15], about one third of di-Higgs events decay into
bb̄bb̄, making it the most abundant di-Higgs final state.
However, as this is a fully hadronic final state, the analysis
faces the challenge of large backgrounds, which originate
mostly from nonresonant QCD production of multiple
heavy (b=t) quarks, as well as from light-quark-initiated
jets misidentified as originating from heavy quarks.
The results are interpreted in terms of constraints on the

κλ and κ2V coupling modifiers, assuming κV ¼ 1. The
analysis also provides one- and two-dimensional con-
straints on relevant couplings in the SM effective field
theory (SMEFT) [16–18] and Higgs effective field theory
(HEFT) [19,20] frameworks. In the SMEFT framework, the
effects of new physics may be described with an effective
Lagrangian:

LSMEFT ¼ LSM þ 1

Λ2

X

k

cð6Þk Oð6Þ
k ; ð1Þ

where LSM represents the SM Lagrangian, Ok are higher-
dimensional local operators, ck are the Wilson coefficients,
and Λ is the mass scale of the new physics phenomena (set
to 1 TeV for this result). The analysis considers operators
Ok in the Warsaw basis, which provides a complete set of

operators allowed by SM gauge symmetries at dimension
six [21] (dimension-five operators introduce lepton and
baryon number violation, and are therefore ignored in this
result). The five operators relevant to the HH process and
their coefficients, cH, cH□

, ctH, ctG, and cHG, are listed in
Table I [22]. The computation of amplitudes from the above
Lagrangian includes three terms: a pure SM term, a
“quadratic” term of order ð1=Λ4Þ including purely new
physics, and a “linear” term of order ð1=Λ2Þ accounting for
the interference between the SM and new physics. The
SMEFT constraints calculated in this analysis include both
the linear and quadratic new physics terms.
In the HEFT framework, new physics in the electroweak

sector is described through anomalous couplings of the
Higgs boson. The organization of the HEFT Lagrangian is
guided by chiral perturbation theory [23], with the low-
energy dynamics of electroweak symmetry breaking
described using a nonlinear realization of the gauge

(a) (b)

FIG. 1. The two leading-order gluon-gluon fusion di-Higgs production Feynmandiagrams: (a) the box diagram; (b) the triangle diagram.

(a) (b) (c)

FIG. 2. The three tree-level vector-boson fusion di-Higgs production Feynman diagrams.

TABLE I. The five relevant SMEFT coefficients and their
corresponding dimension-6 operators, as defined in the Warsaw
basis [21,22].

Wilson coefficient Operator

cH ðH†HÞ3
cH□

ðH†HÞ□ðH†HÞ
ctH ðH†HÞðQ̄ H̃ tÞ
cHG H†HGA

μνG
μν
A

ctG ðQ̄σμνTAtÞH̃GA
μν
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symmetry group SUð2ÞL × Uð1ÞY . One advantage of the
HEFT framework is that the anomalous single-Higgs-
boson and HH couplings are defined separately, allowing
simplified HH interpretations. In the HEFT Lagrangian,
ggF HH production is described at LO by five relevant
operators and their associated Wilson coefficients: cHHH,
ctt̄H, cggH, cggHH, and ctt̄HH. In this formalism, cHHH is
equivalent to κλ and ctt̄H is equivalent to the modifier for the
coupling between the Higgs boson and top quark, κt, shown
by the light blue vertex in Fig. 1. Fixing ctt̄H ¼ cHHH ¼ 1
and cggH ¼ cggHH ¼ ctt̄HH ¼ 0 restores the SM. At next-to-
leading order (NLO), seven HEFT benchmark models
(BM) [24] have been defined using cluster analysis [25]
to probe a wide variety of characteristic shapes of the mHH
spectrum resulting from different BSM scenarios. The
values of the coefficients used to define these scenarios
are given in Table II.
The ATLAS Collaboration has previously published

search results for nonresonant HH → bb̄bb̄ production
using 27 fb−1 of early Run 2 data [26], and a dedicated
search for VBFHH production in 126 fb−1 of data collected
between 2016 and 2018 [27]. The present analysis benefits
from the use of the 2016–2018 data for both production
channels and also takes advantage of improvements in jet
reconstruction and in the identification of jets arising from
the hadronization of b-quarks (“b-tagging”) achieved by the
ATLAS Collaboration since the publication of Ref. [26]. In
addition, the analysis employs a fully data-driven technique
for the background estimation, which uses an artificial
neural network to perform a kinematic reweighting of
data from an alternative control region of the data to
model the background in the region of interest. The CMS
Collaboration has also published results of a search for
nonresonant HH → bb̄bb̄ with its full Run 2 dataset [28],
setting the observed (expected) upper limit on the HH cross
section at 3.9 (7.8) times the SM predicted cross section,
and restricting the allowed interval for κλ to ½−2.3; 9.4#
(½−5.0; 12.0#), both at 95% confidence level (CL). A more
recent CMS HH → bb̄bb̄ publication [29], in which the
analysis exploits topologies arising from highly energetic

Higgs boson decays into bb̄, sets the observed (expected)
upper limit at 9.9 (5.1) times the SM cross section expect-
ation, and restricts the allowed interval for κ2V to [0.62, 1.41]
([0.66, 1.37]), at 95% CL. Other searches for nonresonant
HH production were performed by ATLAS and CMS in
the bb̄τþτ− [30,31], bb̄γγ [32,33], bb̄lþνl−ν [34,35] decay
channels, as well as by ATLAS in the bb̄qqlν [36],WW'γγ
[37] andWW'WW' [38] decay channels. Among them, the
most sensitive results to date from ATLAS come from the
bb̄γγ analysis, which sets the observed (expected) 95% CL
upper limit on the SM nonresonant HH cross section at 4.2
(5.7) times the SM expectation and restricts the correspond-
ing κλ interval to ½−1.5; 6.7# (½−2.4; 7.7#). The most sensitive
results to date from CMS come from the combination of the
bb̄ZZ, multilepton, bb̄γγ, bb̄ττ, and bb̄bb̄ analyses, which
set the observed (expected) 95% CL upper limit on the SM
nonresonant HH cross section at 3.4 (2.5) times the SM
expectation and restricts the corresponding observed κλ
interval to ½−1.24; 6.49# [39].
This document is structured as follows. The ATLAS

detector and the data and simulated events used in the
analysis are described in Secs. II and III, respectively.
Section IV presents the reconstruction and identification of
physics objects in this analysis and Sec. V details the event
selection and categorization. The background modeling
method is described in Sec. VI, the systematic uncertainties
are detailed in Sec. VII and, finally, the results are reported
in Sec. VIII and the conclusion is given in Sec. IX.

II. ATLAS DETECTOR

The ATLAS detector [40] at the LHC covers nearly the
entire solid angle around the collision point.2 It consists of
an inner tracking detector surrounded by a thin super-
conducting solenoid, electromagnetic and hadron calorim-
eters, and a muon spectrometer incorporating three large
superconducting air-core toroidal magnets.
The inner-detector (ID) system is immersed in a 2 Taxial

magnetic field and provides charged-particle tracking in the
range jηj < 2.5. The high-granularity silicon pixel detector
covers the vertex region and typically provides four space-
point measurements per track, the first hit normally being
in the insertable B-layer installed before Run 2 [41,42].
Following the pixel detector is the silicon microstrip
tracker, which usually provides eight measurements per
track. These silicon detectors are surrounded by the

TABLE II. The values of the HEFT Wilson coefficients
in the SM and in seven BSM benchmark models, as defined
in Ref. [24].

Benchmark model cHHH cttH cggH cggHH cttHH

SM 1 1 0 0 0
BM1 3.94 0.94 1=2 1=3 −1=3
BM2 6.84 0.61 0 −1=3 1=3
BM3 2.21 1.05 1=2 1=2 −1=3
BM4 2.79 0.61 −1=2 1=6 1=3
BM5 3.95 1.17 1=6 −1=2 −1=3
BM6 5.68 0.83 −1=2 1=3 1=3
BM7 −0.10 0.94 1=6 −1=6 1

2ATLAS uses a right-handed coordinate system with its origin
at the nominal interaction point (IP) in the center of the detector
and the z-axis along the beam pipe. The x-axis points from the IP
to the center of the LHC ring, and the y-axis points upwards.
Cylindrical coordinates ðr;ϕÞ are used in the transverse plane, ϕ
being the azimuthal angle around the z-axis. The pseudorapidity is
defined in terms of the polar angle θ as η ¼ − ln tanðθ=2Þ.
Angular distance is measured in units ofΔR≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔηÞ2 þ ðΔϕÞ2

p
.
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transition radiation tracker, which enables radially extended
track reconstruction up to jηj ¼ 2.0.
The calorimeter system covers the pseudorapidity range

jηj < 4.9. Within jηj < 3.2, electromagnetic calorimetry is
provided by barrel and endcap high-granularity lead/
liquid-argon (LAr) calorimeters, with an additional thin
LAr presampler covering jηj < 1.8 to correct for energy
loss in material upstream of the calorimeters. Hadron
calorimetry is provided by the steel/scintillator-tile calo-
rimeter, segmented into three barrel structures within
jηj < 1.7, and two copper/LAr hadron endcap calorime-
ters. The solid angle coverage is completed with forward
copper/LAr and tungsten/LAr calorimeter modules opti-
mized for electromagnetic and hadronic energy measure-
ments respectively.
The muon spectrometer (MS) comprises separate trigger

and high-precision tracking chambers measuring the
deflection of muons in a magnetic field generated by the
superconducting air-core toroidal magnets. The field inte-
gral of the toroids ranges between 2.0 and 6.0 T · m across
most of the detector. A set of precision chambers covers the
region jηj < 2.7 with three layers of monitored drift tubes,
complemented by cathode-strip chambers in the forward
region, where the background is highest. The muon trigger
system covers the range jηj < 2.4 with resistive-plate
chambers in the barrel, and thin-gap chambers in the
endcap regions.
Interesting events are selected by the first-level trigger

system implemented in custom hardware, followed by
selections made by algorithms implemented in software
in the high-level trigger [43]. The first-level trigger accepts
events from the 40 MHz bunch crossings at a rate below
100 kHz, which the high-level trigger reduces in order to
record events to disk at about 1 kHz.
An extensive software suite [44] is used in data simu-

lation, in the reconstruction and analysis of real and
simulated data, in detector operations, and in the trigger
and data acquisition systems of the experiment.

III. DATA AND SIMULATED SAMPLES

A. Data sample

This analysis is performed in LHC proton–proton ðppÞ
collision data at

ffiffiffi
s

p
¼ 13 TeV collected between 2016 and

2018. Only data collected during stable beam conditions
are used, with all relevant detector systems functional [45],
corresponding to an integrated luminosity of 126 fb−1.
During 2016 data taking, a fraction of the data (8.3 fb−1)
was affected by an inefficiency in the online primary vertex
reconstruction, which reduced the efficiency of the b-
tagging algorithms in the trigger; those events were not
retained for further analysis, resulting in an integrated
luminosity of 24.6 fb−1 for the 2016 dataset. The integrated
luminosities of the 2017 and 2018 datasets are 43.7 fb−1

and 57.7 fb−1, respectively.

The analysis uses events that satisfy either of two types
of trigger signatures, each with different requirements on
the number of jets and their b-tagging status [46]. The jets
used are reconstructed with the anti-kt algorithm [47,48],
with a radius parameter of R ¼ 0.4. The b-tagging is
performed at the trigger level with the MV2c20 algorithm
in 2016 and the MV2c10 algorithm in 2017 and 2018 [46],
with a range of b-jet identification efficiency operating
points from 40% to 70% (as calculated from simulated tt̄
samples.) The first of the two trigger signatures used for
selecting bb̄bb̄ events requires two b-jets plus one addi-
tional jet (“2b1j”), while the second requires two b-jets plus
two additional jets (“2b2j”). The minimum transverse
energy (ET) requirement on the jets is 35 GeV for all jets
used in the 2b2j trigger. In the 2b1j trigger, the b-tagged
jets must have ET > 55 GeV, while the requirement on the
minimum ET of the additional jet is between 100 and
150 GeV, depending on the year of data taking.

B. Simulated samples

Monte Carlo (MC) simulation is used for the modeling of
signal events, as well as to produce event samples of
background processes for cross-checks and validation
studies. The Higgs boson mass is set to 125 GeV in the
simulation. All samples were processed by the ATLAS
simulation framework [49] and the detector response
was simulated with Geant4 [50].
The ggF signal process was simulated using the POWHEG

BOX v2 generator [51–53] at NLO, including finite top-
quark-mass effects, using the PDF4LHC15 [54] parton
distribution function (PDF) set. Parton showers and hadro-
nization were simulated with PYTHIA 8.244 [55] with the A14
set of tuned parameters [56] and the NNPDF2.3LO PDF set
[57]. The SM ggF HH cross section was taken as σggF ¼
31.05 fb, calculated at NNLO including finite top-quark-
mass effects [11]. Signal samples for the ggF process were
generated explicitly for coupling modifier values of κλ ¼ 1
and 10. A reweighting method is used to obtain a ggF signal
sample at each κλ value, as described in Ref. [58]: scale
factors are derived as a function of κλ in bins of the
generator-level invariant mass of the HH system by per-
forming a linear combination of generator-level samples at
three different κλ values (κλ ¼ 0, 1, and 20). The κλ ¼ 10
ggF signal sample is used to validate the derived scale
factors; this generated sample and the signal sample obtained
from the reweighting method are found to agree within the
statistical precision of the simulated sample. Additional
generator-level ggF HH signal samples without parton
showering were produced with POWHEG BOX v2 for the
κλ ¼ 0 and 20 coupling modifier configurations to provide a
basis for the κλ reweighting, along with the SM ggF sample.
For the reweighted ggF signal, the NNLO cross section as a
function of κλ is taken from Ref. [11]. In order to assess
parton showering uncertainties, alternative ggF samples
were generated using the POWHEG BOX v2 generator at
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NLO with the PDF4LHC15 PDF set, interfaced to Herwig 7.1.6

[59] for parton showering and hadronization using the Herwig

7.1-default set of tuned parameters [60] and MMHT2014LO

PDF set [61].
To extract SMEFT coefficient constraints, parton-level

ggF HH samples were generated with MadGraph5_aMC@NLO

[62–64] with the SMEFT@NLOmodel [65] for a variety of
SMEFT coefficients. A finely spaced multidimensional
grid of signal samples was obtained using a LO-derived
reweighting procedure in the generator-level invariant mass
of the HH system; this procedure is similar to that used to
obtain κλ variations for the ggF signal, as described above.
To extract HEFT coefficient constraints, a similar NLO-
derived reweighting procedure was applied to the simulated
reconstruction-level ggF signal sample to produce a variety
of HEFT signal scenarios, including the seven benchmark
scenarios defined in Sec. I, following the prescription
outlined in Refs. [66,67]. Additional K-factors were
applied to the SMEFT samples; these K-factors were
derived using the ratio of the NLO cross section to the
LO cross section at the equivalent HEFT point, as obtained
using the HEFT to SMEFT translation from Ref. [24].3

The VBF signal process was simulated using MadGraph

2.7.3 [63] at LO with the NNPDF3.0NLO PDF set [68],
interfaced with PYTHIA 8.244 for parton showering and
hadronization using the A14 set of tuned parameters and
NNPDF2.3LO PDF set. Signal samples for the VBF process
were generated explicitly for coupling modifier values
of ðκλ; κ2V; κVÞ ¼ ð1; 1; 1Þ; ð1; 1.5; 1Þ; ð2; 1; 1Þ; ð10; 1; 1Þ;
ð1; 1; 0.5Þ; ð−5; 1; 0.5Þ; ð0; 1; 1Þ; ð1; 0; 1Þ, and (1,3,1). A
linear combination of the first six of the listed samples
is used to derive distributions for a finer granularity of κ2V
values, following a technique used previously to generate
κλ distributions [69]. The specific basis of six samples
utilized is chosen to avoid large statistical uncertainties in
the reweighted signal samples resulting from sparsely
populated areas of kinematic phase space. The generated
VBF signal samples not included in the linear combination
basis—ðκλ; κ2V; κVÞ ¼ ð0; 1; 1Þ; ð1; 0; 1Þ, and (1,3,1)—
were used to validate the performance of the combination
method. These generated samples and the corresponding
signal samples obtained from the combination method
were found to agree within the statistical precision of
the simulated samples. The cross section for the VBF HH
process, evaluated at N3LO in QCD, is 1.73 fb in the
SM [12,70–72]. For the reweighted VBF signal points, the
N3LO to LO cross section ratio at the SM value is
calculated, and this factor is applied to the cross sections
at each κλ, κ2V , and κV point. In order to assess parton
showering uncertainties, alternative LO samples were
generated using MadGraph 2.7.3 with the NNPDF3.0NLO

PDF set, interfaced to Herwig 7.0.4 with the Herwig 7.1-default
set of tuned parameters and MMHT2014LO PDF set for
parton showering and hadronization.
Top-quark pair production (tt̄) and multijet background

processes were simulated in order to validate the back-
ground modeling procedure. The tt̄ sample was simulated
at NLO in αs using POWHEG BOX v2 [73]. Parton showering,
hadronization, and the underlying event were modeled
using PYTHIA 8.230. The matrix element calculation uses
NNPDF3.0NLO as the PDF set, while the parton shower and
underlying-event modeling uses NNPDF2.3LO and the A14
set of tuned parameters. The damping parameter hdamp,
which effectively regulates radiation at high pT, was set to
1.5 times the top quark’s mass. The tt̄ simulation is
normalized using the value of the inclusive cross section
calculated with Top++ 2.0 [74,75]. This accounts for NNLO
corrections in αs, including next-to-next-to-leading loga-
rithmic (NNLL) resummation of soft gluon terms. The
multijet background samples were modeled using PYTHIA

8.235. This simulates pure QCD 2-to-2 interactions at LO in
αs. Events were showered using the parton shower native to
PYTHIA, which includes radiation and splitting that can
result in additional jets. The A14 set of tuned parameters
and the NNPDF2.3LO PDF set were used.
Other background processes, such as SM Higgs boson,

HH (in other final states) and electroweak diboson pro-
duction, have been estimated to give negligible contribu-
tions to the selected event yields and are therefore not
included.
The effect of multiple interactions in the same and

neighboring bunch crossings (pile-up) was modeled by
overlaying each simulated hard-scattering event with
inelastic pp events generated with PYTHIA 8.186 using the
NNPDF2.3LO PDF set and the A3 set of tuned parameters
[76]. Additionally, for all HH signal samples, heavy-flavor
decays were modeled using EvtGen 1.7.0 [77].

IV. OBJECT RECONSTRUCTION

Primary vertices from pp interactions are reconstructed
[78] using at least two charged-particle tracks with trans-
verse momentum (pT) above 500 MeV measured with the
ID. The vertex with the largest sum of squared track
momenta (

P
p2
T) is taken as the hard-scatter primary vertex.

Hadronic jets are reconstructed using the anti-kt algorithm
with radius parameter R ¼ 0.4. The jet clustering uses
particle-flow objects as inputs [79]. Particle-flow objects
are charged-particle tracks matched to the hard-scatter vertex
and calorimeter energy clusters after applying an energy
subtraction algorithm that removes the calorimeter deposits
associated with good-quality tracks from any vertex. The
tracking information helps to improve the energy resolution
of the calorimeter clusters and reduce the impact from
pile-up. The momenta of reconstructed jets are calibrated
in a multistep procedure [80]. Jets with pT < 60 GeV and

3Variations in the ctG Wilson coefficient were neglected when
calculating K-factors because the corresponding chromomag-
netic operator does not appear at LO within HEFT.
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jηj < 2.4must also satisfy a requirement based on the output
of the multivariate “jet vertex tagger” (JVT) algorithm [81],
which is used to identify and reject jets in which much of the
energy originates from pile-up interactions. Correction
factors are applied to the simulated events to compensate
for differences between the JVT efficiencies in data and
simulation. In theHH → bb̄bb̄ analysis, jets are discarded if
they fail the “Tight” JVTworking point, corresponding to an
average efficiency of 96% for jets from the hard-scatter
vertex.
Jets with radius parameter R ¼ 0.4 are also reconstructed

from topological clusters of energy deposits in the calo-
rimeter [82] and calibrated in the same way as the jets
reconstructed from particle-flow objects. These jets are
used exclusively for the purpose of applying quality criteria
to identify events which are consistent with noise in the
calorimeter or noncollision background [83]. Events con-
taining at least one such jet with pT > 20 GeV, satisfying
the JVT requirement, but not these quality criteria, are
rejected.
The identification of jets originating from b-quarks is

performed by the DL1r algorithm [84], which is applied to
all jets with jηj < 2.5. DL1r is based on a multivariate
classification technique combining information from the
impact parameters of ID tracks, the presence of displaced
secondary vertices, and the reconstructed flight paths of
b- and c-hadrons inside the jet. The DL1r working point
used in the HH → bb̄bb̄ analysis is the one that gives 77%
efficiency for jets associated with true b-hadrons in simu-
lated tt̄ events. At this working point, the light-jet (charm-
jet) rejection measured in tt̄ simulation is about a factor of
130 (4.9). The calibration of the DL1r algorithm is per-
formed separately for each jet type [85,86] and correction
factors are derived and applied to the simulated samples to
compensate for differences between the b-tagging efficien-
cies in data and simulation.
Muons are reconstructed by matching ID tracks with

either MS tracks or aligned individual hits in the MS and
performing a combined track fit [87]. They are required to
have pT > 4 GeV and jηj < 2.5, and to satisfy “Medium”
identification criteria based on track-quality variables.
Muons are used only to apply energy corrections to jets.
A momentum correction is applied to b-tagged jets to

account for energy lost to soft out-of-cone radiation and to
muons and neutrinos in semileptonic b-hadron decays. This
correction follows the procedure used in Ref. [88] and
consists of two steps. First, a search is performed for muons
located near the jet which fall within a cone of variable size
ΔRðμ; jetÞ < min ð0.4; 0.04þ 10=pμ

T GeVÞ around the jet
axis. If a muon is found, its four-momentum is added to that
of the jet, and the energy deposited in the calorimeter by the
muon is subtracted from the jet to avoid double counting;
this is computed according to the description in Ref. [89].
In the second step, a global scale factor is applied to each
b-tagged jet according to its pT and whether or not it has a

muon associated with it. These scale factors are derived
from simulation.

V. ANALYSIS SELECTION AND
CATEGORIZATION

The analysis utilizes a set of criteria to select HH →
bb̄bb̄ candidate events, including dedicated requirements to
separate events into orthogonal ggF and VBF signal regions.
“Forward” and “central” jets are used with the following
selection criteria:

(i) central jets: jηj < 2.5 and pT > 40 GeV; and
(ii) forward jets: 2.5 < jηj < 4.5 and pT > 30 GeV.
An initial “preselection” is applied to all events, which

requires at least four central jets with pT > 40 GeV, at least
two of which are b-tagged. As described in Sec. III, the
events considered in this analysis are selected online through
the 2b2j or 2b1j trigger signatures. In order to simplify the
modeling of trigger efficiencies, a further selection is applied
using offline kinematic quantities. Events are selected if they
have a leading4 jet with pT > 170 GeV, a third leading jet
with pT > 70 GeV, and pass the 2b1j trigger, or if they fail
either of the two jet-pT requirements and pass the 2b2j
trigger. This selection step retains about 90% of signal
efficiency, and it enables the reliable calculation of simu-
lation-to-data correction factors for estimating the trigger
efficiency in the remaining HH → bb̄bb̄ signal events,
depending on which of the above two trigger classes they
belong to.
Events passing the above preselection are required to

contain at least four central jets passing the b-tagging
requirement outlined in Sec. IV. The four highest-pT
b-tagged jets are chosen to reconstruct the decays of the
two Higgs bosons. In about 75% of simulated signal events
reaching this selection stage, these four jets can be matched
one-to-one (withinΔR < 0.3) to the four b-quarks from the
decays of the Higgs bosons. In signal events where this
matching fails, one of the b-quarks from the Higgs boson
decays typically produces a jet that is outside the analysis
acceptance.
From the four selected b-tagged jets, there are three

possible combinatorial pairings to form the two Higgs boson
candidates. Of those three configurations, the analysis
selects the one in which the higher-pT jet pair has the
smallest ΔR separation. In the simulated samples with SM
coupling values, for which the analysis was mainly opti-
mized, this method gives the correct pairing in around 90%
of those signal events in which the four b-tagged jets are
correctly matched to the b-quarks from the decays of the
Higgs bosons. While the pairing accuracy drops for values
of the coupling modifiers κλ and κ2V that result in softer pT
spectra for the produced Higgs bosons, this pairing method

4In this document, terms like “leading,” “subleading” etc
for physics objects refer to the ordering of these objects in
decreasing pT.
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leads to a smoothly varying distribution of the expected
background in the plane of the invariant masses of the two
Higgs boson candidates, which facilitates the data-driven
background estimation described in Sec. VI.
Events are then subjected to additional selections

designed to separate out those consistent with the VBF
production mode. For this, events must contain at least two
additional jets, central or forward; b-tagged jets are
excluded. The two jets forming the pair with the largest
invariant mass (mjj) are chosen as the “VBF jets.” The VBF
jet pair is required to satisfy mjj > 1 TeV, and the pseu-
dorapidity separation between the two jets, jΔηjjj, must
satisfy jΔηjjj > 3. Lastly, the transverse component of the
momentum vector sum of the two VBF jets and the four jets
forming the Higgs boson candidates is required to be less
than 65 GeV. Events satisfying the above criteria enter the
VBF signal region, while those failing to satisfy any of
these criteria are considered further in the ggF signal
region.
Events satisfying either the ggF or VBF selections are

required to satisfy additional selection criteria designed to
reduce the background and improve the analysis sensitivity.
In order to suppress the tt̄ background, a top-veto dis-
criminant xWt is defined as:

xWt ¼min

2

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"
mjj −mW

0.1mjj

#
2

þ
"
mjjb −mt

0.1mjjb

#
2

s 3

5; ð2Þ

where mW ¼ 80.4 GeV and mt ¼ 172.5 GeV are the
nominal W boson and top quark masses, and mjj and
mjjb are the invariant masses of W boson and top quark
candidates formed from jet combinations in each event. The
“minimum” refers to the minimum value from all possible
jet combinations (of one b-tagged jet and two additional
untagged jets) that would give a W boson candidate and a
corresponding top candidate. The factor of 0.1 in the
denominators is chosen to approximate the experimental
dijet mass resolution. The W boson candidates are formed
from any pair of central jets in the event and the top quark
candidates are then reconstructed by pairing the W boson
candidates with any remaining b-tagged Higgs boson
candidate jets. The xWt discriminant is designed to quantify
the likelihood that an event contains a hadronic top quark
decay. Events with xWt < 1.5 are rejected. This reduces the
tt̄ background by a factor of about 2 in simulated events, for
a small loss of signal efficiency, of around 15%, and a
similar reduction in the non-tt̄, multijet background.
In order to further reduce the overall background

contamination, events in the ggF signal region are also
required to have reconstructed Higgs bosons that satisfy a
pseudorapidity separation jΔηHHj < 1.5. No such require-
ment is imposed in the VBF signal region, since SM VBF
HH signal events tend to have a larger jΔηHHj.

A final analysis selection criterion to test the compat-
ibility of events with the HH decay is applied in both the
ggF and VBF selections. A discriminant XHH is defined as:

XHH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"
mH1−124GeV

0.1mH1

#
2

þ
"
mH2−117GeV

0.1mH2

#
2

s

; ð3Þ

where mH1 and mH2 are the masses of the leading and
subleading reconstructed Higgs boson candidates respec-
tively. The values of 124 GeV and 117 GeV in the XHH
definition are chosen in accord with the centers of the mH1

and mH2 distributions for correctly paired signal events
from simulation. Events are required to have XHH < 1.6 to
be included in the signal region (SR) of the analysis.
Both the ggF and VBF signal regions are subdivided into

a number of orthogonal categories in order to better isolate
the HH signal and improve the analysis sensitivity. The
XHH and jΔηHHj quantities are used to define six orthogonal
ggF categories. The categories are defined by two intervals
in XHH, with boundaries at 0, 0.95, and 1.6, and three in
jΔηHHj, with boundaries at 0, 0.5, 1, and 1.5. In the VBF
signal region, two categories are defined using the jΔηHHj
quantity, with the dividing boundary at jΔηHHj ¼ 1.5. The
jΔηHHj < 1.5 category is more sensitive to VBF signals
with non-SM couplings, while the jΔηHHj > 1.5 category is
more sensitive to SM VBF production.
The reconstructed invariant mass of the Higgs boson

candidate pair, mHH, is used as the discriminating variable
for all analysis regions and categories when extracting
results, as detailed in Sec. VIII. The mHH distribution is
found to have significant separation power between back-
ground and signal, for all the different values of coupling
modifiers. The binning of the mHH distributions may vary
between categories and is chosen in order to both maintain
discrimination power and limit the expected statistical
uncertainty in each bin to less than approximately 30%.
This 30% limit ensures that the assumptions used in the
statistical procedure, outlined in Sec. VIII, are satisfied. In
the VBF signal region, only events with mHH > 400 GeV
are considered, as the background in the lower mHH region
was found to be inadequately modeled by the data-driven
method described in Sec. VI in validation studies with
control data samples. For the ggF signal region, no require-
ments on mHH are applied.
All the selection steps of the analysis are summarized in

Fig. 3. The yields in the data and the simulated signal
samples for some typical coupling values are shown in
Table III. This sample of data events is referred to as 4b
events hereafter.

VI. BACKGROUND MODELING

After the selection described above, about 90% of
the background events come from multijet processes
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(excluding top quark production), with the approximately
10% remainder almost entirely composed of tt̄ events. This
background composition was determined by applying the
full event selection to simulated samples of the various
processes and comparing the yields with the total back-
ground estimate in the SR; it is purely meant to be
indicative and is not used for deriving any results. The
background is modeled using the fully data-driven tech-
nique described below.

The background estimation makes use of an alternative
set of events, which pass the same b-jet triggers and satisfy
all the same selection criteria as the 4b events, with
one difference: they are required to contain exactly two
b-tagged jets. This sample, referred to hereafter as “2b,” has
about two orders of magnitude more events than the 4b
sample, hence the presence of any HH → bb̄bb̄ signal in it
is negligible, making it suitable for the background
estimation. The jets selected to form the two Higgs boson

TABLE III. The yields of data and various example ggF and VBF HH signal models at each step of the analysis
selection. The “Preselection” entry denotes an initial selection requiring at least four jets with pT > 40 GeV, at least
two of which are b-tagged. Events which satisfy the “VBF selection” requirements are considered as part of the VBF
signal region of the analysis, while the rest are considered for the ggF signal region. The signal yields are taken from
simulation and are normalized by their theoretical cross sections and the integrated luminosity of 126 fb−1.
Corrections for differences in the b-tagging efficiency and trigger acceptance between data and simulation are
applied starting from the “Trigger class” requirement.

Data
ggF signal VBF signal

SM κλ ¼ 10 SM κ2V ¼ 0

Common preselection

Preselection 5.70 × 108 530 7300 22 630
Trigger class 2.49 × 108 380 5300 16 410

ggF selection

Fail VBF selection 2.46 × 108 380 5200 14 330
At least 4 b-tagged central jets 1.89 × 106 86 1000 1.9 65
jΔηHHj < 1.5 1.03 × 106 72 850 0.94 46
xWt > 1.5 7.51 × 105 60 570 0.74 43
XHH < 1.6 (ggF signal region) 1.62 × 104 29 180 0.24 23

VBF selection

Pass VBF selection 3.30 × 106 5.2 81 2.2 71
At least 4 b-tagged central jets 2.71 × 104 1.1 15 0.74 28
xWt > 1.5 2.18 × 104 1.0 11 0.67 26
XHH < 1.6 5.02 × 102 0.48 3.1 0.33 17
mHH > 400 GeV (VBF signal region) 3.57 × 102 0.43 1.8 0.30 16

FIG. 3. A flowchart summarizing the nine selection criteria used for the VBF and ggF analysis selections. Events must satisfy selection
criteria 1–3 in order to be considered for either analysis signal region. Events failing to satisfy any of the selection criteria 4–6 are
considered for inclusion in the ggF signal region, while those satisfying selection criteria 4–6 are considered for the VBF signal region.
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candidates in the 2b events are the two b-tagged jets and the
two untagged central jets with the highest pT (excluding the
VBF jets in the VBF categories).
The kinematic properties of the 2b and 4b events are not

expected to be identical, partly due to different processes
contributing to the two samples, but also due to differences
in the trigger acceptance and because the probability of
tagging a b-jet varies as a function of jet pT and η.

Therefore, a reweighting function is required, which, when
applied to the 2b events, maps their kinematic distributions
onto the corresponding 4b distributions. This function is
derived using the 2b and 4b events in a control region (CR)
surrounding the SR in the reconstructed (mH1, mH2) plane
and then applied to the 2b events in the SR to produce the
background estimate. The “inner edge” of the CR is defined
by XHH ¼ 1.6 and the “outer edge” by the circle:

RCR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmH1 − 1.05 · 124 GeVÞ2 þ ðmH2 − 1.05 · 117 GeVÞ2

q
¼ 45 GeV: ð4Þ

The shift of the center of the above circle by a factor of
1.05, relative to XHH ¼ 0, is found to be the optimal trade-
off between having a good number of events outside of the
SR and avoiding the low mH1=mH2 regions, where the
differences between 2b and 4b kinematic distributions are
larger. The CR is split into four roughly equal directional
quadrants, defined by 45° and 135° lines passing through
the SR center, (124, 117) GeV. The four quadrants are
given labels based on compass directions: the upper
quadrant QN, the lower QS, the left QW, and the right
QE. The above lines also define four quadrants, with the
same names as above, in the SR. Events in CR QN and QS,
hereafter referred to as CR1, are used to derive the
reweighting function for the nominal background estimate,
while an alternative reweighting function, derived from the
CR events in QE and QW (referred to hereafter as CR2) is
used to define a systematic uncertainty related to the
reweighting function interpolation into the SR, as detailed
in Sec. VII. The boundaries of the SR, CR1, and CR2 in
the reconstructed (mH1, mH2) plane are shown in Fig. 4.
The horizontal and vertical bands of lower event density

around 80 GeV visible in these plots are caused by the xWt
selection criterion. For comparison, the distributions of the
simulated ggF and VBF HH signals in the reconstructed
(mH1, mH2) plane are presented in Fig. 5.
The reweighting function has the form:

wðx⃗Þ ¼ p4bðx⃗Þ
p2bðx⃗Þ

; ð5Þ

where p4bðx⃗Þ and p2bðx⃗Þ are the probability density
functions for 4b and 2b data, respectively, over a set of
kinematic variables x⃗. The computation of wðx⃗Þ is a density
ratio estimation problem, for which a variety of approaches
exist. The method employed in this analysis is modified
from Refs. [90,91] and makes use of an artificial neural
network (NN). This NN is trained on 2b and 4b CR1 data
(or CR2 data, for determining systematic uncertainties, as
described Sec. VII). The training minimizes the following
loss function:

(a) (b)

FIG. 4. The mass planes of the reconstructed Higgs boson candidates for the (a) ggF and (b) VBF signal regions of the analysis, shown
for the 4b data events. In (a), the analysis selection up to step 8 (as outlined in Fig. 3) of the ggF selection has been applied, while in (b),
the analysis selection up to step 7 of the VBF selection has been applied. The continuous red line describes the signal region (SR), the
dashed line describes control region 1 (CR1) and the dotted line describes control region 2 (CR2).
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Lðwðx⃗ÞÞ ¼
Z

dx⃗
$ ffiffiffiffiffiffiffiffiffiffi

wðx⃗Þ
p

p2bðx⃗Þ þ
1ffiffiffiffiffiffiffiffiffiffi
wðx⃗Þ

p p4bðx⃗Þ
%
: ð6Þ

The function in Eq. (5) minimizes the loss function in
Eq. (6) by equalizing the contributions from the two terms.
The kinematic variables used to make up x⃗ are listed in
Table IV for the ggF and VBF signal regions; they are
among those kinematic variables that exhibit larger
differences between the 2b and 4b events. The NN used
in the ggF signal region has three densely connected hidden
layers of 50 nodes, each with a rectified linear unit
activation function [92], and a single-node linear output.
A similar architecture is chosen for the NN used in the VBF
signal region, except that only 20 nodes are used in each of
the three hidden layers. This reflects the fact that the 2b and
4b sample sizes in the VBF signal region are nearly two
orders of magnitude smaller than the corresponding ones in
the ggF signal region. This is also the reason behind the
choice to perform the NN training in the VBF signal region
for all data-taking years together, with the year index as a
one-hot encoded input feature.5 For the ggF signal region, a
dedicated reweighting is derived for each year separately,
which, thanks to the adequate sample sizes, deals better with
the different levels of disparity between 2b and 4b dis-
tributions, due to the differences in the trigger conditions
from year to year. Finally, in order to ensure that there are

adequate numbers of 4b events for both the ggF and VBF
NN trainings, these trainings are performed inclusively,
before separating the events into the jΔηHHj categories (the
CR events have XHH > 1.6, hence it would not be possible
to separate them into the XHH categories defined for the SR
events). Both jΔηHHj and XHH are found to be insensitive to
the kinematic reweighting, and so the inclusive training is
not expected to introduce any additional bias when sepa-
rating the events into the various categories.
In order to estimate and mitigate the impact of the

varying initial conditions and limited size of the training
samples on the NN training, the deep ensembles technique
[93] is used together with a bootstrap resampling [94] of
the training data. This entails constructing a set of training
datasets by sampling with replacement from the original
dataset. In this analysis, this is approximated by the usage
of different random training weights, following a Poisson
distribution with μ ¼ 1, for each event in each training.
The NN is trained independently on each element of this
set, using different initial conditions each time. This results
in an ensemble of reweighting functions. Each reweighting
function is further multiplied by a normalization factor,
such that the number of reweighted 2b events is equal to
the number of 4b events in the region where the NN is
trained. In this analysis, the ensembles comprise 100
reweighting functions each, hence 100 weights are calcu-
lated for each 2b event in the SR. The background estimate
uses the mean of these weights for each event, and the
variation of the background predictions from the ensemble
of reweighting functions is used to estimate a systematic
uncertainty for the stability of the NN training procedure,
as described in Sec. VII.

(a) (b)

FIG. 5. The mass planes of the reconstructed Higgs boson candidates for the (a) simulated ggF HH signal in the ggF signal region
and (b) simulated VBF HH signal in the VBF signal region of the analysis. In (a), the analysis selection up to step 8
(as outlined in Fig. 3) of the ggF selection has been applied, while in (b), the analysis selection up to step 7 of the VBF selection
has been applied. The continuous red line describes the signal region (SR), the dashed line describes control region 1 (CR1) and the
dotted line describes control region 2 (CR2).

5One-hot encoding is a standard technique in machine learn-
ing. For example, for the data-taking years in the VBF reweight-
ing, instead of presenting the year numbers as input features to the
NN, one-hot encoding uses three input features: (1, 0, 0) for 2016,
(0, 1, 0) for 2017, and (0, 0, 1) for 2018.
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The effect of the above reweighting procedure in CR1,
where the reweighting function is derived, is illustrated in
Fig. 6 for the mHH distribution of the ggF-selected events
and in Fig. 7 for the xWt distribution of the VBF-selected
events. The reweighted “2b” distributions agree with the
corresponding “4b” distributions to within about 10% for
most of the phase space, with some larger deviations
observed in bins near the tails of the distributions where

fewer data events are available. A large number of
additional kinematic variables were also studied before
and after applying the reweighting in order to validate
the performance of the NN. For all variables, the level of
agreement, as quantified by the χ2 metric, either improves
after the reweighting or, for variables where the “2b”
and “4b” distributions are already similar, changes
only slightly.

TABLE IV. The set of input variables used for the 2b to 4b reweighting in the ggF and VBF channels respectively.

ggF VBF

(1) logðpTÞ of the 2nd leading Higgs boson
candidate jet.

(2) logðpTÞ of the 4th leading Higgs boson
candidate jet.

(3) logðΔRÞ between the closest two Higgs boson
candidate jets.

(4) logðΔRÞ between the other two Higgs boson
candidate jets.

(5) Average absolute η value of the Higgs boson
candidate jets.

(6) logðpT) of the di-Higgs system.
(7) ΔR between the two Higgs boson candidates.
(8) Δϕ between jets in the leading Higgs boson

candidate.
(9) Δϕ between jets in the subleading Higgs boson

candidate.
(10) logðxWtÞ.
(11) Number of jets in the event.
(12) Trigger class index as one-hot encoder.

(1) Maximum dijet mass from the possible pairings of
he four Higgs boson candidate jets.

(2) Minimum dijet mass from the possible pairings of
the four Higgs boson candidate jets.

(3) Energy of the leading Higgs boson candidate.
(4) Energy of the subleading Higgs boson candidate.
(5) Second-smallest ΔR between the jets in the leading

Higgs boson candidate (from the three possible
pairings for the leading Higgs candidate).

(6) Average absolute η value of the four Higgs boson
candidate jets.

(7) logðxWtÞ.
(8) Trigger class index as one-hot encoder.
(9) Year index as one-hot encoder (for years inclusive

training).

(a) (b)

FIG. 6. Comparison of the 2b (yellow histogram with hatching) and 4b (black points with error bars) mHH distributions, for events in
control region 1 (CR1) of the ggF signal region from the 2018 data: (a) before the kinematic reweighting of the 2b events, with only a
normalization factor applied; and (b) after the kinematic reweighting of the 2b events. The error bars indicate the statistical uncertainty of
the 4b data, while the hatching indicates the statistical uncertainty of the 2b data. The latter is only the Poisson uncertainty of the 2b data,
in (a), while in (b), it also includes the uncertainty from the bootstrap procedure described in Sec. VII. The hatching in (a) is narrower
than the line width of the plotted histogram.
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The background modeling procedure was tested and
found to produce good results in a large simulated tt̄ sample
and a much smaller sample of simulated (non-tt̄) multijet
events in the SR. The procedure was also tested in several
control data samples orthogonal to the nominal event
selection, where the presence of anyHH signal is negligible
and the 4b events in the corresponding SR can be compared
with the reweighted SR 2b events without any bias. These
samples, summarized in Table V, include: (a) events sat-
isfying all the 2b=4b ggF selection criteria, with the
difference that the jΔ ηHHj < 1.5 cut is inverted; (b) events
satisfying all the 2b=4b selection criteria, except that the
center of the SR (and hence also of CR1 and CR2) is shifted,

to avoid any overlap with the nominal SR; and (c) events
that satisfy all the same 4b selection criteria, except that, in
terms of b-tagging, they contain exactly three b-tagged jets,
and all other jets fail a looser working point of the b-tagging
algorithm (one that gives 85% efficiency for b-jets in
simulated tt̄ events); from those jets, the one with the
highest pT is chosen as the fourth jet. The latter sample,
hereafter referred to as 3b1f, has about one order of
magnitude more events than the 4b sample and a negligible
amount ofHH signal; hence it is used to derive a nonclosure
systematic uncertainty for the reweighting procedure, as
discussed in Sec. VII. No significant background modeling
nonclosure was observed in the other control data samples.

(a) (b)

FIG. 7. Comparison of the 2b (yellow histogram with hatching) and 4b (black points with error bars) xWt distributions, for events in
control region 1 (CR1) of the VBF signal region: (a) before the kinematic reweighting of the 2b events, with only a normalization factor
applied; and (b) after the kinematic reweighting of the 2b events. The error bars indicate the statistical uncertainty on the 4b data, while
the hatching indicates the statistical uncertainty on the 2b data. The latter is only the Poisson uncertainty on the 2b data, in (a), while in
(b), it also includes the uncertainty from the bootstrap procedure described in Sec. VII.

TABLE V. A summary of all the data samples used in the analysis. For each control sample, the variations from the nominal analysis
are noted explicitly.

Data Sample Definition Usage

Signal Region (SR) Events with XHH < 1.6 Defines signal region in the mH1–mH2 plane
Control Region (CR) Events with XHH > 1.6 and RCR < 45 GeV Defines control region in the mH1–mH2 plane for

background estimation (ggF and VBF)
Shifted validation
regions

Shift the center of the SR in the mH1–mH2 plane to
avoid overlap with the nominal SR

Background estimation validation (ggF only)

4b Events with at least 4b-tagged central jets Final analysis sample (ggF and VBF)
2b Events with exactly 2b-tagged central jets plus at least

two additional untagged central jets
Background estimation (ggF and VBF)

3b1f Events with exactly 3b-tagged central jets plus at least
one central jet failing a looser b-tagging requirement

Background estimation validation (ggF and VBF),
additional background modeling uncertainty

(ggF only)

Reverse jΔηHHj 2b and 4b events with jΔηHHj > 1.5 Background estimation validation (ggF only)
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VII. SYSTEMATIC UNCERTAINTIES

The uncertainties with the greatest impact on the analysis
sensitivity are those arising from the data-driven back-
ground estimate described in Sec. VI. These uncertainties
have two main sources: the limited sample sizes in the CR
and SR, and physical differences between the CR, where
the 2b reweighting function is derived, and the SR, where it
is applied.
As described in Sec. VI, the ensemble of 100 reweight-

ing functions results in 100 separate background predic-
tions. An mHH histogram can be constructed from each of
these predictions, and the standard deviation of the pre-
dictions in each bin is taken as the bootstrap uncertainty.
The uncertainty is treated as uncorrelated across mHH bins.
An additional statistical uncertainty results from the

limited sample size of the 2b SR dataset in which the
trained background reweighting network is applied to
obtain the final background estimate. A Poisson uncertainty
is taken for eachmHH bin, which is combined in quadrature
with the bootstrap uncertainty described above.
For the background estimate, the uncertainty component

related to the kinematic differences between the SR and
CR1 is evaluated by using alternative predictions from the
CR2 region. Four alternative background estimates are
produced by applying the CR1-derived weights to three of
the SR quadrants, and CR2-derived weights to the one
remaining SR quadrant. For example, one alternative
background estimate is obtained by applying CR1-derived
weights to QS, QE, and QW, and CR2-derived weights to
QN. Each of these four background predictions is sym-
metrized around the nominal mHH distribution to construct
a two-sided uncertainty. Since the mHH distribution differs
across the four SR quadrants, substituting the CR2-based
prediction for the CR1-based prediction in each of the four
SR quadrants separately and utilizing a four-component
uncertainty gives the fit model greater flexibility to describe
these mHH variations with finer granularity. In the ggF
signal region, these uncertainties are taken to be uncorre-
lated across the datasets from the three different years. In
both the ggF and VBF signal regions, the uncertainty is
treated as correlated across the analysis categories.
An additional closure uncertainty is estimated by apply-

ing the full background modeling procedure to the 3b1f
sample instead of the 4b sample. The predicted 3b1f mHH
distribution in the various analysis categories is then
compared with the observed 3b1f data in the SR. For
the VBF signal region, no statistically significant difference
between the prediction and observation is found, and hence
no additional uncertainty is applied. For the ggF signal
region, an additional uncertainty is evaluated in each
category from the observed differences between the pre-
dicted and observed 3b1f mHH distributions. For mHH bins
in which the predicted and observed values differ by less
than 1σ, where σ is obtained from all other background
modeling uncertainties combined, no additional uncertainty

is applied. For mHH bins where the predicted and observed
values differ by more than 1σ, the amount beyond 1σ is
averaged with the corresponding amounts in the two
adjacent bins, to limit the impact of statistical fluctuations,
and is symmetrized around the nominal prediction to
construct a two-sided uncertainty. This nonclosure uncer-
tainty has a much smaller impact on the analysis sensitivity
than the other sources of background modeling uncertainty.
Several detector modeling uncertainties are evaluated and

included. These affect only the signal description, as the
background is estimated entirely from data. Uncertainties in
the jet energy scale and resolution, as well as the JVT, are
treated according to the prescription in Refs. [80,81].
Additional uncertainties arising from the correction of the
simulated pile-up distribution are treated according to the
prescription in Ref. [95]. Uncertainties in the b-tagging
efficiency are treated according to the prescription in
Ref. [96]. Uncertainties in the trigger efficiencies are
evaluated from measurements of per-jet online efficiencies
for both jet reconstruction and b-tagging, which are used to
compute event-level uncertainties. These are then applied to
the simulated events as overall weight variations. The
uncertainty in the integrated luminosity used in this analysis
is in the range 2.0%–2.4% for the three years of data taking
and 1.7% for the entire dataset [97], obtained using the
LUCID-2 detector for the primary luminosity measure-
ments [98].
Several sources of theoretical uncertainty affecting the

signal models are considered as described below. Uncer-
tainties due to modeling of the parton shower and underlying
event are evaluated by comparing results between two
generators for these parts of the calculation: the nominal
PYTHIA 8 and the alternative Herwig [7]. This is found to have
an effect of roughly 10% on the ggF and VBF signal
acceptances, and a negligible impact on the shape of the
mHH distributions. The parton showering uncertainty is
derived within each analysis SR category; the uncertainty
is observed to reach approximately 40% for a given
production mode in some categories in which the acceptance
is small for that mode. Uncertainties in the matrix element
calculation are evaluated by raising and lowering the
factorization and renormalization scales used in the gen-
erator by a factor of two, both independently and simulta-
neously. This results in an effect of typically 2% for both
ggF and VBF, with a maximum effect of about 6% in certain
analysis categories. PDF uncertainties are evaluated using
the PDF4LHC_NLO_MC set [54] by calculating the signal
acceptance for each replica and taking the standard
deviation. The magnitude of this uncertainty is typically
found to be less than 1% in both the ggF and VBF signal
acceptances, with a maximum magnitude of approximately
2%. Theoretical uncertainties in the H → bb̄ branching
ratio [14] are included, amounting to an approximately 3.5%
overall uncertainty in the signal normalization. The depend-
ence of the branching ratio uncertainty on κλ is neglected.
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Theoretical uncertainties in the ggF and VBF HH cross
sections arising from uncertainties in the PDF and αs, as well
as the choice of renormalization scheme and the scale of the
top quark’s mass, are taken from Refs. [11,14,99]. The
cross-section uncertainties are included in the derivation of
the upper limits on the ggF, VBF, and combined HH signal
strengths, as well as the likelihood-based constraints on the
values of the κλ and κ2V modifiers, as presented in Sec. VIII.
An additional signal modeling systematic uncertainty is

evaluated for the SMEFT and HEFT measurements. The
mHH spectra of reweighted SMEFT/HEFT signal samples
are compared against explicitly generated samples for a
select number of coefficient variations. A two-component
normalization uncertainty is derived by taking the average
of the relative deviations across the mHH bins in the ranges
of 280 < mHH < 936 GeV and mHH > 936 GeV. The use
of separate components in the low- and high-mHH regions
prevents the level of agreement in the more populated low-
mHH region from overconstraining the uncertainty in the
more sparsely populated high-mHH region.

VIII. RESULTS

The analysis results are obtained using a maximum-
likelihood fit performed in bins of reconstructed mHH. For
the ggF signal region, the fit is performed simultaneously
across the different data-taking years (2016–2018), while
for the VBF signal region, the fit is performed inclusively
on the data from all years.
The likelihood function used to construct the test statistic

has a standard form, consisting of a product of Poisson
distributions for the yields in each bin and constraint
functions for nuisance parameters describing systematic
uncertainties. For uncertainties due to the limited sample
size in data or simulation, the constraint is a Poisson
distribution. For all other systematic uncertainties, the
constraint is a Gaussian distribution. Where systematic
uncertainties are deemed to be uncorrelated, independent
nuisance parameters are introduced. Uncertainties in the
luminosity and signal modeling are treated as fully corre-
lated between the analysis categories and, for ggF, the data-
taking years. Each component of the quadrant-derived
uncertainty covering the kinematic differences between
the SR and CR1 regions is correlated across the data-taking
years for the ggF region. The components are correlated
across analysis categories within the ggF and VBF signal
regions, but not between the ggF and VBF signal regions.
All other uncertainties in the background model are treated
as uncorrelated across the different categories and data-
taking years. The statistical model is implemented using
RooFit [100].
The hypothesis of the presence of a signal is tested

using the profile likelihood ratio [101]. The signal strength
of the combined ggF and VBF signal process, μggFþVBF
ð¼ σggFþVBF=σSMggFþVBFÞ, is chosen as the parameter of
interest (POI) and is a free parameter in the fit. The relative

contributions of the ggF and VBF signals to the total signal
model are fixed to their predicted values. The profile
likelihood ratio takes the following form:

−2Δ ln λðμÞ ¼ −2 ln

 
Lðμ; ˆ̂θÞ
Lðμ̂; θ̂Þ

!

; ð7Þ

where μ is the POI and θ represents the nuisance parameters.
The numerator represents the conditional maximum-like-
lihood fit, in which the nuisance parameters are set to their

profiled values ˆ̂θ for which the likelihood is maximized for a
fixed value of μ. The denominator represents the uncondi-
tional likelihood fit, where both μ and θ are set to the values
which jointly maximize the likelihood, μ̂ and θ̂, respectively.
The observed distributions in mHH, as well as the

predicted background and example signal shapes, are
presented in Fig. 8 for each of the six ggF categories (with
all data-taking years combined, for presentation purposes).
The distributions of the expected background are obtained
using the best-fit values of the nuisance parameters in the fit
to the data with the background-only hypothesis. The
corresponding mHH distributions in the two VBF categories
are shown in Fig. 9. The signal shape for κ2V ¼ 0 in Fig. 9(a)
clearly shows the impact of the divergences in Figs. 2(b)
and 2(c) not canceling out as discussed in Sec. I. While the
deviations from the SM studied in this analysis are below the
level that violates unitarity, this behavior makes the VBF
topology in this analysis particularly sensitive to κ2V . The
observed number of data events, predicted number of
background events, and expected number of signal events
for the SM ggF and VBF signals are summarized for each of
the analysis categories in Table VI.
An upper limit on the combined ggF and VBFHH signal

strength μggFþVBF is computed using the asymptotic for-
mula [101] and based on the CLs method [102]. The
observed (expected) 95% CL upper limit on μggFþVBF is
found to be 5.4 (8.1). The expected upper limits are
obtained using a background-only hypothesis, excluding
a HH signal. The upper limit on the combined μggFþVBF, as
well as upper limits on the individual μggF ð¼ σggF=σSMggFÞ
and μVBFð¼ σVBF=σSMVBFÞ, are summarized in Table VII. For
the individual μggF and μVBF limits, the results are derived
by treating the other production mode (VBF when placing
limits on μggF, and vice-versa) as a background process,
with its normalization only loosely constrained in the fit.
Compared to the previous ATLAS measurement of ggF

HH production in the bb̄bb̄ decay channel (using 27 fb−1
of early Run 2 data) [26], the upper limit on the ggF cross
section is over 50% lower, with approximately 20% of this
improvement arising from advances in analysis techniques
and object reconstruction. Similarly, compared to the
previous ATLAS measurement of VBF HH production
in the bb̄bb̄ decay channel, which used 126 fb−1 of data
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(a) (b)

FIG. 9. Distributions of the reconstructed mHH in data (shown by the black points), the estimated background (shown by the yellow
histograms), in each of the two jΔηHHj categories in the VBF signal region: (a) jΔηHHj < 1.5 and (b) jΔηHHj > 1.5. The hatching shows
the total uncertainty of the background estimate. The distribution of the expected background is obtained using the best-fit values of the
nuisance parameters in the fit to the data with the background-only hypothesis. Distributions for three choices of couplings are shown:
the SM, κλ ¼ 6, and κ2V ¼ 0 (with all other couplings set to their SM values in the last two models), scaled so as to be visible on the plot.
The lower panels show the ratio of the observed data yield to the predicted background in each bin. Events in the overflow bins are
counted in the yields of the final bins.

(a) (b) (c)

(d) (e) (f)

FIG. 8. Distributions of the reconstructed mHH in data (shown by the black points) and the estimated background (shown by the
yellow histograms), in each of the six jΔηHHj; XHH categories in the ggF signal region: (a) jΔηHHj < 0.5, XHH < 0.95;
(b) 0.5 < jΔηHHj < 1.0, XHH < 0.95; (c) jΔηHHj > 1.0, XHH < 0.95; (d) jΔηHHj < 0.5, XHH > 0.95; (e) 0.5 < jΔηHHj < 1.0,
XHH > 0.95; and (f) jΔηHHj > 1.0, XHH > 0.95. The contributions from the different data-taking years are combined in each category
for presentation purposes. The hatching shows the total uncertainty of the background estimate. The distribution of the expected
background is obtained using the best-fit values of the nuisance parameters in the fit to the data with the background-only hypothesis.
Distributions of the SM and κλ ¼ 6 signal models are overlaid, scaled so as to be visible on the plot, and the scaling for each signal model
is the same across the six categories. The lower panels show the ratio of the observed data yield to the predicted background in each bin.
Events in the underflow and overflow bins are counted in the yields of the initial and final bins respectively.
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collected between 2016 and 2018 [27], the upper limit on
the VBF HH cross section is over 75% lower, with this
improvement arising entirely from advances in analysis
technique and object reconstruction.
The total uncertainty in the upper limit of the cross

section is dominated by the uncertainty sources related to
the background modeling procedure and theoretical pre-
dictions. With only the statistical uncertainties of the
reweighted 2b data, observed 4b data, and simulated signal
samples included in the fit, the expected upper limit on
μggFþVBF is found to be 6.0 times the SM prediction.
Including the uncertainty sources resulting from the back-
ground estimation (the bootstrap uncertainty, the uncertainty
from the kinematic differences between the SR and CR1,
and, in the ggF signal region, the 3b1f nonclosure uncer-
tainty), the expected upper limit on μggFþVBF is relaxed to
7.1 times the SM prediction. The further reduction of
sensitivity to the value of 8.1, as quoted in Table VII, is
driven primarily by the uncertainties arising from theoretical
predictions. The relative impact of the various sources of

systematic uncertainty on the expected upper limit on
μggFþVBF is summarized in Table VIII.
Constraints are placed on the κλ and κ2V modifiers using

two different interpretations, the first named the “95% CL”
method and the second named the “profile likelihood ratio”
method. The former uses the signal strength μ as the POI,
while the latter uses the vector of coupling modifiers
κ ¼ ðκλ; κ2VÞ. The 95% CLmethod allows for interpretation
as a traditional search for an arbitrarily normalized set of
signals with different shapes against an estimated back-
ground, while the profile likelihood ratio method allows
for interpretation as to whether the data are compatible with
the specific cross section and shape predictions of the κ
framework. The 95% CL results presented here offer a
consistent comparison with previous ATLAS HH measure-
ments. The constraints obtained from the two interpretations

TABLE VI. The yields in each analysis category of the data, expected background, and expected SM ggF and
VBF signals. The expected background yields are obtained using a fit to the data with the background-only
hypothesis; the quoted uncertainties are the sum in quadrature of all the per-bin systematic uncertainties. The
expected signal yields are obtained from simulation.

Category Data

Expected ggF signal VBF signal

Background SM SM

ggF signal region
jΔηHHj < 0.5, XHH < 0.95 1940 1935( 25 7.0 0.038
jΔηHHj < 0.5, XHH > 0.95 3602 3618( 37 6.5 0.036
0.5 < jΔηHHj < 1.0, XHH < 0.95 1924 1874( 21 5.1 0.037
0.5 < jΔηHHj < 1.0, XHH > 0.95 3540 3492( 35 4.7 0.040
jΔηHHj > 1.0, XHH < 0.95 1880 1739( 22 2.9 0.043
jΔηHHj > 1.0, XHH > 0.95 3285 3212( 37 2.8 0.041

VBF signal region
jΔηHHj < 1.5 116 125.3( 4.4 0.37 0.090
jΔηHHj > 1.5 241 230.6( 5.3 0.06 0.21

TABLE VII. The observed and expected upper limits on the SM
ggF HH production cross section σggF, SM VBF HH production
cross section σVBF, and combined SM ggF and VBF HH
production cross section σggFþVBF at the 95% CL, expressed as
multiples of the corresponding SM cross sections. The expected
values are shown with corresponding one- and two-standard-
deviation error bounds, and they are obtained using a back-
ground-only fit to the data. When extracting the limits on
σggFþVBF, the relative contributions of ggF and VBF production
to the total cross section are fixed to the SM prediction.

Observed
limit −2σ −1σ

Expected
limit þ1σ þ2σ

μggF 5.5 4.4 5.9 8.2 12.4 19.6
μVBF 130 70 100 130 190 280
μggFþVBF 5.4 4.3 5.8 8.1 12.2 19.1

TABLE VIII. Breakdown of the dominant systematic uncer-
tainties. The impact of the uncertainties on the expected upper
limit on μggFþVBF when re-evaluating the profile likelihood ratio
after fixing the nuisance parameter(s) in question to its (their)
best-fit value(s), while all remaining nuisance parameters remain
free to float. The impact is shown in %. Only (groups of)
systematic uncertainties that have an impact of at least 1% are
shown. The impact of each experimental source of systematic
uncertainty described in the text, as well as of all of them together,
is less than 1%.

Source of uncertainty Δμ=μ

Theory uncertainties
Theory uncertainty in signal cross section −9.0%
All other theory uncertainties −1.4%
Background modeling uncertainties
Bootstrap uncertainty −7.1%
CR to SR extrapolation uncertainty −7.5%
3b1f nonclosure uncertainty −2.0%
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are not expected to be identical, as the two strategies employ
slightly different physical assumptions. In the profile like-
lihood ratio interpretation, the signal strength is fixed to the
prediction obtained for a specific coupling modifier con-
figuration, while for the 95% CL interpretation, the signal
strength is allowed to float. The profile likelihood ratio
method utilizes a hypothesis consisting of the predicted
background plus the SM HH signal, while the 95% CL
results utilize a hypothesis containing only the predicted
background and no HH signal. Given the relatively small
size of the SM HH signal compared to the predicted
background, the use of different hypotheses is not expected
to have a significant effect. Additionally, 2σ-level con-
straints are quoted from the profile likelihood ratio inter-
pretation, as opposed to 95% CL constraints.
The 95% CL constraints on κλ and κ2V are obtained by

determining the 95% CL upper limits on the cross section as
a function of these coupling modifiers, μggFþVBFðκλ; κ2VÞ.
Values of the coupling modifiers ðκλ; κ2VÞ are excluded if
the predicted cross section of the signal model obtained with
that configuration is excluded at the 95% CL. The H → bb̄

branching ratio is fixed to the SM prediction in the like-
lihood fit and any dependence on κλ is ignored. Upper limits
on the HH signal strength as a function of κλ and κ2V are
shown in Fig. 10, and the exclusion boundaries are
summarized in Table IX. With the values of the other
modifiers (κV and either κ2V or κλ, respectively) fixed to
their SM value of 1, values of κλ beyond ½−3.9; 11.1# and
values of κ2V beyond ½−0.03; 2.11# are excluded.
Figure 11 shows the 95% CL exclusion limits in the two-

dimensional plane of the κλ–κ2V modifier space.

(a) (b)

FIG. 10. The observed 95% CL exclusion limits as a function of (a) κλ (obtained using the signal strength μggFþVBF as the POI) and
(b) κ2V (obtained using the signal strength μVBF as the POI) from the combined ggF and VBF signal regions, as shown by the solid black
line. In each case, the value of the other modifier is fixed to 1. The blue and yellow bands show respectively the 1σ and 2σ bands around
the expected exclusion limits, which are shown by the dashed black line. The expected exclusion limits are obtained using a fit to the
data with the background-only hypothesis. The dark red line shows in (a) the predicted combined ggF and VBF HH cross section as a
function of κλ and in (b) the predicted VBFHH cross section as a function of κ2V . The dark pink bands surrounding the predicted cross-
section lines indicate the theoretical uncertainty of the cross section, as taken from Ref. [99]. The band in (b) is smaller than the width of
the plotted line.

TABLE IX. The observed and expected constraints on the κλ
and κ2V coupling modifiers at 95% CL. For each modifier, the
constraints were extracted with all other modifiers fixed to the
SM prediction.

Expected constraint Observed constraint

Parameter Lower Upper Lower Upper

κλ −4.6 10.8 −3.9 11.1
κ2V −0.05 2.12 −0.03 2.11

FIG. 11. The observed 95% CL exclusion limit obtained using
the signal strength μggFþVBF as the POI in the two-dimensional κλ
vs κ2V space, obtained from the combined ggF and VBF signal
model, as shown by the solid black line. The blue and yellow
bands show respectively the 1σ and 2σ bands around the expected
exclusion limits, which are shown by the dashed black line. The
star denotes the SM prediction (κλ ¼ κ2V ¼ 1).
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The alternative coupling modifier constraints are
obtained using the profile likelihood ratio interpretation,
with the coupling modifiers κ ¼ ðκλ; κ2VÞ as the POIs,
rather than the signal strength μ:

−2Δ lnLðκÞ ¼ −2 ln
"
Lðκ; ˆ̂θÞ
Lðκ̂; θ̂Þ

#
: ð8Þ

A scan of the profile likelihood ratio is performed as a
function of the coupling modifiers at discrete points to
produce the curves shown in Fig. 12. The best-fit value of
κλ is found to be 6.2 from the profile likelihood scan. The
observed pull of the best-fit κλ value away from the SM

value is due to a slight excess in the observed data in the
ggF signal region, specifically in the low-mHH range. The
particular signal model in which κλ is close to 6 is favored
due to a balance between two competing effects: the mHH
spectrum becomes softer as κλ increases away from the SM,
but the cross section also grows beyond the magnitude of
the excess as κλ increases much further. This slight excess
also results in the deviation of the observed limits in Fig. 12
from the expected limits by about 1σ. No such excess is
observed in the VBF signal region, and the best-fit value of
κ2V from the likelihood scan is found to be 1.0. With the
values of the other modifiers (κV and either κ2V or κλ,
respectively) fixed to their SM value of 1, the observed

(a) (b)

FIG. 12. The observed profile likelihood ratio scans for the (a) κλ and (b) κ2V coupling modifiers, shown by the solid black line, using
the coupling modifiers κ as the POIs. In each case, the value of the other parameter is fixed to 1. The dashed blue line shows the expected
profile likelihood ratio, as obtained using a fit to the data with the background-only hypothesis. The pink line indicates the 2σ exclusion
boundary.

(a) (b)

FIG. 13. (a) The observed profile likelihood ratio exclusion limits for the two-dimensional κλ vs. κ2V modifier space, shown by the
solid dark purple line at the 1σ level and the dashed turquoise line at the 2σ level. The black cross denotes the best-fit values of ðκλ; κ2VÞ.
The expected exclusion limits are presented in (b), where the solid pink line denotes the 1σ-level exclusion and the dashed orange line
denotes the 2σ-level exclusion. For both the expected and observed limit plots, the black star indicates the SM prediction (κλ ¼ κ2V ¼ 1).
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(expected) 2σ allowed range for κλ is found to be
½−3.5; 11.3# (½−5.4; 11.4#) and the corresponding range
for κ2V is ½−0.0; 2.1# (½−0.1; 2.1#).
The exclusion constraints obtained using the profile

likelihood ratio method are also presented in the two-
dimensional κλ–κ2V coupling modifier space, similarly to
the 95% CL constraints described above. The excluded
regions are presented in Fig. 13. With both modifiers able
to float in the two-dimensional fit that combines both the
ggF and VBF signal regions, the fit converges to κλ and κ2V
values slightly different from the ones where the minimum
is found in the fits with a single parameter free.
In addition to constraints on the ggF and VBF HH cross

sections and the κλ and κ2V coupling modifiers, constraints
for relevant coefficients can be derived from the ggF
selection of the analysis in the SMEFT and HEFT frame-
works, as outlined in Sec. I. The VBF HH process was
ignored for both the SMEFT and HEFT results; including

the VBF HH process as a background was found to have a
negligible effect on the extracted parameter limits. The
slight dependence of the H → bb̄ branching fraction on
the SMEFT and HEFT coefficients is also ignored, as the

(a) (b)

(c) (d)

FIG. 14. The observed 95% CL exclusion limits on the SMEFT coefficients in the two-dimensional spaces (a) cHG vs cH , (b) ctG vs
cH , (c) ctH vs cH , and (d) cH□

vs cH , shown by the solid black lines. The dashed black line indicates the expected 95% CL exclusion
limits. The shaded blue band indicates the(1σ uncertainty of the exclusion limits, while the yellow band indicates the(2σ uncertainty.
The values of the other three coefficients for each plot are fixed to 0. The VBF HH process is ignored for this result.

TABLE X. The extracted upper and lower limits on the SMEFT
parameters to which the analysis is sensitive. For each parameter,
the constraints are provided assuming the other parameters are
fixed to 0. The VBF HH process is ignored for this result.

Expected constraint Observed constraint

Parameter Lower Upper Lower Upper

cH −20 11 −22 11
cHG −0.056 0.049 −0.067 0.060
cH□

−9.3 13.9 −8.9 14.5
ctH −10.0 6.4 −10.7 6.2
ctG −0.97 0.94 −1.12 1.15
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impact on the analysis sensitivity is small. Constraints on
the SMEFT coefficients are extracted by considering the
95% CL exclusion of the cross section as a function of
SMEFT parameter, as was done for the κλ and κ2V
constraints discussed previously. The extracted constraints
on individual parameters in the scenario where the other
parameters are fixed to 0 are summarized in Table X. Limits
approaching or exceeding (4π should be interpreted with
caution because of the potential impact from effects such as
missing higher-order model contributions. The exclusion
limits are also presented in two-dimensional SMEFT
coefficient subspaces. The exclusion limits for each coef-
ficient versus the cH coefficient (with the remaining three
coefficients fixed to 0) are shown in Fig. 14. The upper
limits on the HEFT ggF HH production cross section in the
seven benchmark models are presented in Fig. 15. The
spread of sensitivity between the seven benchmark models
reflects the different signal kinematics and, hence, shapes of
the signal mHH distributions. The different variation
between observed and expected limits is linked to the slight
excess observed in the lowmHH region, as discussed earlier.
The red crosses in Fig. 15 indicate the predicted HH cross
sections from the respective benchmark models. As can be
seen, BM3, BM5, and BM7 are observed to be excluded
with more than 95% confidence. Constraints are placed on
the values of cggHH and ctt̄HH, with all other HEFT
coefficients fixed to SM values. The observed (expected)
constraints on cggHH are found to be ½−0.36; 0.78#

(½−0.42; 0.75#), while the observed (expected) constraints
on ctt̄HH are found to be ½−0.55; 0.51# (½−0.46; 0.40#).

IX. CONCLUSION

A search for nonresonant pair production of Higgs
bosons in the bb̄bb̄ final state was carried out, with
dedicated analyses for the ggF and VBF production modes,
using 126 fb−1 of

ffiffiffi
s

p
¼ 13 TeV pp collision data col-

lected by the ATLAS detector at the LHC. The sensitivity
of the analyses is improved relative to previous iterations by
using more sophisticated background modeling techniques,
event categorization and improved jet reconstruction and
flavor identification algorithms, in addition to the increased
integrated luminosity of the analyzed data.
No evidence of signal is found and the observed

(expected) upper limit on the cross section for nonresonant
Higgs boson pair production is determined to be 5.4 (8.1)
times the Standard Model predicted cross section at
95% confidence level. Constraints are placed upon modi-
fiers to the HHH and HHVV couplings. The observed
(expected) 2σ constraints on the HHH coupling modifier,
κλ, are determined to be ½−3.5; 11.3# (½−5.4; 11.4#), while
the corresponding constraints for the HHVV coupling
modifier, κ2V , are ½−0.0; 2.1# (½−0.1; 2.1#). The results
are also used to derive constraints on relevant coefficients
in the SM effective field theory and the Higgs effective field
theory frameworks.
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23bINFN Sezione di Bologna, Bologna, Italy

24Physikalisches Institut, Universität Bonn, Bonn, Germany
25Department of Physics, Boston University, Boston, Massachusetts, USA

26Department of Physics, Brandeis University, Waltham, Massachusetts, USA
27aTransilvania University of Brasov, Brasov, Romania

27bHoria Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
27cDepartment of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, Romania

27dNational Institute for Research and Development of Isotopic and Molecular Technologies,
Physics Department, Cluj-Napoca, Romania

SEARCH FOR NONRESONANT PAIR PRODUCTION OF HIGGS … PHYS. REV. D 108, 052003 (2023)

052003-33

https://orcid.org/0000-0003-0586-7052
https://orcid.org/0000-0002-3372-2590
https://orcid.org/0000-0002-1827-9201
https://orcid.org/0000-0003-2174-807X
https://orcid.org/0000-0003-1988-8401
https://orcid.org/0000-0001-8253-9517
https://orcid.org/0000-0001-5858-6639
https://orcid.org/0000-0003-3268-3486
https://orcid.org/0000-0003-4762-8201
https://orcid.org/0000-0002-0991-5026
https://orcid.org/0000-0002-8452-0315
https://orcid.org/0000-0001-6470-4662
https://orcid.org/0000-0002-4105-2988
https://orcid.org/0000-0001-5626-0993
https://orcid.org/0000-0001-7909-4772
https://orcid.org/0000-0002-4963-8836
https://orcid.org/0000-0002-4499-2545
https://orcid.org/0000-0002-5030-7516
https://orcid.org/0000-0003-2770-1387
https://orcid.org/0000-0002-1222-7937
https://orcid.org/0000-0002-4687-3662
https://orcid.org/0000-0003-2280-8636
https://orcid.org/0000-0002-2029-2659
https://orcid.org/0000-0002-4867-3138
https://orcid.org/0000-0002-5447-1989
https://orcid.org/0000-0001-8265-6916
https://orcid.org/0000-0002-9720-1794
https://orcid.org/0000-0001-9101-3226
https://orcid.org/0000-0002-4198-3029
https://orcid.org/0000-0003-0524-1914
https://orcid.org/0000-0002-9726-6707
https://orcid.org/0000-0001-7335-4983
https://orcid.org/0000-0002-4380-1655
https://orcid.org/0000-0002-9907-838X
https://orcid.org/0000-0002-9778-9209
https://orcid.org/0000-0002-9336-9338
https://orcid.org/0000-0002-8265-474X
https://orcid.org/0000-0001-9039-9809
https://orcid.org/0000-0001-7729-085X
https://orcid.org/0000-0003-4731-0754
https://orcid.org/0000-0003-4341-1603
https://orcid.org/0000-0001-6274-7714
https://orcid.org/0000-0001-7287-9091
https://orcid.org/0000-0002-1630-0986
https://orcid.org/0000-0002-7853-9079
https://orcid.org/0000-0002-6638-847X
https://orcid.org/0000-0003-0054-8749
https://orcid.org/0000-0002-6427-0806
https://orcid.org/0000-0003-0494-6728
https://orcid.org/0000-0001-6758-3974
https://orcid.org/0000-0002-3360-4965
https://orcid.org/0000-0002-2079-996X
https://orcid.org/0000-0002-8323-7753
https://orcid.org/0000-0001-9377-650X
https://orcid.org/0000-0001-5904-7258
https://orcid.org/0000-0002-7986-9045
https://orcid.org/0000-0002-1775-2511
https://orcid.org/0000-0001-8015-3901
https://orcid.org/0000-0001-8479-1345
https://orcid.org/0000-0002-5278-2855
https://orcid.org/0000-0001-7964-0091
https://orcid.org/0000-0002-7306-1053
https://orcid.org/0000-0003-0996-3279
https://orcid.org/0000-0003-2468-9634
https://orcid.org/0000-0002-0306-9199
https://orcid.org/0000-0003-0277-4870
https://orcid.org/0000-0002-5117-4671
https://orcid.org/0000-0002-2891-8812
https://orcid.org/0000-0003-4236-8930
https://orcid.org/0000-0002-0993-6185
https://orcid.org/0000-0003-2138-6187
https://orcid.org/0000-0003-2073-4901
https://orcid.org/0000-0003-3177-903X
https://orcid.org/0000-0002-0779-8815
https://orcid.org/0000-0002-9397-2313


27eUniversity Politehnica Bucharest, Bucharest, Romania
27fWest University in Timisoara, Timisoara, Romania

27gFaculty of Physics, University of Bucharest, Bucharest, Romania
28aFaculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic
28bDepartment of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences,

Kosice, Slovak Republic
29Physics Department, Brookhaven National Laboratory, Upton, New York, USA

30Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, y
CONICET, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina

31California State University, Fresno, California, USA
32Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
33aDepartment of Physics, University of Cape Town, Cape Town, South Africa

33biThemba Labs, Western Cape, South Africa
33cDepartment of Mechanical Engineering Science, University of Johannesburg,

Johannesburg, South Africa
33dNational Institute of Physics, University of the Philippines Diliman (Philippines), Quezon, Philippines

33eUniversity of South Africa, Department of Physics, Pretoria, South Africa
33fUniversity of Zululand, KwaDlangezwa, South Africa

33gSchool of Physics, University of the Witwatersrand, Johannesburg, South Africa
34Department of Physics, Carleton University, Ottawa, Ontario, Canada
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75aINFN Sezione di Roma, Roma, Italy

75bDipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
76aINFN Sezione di Roma Tor Vergata, Roma, Italy

76bDipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
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