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We consider optimal sensor placement for a family of linear Bayesian inverse problems 
characterized by a deterministic hyper-parameter. The hyper-parameter describes distinct 
configurations in which measurements can be taken of the observed physical system. To optimally 
reduce the uncertainty in the system’s model with a single set of sensors, the initial sensor 
placement needs to account for the non-linear state changes of all admissible configurations. 
We address this requirement through an observability coefficient which links the posteriors’ 
uncertainties directly to the choice of sensors. We propose a greedy sensor selection algorithm 
to iteratively improve the observability coefficient for all configurations through orthogonal 
matching pursuit. The algorithm allows explicitly correlated noise models even for large sets of 
candidate sensors, and remains computationally efficient for high-dimensional forward models 
through model order reduction. We demonstrate our approach on a large-scale geophysical model 
of the Perth Basin, and provide numerical studies regarding optimality and scalability with regard 
to classic optimal experimental design utility functions.

1. Introduction

In the Bayesian approach to inverse problems (cf. [1]), the uncertainty in a parameter is described via a probability distribution. 
With Bayes’ Theorem, the prior belief in a parameter is updated when new information is revealed such that the posterior distribution 
describes the parameter with improved certainty. Bayes’ posterior is optimal in the sense that it is the unique minimizer of the 
sum of the relative entropy between the posterior and the prior, and the mean squared error between the model prediction and 
the experimental data ([2,3]). The noise model drives, along with the measurements, how the posterior’s uncertainty is reduced in 
comparison to the prior. A critical aspect – especially for expensive experimental data – is how to select the measurements to improve 
the posterior’s credibility best. For example, when simulating the subsurface heat distribution for geothermal applications, unknown 
parameters (e.g., the geothermal heat flux, see Section 5) need to be inferred from temperature measurements. The measurements are 
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taken in boreholes, which can cost several million dollars to drill, so it is essential to plan their location carefully. To provide some 
perspective, the developments costs of a geothermal project (e.g., drilling, stimulation, and tests) take up 50 −70% of the total budget 
([4]). The selection of adequate sensors meeting individual applications’ needs is, therefore, a big goal of the optimal experimental 
design (OED) research field and its surrounding community. We refer to the literature (e.g., [5–7]) for introductions.

In this paper, we consider inverse problem settings in which a deterministic hyper-parameter describes anticipated system con-
figurations such as material properties or loading conditions. Each configuration changes the model non-linearly, so we obtain a 
family of possible posterior distributions for any measurement data. Supposing data can only be obtained with a single set of sen-
sors regardless of the system’s configuration, the OED task becomes to reduce the uncertainty in each posterior uniformly over all 
hyper-parameters. This task is challenging 1) for high-dimensional models since each configuration requires its own computationally 
expensive model solve, and 2) for correlated noise models since the non-nested structure of the inverse noise covariance matrix 
can cause discontinuities in relaxed, weighting-based approaches [8]. By building upon [9], this paper addresses both challenges 
and proposes a novel sensor selection algorithm that remains efficient even for large sets of admissible measurements. For instance, 
in Section 5.4 we apply our algorithm to a geophysical problem with 132, 651 degrees of freedom in the state variable and 11, 045
available sensor positions with correlated observations, both of which are high-dimensional.

The concept of the hyper-parameter is similar to so-called nuisance parameters in the literature. Nuisance parameters are a 
secondary source of uncertainty, causing additional variability in the measurements, while not being of primary interest for the 
inversion. Neglecting this source of uncertainty in the inverse problem can cause serious overconfidence in the inferred parameter 
while inverting for all uncertain parameters together increases the computational burden (see [10] for a comparison). In practice, the 
nuisance parameters are therefore often marginalized out with the Bayesian approximation error approach (e.g., [11,12]). Marginal-
ization has also been adopted for OED over models with nuisance parameters, see [13] for A-optimal experimental design (A-OED), 
[14,15] for the expected information gain (EIG). For E-optimal experimental design (E-OED), [16] keeps both uncertain parameters 
in the inverse problem, but poses its OED formulation over a submatrix of the Fisher information matrix. Albeit the hyper-parameter 
we consider here can be interpreted as a form of model uncertainty, it differs from nuisance parameters through its aleatoric nature: 
its uncertainty cannot be reduced in the inverse problem, and we are therefore treating it as a separate, deterministic parameter. 
With this interpretation, our baseline setting concurs with [17] about A-OED under irreducible model uncertainty. However, in [17]
the model uncertainty is integrated out by taking the expectation over the utility function, thereby obtaining a risk-neutral design 
that is favorable for most model realizations. In contrast, we are optimizing the minimum of the utility function to guarantee that 
the design remains informative in the worst-case scenario, which is often the requirement for risk-averse applications.

The main contributions are as follows: First, we identify an observability coefficient as a link between the sensor choice and the 
maximum eigenvalue of each posterior distribution. We provide an analysis of its sensitivity to model and parameter approximations. 
Second, we decompose the noise covariance matrix for any observation operator to allow fast computation of the observability 
coefficient’s increase under expansion with additional sensors. The decomposition allows us to treat correlated noise covariance 
matrices efficiently when comparing the benefits of including additional sensors. Third, we propose a sensor selection algorithm 
that iteratively constructs an observation operator from a large set of sensors to increase the observability coefficient over all hyper-
parameters. The algorithm is applicable to correlated noise models, and requires, through the efficient use of model order reduction 
(MOR) techniques, only a single full-order model evaluation per selected sensor, which achieves considerable efficiency.

The analysis and algorithm presented in this work significantly extend our initial ideas presented in [9] in which we seek to 
generalize the 3D-VAR stability results from [18] to the probabilistic Bayesian setting: This work additionally features 1) an analysis 
of the observability coefficient regarding model approximations, 2) explicit computational details for treating correlated noise mod-
els, and 3) a comprehensive discussion of the individual steps in the sensor selection algorithm. Moreover, the proposed method is 
tested using a large-scale geophysical model of the Perth Basin. Our proposed algorithm is directly related to the orthogonal match-
ing pursuit (OMP) algorithm [19,20] for the parameterized-background data-weak (PBDW) method and the empirical interpolation 
method (EIM) ([21,22]). Closely related OED methods for linear Bayesian inverse problems over partial differential equations (PDEs) 
include [23–26,13,27], mostly for A- and D-OED and uncorrelated noise. In recent years, these methods have also been extended 
to non-linear Bayesian inverse problems, e.g., [28–32], while an advance to correlated noise has been made in [8]. In particular, 
[31,32] use similar algorithmic approaches to this work by applying a greedy algorithm to maximize the expected information gain. 
Common strategies for dealing with the high dimensions imposed by the PDE model use the framework in [33] for discretization, 
combined with parameter reduction methods (e.g., [34–40]) and MOR methods for uncertainty quantification (UQ) problems (e.g., 
[41–45]).

This paper is structured as follows: In Section 2 we introduce the hyper-parameterized inverse problem setting, including all 
assumptions for the prior distribution, the noise model, and the forward model. In Section 3, we then establish and analyze the 
connection between the observability coefficient and the posterior uncertainty. We finally propose our sensor selection algorithm 
in Section 4 which exploits the presented analysis to choose sensors that improve the observability coefficient even in a hyper-
parameterized setting. In Section 5, we demonstrate the applicability and scalability of our approach on a geophysical model with 
high-dimensional state space before concluding in Section 6.

2. Problem setting

Let  be a Hilbert space with inner product ⟨⋅, ⋅⟩ and induced norm ‖𝑢‖2 ∶= ⟨𝑢,𝑢⟩ . We consider the problem of identifying 
unknown states 𝑢 = 𝑢𝜃 ∈ of a single physical system under changeable configurations 𝜃 from noisy measurements
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𝐝(𝜃) ≈
[
𝓁1(𝑢𝜃),… ,𝓁𝐾 (𝑢𝜃)

]𝑇 ∈ℝ𝐾 .

The measurements are obtained by a set of 𝐾 unique sensors (or experiments) 𝓁1, … , 𝓁𝐾 ∶ →ℝ. Our goal is to choose these sensors 
from a large sensor library  of options in a way that optimizes how much information is gained from their measurements for any 
configurations 𝜃. In the following we specify our assumptions and provide the mathematical background to our setup.

Hyper-parameterized forward model
We consider the unknown state 𝑢 to be uniquely characterized by two sources of information:

• an unknown parameter 𝐦 ∈ℝ𝑀 describing uncertainties in the governing physical laws, and
• a hyper-parameter 𝜃 ∈  ⊂ ℝ𝑝 describing dependencies on configurations under which the system may be observed (such as 
material properties or loading conditions) where  is a given compact set enclosing all possible configurations. We interchange-
ably call 𝜃 hyper-parameter or configuration to either stress its role in the mathematical model or physical interpretation. We 
assume that potential variability in 𝜃 cannot be reduced in an inverse problem in that 𝜃 is either known and fixed in any inverse 
problems (e.g., when optimizing the geometry of mechanical parts in an outer loop to reduce the region of failure), or that 𝜃
describes irreducible model uncertainty as considered in [17]. This property distinguishes the hyper-parameter 𝜃 from nuisance
parameters, which are uncertain parameters whose uncertainty can indeed be reduced in the inverse problem but which are not 
of primary interest. We refer to [46], section 1.3.2 for a more detailed distinction.

For any given 𝐦 ∈ℝ𝑀 and 𝜃 ∈  , we let 𝑢𝜃(𝐦) ∈ be the solution of an abstract model equation 𝜃 (𝑢𝜃(𝐦); 𝐦) = 0 and assume that 
the map 𝐦 → 𝑢𝜃(𝐦) is well-defined, linear, and uniformly continuous in 𝐦, i.e.

∃ 𝜂̄ > 0 ∶ 𝜂(𝜃) ∶= sup
𝐦∈ℝ𝑀

‖‖𝑢𝜃(𝐦)‖‖
‖𝐦‖Σ−1pr

< 𝜂̄ ∀ 𝜃 ∈  . (1)

Remark 1. Although we assumed that 𝐦 lies in the Euclidean space ℝ𝑀 , any other finite-dimensional linear space can be considered 
via an affine transformation onto an appropriate basis (see [23,47]) while infinite-dimensional parameter spaces may be considered 
after appropriate discretization (cf. [33]). We note, however, that the numerical restrictions of our sensor placement algorithm in 
Section 3.3 require 𝑀 to be small compared to the total number of sensors to be chosen. If this is not the case, we suggest to restrict 
the parameter space first onto a subspace spanned by the most uncertain parameter directions, or, for a goal-oriented experimental 
design, onto an active subspace (cf. [37,48,49,36]).

Remark 2. By keeping the model equation general, we stress the applicability of our approach to a wide range of problems. For 
instance, time-dependent states can be treated by choosing  as a Bochner space or its discretization (cf. [50]). We also do not 
formally restrict the dimension of  , though any implementation relies on the ability to compute 𝑢𝜃(𝐦) with sufficient accuracy. 
To this end, we note that the analysis in Section 3.2 can be applied to determine how discretization errors affect the observability 
criterion in the sensor selection.

Following a probabilistic approach to inverse problems, we express the initial uncertainty in 𝐦 = 𝐦(𝜃) of any 𝑢 = 𝑢𝜃(𝐦) in 
configuration 𝜃 through a random variable 𝐦 with Gaussian prior 𝜇pr = (

𝐦pr ,Σpr
), where 𝐦pr ∈ ℝ𝑀 is the prior mean and Σpr ∈

ℝ𝑀×𝑀 is a symmetric positive definite (s.p.d.) covariance matrix. The latter defines the inner product ⟨⋅, ⋅⟩Σ−1pr and its induced norm 
‖ ⋅ ‖Σ−1pr through

⟨𝐦,𝐯⟩Σ−1pr ∶=𝐦𝑇Σ−1
pr 𝐦̃, ‖𝐦‖2

Σ−1pr
∶= ⟨𝐦,𝐦⟩Σ−1pr , ∀ 𝐦,𝐯 ∈ℝ𝑀 . (2)

With these definitions, the probability density function (pdf) for 𝜇pr is

𝜋pr (𝐦) = 1√
(2𝜋)𝑀 det Σpr

exp
(
−1
2‖𝐦−𝐦pr‖2Σ−1pr

)
.

For simplicity, we assume {𝐦(𝜃)}𝜃∈ to be independent realizations of 𝐦 such that we may consider the same prior for all 𝜃 without 
accounting for a possible history of measurements at different configurations.

Sensor library and noise model
For taking measurements of the unknown states {𝑢(𝜃)}𝜃 , we call any linear functional 𝓁 ∈ ′ a sensor, and its application to a 

state 𝑢 ∈ its measurement 𝓁(𝑢) ∈ℝ. This implies in particular that any measurement 𝓁(𝑢) is linear in the state variable and bounded 
proportionally to the norm of the measured state |𝓁(𝑥)| ≤ ‖𝓁‖ ′ ‖𝑥‖ . For the OED problem, we call the set  ⊂ ′ of admissible 
sensor choices our sensor library.

Example 1. Let 𝑥 ∶ Ω → ℝ denote the temperature of a 2D domain Ω ⊂ ℝ2 modeling the surface of a work piece. A sensor taking 
a local temperature measurement at point 𝑃 = (𝑃1, 𝑃2) ∈ Ω can then be modeled as 𝓁(𝑥) = 1

𝜋𝑟2 ∫𝐵𝑟(𝑃 ) 𝑥(𝑠)𝑑𝑠 where 𝐵𝑟(𝑃 ) is the ball 
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around 𝑃 with probe radius 𝑟 > 0. The sensor library might then be the corresponding set of sensors for all points 𝑃 at which a probe 
may be placed on the physical asset.

We model noisy experimental measurements 𝑑𝓁 ∈ℝ of the actual physical state 𝑢 as 𝑑𝓁 = 𝓁(𝑢) +𝜀𝓁 where 𝜀𝓁 ∼ (0, cov(𝜀𝓁 , 𝜀𝓁)) is a 
Gaussian random variable. We permit noise in different sensor measurements to be correlated with a known covariance function cov. 
In a slight overload of notation, we write cov ∶  ×  → ℝ, cov(𝓁𝑖, 𝓁𝑗 ) ∶= cov(𝜀𝓁𝑖 , 𝜀𝓁𝑗 ) as a symmetric bilinear form over the sensor 
library. Any ordered subset  = {𝓁1, … , 𝓁𝐾} ⊂  of sensors can then form a (linear and continuous) observation operator through

𝐿 ∶=
[
𝓁1,… ,𝓁𝐾

]𝑇 ∶ →ℝ𝐾 , 𝐿𝑢 ∶=
[
𝓁1(𝑢),… ,𝓁𝐾 (𝑢)

]𝑇 .
The experimental measurements of 𝐿 have the form

𝐝 =
[
𝓁1(𝑢) + 𝜀𝓁1 ,… ,𝓁𝐾 (𝑢) + 𝜀𝓁𝐾

]𝑇
=𝐿𝑢+ 𝜀 with 𝜀 =

[
𝜀𝓁1 ,… ,𝜀𝓁𝐾

]𝑇
∼ (𝟎,𝜎2Σ𝐿), (3)

where 𝜎2Σ𝐿 is the noise covariance matrix defined through

Σ𝐿 ∈ℝ𝐾×𝐾 , such that [
𝜎2Σ𝐿

]
𝑖,𝑗 ∶= cov(𝓁𝑗 ,𝓁𝑖) = cov(𝜀𝓁𝑗 ,𝜀𝓁𝑖 ) (4)

with an auxiliary scaling parameter 𝜎2 > 0. We introduce 𝜎2 here as an additional variable to ease the discussion in the next section. 
However, we can set 𝜎2 = 1 without loss of generality (w.l.o.g.). We assume that the library  and the noise covariance function cov
have been chosen such that Σ𝐿 is s.p.d. for any combination of sensors in . This assumption gives rise to the 𝐿-dependent inner 
product and its induced norm

⟨
𝐝,𝐝

⟩
Σ−1𝐿

∶= 𝐝𝑇Σ−1
𝐿 𝐝, ‖𝐝‖2

Σ−1𝐿
∶= ⟨𝐝,𝐝⟩Σ−1𝐿 , ∀ 𝐝,𝐝 ∈ℝ𝐾 . (5)

Measured with respect to this norm, the largest observation of any (normalized) state is thus

𝛾𝐿 ∶= sup
‖𝑢‖ =1

‖𝐿𝑢‖Σ−1𝐿 = sup
𝑢∈

‖𝐿𝑢‖Σ−1𝐿
‖𝑢‖ . (6)

We show in Section 4.2 that 𝛾𝐿 increases under expansion of 𝐿 with additional sensors despite the change in norm, and is therefore 
bounded by 𝛾𝐿 ≤ 𝛾.

We also define the parameter-to-observable map

𝐆𝐿,𝜃 ∶ℝ𝑀 →ℝ𝐾 , such that 𝐆𝐿,𝜃𝐦 ∶=𝐿𝑢𝜃(𝐦). (7)
With the assumptions above – in particular the linearity and uniform continuity (1) of 𝑢 in 𝐦 – the map 𝐆𝐿,𝜃 is linear and uniformly 
bounded in 𝐦. In a slight overload of notation, we identify the map 𝐆𝐿,𝜃 ∶ ℝ𝑀 → ℝ𝐾 with its (unique) matrix representation 
𝐆𝐿,𝜃 ∈ℝ𝐾×𝑀 denote its matrix representation with respect to the unit basis {𝐞𝑚}𝑀𝑚=1. The likelihood of 𝐝 ∈ℝ𝐾 obtained through the 
observation operator 𝐿 for the parameter 𝐦 ∈ℝ𝑀 and the system configuration 𝜃 is then

Φ𝐿

(
𝐝 ||| 𝐦,𝜃

)
∶= 1√

2𝐾 det Σ𝐿
exp

(
− 1
2𝜎2

‖‖𝐝−𝐆𝐿,𝜃𝐦‖‖2Σ−1𝐿

)
.

Note that 𝐆𝐿,𝜃 may depend non-linearly on 𝜃.

Posterior distribution
Once noisy measurement data 𝐝 ≈𝐿𝑢(𝜃) is available, Bayes’ theorem yields the posterior pdf as

𝜋𝐿,𝜃post (𝐦 | 𝐝) = 1
𝑍(𝜃) exp

(
− 1
2𝜎2

‖‖𝐆𝐿,𝜃𝐦− 𝐝‖‖2Σ−1𝐿 − 1
2‖𝐦−𝐦pr‖2Σ−1pr

)
∝ 𝜋pr (𝐦) ⋅Φ𝐿

(
𝐝 ||| 𝐦,𝜃

)
, (8)

with normalization constant

𝑍(𝜃) ∶= ∫
ℝ𝑝

exp
(
− 1
2𝜎2

‖‖𝐆𝐿,𝜃𝐦− 𝐝‖‖2Σ−1𝐿

)
𝑑𝜇pr .

Due to the linearity of the parameter-to-observable map, the posterior measure 𝜇𝐿,𝜃post is a Gaussian

𝜇𝐿,𝜃post = (𝐦𝐿,𝜃
post (𝐝),Σ

𝐿,𝜃
post )

with known (cf. [1]) mean and covariance matrix

𝐦𝐿,𝜃
post (𝐝) = Σ𝐿,𝜃post

(
1
𝜎2 𝐆

𝑇
𝐿,𝜃Σ

−1
𝐿 𝐝+ Σ−1

pr 𝐦pr

)
∈ℝ𝑀 , (9)

Σ𝐿,𝜃post =
(

1
𝜎2 𝐆

𝑇
𝐿,𝜃Σ

−1
𝐿 𝐆𝐿,𝜃 + Σ−1

pr

)−1
∈ℝ𝑀×𝑀 . (10)
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The posterior 𝜇𝐿,𝜃post thus depends not only on the choice of sensors, but also on the configuration 𝜃 under which their measurements 
were obtained. Therefore, to decrease the uncertainty in all possible posteriors with a single, 𝜃-independent observation operator 𝐿, 
the construction of 𝐿 should account for all admissible configurations 𝜃 ∈  under which 𝑢 may be observed.

Remark 3. The linearity of 𝑢𝜃(𝐦) in 𝐦 is a strong assumption that dictates the Gaussian posterior. However, in combination with 
the hyper-parameter 𝜃, our setting here can be re-interpreted as the Laplace-approximation (cf., [51]) for a non-linear state map 
𝜃↦ 𝑢(𝜃) with uncertain 𝜃 ∈ℝ𝑝. In this case, the hyper-parameter set  ⊂ℝ𝑝 here encloses those 𝜃 that, according to their prior, are 
potential maximum a posteriori probability (MAP) points of the non-linear inverse problem, while the linear parameter 𝐦 becomes a 
scaling vector in the linearization of 𝜃↦ 𝑢(𝜃) around 𝜃 ∈  . A more detailed interpretation of our setting here in terms of the Laplace 
approximation of non-linear inverse problems is provided in [52]. However, the additional analysis and numerical treatment of this 
setting is beyond the scope of this work and part of ongoing research.

3. The observability coefficient

In this section, we characterize how the choice of sensors in the observation operator 𝐿 and its associated noise covariance matrix 
Σ𝐿 influence the uncertainty in the posteriors 𝜇𝐿,𝜃post , 𝜃 ∈  . We identify an observability coefficient that bounds the eigenvalues of the 
posterior covariance matrices Σ𝐿,𝜃post , 𝜃 ∈  with respect to 𝐿, and facilitates the sensor selection algorithm presented in Section 4.

3.1. Eigenvalues of the posterior covariance matrix

The uncertainty in the posterior 𝜋𝐿,𝜃post for any configuration 𝜃 ∈  is uniquely characterized by the posterior covariance matrix 
Σ𝐿,𝜃post , which is in turn connected to the observation operator 𝐿 through the parameter-to-observable map 𝐆𝐿,𝜃 and the noise co-
variance matrix Σ𝐿. To measure the uncertainty in Σ𝐿,𝜃post , the OED literature suggests a variety of different utility functions to be 
minimized over 𝐿 in order to optimize the sensor choice. Many of these utility functions can be expressed in terms of the eigenvalues 
𝜆𝜃,1𝐿 ≥⋯ ≥ 𝜆𝜃,𝑀𝐿 > 0 of Σ𝐿,𝜃post , e.g.,

A-OED: trace(Σ𝐿,𝜃post ) =
𝑀∑
𝑚=1

𝜆𝜃,𝑚𝐿 (mean variance)

D-OED: det(Σ𝐿,𝜃post ) =
𝑀∏
𝑚=1

𝜆𝜃,𝑚𝐿 (volume)

E-OED: 𝜆max(Σ
𝐿,𝜃
post ) = 𝜆

𝜃,1
𝐿 (spectral radius).

In practice, the choice of the utility function is dictated by the application. In E-OED, for instance, posteriors whose uncertainty 
ellipsoids stretch out into any one direction are avoided, whereas D-OED minimizes the overall volume of the uncertainty ellipsoid 
regardless of the uncertainty in any one parameter direction. We refer to [5] for a detailed introduction and other OED criteria.

Considering the hyper-parameterized setting where each configuration 𝜃 influences the posterior uncertainty, we seek to choose 
a single observation operator 𝐿 such that the selected utility function remains small for all configurations 𝜃 ∈  , e.g., for E-OED, 
minimizing

min
𝓁1 ,…,𝓁𝐾∈ max

𝜃∈ 𝜆max(Σ
𝐿,𝜃
post ) such that 𝐿 =

[
𝓁1,… ,𝓁𝐾

]𝑇

guarantees that the longest axis of each posterior covariance matrix Σ𝐿,𝜃post for any 𝜃 ∈  has the same guaranteed upper bound. The 
difficulty here is that the minimization over  necessitates repeated, cost-intensive model evaluations to compute the utility function 
for many different configurations 𝜃. In the following, we therefore introduce an upper bound to the posterior eigenvalues that can be 
optimized through an observability criterion with far fewer model solves. The bound’s optimization indirectly reduces the different 
utility functions through the posterior eigenvalues.

Recalling that Σ𝐿,𝜃post is s.p.d., let {𝜓𝑚}𝑀𝑚=1 be an orthonormal eigenvector basis of Σ𝐿,𝜃post , i.e. 𝜓𝑇𝑚𝜓𝑛 = 𝛿𝑚,𝑛 and

Σ𝐿,𝜃post𝜓𝑚 = 𝜆𝜃,𝑚𝐿 𝜓𝑚 𝑚 = 1,… ,𝑀 . (11)
Using the representation (10), any eigenvalue 𝜆𝜃,𝑚𝐿 can be written in the form

1
𝜆𝜃,𝑚𝐿

= 𝜓𝑇𝑚
[
Σ𝐿,𝜃post

]−1
𝜓𝑚 = 𝜓𝑇𝑚

[
1
𝜎2 𝐆

𝑇
𝐿,𝜃Σ

−1
𝐿 𝐆𝐿,𝜃 + Σ−1

pr

]
𝜓𝑚 = 1

𝜎2
‖‖𝐆𝐿,𝜃𝜓𝑚‖‖2Σ−1𝐿 + ‖𝜓𝑚‖2Σ−1pr . (12)

Since 𝜓𝑚 depends implicitly on 𝐿 and 𝜃 through (11), we cannot use this representation directly to optimize over 𝐿. To take out the 
dependency on 𝜓𝑚, we bound ‖𝜓𝑚‖2Σ−1pr ≥ 1

𝜆max
pr

in terms of the maximum eigenvalue of the prior covariance matrix Σpr . Likewise, we 
define the Rayleigh quotient
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𝛽𝐺(𝜃,𝐿) ∶= inf
𝐦∈ℝ𝑀

‖‖𝐆𝐿,𝜃𝐦‖‖Σ−1𝐿
‖𝐦‖Σ−1pr

= inf
𝐦∈ℝ𝑀

‖‖𝐿𝑢𝜃(𝐦)‖‖Σ−1𝐿
‖𝐦‖Σ−1pr

, (13)

as the minimum ratio between an observation for a parameter 𝐦 relative to the prior’s covariance norm. We call 𝛽𝐺(𝜃, 𝐿) observability 
coefficient in reference to optimal control theory (cf., [53], chapter 1.2). The maximization of 𝛽𝐺(𝜃, 𝐿) has been explored for uncorre-
lated noise in the E-OED literature in [16]. In this work, 𝜃 was treated as a nuisance parameter, with the optimization problem for 𝐿
posed over a submatrix of the Fisher information matrix. When disregarding the hyper-parameter 𝜃, 𝐆𝐿,𝜃 is comparable to the inf-sup
stability constant in the PBDW method [54,20], though a 𝜃-dependent variation was introduced in [18] in the context of 3D-VAR 
variational data assimilation. The maximization of the PBDW inf-sup stability constant is typically performed in a greedy OMP proce-
dure, with convergence properties analyzed in [19,55]. However, while the PBDW noise model is indeed correlated when translated 
in the Bayesian setting, the noise covariance matrix Σ𝐿 has a very specific structure defined through the Riesz representation of the 
chosen sensors (see [52], section 3.4.1 for the connection). In this sense, 𝛽𝐺(𝜃, 𝐿) can be considered a generalization of the PBDW 
inf-sup stability constant to arbitrary correlated noise models.

From (12) and (13) we obtain the upper bound

𝜆𝜃,𝑚𝐿 =
⎛
⎜
⎜
⎜⎝

1
𝜎2

‖‖𝐆𝐿,𝜃𝜓𝑚‖‖2Σ−1𝐿
‖𝜓𝑚‖2Σ−1pr

+ 1
⎞
⎟
⎟
⎟⎠

−1

‖𝜓𝑚‖−2Σ−1pr ≤
(

1
𝜎2
𝛽𝐺(𝜃,𝐿)2 + 1

)−1
𝜆max
pr . (14)

Geometrically, this bound means that the radius 𝜆𝜃,1𝐿 of the outer ball around the posterior uncertainty ellipsoid is smaller than that 
of the prior uncertainty ellipsoid by at least the factor 

(
1
𝜎2 𝛽𝐺(𝜃,𝐿)

2 + 1
)−1. As expected, the influence of 𝐿 is strongest when the 

measurement noise is small such that data can be trusted (𝜎2 ≪ 1), and diminishes with increasing noise levels (𝜎2 ≫ 1).
The main idea of our sensor selection method outlined in Section 4 is to choose 𝐿 to maximize min𝜃 𝛽𝐺(𝜃, 𝐿), which, geometrically, 

corresponds to minimizing the outer ball with radius max𝜃 𝜆
𝜃,1
𝐿 containing all uncertainty ellipsoids (i.e., for any 𝜃 ∈ ). By definition 

of the A-OED, D-OED, and E-OED utility functions, this approach is most fitting for E-OED where only the largest eigenvalue is 
measured in the utility function. In particular, if the prior is independent and identically distributed, i.e. Σpr is a multiplication of the 
identity matrix, then the upper bound (14) is indeed equal to the maximum posterior eigenvalue 𝜆𝜃,1𝐿 . For A-OED the maximization 
of min𝜃 𝛽𝐺(𝜃, 𝐿) remains applicable when the parameter dimension is low or the eigenvalues of the posterior covariance matrices 
decay slowly such that the A-OED criterion is dominated by the most uncertain parameter directions. In contrast, the approach is 
less suitable for D-OED which is more sensitive to the relative improvement in each parameter direction rather than the worst case 
direction. We illustrate the correlation between these three OED criteria and the observability coefficient on a practical example in 
Section 5, in particular Figs. 4, 5, 6.

3.2. Parameter restriction

An essential property of 𝛽𝐺(𝜃, 𝐿) is that 𝛽𝐺(𝜃, 𝐿) = 0 if 𝐾 <𝑀 , i.e., the number of sensors in 𝐿 is smaller than the number of 
parameter dimensions. In this case, 𝛽𝐺(𝜃, 𝐿) cannot distinguish between sensors during the first 𝑀 − 1 steps of an iterative algorithm, 
or in general when less than a total of 𝑀 sensors are supposed to be chosen. For medium-dimensional parameter spaces (𝑀 in the 
order of tens), we mitigate this issue by restricting 𝐦 to the subspace span{𝜑1, … , 𝜑min{𝐾 ,𝑀}} ⊂ℝ𝑀 spanned by the first min{𝐾 , 𝑀}
eigenvectors of Σpr corresponding to its largest eigenvalues, i.e., the subspace with the largest prior uncertainty. For high-dimensional 
parameter spaces or when the model 𝜃 has a non-trivial null-space, we bound 𝛽𝐺(𝜃, 𝐿) further

𝛽𝐺(𝜃,𝐿) = inf
𝐦∈ℝ𝑀

‖‖𝐿𝑢𝜃(𝐦)‖‖Σ−1𝐿
‖‖𝑢𝜃(𝐦)‖‖

‖‖𝑢𝜃(𝐦)‖‖
‖𝐦‖Σ−1pr

≥ inf
𝑥∈𝜃

‖𝐿𝑥‖Σ−1𝐿
‖𝑥‖ inf

𝐦∈ℝ𝑀

‖‖𝑢𝜃(𝐦)‖‖
‖𝐦‖Σ−1pr

= 𝛽 (𝜃,𝐿) 𝜂(𝜃) (15)

where we define the linear space 𝜃 of all achievable states
𝜃 ∶= {𝑢𝜃(𝐦) ∈ ∶ 𝐦 ∈ℝ𝑀}

and the coefficients

𝛽 (𝜃,𝐿) ∶= inf
𝑢∈𝜃

‖𝐿𝑢‖Σ−1𝐿
‖𝑢‖ , 𝜂(𝜃) ∶= inf

𝐦∈ℝ𝑀

‖‖𝑢𝜃(𝐦)‖‖
‖𝐦‖Σ−1pr

. (16)

The value of 𝜂(𝜃) describes the minimal state change that a parameter 𝐦 can achieve relative to its prior-induced norm ‖𝐦‖Σ−1pr . It can 
filter out parameter directions that have little influence on the states 𝑢𝜃(𝐦). In contrast, the observability coefficient 𝛽 (𝜃, 𝐿) depends 
on the prior only implicitly via 𝜃 ; it quantifies the minimum amount of information (measured with respect to the noise model) that 
can be obtained on any state in 𝜃 relative to its norm. Future work will investigate how to optimally restrict the parameter space 
based on 𝜂(𝜃) before choosing sensors that maximize 𝛽 (𝜃, 𝐿). Existing parameter reduction approaches in a similar context include 
[37,48,49,36]. In this work, however, we solely focus on the maximization of 𝛽𝐺(𝜃, 𝐿) and, by extension, 𝛽 (𝜃, 𝐿) and henceforth 
assume that 𝑀 is sufficiently small and 𝜂 ∶= inf𝜃∈ 𝜂(𝜃) > 0 is bounded away from zero.
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3.3. Observability under model approximations

To optimize the observability coefficient 𝛽𝐺(𝜃, 𝐿) or 𝛽 (𝜃, 𝐿), it must be computed for many different configurations 𝜃 ∈  . The 
accumulating computational cost motivates the use of reduced-order surrogate models, which typically yield considerable compu-
tational savings versus the original full-order model. However, this leads to errors in the state approximation. In the following, we 
thus quantify the influence of state approximation error on the observability coefficients 𝛽𝐺(𝜃, 𝐿) and 𝛽 (𝜃, 𝐿). An analysis of the 
change in posterior distributions when the entire model 𝜃 is substituted in the inverse problem can be found in [1], section 4.4 
(pp. 504-508), and the references therein.

Suppose a reduced-order surrogate model ̃𝜃(𝑢̃𝜃(𝐦); 𝐦) = 0 is available that yields for any configuration 𝜃 ∈  and parameter 
𝐦 ∈ℝ𝑀 a unique solution 𝑢̃𝜃(𝐦) ∈ such that

‖‖𝑢𝜃(𝐦)− 𝑢̃𝜃(𝐦)‖‖ ≤ 𝜀𝜃 ‖‖𝑢𝜃(𝐦)‖‖ with accuracy 0 ≤ 𝜀𝜃 ≤ 𝜀 < 1. (17)
Analogously to (13) and (16), we define the reduced-order observability coefficients

𝛽𝐺(𝜃,𝐿) ∶= inf
𝐦∈ℝ𝑀

‖‖𝐿𝑢̃𝜃(𝐦)‖‖Σ−1𝐿
‖𝐦‖Σ−1pr

, 𝛽 (𝜃,𝐿) ∶= inf
𝐦∈ℝ𝑀

‖‖𝐿𝑢̃𝜃(𝐦)‖‖Σ−1𝐿
‖‖𝑢̃𝜃(𝐦)‖‖

(18)

to quantify the smallest observations of the surrogate states. For many applications, it is possible to choose a reduced-order model 
whose solution can be computed at a significantly reduced cost such that 𝛽𝐺(𝜃, 𝐿) and 𝛽 (𝜃, 𝐿) are much cheaper to compute than their 
full-order counterparts 𝛽𝐺(𝜃, 𝐿) and 𝛽 (𝜃, 𝐿). Since the construction of such a surrogate model depends strongly on the application 
itself, we refer to the literature (e.g., [56–60]) for tangible approaches.

Recalling the definition of 𝛾𝐿 in (6), we start by bounding how closely the surrogate observability coefficient 𝛽 (𝜃, 𝐿) approximates 
the full-order 𝛽 (𝜃, 𝐿).

Proposition 1. Let 𝜂(𝜃) > 0 hold, and let 𝑢̃𝜃(𝐦) ∈ be an approximation to 𝑢𝜃(𝐦) such that (17) holds for all 𝜃 ∈  , 𝐦 ∈ℝ𝑀 . Then

(1− 𝜀𝜃) 𝛽 (𝜃,𝐿)− 𝛾𝐿𝜀𝜃 ≤ 𝛽 (𝜃,𝐿) ≤ (1 + 𝜀𝜃) 𝛽 (𝜃,𝐿) + 𝛾𝐿𝜀𝜃 . (19)

Proof. Let 𝐦 ∈ℝ𝑀 ⧵ {𝟎} be arbitrary. Using (17) and the (reversed) triangle inequality, we obtain the bound
‖‖𝑢̃𝜃(𝐦)‖‖
‖‖𝑢𝜃(𝐦)‖‖

≥ ‖‖𝑢𝜃(𝐦)‖‖ − ‖‖𝑢𝜃(𝐦)− 𝑢̃𝜃(𝐦)‖‖
‖‖𝑢𝜃(𝐦)‖‖

≥ 1− 𝜀𝜃 . (20)

Note here that 𝜂(𝜃) > 0 implies ‖‖𝑢𝜃(𝐦)‖‖ > 0 so the quotient is indeed well defined. The ratio of observation to state can now be 
bounded from below by

‖‖𝐿𝑢𝜃(𝐦)‖‖Σ−1𝐿
‖‖𝑢𝜃(𝐦)‖‖

≥
‖‖𝐿𝑢̃𝜃(𝐦)‖‖Σ−1𝐿
‖‖𝑢𝜃(𝐦)‖‖

−
‖‖𝐿(𝑢𝜃(𝐦)− 𝑢̃𝜃(𝐦))‖‖Σ−1𝐿

‖‖𝑢𝜃(𝐦)‖‖
≥ ‖‖𝑢̃𝜃(𝐦)‖‖

‖‖𝑢𝜃(𝐦)‖‖

‖‖𝐿𝑢̃𝜃(𝐦)‖‖Σ−1𝐿
‖‖𝑢̃𝜃(𝐦)‖‖

− 𝛾𝐿
‖‖𝑢𝜃(𝐦)− 𝑢̃𝜃(𝐦)‖‖

‖‖𝑢𝜃(𝐦)‖‖
≥ (1− 𝜀𝜃)

‖‖𝐿𝑢̃𝜃(𝐦)‖‖Σ−1𝐿
‖‖𝑢̃𝜃(𝐦)‖‖

− 𝛾𝐿𝜀𝜃

≥ (1− 𝜀𝜃)𝛽 (𝜃,𝐿)− 𝛾𝐿𝜀𝜃 ,
where we have applied the reverse triangle inequality, definition (6), the bounds (17), (20), and definition (18) of 𝛽 (𝜃, 𝐿). Since 𝐦
is arbitrary, the lower bound in (19) follows from definition (13) of 𝛽 (𝜃, 𝐿). The upper bound in (19) follows analogously. □

For the observability of the parameter-to-observable map 𝐆𝐿,𝜃 and its approximation 𝐦 ↦ 𝐿𝑢̃𝜃(𝐦), we obtain a similar bound. It 
uses the norm 𝜂(𝜃) of 𝑢𝜃 ∶𝐦 ↦ 𝑢𝜃(𝐦) as a map from the parameter to the state space, see (1).

Proposition 2. Let 𝑢̃𝜃 (𝐦) ∈ be an approximation to 𝑢𝜃(𝐦) such that (17) holds for all 𝜃 ∈  , 𝐦 ∈ℝ𝑀 . Then

𝛽𝐺(𝜃,𝐿)− 𝛾𝐿𝜂(𝜃)𝜀𝜃 ≤ 𝛽𝐺(𝜃,𝐿) ≤ 𝛽𝐺(𝜃,𝐿) + 𝛾𝐿𝜂(𝜃)𝜀𝜃 . (21)

Proof. Let 𝐦 ∈ℝ𝑀 ⧵ {𝟎} be arbitrary. Then
‖‖𝐿𝑢𝜃(𝐦)‖‖Σ−1𝐿 ≥ ‖‖𝐿𝑢̃𝜃(𝐦)‖‖Σ−1𝐿 − ‖‖𝐿(𝑢𝜃(𝐦)− 𝑢̃𝜃(𝐦))‖‖Σ−1𝐿≥ ‖‖𝐿𝑢̃𝜃(𝐦)‖‖Σ−1𝐿 − 𝛾𝐿 ‖‖𝑢𝜃(𝐦)− 𝑢̃𝜃(𝐦)‖‖

≥ ‖‖𝐿𝑢̃𝜃(𝐦)‖‖Σ−1𝐿 − 𝛾𝐿𝜀𝜃 ‖‖𝑢𝜃(𝐦)‖‖
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≥ ‖‖𝐿𝑢̃𝜃(𝐦)‖‖Σ−1𝐿 − 𝛾𝐿𝜀𝜃𝜂(𝜃)‖𝐦‖Σ−1pr ,

where we have used the reverse triangle inequality, followed by (6), (17), and (1). We divide by ‖𝐦‖Σ−1pr and take the infimum over 
𝐦 to obtain

𝛽𝐺(𝜃,𝐿) = inf
𝐦∈ℝ𝑀

‖‖𝐿𝑢𝜃(𝐦)‖‖Σ−1𝐿
‖𝐦‖Σ−1pr

≥ inf
𝐦∈ℝ𝑀

‖‖𝐿𝑢̃𝜃(𝐦)‖‖Σ−1𝐿
‖𝐦‖Σ−1pr

− 𝛾𝐿 𝜂(𝜃) 𝜀𝜃 = 𝛽𝐺(𝜃,𝐿)− 𝛾𝐿 𝜂(𝜃) 𝜀𝜃 .

The upper bound in (21) follows analogously. □

If 𝜀𝜃 is sufficiently small, Propositions 1 and 2 justify employing the surrogates 𝛽 (𝜃, 𝐿) and 𝛽𝐺(𝜃, 𝐿) instead of the original full-
order observability coefficients 𝛽 (𝜃, 𝐿) and 𝛽𝐺(𝜃, 𝐿). This substitution becomes especially necessary when the computation of 𝑢𝜃(𝐦)
is too expensive to evaluate 𝛽 (𝜃, 𝐿) or 𝛽𝐺(𝜃, 𝐿) repeatedly for different configurations 𝜃.

Another approximation step in our sensor selection algorithm relies on the identification of a parameter direction 𝐯 ∈ ℝ𝑀 with 
comparatively small observability, i.e.

‖‖𝐿𝑢𝜃(𝐯)‖‖Σ−1𝐿
‖𝐯‖Σ−1pr

≈ inf
𝐦∈ℝ𝑀

‖‖𝐿𝑢𝜃(𝐦)‖‖Σ−1𝐿
‖𝐦‖Σ−1pr

= 𝛽𝐺(𝜃,𝐿) or
‖‖𝐿𝑢𝜃(𝐯)‖‖Σ−1𝐿
‖‖𝑢𝜃(𝐯)‖‖

≈ inf
𝑢∈𝜃

‖𝐿𝑢‖Σ−1𝐿
‖𝑢‖ = 𝛽 (𝜃,𝐿).

The ideal choice would be the infimizer of respectively 𝛽𝐺(𝜃, 𝐿) or 𝛽 (𝜃, 𝐿), but its computation involves 𝑀 full-order model eval-
uations (cf. Section 4.4). To avoid these costly computations, we instead choose 𝐯 as the infimizer of the respective reduced-order 
observability coefficient. This choice is justified for small 𝜀𝜃 < 1 by the following proposition:

Proposition 3. Let 𝜂(𝜃) > 0 hold, and let 𝑢̃𝜃(𝐦) ∈ be an approximation to 𝑢𝜃(𝐦) such that (17) holds for all 𝜃 ∈  , 𝐦 ∈ ℝ𝑀 . Suppose 
𝐯 ∈ arg inf𝐦∈ℝ𝑀 ‖‖𝐿𝑢̃𝜃(𝐦)‖‖Σ−1𝐿 ‖𝐦‖−1

Σ−1pr
, then

𝛽𝐺(𝜃,𝐿) ≤
‖‖𝐿𝑢𝜃(𝐯)‖‖Σ−1𝐿

‖𝐯‖Σ−1pr
≤ 𝛽𝐺(𝜃,𝐿) + 2𝛾𝐿𝜂(𝜃)𝜀𝜃 . (22)

Likewise, if 𝐯 ∈ arg inf𝐦∈ℝ𝑀 ‖‖𝑢̃𝜃(𝐦)‖‖−1 ‖‖𝐿𝑢̃𝜃(𝐦)‖‖Σ−1𝐿 , then

𝛽 (𝜃,𝐿) ≤
‖‖𝐿𝑢𝜃(𝐯)‖‖Σ−1𝐿
‖‖𝑢𝜃(𝐯)‖‖

≤ 1 + 𝜀𝜃
1− 𝜀𝜃

(
𝛽 (𝜃,𝐿) + 𝛾𝐿𝜀𝜃

)
+ 𝛾𝐿𝜀𝜃 . (23)

Proof. For both (22) and (23) the lower bound follows directly from definitions (13) and (16). To prove the upper bound in (22), 
let 𝐯 ∈ arg inf𝐦∈ℝ𝑀 ‖𝐦‖−1

Σ−1pr
‖‖𝐿𝑢̃𝜃(𝐦)‖‖Σ−1𝐿 . Following the same steps as in the proof of Proposition 2, we can then bound

‖‖𝐿𝑢𝜃(𝐯)‖‖Σ−1𝐿
‖𝐯‖Σ−1pr

≤
‖‖𝐿𝑢̃𝜃(𝐯)‖‖Σ−1𝐿

‖𝐯‖Σ−1pr
+

‖‖𝐿(𝑢𝜃(𝐯)− 𝑢̃𝜃(𝐯))‖‖Σ−1𝐿
‖𝐯‖Σ−1pr

≤ 𝛽𝐺(𝜃,𝐿) + 𝛾𝐿𝜂(𝜃)𝜀𝜃 .
The upper bound in (22) then follows with Proposition 2.

To prove the upper bound in (23), let 𝐯 ∈ arg inf𝐦∈ℝ𝑀 ‖‖𝑢̃𝜃(𝐦)‖‖−1 ‖‖𝐿𝑢̃𝜃(𝐦)‖‖Σ−1𝐿 . Then
‖‖𝐿𝑢𝜃(𝐯)‖‖Σ−1𝐿
‖‖𝑢𝜃(𝐯)‖‖

≤
‖‖𝐿𝑢̃𝜃(𝐯)‖‖Σ−1𝐿
‖‖𝑢̃𝜃(𝐯)‖‖

‖‖𝑢̃𝜃(𝐯)‖‖
‖‖𝑢𝜃(𝐯)‖‖

+
‖‖𝐿(𝑢𝜃(𝐯)− 𝑢̃𝜃(𝐯))‖‖Σ−1𝐿

‖‖𝑢𝜃(𝐯)‖‖
≤ (1 + 𝜀) 𝛽 (𝜃,𝐿) + 𝛾𝐿𝜀𝜃 .

The result then follows with Proposition 1. □

4. Sensor selection

In this section, we present a sensor selection algorithm that iteratively chooses the individual sensors in 𝐿 to increase the 
minimal observability coefficient min𝜃∈ 𝛽𝐺(𝜃, 𝐿) and thereby decreases the upper bound (14) for the eigenvalues of the posterior 
covariance matrix for all admissible system configurations 𝜃 ∈  . The advantage of using the observability coefficient rather than 
targeting a utility function directly is that neither the posterior covariance matrix nor its action need to be computed to evaluate 
the improvement that any additional sensor would bring. Compared to computing the posterior, using the observability coefficient 
𝛽𝐺(𝜃, 𝐿) as target for the iterative “max-min” optimization reduces the number of full-order model solves per iteration from 𝑀 to 
a single one. Although the iterative procedure cannot guarantee finding the optimal observability over all sensor combinations, the 
underlying greedy searches are well-established in practice, and can be shown to perform with exponentially decreasing error rates 
in closely related settings, see [61,19,55,62,63]. The iterative approach is also relatively easy to implement, allows a simple way of 
dealing with combinatorial restrictions, and can deal with large sensor libraries even for correlated noise.
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Algorithm 1: SensorSelection.
Input: sensor library  ⊂ ′ , training set Ξtrain ⊂  , maximum number of sensors 𝐾max ≤ |𝐾|, 𝐾max ≥𝑀 , surrogate model ̃𝜃 , covariance function 

cov ∶ × →ℝ

Compute Σpr =
[
𝜑1 ,… ,𝜑𝑀

]𝑇 𝐃pr
[
𝜑1 ,… ,𝜑𝑀

]
// eigenvalue decomposition

For all 𝜃 ∈ Ξtrain , 1 ≤𝑚 ≤𝑀 , compute 𝑢̃𝜃 (𝜑𝑚) // preparation

𝐾 ← 0, 𝜃0 ← argmax𝜃∈Ξtrain
‖‖𝑢̃𝜃 (𝜑1)‖‖ , 𝐦0 ← 𝜑1 // initialization

while 𝐾 <𝐾max do
// data matching

Solve full-order equation 𝜃𝐾 (𝑢𝐾 , 𝐦𝐾 ) for 𝑢𝐾 // "worst-case" state
𝓁𝐾+1 ← argmax𝓁∈ 𝙾𝚋𝚜𝚎𝚛𝚟𝚊𝚋𝚒𝚕𝚒𝚝𝚢𝙶𝚊𝚒𝚗(𝐿, 𝐂𝐿, 𝓁) // sensor selection
𝐿, Σ𝐿 , 𝐂𝐿 ← 𝙲𝚑𝚘𝚕𝚎𝚜𝚔𝚢𝙴𝚡𝚙𝚊𝚗𝚜𝚒𝚘𝚗(𝐿, Σ𝐿 , 𝐂𝐿, 𝓁𝐾+1) // expansion

𝐾 ←𝐾 + 1
// greedy search

for 𝜃 ∈ Ξtrain do
𝛽 (𝜃, 𝐿), 𝐦min(𝜃) ← 𝚂𝚞𝚛𝚛𝚘𝚐𝚊𝚝𝚎𝙾𝚋𝚜𝚎𝚛𝚟𝚊𝚋𝚒𝚕𝚒𝚝𝚢(𝜃, 𝐿, 𝐂𝐿) // update coefficients

𝜃𝐾 ← argmin𝜃∈Ξtrain
𝛽 (𝜃, 𝐿) // "worst-case" hyper-parameter

𝐦𝐾 ←
∑min{𝑀 ,𝐾}
𝑚=1

[
𝐦min(𝜃𝐾 )

]
𝑚 𝜑𝑚 // "worst-case" parameter

return 𝐿, 𝐂𝐿

We start with a high-level overview of the algorithm to describe its main steps and ideas. To keep the exposition simple, we delay 
introducing computational details on three key operations – the matrix expansions, the computations of the observability gain, and 
the surrogate observability coefficient – to Sections 4.2, 4.3 and 4.4. In the algorithm description, these operations are denoted as 
function calls 𝙲𝚑𝚘𝚕𝚎𝚜𝚔𝚢𝙴𝚡𝚙𝚊𝚗𝚜𝚒𝚘𝚗, 𝙾𝚋𝚜𝚎𝚛𝚟𝚊𝚋𝚒𝚕𝚒𝚝𝚢𝙶𝚊𝚒𝚗, 𝚂𝚞𝚛𝚛𝚘𝚐𝚊𝚝𝚎𝙾𝚋𝚜𝚎𝚛𝚟𝚊𝚋𝚒𝚕𝚒𝚝𝚢, to be presented in Algorithms 2, 3, and 4 later.

4.1. Sensor selection

Our goal is to identify an observation operator 𝐿 composed of 𝐾max sensors from the sensor library  that solves the “max-min”-
optimization problem

max
𝐿

min
𝜃∈ 𝛽𝐺(𝜃,𝐿) such that 𝐿 =

[
𝓁1,… ,𝓁𝐾max

]𝑇
∶ →ℝ𝐾max with 𝓁1,… ,𝓁𝐾max ∈.

In our sensor selection algorithm, we iteratively expand the observation operator 𝐿. It will be shown in Section 4.3 that 𝛽𝐺(𝜃, 𝐿) is 
monotonously increasing under expansion of 𝐿, which guarantees that this iterative expansion will indeed increase the observability 
coefficient 𝛽𝐺(𝜃, 𝐿) for all 𝜃 ∈  . In each iteration, the algorithm performs two main steps:

• A greedy search over a training set Ξtrain ⊂  to identify the configuration 𝜃 ∈ Ξtrain for which the observability coefficient 
𝛽𝐺(𝜃, 𝐿) is (approximately) minimal. At this “worst-case” configuration, we also identify the corresponding “worst-case” param-
eter 𝐦 = argmin𝐦∈ℝ𝑀 ‖‖𝐿𝑢𝜃(𝐦)‖‖Σ−1𝐿 ‖𝐦‖−1

Σ−1pr
.

• A data-matching step to identify a sensor in the library  that maximizes the observation of the “worst-case” parameter at the 
“worst-case” configuration 𝜃.

To keep the computational effort feasible, we use a reduced-order model to approximate 𝛽𝐺(𝜃, 𝐿) during the greedy search. The pro-
cedure is summarized in Algorithm 1, using forward references 𝙲𝚑𝚘𝚕𝚎𝚜𝚔𝚢𝙴𝚡𝚙𝚊𝚗𝚜𝚒𝚘𝚗 (Algorithm 2, Section 4.2), 𝙾𝚋𝚜𝚎𝚛𝚟𝚊𝚋𝚒𝚕𝚒𝚝𝚢𝙶𝚊𝚒𝚗
(Algorithm 3, Section 4.3), 𝚂𝚞𝚛𝚛𝚘𝚐𝚊𝚝𝚎𝙾𝚋𝚜𝚎𝚛𝚟𝚊𝚋𝚒𝚕𝚒𝚝𝚢 (Algorithm 4, Section 4.4) to the explanations of the more involved sub-steps. 
In the following, we explain the high-level computational details.

Preparations
Let Σpr =𝐔𝑇𝐃pr𝐔 be the eigenvalue decomposition of the s.p.d. prior covariance matrix with 𝐔 =

[
𝜑1,… ,𝜑𝑀

]
∈ℝ𝑀×𝑀 , 𝜑𝑗 ∈ℝ𝑀

orthonormal in the Euclidean inner product, and 𝐃pr = diag(𝜆1pr , … , 𝜆𝑀pr ) a diagonal matrix containing the eigenvalues 𝜆1pr ≥ ⋯ ≥
𝜆𝑀pr > 0 in decreasing order. As discussed in Section 3.2, we assume 𝑀 is sufficiently small for 𝛽𝐺(𝜃, 𝐿) to be meaningful when all 
𝐾max sensors have been chosen, i.e., 𝑀 ≤ 𝐾max. In order to increase 𝛽𝐺(𝜃, 𝐿) uniformly throughout the hyper-parameter domain  , 
we choose a finite training set, Ξtrain ⊂  , that is fine enough to capture the 𝜃-dependent variations in the state 𝑢𝜃(𝐦). We assume 
a reduced-order model is available such that we can compute approximations 𝑢̃𝜃(𝜑𝑚) ≈ 𝑢𝜃(𝜑𝑚) for each 𝜃 ∈ Ξtrain and 1 ≤ 𝑚 ≤𝑀
within an acceptable computation time while also guaranteeing the accuracy requirement (17). If necessary, the two criteria can 
be balanced via adaptive training domains (e.g., [64,65]). The reduced-order model will be used in each iteration to identify the 
hyper-parameter 𝜃 with the worst observability for the current observation operator 𝐿. If memory allows (e.g., with projection-based 
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surrogate models), the surrogate states 𝑢̃𝜃(𝜑𝑚) for 𝜃 ∈ Ξtrain, 1 ≤ 𝑚 ≤𝑀 should be computed and stored at the start of the algorithm 
to avoid re-computations.

As a first “worst-case” parameter direction, 𝐦0, we choose the vector 𝜑1 with the largest prior uncertainty. Likewise, we choose 
the “worst-case” configuration 𝜃𝐾 ∈ Ξtrain as the one for which the corresponding state 𝑢̃𝜃 (𝜑1) is the largest.

Data-matching step
In each iteration, we first compute the full-order state 𝑢𝐾 = 𝑢𝜃𝐾 (𝐦𝐾 ) at the “worst-case” parameter 𝐦𝐾 and configuration 𝜃𝐾 . We 

use the full-order state 𝑢𝜃𝐾 (𝐦𝐾 ) rather than its reduced-order surrogate in order to avoid training on local approximation inaccuracies 
in the reduced-order model. However, since we only require a single full-order model solve per iteration, we are still keeping the 
computational effort small compared to the 𝑀 full-order model solves that would be required for setting up the entire posterior 
covariance matrix Σ𝐿,𝜃post .

We continue by computing for each sensor 𝓁 in the sensor library  by how much the norm ‖‖𝐿𝐦𝐾‖‖Σ−1𝐿 would increase if 𝐿 was 
expanded to [𝐿𝑇 , 𝓁]𝑇 , i.e. we compute the observability gain

‖ [𝐿,𝓁](𝑢) ‖2
Σ−1[𝐿,𝓁]

− ‖𝐿𝑢‖2
Σ−1𝐿

.

This value is returned by the function 𝙾𝚋𝚜𝚎𝚛𝚟𝚊𝚋𝚒𝚕𝚒𝚝𝚢𝙶𝚊𝚒𝚗 defined in Algorithm 3 below. It will be shown in Section 4.3 that it can 
be implemented efficiently without explicitly computing ‖ [𝐿,𝓁](𝑢) ‖2

Σ−1[𝐿,𝓁]
or ‖𝐿𝑢‖2

Σ−1𝐿
.

We choose the sensor 𝓁𝐾+1 as the one with maximum gain, i.e., the one which most improves the observation of the “worst-
case” state 𝑢𝐾 under the expanded observation operator [𝐿𝑇 , 𝓁𝐾+1]𝑇 and its associated norm. We thereby iteratively approximate the 
information that would be obtained by measuring with all sensors in the library . For fixed 𝜃𝐾 and in combination with selecting 
𝑢 to have the smallest observability in 𝜃 , we arrive at an algorithm similar to worst-case orthogonal matching pursuit (cf. [19,20]) 
but generalized to deal with the covariance function cov in the noise model (3).

When expanding 𝐿, we also expand the associated noise covariance matrix Σ𝐿 and its Cholesky decomposition. The latter is 
required for computing the observability coefficient and the observability gain efficiently. The details for this expansion are provided 
in Algorithm 2 in Section 4.2 below.

Greedy step
We train the observation operator 𝐿 on all configurations 𝜃 ∈ Ξtrain by varying for which 𝜃 the “worst-case” state is com-

puted. Specifically, we follow a greedy approach where, in iteration 𝐾 , we identify the configuration 𝜃𝐾 for which the current 
observation operator 𝐿 is the least advantageous. To this end, we would ideally choose 𝜃𝐾 = argmin𝜃∈Ξtrain 𝛽𝐺(𝜃, 𝐿); however, the computation of 𝛽𝐺(𝜃, 𝐿) for a single 𝜃 already requires 𝑀 full-order model solves, rendering the minimization over Ξtrain infeasible. 
Instead, we therefore approximate 𝛽𝐺(𝜃, 𝐿) ≈ 𝛽𝐺(𝜃, 𝐿) using the reduced-order model. The computations are described in Algorithm 4
(𝚂𝚞𝚛𝚛𝚘𝚐𝚊𝚝𝚎𝙾𝚋𝚜𝚎𝚛𝚟𝚊𝚋𝚒𝚕𝚒𝚝𝚢) below. Albeit 𝜃𝐾 might not be the optimal choice in Ξtrain for minimizing the full-order 𝛽𝐺(𝜃, 𝐿), with 
Proposition 2 and the accuracy requirement (17), we are still guaranteed that 𝛽𝐺(𝜃𝐾 , 𝐿) has a similarly small value.

Remark 4. Since the computation of 𝛽𝐺(𝜃, 𝐿) requires as many reduced-order model solves as needed for the posterior covariance 
matrix over the surrogate model, it is possible to directly target an (approximated) OED utility function in the greedy step in place 
of 𝛽 (𝜃, 𝐿) without major concessions in the computational efficiency. The data-matching step can then still be performed for the 
“worst-case” parameter with only one full-order model solve, though its benefit for the utility function should be evaluated carefully.

We proceed to identify the corresponding “worst-case” parameter 𝐦𝐾 = argmin𝐦∈ℝ𝑀
‖‖‖𝐿𝑢̃𝜃𝐾 (𝐦)‖‖‖Σ−1𝐿

‖𝐦‖−1
Σ−1pr

, i.e., the parameter 
direction for which the least significant observation is achieved. The basis coefficients of 𝐦𝐾 in the eigenvector basis {𝜑𝑚}𝑀𝑚=1 are computed within the call to 𝚂𝚞𝚛𝚛𝚘𝚐𝚊𝚝𝚎𝙾𝚋𝚜𝚎𝚛𝚟𝚊𝚋𝚒𝚕𝚒𝚝𝚢 (Algorithm 4) with no additional computational effort. Once 𝜃𝐾 has been 
chosen, 𝐦𝐾 can be assembled in (𝑀2). Similarly to 𝜃𝐾 , 𝐦𝐾 is solely chosen based on the reduced-order surrogate. However, with 
Proposition 3, the observability ‖‖‖𝐿𝑢𝜃𝐾 (𝐦𝐾 )

‖‖‖Σ−1𝐿
‖𝐦𝐾‖−1Σ−1pr of 𝐦𝐾 under the full-order model is close to 𝛽𝐺(𝜃𝐾 , 𝐿) such that 𝐦𝐾 may 

indeed serve as an approximate “worst-case” state for the full-order model.

Termination
Algorithm 1 terminates when 𝐾max ≤𝐾 sensors have been selected. However, this termination criterion can easily be adapted to 

prescribe a minimum value of the observability coefficient chosen with respect to the observability 𝛽𝐺(𝜃, ) achieved with the entire 
sensor library.

Runtime
Assuming the dominating computational restriction is the model evaluation to solve for 𝑢𝜃(𝐦) – as is usually the case for PDE 

models – then the runtime of each iteration in Algorithm 1 is determined by one full-order model evaluation, and 𝐾 sensor 
measurements of the full-order state. Compared to computing the posterior covariance matrix for the chosen configuration, the 
data-matching step saves 𝑀 − 1 full-order model solves.
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Algorithm 2: CholeskyExpansion.
Input: observation operator 𝐿 = [

𝓁1 ,… ,𝓁𝐾
]𝑇 , noise covariance matrix Σ𝐿 , Cholesky matrix 𝐂𝐿 , new sensor 𝓁 ∈ ′

𝐿 ← [
𝓁1 ,… ,𝓁𝐾 ,𝓁

]𝑇
// operator expansion

if 𝐾 = 0 then
Σ𝐿 ←

(cov(𝓁 ,𝓁)) , 𝐂𝐿 ←
(√cov(𝓁 ,𝓁)

)
∈ℝ1×1 // first sensor

else
𝐯 ← [cov(𝓁1 ,𝓁),… ,cov(𝓁𝐾 ,𝓁)

]𝑇 ∈ℝ𝐾 // matrix expansion
𝐰 ←𝐂−1

𝐿 𝐯 ∈ℝ𝐾 , 𝑠 ← cov(𝓁 , 𝓁), 𝑐← 𝑠 −𝐰𝑇𝐰 ∈ℝ

Σ𝐿 ←

(
Σ𝐿 𝐯
𝐯𝑇 𝑠

)
, 𝐂𝐿 ←

(
𝐂𝐿 𝟎
𝐰𝑇 𝑐

)
∈ℝ(𝐾+1)×(𝐾+1)

return 𝐿, Σ𝐿 , 𝐂𝐿

The other main factor in the runtime of Algorithm 1 is the |Ξtrain|𝑀 reduced-order model evaluations with 𝐾 sensor evaluations 
each required by the greedy step. Since these are the same in each iteration, they can be pre-computed and stored if memory permits. 
The parameter dimension 𝑀 not only enters as a scaling factor, but also affects the cost of the reduced-order model itself since larger 
values of 𝑀 generally require larger or more complicated reduced-order models to achieve the desired accuracy (17). In turn, the 
computational cost of the reduced-order model indicates how large Ξtrain may be chosen for a given computational budget. While 
some cost can be saved through adaptive training sets and models, overall, this connection to 𝑀 stresses the need for an adequate 
initial parameter reduction as discussed in Section 3.2.

4.2. Cholesky decomposition

The observability coefficient 𝛽𝐺(𝜃, 𝐿) is connected to the noise model and the covariance function cov through the noise covari-
ance matrix Σ𝐿 whose inverse enters the norm ‖⋅‖Σ−1𝐿 and the posterior covariance matrix Σ𝐿,𝜃post . The inversion poses a challenge 
when the noise is correlated, i.e., when Σ𝐿 is not diagonal: in this case, even the expansion of 𝐿 with a single sensor 𝓁 ∈  changes 
each entry of Σ−1

𝐿 . In naive computations of the observability coefficients and the posterior covariance matrix, this leads to 𝑀 dense 
linear system solves of order ((𝐾 + 1)3) each time the observation operator is expanded. In the following, we therefore expound on 
how Σ−1

𝐿 changes under expansion of 𝐿 to exploit its structure when comparing potential sensor choices.
Suppose 𝐿 =

[
𝓁1,… ,𝓁𝐾

]𝑇 has already been chosen with sensors 𝓁𝑘 ∈ ′, but shall be expanded by another sensor 𝓁 to

[𝐿,𝓁] ∶=
[
𝓁1,… ,𝓁𝐾 ,𝓁

]𝑇 ∶ →ℝ𝐾+1.

Following definition (4), the noise covariance matrix Σ[𝐿,𝓁] of the expanded operator [𝐿, 𝓁] has the form

Σ[𝐿,𝓁] =
(

Σ𝐿 𝐯𝐿,𝓁
𝐯𝑇𝐿,𝓁 𝑣𝓁,𝓁

)
=
(

𝐂𝐿 𝟎
𝐜𝑇𝐿,𝓁 𝑐𝓁,𝓁

)(
𝐂𝑇𝐿 𝐜𝐿,𝓁
𝟎 𝑐𝓁,𝓁

)
,

where 𝐂𝐿𝐂𝑇𝐿 = Σ𝐿 ∈ ℝ𝐾×𝐾 is the Cholesky decomposition of the s.p.d. noise covariance matrix Σ𝐿 for the original observation 
operator 𝐿, and 𝐯𝐿,𝓁 , 𝐜𝐿,𝓁 ∈ℝ𝐾 , 𝑣𝓁,𝓁 , 𝑐𝓁,𝓁 ∈ℝ are defined through

[
𝐯𝐿,𝓁

]
𝑖 ∶= cov(𝓁𝑖,𝓁), 𝐜𝐿,𝓁 ∶=𝐂−1

𝐿 𝐯𝐿,𝓁 ,

𝑣𝓁,𝓁 ∶= cov(𝓁,𝓁), 𝑐𝓁,𝓁 ∶=
√
𝑣𝓁,𝓁 − 𝐜𝑇𝐿,𝓁𝐜𝐿,𝓁 .

Note that Σ[𝐿,𝓁] is s.p.d. by the assumptions posed on cov in Section 2; consequently, 𝑐𝓁,𝓁 is well-defined and strictly positive. With 
this factorization, the expanded Cholesky matrix 𝐂[𝐿,𝓁] with 𝐂[𝐿,𝓁]𝐂𝑇[𝐿,𝓁] = Σ[𝐿,𝓁] can be computed in (𝐾2), dominated by the linear 
system solve with the triangular 𝐂𝐿 for obtaining 𝐜𝐿,𝓁 . It is summarized in Algorithm 2. We refer to [66], chapter 4, pp. 168-170, for 
further discussion of the Cholesky decomposition on submatrices.

Using the Cholesky decomposition, the inverse of Σ[𝐿,𝓁] factorizes to

Σ−1
[𝐿,𝓁] =

(
𝐂𝑇𝐿 𝐜𝐿,𝓁
𝟎 𝑐𝓁,𝓁

)−1( 𝐂𝐿 𝟎
𝐜𝑇𝐿,𝓁 𝑐𝓁,𝓁

)−1

=
(
𝐂−𝑇
𝐿 𝐫𝐿,𝓁
𝟎 1∕𝑐𝓁,𝓁

)(
𝐂−1
𝐿 𝟎

𝐫𝑇𝐿,𝓁 1∕𝑐𝓁,𝓁

)
, (24)

where

𝐫𝐿,𝓁 ∶= − 1
𝑐𝓁,𝓁

𝐂−𝑇
𝐿 𝐜𝐿,𝓁 = − 1

𝑐𝓁,𝓁
𝐂−𝑇
𝐿 𝐂−1

𝐿 𝐯𝐿,𝓁 = − 1
𝑐𝓁,𝓁

Σ−1
𝐿 𝐯𝐿,𝓁 .

The advantage of the factorization (24) is that the dense Σ−1
𝐿 does not need to be explicitly computed when comparing designs, 

leading to significant computational savings as shown below.
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Algorithm 3: ObservabilityGain.
Input: observation operator 𝐿 = [

𝓁1 ,… ,𝓁𝐾
]𝑇 , Cholesky matrix 𝐂𝐿 , sensor candidate 𝓁 ∈ ′ , state 𝑢 ∈

𝐝 ←𝐿𝑢, 𝐳←𝐂−1
𝐿 𝐝 // preparation

if 𝐾 = 0 then
return 𝓁(𝑢𝐾 )2∕cov(𝓁 , 𝓁) // one sensor only

else
𝐯 ← [cov(𝓁1 ,𝓁),… ,cov(𝓁𝐾 ,𝓁)

]𝑇 ∈ℝ𝐾 // general case
𝐰 ←𝐂−1

𝐿 𝐯 ∈ℝ𝐾

return
(
𝓁 (𝑢𝐾 )−𝐰𝑇 𝐳

)2

cov(𝓁 ,𝓁 )−𝐰𝑇𝐰

4.3. Observability gain

Using (24), for an arbitrary state 𝑢 ∈ , the norm of the extended observation [𝐿, 𝓁](𝑢) = [
𝐿𝑢𝑇 ,𝓁(𝑢)

]𝑇 ∈ℝ𝐾+1 in the corresponding 
norm ‖⋅‖Σ−1[𝐿,𝓁] is connected to the original observation 𝐿𝑢 ∈ℝ𝐾 in the original norm ‖⋅‖Σ−1𝐿 via

‖ [𝐿,𝓁](𝑢) ‖2
Σ−1[𝐿,𝓁]

=
(
𝐿𝑢
𝓁(𝑢)

)𝑇 ( Σ𝐿 𝐯𝐿,𝓁
𝐯𝑇𝐿,𝓁 𝑣𝓁,𝓁

)−1(
𝐿𝑢
𝓁(𝑢)

)

=
(
𝐿𝑢
𝓁(𝑢)

)𝑇 ( 𝐂−𝑇
𝐿 𝐫𝐿,𝓁
𝟎 1∕𝑐𝓁,𝓁

)(
𝐂−1
𝐿 𝟎

𝐫𝑇𝐿,𝓁 1∕𝑐𝓁,𝓁

)(
𝐿𝑢
𝓁(𝑢)

)

=
(

𝐂−1
𝐿 𝐿𝑢

𝐫𝑇𝐿,𝓁𝐿𝑢+ 𝓁(𝑢)∕𝑐𝓁,𝓁

)𝑇 (
𝐂−1
𝐿 𝐿𝑢

𝐫𝑇𝐿,𝓁𝐿𝑢+ 𝓁(𝑢)∕𝑐𝓁,𝓁

)

= (𝐿𝑢)𝑇𝐂−𝑇
𝐿 𝐂−1

𝐿 𝐿𝑢+ (𝐫𝑇𝐿,𝓁𝐿𝑢+ 𝓁(𝑢)∕𝑐𝓁,𝓁)2

= ‖𝐿𝑢‖2
Σ−1𝐿

+ (𝐫𝑇𝐿,𝓁𝐿𝑢+ 𝓁𝐾+1(𝑢)∕𝑐𝓁,𝓁)2

≥ ‖𝐿𝑢‖2
Σ−1𝐿

.

(25)

We conclude from this result that the norm ‖𝐿𝑢‖Σ−1𝐿 of any observation, and therefore also the continuity coefficient 𝛾𝐿 defined in (6), 
is increasing under expansion of 𝐿 despite the change in norms. For any configuration 𝜃, the observability coefficient 𝛽𝐺(𝜃, 𝐿) is thus 
non-decreasing when sensors are selected iteratively. This guarantees in particular, that by iteratively increasing the observability at 
the “worst-case” parameters and hyper-parameters, we increase the minimum of 𝛽𝐺(𝜃, 𝐿) throughout the training domain.

Given a state 𝑢 ∈ and an observation operator 𝐿, we can determine the sensor 𝓁𝐾+1 ∈  that increases the observation of 𝑢
the most by comparing the increase (𝐫𝑇𝐿,𝓁𝐿𝑢 +𝓁(𝑢)∕𝑐𝓁,𝓁)2 for all 𝓁 ∈. Algorithm 3 summarizes the computation of this observability 
gain for use in Algorithm 1. Its general runtime is determined by 𝐾 + 1 sensor evaluations and two linear solves with the triangular 
Cholesky matrix 𝐂𝐿 in (𝐾2). When called with the same 𝐿 and the same state 𝑢 for different candidate sensors 𝓁, the preparation 
step must only be performed once, which reduces the runtime to one sensor evaluation and one linear system solve in all subsequent 
calls. Compared to computing ‖ [𝐿,𝓁](𝑢) ‖2

Σ−1[𝐿,𝓁]
for all 𝐾 candidate sensors in the library , we save (𝐾𝐾2).

4.4. Computation of the observability coefficient

We next discuss the computation of the observability coefficient 𝛽𝐺(𝜃, 𝐿) for a given configuration 𝜃 and observation operator 𝐿. 
Using the eigenvector basis {𝜑𝑚}𝑀𝑚=1 of Σpr , we define the matrix

𝐌(𝜃) ∶=
[
𝐿𝑢𝜃(𝜑1),… ,𝐿𝑢𝜃(𝜑𝑀 )

]
∈ℝ𝐾×𝑀 (26)

featuring all observations of the associated states 𝑢𝜃(𝜑𝑗 ) for the configuration 𝜃. The observability coefficient 𝛽𝐺(𝜃, 𝐿) can then be 
computed as the square root of the minimum eigenvalue 𝜆min of the generalized eigenvalue problem

𝐌(𝜃)𝑇𝐂−𝑇
𝐿 𝐂−1

𝐿 𝐌(𝜃)𝐦min = 𝜆min𝐃−1
pr 𝐦min. (27)

Note that (27) has 𝑀 real, non-negative eigenvalues because the matrix on the left is symmetric positive semi-definite, and 𝐃pr =
diag(𝜆1pr , … , 𝜆𝑀pr ) is s.p.d. (cf. [66]). The eigenvector 𝐦min contains the basis coefficients in the eigenvector basis {𝜑𝑚}𝑀𝑚=1 of the 
“worst-case” parameter, i.e. the infimizer of 𝛽𝐺(𝜃, 𝐿).

The solution of the eigenvalue problem can be computed in (𝑀3), with an additional (𝑀𝐾2 +𝑀2𝐾) for the computation of 
the left-hand side matrix in (27). The dominating cost is hidden in 𝐌(𝜃) since it requires 𝐾𝑀 sensor observations and 𝐾 full-order 
model solves. To reduce the computational cost, we therefore approximate 𝛽𝐺(𝜃, 𝐿) with 𝛽𝐺(𝜃, 𝐿) by exchanging the full-order states 
𝑢𝜃(𝜑𝑗 ) in (26) with their reduced-order approximations 𝑢̃𝜃 (𝜑𝑗 ). The procedure is summarized in Algorithm 4.
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Algorithm 4: SurrogateObservability.
Input: configuration 𝜃 ∈  , observation operator 𝐿 = [

𝓁1 ,… ,𝓁𝐾
]𝑇 with 𝐾 > 0, Cholesky matrix 𝐂𝐿

𝑁 ←min{𝑀 , 𝐾} // parameter restriction
𝐌 ← [

𝐿𝑢̃𝜃 (𝜑1),… ,𝐿𝑢̃𝜃 (𝜑𝑁 )
], 𝐒 ← [⟨

𝑢𝜃 (𝜑𝑖),𝑢𝜃 (𝜑𝑗 )
⟩

]𝑁
𝑖,𝑗=1 // matrix setup

Find (𝜆min , 𝐦min) of 
[
𝐂−1
𝐿 𝐌

]𝑇 [𝐂−1
𝐿 𝐌

]
𝐦min = 𝜆min𝐒𝐦min // eigenvalue problem

return
√
𝜆min , 𝐦min

Remark 5. If 𝐾 <𝑀 , Algorithm 4 restricts the parameter space, as discussed in Section 3.2, to the span of the first 𝐾 eigenvectors 
𝜑1, … , 𝜑𝐾 encoding the least certain directions in the prior. A variation briefly discussed in [19] in the context of the PBDW method 
to prioritize the least certain parameters even further is to only expand the parameter space once the observability coefficient on the 
subspace surpasses a predetermined threshold.

Remark 6. For selecting a design 𝐿 after a reduction in the parameter space (see Section 3.2), we replace the observability coefficient 
𝛽𝐺(𝜃, 𝐿) with 𝛽 (𝜃, 𝐿) defined in (16). In this case, we follow the same computational procedure, but exchange the right-hand side 
matrix 𝐃−1

pr in (27) with the  -inner-product matrix for the states 𝑢𝜃(𝜑1), … , 𝑢𝜃(𝜑𝑀 ) (definitions below). In particular, the result (25)
implies that similar to 𝛽𝐺(𝜃, 𝐿), 𝛽 (𝜃, 𝐿) is also non-decreasing under expansion of 𝐿, such that the motivations and analysis for the 
individual steps carry over.

5. Numerical results

We numerically confirm the validity of our sensor selection approach using a geophysical model of a section of the Perth Basin 
in Western Australia. The basin has raised interest in the geophysics community due to its high potential for geothermal energy, 
e.g., [67–71]. We focus on a subsection that spans an area of 63 km × 70 km and reaches 19 km below the surface. The model was 
introduced in [72] and the presented section of the model was discussed extensively in the context of MOR in [73,74]. In particular, 
the subsurface temperature distribution is described through a steady-state heat conduction problem with different subdomains 
for the geological layers, and local measurements may be obtained through boreholes. The borehole locations need to be chosen 
carefully due to their high costs (typically several million dollars, [75]), which in turn motivates our application of Algorithm 1. For 
demonstration purposes, we make the following simplifications to our test model: 1) We neglect radiogenic heat production; 2) we 
merge geological layers with similar conductive behaviors; and 3) we scale the prior to emphasize the influence of different sensor 
measurements on the posterior. All computations were performed in Python 3.7 on a computer with a 2.3 GHz Quad-Core Intel 
Core i5 processor and 16 GB of RAM. The source code is available on GitHub (nicolearetz/greedy-sensor-selection).

This section is organized as follows: In Section 5.1, we introduce our modeling assumptions, aiming to provide a comprehensible 
explanation for our choices. In our first experiment, Section 5.2, we numerically verify whether we can indeed use the observability 
coefficient to identify sensors that have a similarly small utility function value as the A-, D- and E-optimal choices. Our second 
experiment, Section 5.3, is designed to show how much the performance of our algorithm is influenced by the sensor library, 
and should serve as a point of reference for the algorithm’s expected performance in different settings. The purpose of our final 
experiment, Section 5.4, is to show the scalability of our algorithm to large sensor libraries. In any of the three experiments, we 
compare two setups of our sensor selection algorithm: In the first, denoted “𝜃ref -training” or “proposal, fixed config.”, the algorithm 
only trains on a reference hyper-parameter 𝜃ref using the full-order model to evaluate how well the algorithm performs in the best-
case scenario with no model approximation and no variation in the hyper-parameter. In the second setup, denoted “Ξtrain-training” 
or “proposal”, the algorithm is trained using a reduced-order surrogate model on a hyper-parameter training set Ξtrain ∕∋ 𝜃ref just as 
described in Section 4.

5.1. Model description

The model of this section was originally created to present strategies for a better evaluation of the geothermal potential, which 
in turn can be used in the decision about potential sites for geothermal power plants. The main uncertainty of the model is the 
geothermal heat flux of the bottom boundary condition since the model extends far beneath the surface (19 km). Closer to the surface 
the rock structures influence the temperature so much that the geothermal heat flux exhibits far more local variations, leading to 
even more uncertainty in the model. The objective for our Bayesian inverse problem is to estimate the geothermal heat flux from 
temperature measurements and thereby improve the accuracy of the model for better informing and reducing the economical risk of 
future geothermal power plant placements. The goal for our OED problem is to choose where to take these measurements such that 
the geothermal heat flux will be approximated well for each combination of conductive properties in the geology.

Hyper-parameterized forward model
We model the subsurface temperature distribution 𝑢𝜃 as our state variable with the steady-state PDE

−∇
(
𝜃∇𝑢𝜃

)
= 0 in Ω ∶= (0,0.2714) × (0,0.9) × (0,1) ⊂ℝ3. (28)
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Fig. 1. Schematic overview of the Perth Basin section. Left: drilling depths for potential measurements. The depths were chosen within the first 2 km below surface 
to reflect the typical depth of hydrocarbon boreholes in the literature [76] while also allowing for point evaluations of the model’s subsurface temperature. Note that 
point evaluations are standard for geophysical models because a borehole (diameter approximately 1 m) is very small compared to the size of the model (in this case 
63 km × 70 km × 19 km) [77,76]. Middle: geometry Ω with subdomains for the geological layers. Plot adapted from [73]. Right: configuration range and reference 
values for thermal conductivity 𝜃 on each subdomain. The bounds are obtained from the reference values (cf. [72,73]) with a ±50% margin. (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)

The domain Ω is a non-dimensionalized representation of the Perth Basin section, and 𝜃 ∶ Ω → ℝ>0 the local thermal conductivity. 
Geologically, the section has the six geological layers shown in Fig. 1 which have been subjected to several geological processes 
such as deposition and deformation. For our demonstration purposes here, we group the geological layers further by their main 
conductive behavior into three subdomains Ω𝑖 ⊂ Ω, Ω = ⋃

𝑖=1,2,3Ω𝑖. For simulation purposes, the thermal conductivity 𝜃 can be 
considered spatially constant on each layer. In a slight abuse of notation, this lets us identify the field 𝜃 ∶ Ω →ℝ>0 with the vector

𝜃 = (𝜃1,𝜃2,𝜃3) ∈  ∶= [0.453,1.360] × [0.448,1.343] × [0.360,1.081],

such that 𝜃|Ω𝑖 ≡ 𝜃𝑖. However, while we can consider the position of the layers Ω𝑖 to be fixed as they are often estimated beforehand from, for instance, geophysical campaigns such as seismic surveys, their thermal conductivity 𝜃𝑖 can only be determined within a 
range, partially because these layers are located deep in the ground. We therefore take the thermal conductivity of each layer as our 
hyper-parameter, with the hyper-parameter domain  ⊂ ℝ reflecting its variability. The bounds of  are taken from the literature 
[72,73] with a ±50% margin.

For the boundary conditions, we impose zero-Dirichlet boundary conditions at the surface, and zero-Neumann (“no-flow”) bound-
ary conditions at the lateral faces of the domain. Non-zero Dirichlet boundary conditions obtained from satellite data could be 
considered via a lifting function and an affine transformation of the measurement data (see [74]). We model the remaining boundary 
ΓIn at the base of the domain as a Neumann boundary condition

𝐧 ⋅∇𝑢𝜃 = 𝑔f lux a.e. on ΓIn ∶= {0} × [0,0.9] × [0,1]

where 𝐧 ∶ ΓIn →ℝ3 is the outward pointing unit normal on Ω, and 𝑔f lux ∶ ΓIn →ℝ the geothermal heat flux.

Modeled uncertainty
The geothermal heat flux at depth can only be observed indirectly and needs to be inferred from, for instance, temperature 

measurements at boreholes. We therefore treat 𝑔f lux as uncertain, and impose a parameterization of the form 𝑔f lux = 𝐦 ⋅ 𝐩 where 
𝐦 ∈ℝ5 is a random variable and 𝐩 ∶ (0, 0.9) × (0, 1) →ℝ is a vector composed of quadratic polynomials:

𝐩(𝑥1,𝑥2) ∶=
√

10
9

⎛
⎜
⎜
⎜
⎜
⎜
⎜⎝

1√
3( 209 𝑥1 − 1)
2𝑥2 − 1√

5( 20027 𝑥
2
1 −

20
3 𝑥1 + 1)√

5(6𝑥22 − 6𝑥2 + 1)

⎞
⎟
⎟
⎟
⎟
⎟
⎟⎠

.

The entries of 𝐩 have been chosen such that they are orthonormal in the 𝐿2-norm over (0, 0.9) × (0, 1). In this parameterization, the 
geothermal heat flux has a quadratic behavior both in north-south and east-west direction. This setup reflects typical geophysical 
basal boundary conditions, where it is most common to assume a constant Neumann heat flux (e.g., [73]), and sometimes a linear 
one (e.g., [72]). With the quadratic functions, we allow an additional degree of freedom than typically considered.

For characterizing the spatial uncertainty in the geothermal heat flux, we model the coefficient vector 𝐦 ∈ ℝ5 as a random 
variable 𝐦 ∼ 𝜋pr = (𝐦pr , Σpr ) with

𝐦pr = [50,0,0,0,0]𝑇 ∈ℝ5, Σpr = diag(100,10,10,1,1) ∈ℝ5×5.

We have chosen this prior such that the largest uncertainty is attributed to the constant entry in 𝐩, and the quadratic terms are 
treated as the most certain with prior zero. This choice reflects that the basal boundary is so deep – 19 km below the surface – that 
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Fig. 2. Training of the RB surrogate model for the Perth Basin section using a greedy algorithm, cf. [61]. In each iteration, the algorithm samples 𝜃 randomly, computes 
an error bound in the form (29), and then expands the RB space with the full-order solution for which the error bound was largest. The training was concluded when 
the target accuracy (29) was reached for 511,000 consecutively drawn hyper-parameters. The RB model is used below for the greedy hyper-parameter selection within 
Algorithm 1. Left: Maximum relative error bound (29) in the course of the greedy algorithm and corresponding true relative error at the configuration 𝜃 chosen for 
space expansion. On the right: Performance pointers for the obtained RB model after the target accuracy (29) was reached; online computation times and speedups 
are averages computed over 1000 randomly drawn configurations 𝜃.

local variations in the geothermal heat flux have mostly stabilized. Our goal is to choose sensor locations in the form of borehole 
positions and drilling depths to reliably estimate 𝐦 and consequently the geothermal heat flux 𝑔f lux for any admissible realization of 
the thermal conductivity 𝜃.

Discretization
The problem is discretized using a finite element (FE) space  of dimension 132,651 with piece-wise linear basis functions. The 

underlying mesh was created with GemPy ([78]) and MOOSE ([79]). We equip  with the inner product ⟨𝑢,𝜙⟩ ∶= ∫Ω ∇𝑢 ⋅∇𝜙𝑑Ω. 
Note that ⟨⋅, ⋅⟩ is indeed an inner product due to the Dirichlet boundary conditions. Owing to the structure of the governing equation 
(28) and the division of the domain Ω =⋃

𝑖=1,2,3Ω𝑖 into disjoint subdomains, the FE matrices decouple in 𝜃; we therefore precompute 
and store an affine decomposition using the library DwarfElephant ([73]) from which any 𝜃-dependent FE stiffness matrix can 
then be reconstructed. Given a configuration 𝜃 and a coefficient vector 𝐦 for the geothermal heat flux at ΓIn, the FE matrix assembly 
and the computation of a full-order solution 𝑢𝜃 (𝐦) ∈ then takes 2.96 s on average.

Reduced-order model
An important requirement of the sensor selection Algorithm 1 is the availability of a reduced-order surrogate model: It enables 

the algorithm to deal efficiently with the computational burden of comparing designs for various hyper-parameters despite the 
computationally expensive PDE model. Here, we chose a reduced basis (RB) method to exploit the model’s affine decomposition 
further.

The RB model was trained with a greedy algorithm (cf. [61,80]): Using a rigorous and certified a posteriori error bound Δ(𝜃) (cf.
[56–60]), we prescribe the relative target accuracy

max
𝐦∈ℝ𝑀

‖‖𝑢𝜃(𝐦)− 𝑢̃𝜃(𝐦)‖‖
‖‖𝑢̃𝜃(𝐦)‖‖

≤ max
𝐦∈ℝ𝑀

Δ(𝜃)
‖‖𝑢̃𝜃(𝐦)‖‖

< 𝜀 ∶= 10−4 (29)

to be reached for 511,000 consecutively drawn, uniformly distributed samples of 𝜃. The training phase and final computational 
performance of the RB surrogate model are summarized in Fig. 2. The speedup of the surrogate model (approximately a factor of 
3,000 without error bounds) justifies its offline training time, with computational savings expected already after 152 approximations 
of 𝛽𝐺(𝜃, 𝐿).

Temperature measurements
In practice, measurements in typical geothermal data sets are often made in boreholes drilled for hydrocarbon exploration. Here, 

the maximum temperature is measured but then associated to the bottom of the borehole, known as a “bottom hole temperature 
measurement”. Therefore the measurements are considered as low quality data subjected to uncertainties [81]. We therefore model 
a sensor measurement as a point evaluation of the subsurface temperature at the bottom of any admissible borehole (defined below). 
For sensor selection, we then pose the additional combinatorial restriction that no drilling site may be chosen twice, i.e., boreholes 
may not overlap.

Sensor libraries
Since boreholes are very expensive [75,82], it is unrealistic that the position and drilling depth of the boreholes can be chosen 

entirely for the purposes of inferring the geothermal heat flux. More realistically, an expert committee would decide on a candidate 
set of possible drilling locations first, and the OED for the inference of the geothermal heat flux might be used as a tiebreaker, to 
decide on the drilling order, or to otherwise inform the opinion of the scientific expert on the committee. For our demonstration 
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Fig. 3. Observability coefficient when choosing 8 out of the 25 sensor locations in library 5×5 . Left: Distribution of the observability coefficient 𝛽𝐺(𝜃ref , 𝐿) at the 
reference configuration 𝜃ref over all possible sensor combinations in 𝐿. Indicators show the observability coefficients for the A-, D-, and E-optimal choices, the sensor 
combination with maximum observability, and the sensors chosen by the Algorithm 1 with Ξtrain-training (“proposal”, purple, marked “x”) and 𝜃ref -training (“proposal, 
fixed”, turquoise, marked “+”). Note that the height of the indicator line was chosen solely for readability. Right: Performance of Algorithm 1 over the number of 
selected sensors. Continuous lines show the minimum (marked “x”) and mean (marked “o”) of 𝛽𝐺(𝜃, 𝐿) over Ξtrain when training with variable hyper-parameters 
(Ξtrain-training). For each iteration, the dashed lines show the gain in observability achieved with the next sensor for the worst-case configuration. For comparison, 
the dotted line shows 𝛽𝐺(𝜃ref , 𝐿) when running Algorithm 1 using the full-order model on the reference configuration 𝜃ref only (𝜃ref -training).

purposes here, the expert committee may choose between 2,209 potential drilling sites, located on a 47 × 47 grid over the surface. 
At each location, a single borehole may be drilled which may reach any one of five depths (see Fig. 1), resulting in a total of 
11, 045 admissible sensor choices all prior to the committee’s selection. For each of our three numerical experiments, we mimic the 
committee’s choice and choose a subset of  ⊂all as our available sensor library in order to evaluate the performance of Algorithm 1
in different settings.

Noise model
We model the noise covariance between sensor measurements 𝓁𝑥, 𝓁𝑥̃ ∈ all at points 𝑥, ̃𝑥 ∈Ω via

cov(𝓁𝑥,𝓁𝑥̃) ∶= 𝑎+ 𝑏− 𝑦(ℎ)
with the exponential variogram model

𝑦(ℎ) ∶= 𝑎+ (𝑏− 𝑎)
( 3
2 max{ℎ

𝑐
,1}− 1

2 max{ℎ
𝑐
,1}3

)

where ℎ2 ∶= (𝑥2 − 𝑥̃2)2 + (𝑥3 − 𝑥̃3)2 is the horizontal distance between the points and

𝑎 ∶= 2.2054073480730403 (sill)
𝑏 ∶= 1.6850672040263555 (nugget)
𝑐 ∶= 20.606782733391228 (range)

The covariance function was computed via kriging (cf. [83]) from the existing measurements [84]. With this covariance function, 
the noise between measurements at any two sensor locations is increasingly correlated the closer they are on the horizontal plane. 
Note that for any subset of sensor locations, the associated noise covariance matrix remains regular as long as each sensor is placed 
at a distinct drilling location.

5.2. Restricted library

To test the feasibility of the observability coefficient for sensor selection, we first consider a small sensor library (denoted as 5×5
below) with 25 drilling locations positioned on a 5 × 5 grid. We consider the problem of choosing 8 pair-wise different, unordered 
sensor locations out of the given 25 positions; this is a combinatorial problem with 1,081,575 possible combinations.

Sensor selection
We run Algorithm 1, using the RB surrogate model and a training set Ξtrain ⊂  with 512,000 configurations on an 80 ×80 ×80 reg-

ular grid on  . When new sensors are chosen, the surrogate observability coefficient 𝛽𝐺(𝜃, 𝐿) increases monotonously with a strong 
incline just after the initial 𝑀 = 5 sensors, followed by a visible stagnation (see Fig. 3b) as is often observed for similar OMP-based 
sensor selection algorithms (e.g., [19,85,86,18]). Algorithm 1 terminates in 7.93 min with a minimum reduced-order observabil-
ity of 𝛽𝐺(𝜃, 𝐿) = 0.073227 and an average of 0.10995. At the reference configuration 𝜃ref , the full-order observability coefficient is 
𝛽𝐺(𝜃ref , 𝐿) = 1.0985, slightly below the reduced-order average. We call this training procedure “Ξtrain-training” hereafter and denote 
the chosen sensors as “Ξtrain-trained sensor set” in the subsequent text and as “proposal” in the plots.
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Fig. 4. Joint distribution of trace(Σ𝐿,𝜃post ) and 𝛽𝐺(𝜃ref , 𝐿) for 𝜃 = 𝜃ref over all 1,081,575 combinations for choosing 𝐿 with 8 out of the 25 sensor locations in 5×5 . 
For reference, the design 𝐿 = 5×5 containing all 25 sensors is marked. The marginal distribution for trace(Σ𝐿,𝜃post ) (vertical axis) is provided on the right for closer 
inspection. The marginal distribution for 𝛽𝐺(𝜃ref , 𝐿) (horizontal axis) is provided in Fig. 3a. Indicators highlight the extremal values (𝛽𝐺(𝜃ref , 𝐿), trace(Σ𝐿,𝜃post )) obtained 
for the A-optimal design 𝐿, and the design with maximal observability. The indicator “proposal, fixed configuration” shows the values (𝛽𝐺 (𝜃ref , 𝐿), trace(Σ𝐿,𝜃post )) when 
𝐿 is obtained with 𝜃ref -training using Algorithm 1. For the indicator “proposal”, 𝐿 was chosen with Ξtrain-training using the RB surrogate model. Out of the 1,081,575 
possible choices for 𝐿, only 236 designs (0.022%) have an equal or smaller value for trace(Σ𝐿,𝜃post ) than obtained with 𝜃ref -training. For Ξtrain-training, this number 
increases to 6,346 designs (0.587%), and to 19,221 designs (1.778%) for the design achieving the maximum observability coefficient 𝛽𝐺(𝜃ref , 𝐿). These numbers are 
provided in the table (top right) as reference for how well Algorithm 1 and the observability coefficient perform for selecting sensors that are close to being A-optimal.

In order to get an accurate understanding of how the surrogate model 𝑢̃𝜃 (𝐦) and the large configuration training set Ξtrain
influence the sensor selection, we run Algorithm 1 again, this time restricted on the full-order FE model 𝑢𝜃ref (𝐦) at only the reference 
configuration 𝜃ref . The increase in 𝛽𝐺(𝜃ref , 𝐿) in the course of the algorithm is shown in Fig. 3b. The curve starts significantly above 
the average for Ξtrain-training, presumably because conflicting configurations cannot occur, e.g., when one sensor would significantly 
increase the observability at one configuration but cause little change in another. However, in the stagnation phase, the curve comes 
closer to the average achieved with Ξtrain-training. The computation finishes within 12.53 s, showing that the long runtime before 
can be attributed to the size of Ξtrain. The final observability coefficient with 8 sensors is 𝛽𝐺(𝜃ref , 𝐿) = 0.12647, above the average 
over 𝛽𝐺(𝜃, 𝐿) achieved training on Ξtrain. We call this training procedure “𝜃ref -training” hereafter, and the sensor configuration “𝜃ref -
trained” in the text or “proposal, fixed config.” in the plots.

Comparison at the reference configuration
For comparing the performance of the Ξtrain- and 𝜃ref -trained sensor combinations, we compute – at the reference configuration 

𝜃ref – all 1,081,575 posterior covariance matrices Σ𝜃ref ,𝐿post for all unordered combinations 𝐿 of 8 distinct sensors in the sensor library 5×5. For each matrix, we compute the trace (A-OED criterion), the determinant (D-OED criterion), the maximum eigenvalue (E-OED 
criterion), and the observability coefficient 𝛽𝐺(𝜃ref , 𝐿). This lets us identify the A-, D-, and E-optimal sensor combinations. The total 
runtime for these computations is 4 min – well above the 12.53 s of 𝜃ref -training. The (almost) 8 min for Ξtrain-training remain 
reasonable considering it is trained on |Ξtrain| = 512, 000 configurations and not only 𝜃ref .

A histogram for the distribution of 𝛽𝐺(𝜃ref , 𝐿) is given in Fig. 3a with markers for the values of the A-, D-, and E-optimal choices 
and the Ξtrain- and 𝜃ref -trained observation operators. Out of these five, the D-optimal choice has the smallest value, since the posterior 
determinant is influenced less by the maximum posterior eigenvalue and hence the observability coefficient. In contrast, both the 
A- and E-optimal sensor choices are among the 700 combinations with the largest 𝛽𝐺(𝜃ref , 𝐿) (this corresponds to the top 0.065%). 
The 𝜃ref -trained sensors have similar observability and are even among the top 500 combinations. For the Ξtrain- trained sensors, 
the observability coefficient is smaller, presumably because Ξtrain-training is not as optimized for 𝜃ref . Still, it ranks among the top 
0.705% of sensor combinations with the largest observability.

In order to visualize the connection between the observability coefficient 𝛽𝐺(𝜃ref , 𝐿) and the classic A-, D-, and E-OED criteria, we 
plot the distribution of the posterior covariance matrix’s trace, determinant, and maximum eigenvalue over all sensor combinations 
against 𝛽𝐺(𝜃, 𝐿) in Figs. 4, 5, 6. Overall we observe a strong correlation between the respective OED criteria and 𝛽𝐺(𝜃ref , 𝐿): It is the 
most pronounced in Fig. 6 for E-optimality, and the least pronounced for D-optimality in Fig. 5. For all OED criteria, the correlation 
becomes stronger for smaller scaling factors 𝜎2 and weakens for large 𝜎2 when the prior is prioritized (plots not shown). This behavior 
aligns with the discussion in Section 3.1 that 𝛽𝐺(𝜃, 𝐿) primarily targets the largest posterior eigenvalue and is most decisive for priors 
with higher uncertainty.
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Fig. 5. Joint distribution of the posterior determinant det(Σ𝐿,𝜃post ) for 𝜃 = 𝜃ref . See Fig. 4 for details about the plot structure.

Fig. 6. Joint distribution of the maximum eigenvalue of the posterior covariance matrix Σ𝐿,𝜃post for 𝜃 = 𝜃ref . See Fig. 4 for details about the plot structure. Note that the 
𝜃ref -trained sensor combination has the 101-st smallest maximum posterior eigenvalue among all 1,081,575 possibilities.

5.3. Comparison for different libraries

We evaluate the influence of the library 5×5 on our results. To this end, we randomly select 200 sets of new measurement 
positions from all, each consisting of 25 drilling locations with an associated drilling depth. For each library, we run Algorithm 1 to 
choose 8 sensors, once with Ξtrain-training on the surrogate model, and once with the full-order model at 𝜃ref only. For comparison, we 
then consider in each library each possible combination of choosing 8 unordered sensor sets and compute the trace, determinant, and 
maximum eigenvalue of the associated posterior covariance matrix at the reference configuration 𝜃ref together with its observability 
coefficient. This lets us identify the A-, D-, and E-optimal sensor combinations.

Fig. 7 shows how 𝛽𝐺(𝜃ref , 𝐿) is distributed over the 200 libraries, with percentiles provided in the adjacent table. For 75% of 
the libraries, the A- and E-optimal, and the Ξtrain- and 𝜃ref -trained sensor choices rank among the top 1% of combinations with 
the largest observability. Due to its non-optimized training for 𝜃ref , the Ξtrain-trained sensor set performs slightly worse than what 
is achieved with 𝜃ref -training, but still yields a comparatively large value for 𝛽𝐺(𝜃ref , 𝐿). In contrast, overall, the D-optimal sensor 
choices have smaller observability coefficients, presumably because the minimization of the posterior determinant is influenced less 
by the maximum posterior eigenvalue.



Journal of Computational Physics 498 (2024) 112599

19

N. Aretz, P. Chen, D. Degen et al.

Fig. 7. Ranking of 𝛽𝐺(𝜃ref , 𝐿) for the A-, D-, E-optimal and the 𝜃ref - and Ξtrain-trained sensor choices. For any library, the ranking is computed by comparing 𝛽𝐺(𝜃ref , 𝐿)
for all possible sensor combinations. For this experiment, each library contained 25 sensors from which 8 unordered sensors should be chosen, resulting in 1,081,575 
possibilities. The distributions (left) were obtained over 200 random sensor libraries. The table, (right), shows the worst-case ranking (in percent) of the corresponding 
percentiles (“pctl”). For example, for 95% of the 200 random libraries the observability coefficient 𝛽𝐺(𝜃ref , 𝐿) of the E-optimal experimental design 𝐿 was among the 
largest 0.3601% of all designs, indicating that maximizing 𝛽𝐺(𝜃, 𝐿) might indeed be favorable for E-optimal designs. In contrast, 95% of the D-optimal designs ranked 
only among the largest 26.843% observability coefficients, supporting the claim that maximizing 𝛽𝐺(𝜃, 𝐿) is less suitable for distinguishing between sensors when the 
goal is D-optimality.

Fig. 8. Ranking of the posterior covariance matrix Σ𝜃ref ,𝐿post in terms of the A-, D-, E-OED criteria and the observability coefficient 𝛽𝐺(𝜃ref , 𝐿) when the observation 
operator 𝐆𝐿,𝜃 is chosen with Algorithm 1 and Ξtrain-training (top) or 𝜃ref -training (bottom). The ranking is obtained by comparing all possible unordered combinations 
of 8 sensors in each sensor library. On the left: Boxplots of the ranking over 200 random sensor libraries; on the right: worst-case ranking (in percent) among different 
percentiles. Example: For 95% of the libraries, the sensors chosen by Algorithm 1 and 𝜃ref -training were among the 2.88458% of designs with smallest maximum 
posterior eigenvalue at the reference configuration 𝜃ref (E-OED utility criterion, bottom table). For Ξtrain-training, the sensors are not optimized for 𝜃ref specifically, 
but 95% of the chosen designs were still among the 4.5583% of combinations with smallest posterior eigenvalue.

The ranking of the Ξtrain- and 𝜃ref -trained sensor configurations in terms of the posterior covariance matrix’s trace, determinant, 
and maximum eigenvalue over the 200 libraries is given in Fig. 8. Both perform well and lie for 75% of the libraries within the top 
1% of combinations. As the ranking is performed for the configuration parameter 𝜃ref , the 𝜃ref -trained sensor combination performs 
better, remaining in 95% of the libraries within the top 5% of sensor combinations.
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Fig. 9. Sensor positions chosen by Algorithm 1 from a grid of 47 × 47 available horizontal positions with available 5 depths each, though only the lowest (bottom 
row) and upmost (top row) layers were chosen. The underlying plot shows cuts through the full-order solution 𝑢𝜃(𝐦) at 𝜃 = 𝜃ref . Top: upmost layer at depth 380 m. 
Bottom: lowest layer available for measurements at 1.9 km below surface. Left: Sensor positions chosen with Ξtrain-training using the RB surrogate model on a training 
set Ξtrain ⊂  with 10,000 random configurations; runtime 14.19 s for 10 sensors, excluding training of the RB surrogate model (Fig. 2). Right: Sensor positions chosen 
with 𝜃ref -training using the full-order model at the reference parameter 𝜃ref ; runtime 15.85 s for 10 sensors, including full-order model solves.

5.4. Unrestricted library

We next verify the scalability of Algorithm 1 to large sensor libraries by permitting all 2,209 drilling locations, at each of which 
at most one measurement may be taken at any of the 5 available measurement depths. Choosing 10 unordered sensors yields 
approximately 7.29 × 1033 possible combinations. Using the RB surrogate model from before, we run Algorithm 1 once on a training 
grid Ξtrain ⊂  consisting of 10,000 randomly chosen configurations using only the surrogate model (runtime 14.19 s), and once on 
the reference configuration 𝜃ref using the full-order model (runtime 15.85 s) for comparison. We terminate the algorithm whenever 
10 sensors are selected. Compared to the training time on 5×5 before, the results confirm that the size of the library itself has 
little influence on the overall runtime but that the full-order computations and the size of Ξtrain relative to the surrogate compute 
dominate.

The sensors chosen by the two runs of Algorithm 1 are shown in Fig. 9. They share many structural similarities:

• Depth: Despite the availability of 5 measurement depths, sensors have only been chosen on the lowest and the upmost layers 
with 5 sensors each. The lower sensors were chosen first (with one exception, sensor 3 in 𝜃ref -training), presumably because the 
lower layer is closer to the uncertain Neumann boundary condition and therefore yields larger measurement values.

• Pairing Each sensor on the lowest layer has a counterpart on the upmost layer that has almost the same position on the horizontal 
plane. This pairing targets noise sensitivity: With the prescribed error covariance function, the noise in two measurements is 
increasingly correlated the closer the measurements lie horizontally, independent of their depth coordinate. Choosing a reference 
measurement near the zero-Dirichlet boundary at the surface helps filter out noise terms in the lower measurement.

• Organization On each layer, the sensors are spread out evenly and approximately aligned in 3 rows and 3 columns. The 
alignment helps distinguish between the constant, linear, and quadratic parts of the uncertain Neumann flux function in north-
south and east-west directions.
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Fig. 10. Left: Observability coefficients during sensor selection with Ξtrain- and 𝜃ref -training for a library with 11,045 measurement positions and combinatorial 
restrictions. Shown are 1) the minimum and mean surrogate observability coefficient 𝛽𝐺(𝜃, 𝐿) over a training set with 10,000 random configurations (Ξtrain -training) 
with final values min𝜃 𝛽𝐺(𝜃, 𝐿) = 0.4160 and mean𝜃𝛽𝐺(𝜃, 𝐿) = 0.6488, and 2) the full-order observability coefficient 𝛽𝐺(𝜃ref , 𝐿) when training on the reference parameter 
𝜃ref alone 𝜃ref -training with final value 𝛽𝐺(𝜃ref , 𝐿) = 0.4042. The dashed lines show the improvement achieved by the new sensor at the worst-case configuration during 
Ξtrain-training. Right: Boxplots for the 5 eigenvalues of the posterior covariance matrix Σ𝐿,𝜃post at 𝜃 = 𝜃ref over 50,000 sets of 10 random sensors. The sensors were chosen 
uniformly from a 5 × 47 × 47 grid with imposed combinatorial restrictions. The eigenvalues are compared according to their order from largest to smallest. Indicated 
are also the eigenvalues for the Ξtrain-trained (purple, “x”-marker) and 𝜃ref -trained (turquoise, “+”-marker) sensors from Fig. 9. The comparison with the eigenvalues 
of the prior covariance matrix Σpr (black, triangular marker), shows the reduction in uncertainty achieved by the different designs.

Fig. 10 (left side) shows the increase in the observability coefficients 𝛽𝐺(𝜃, 𝐿) (for Ξtrain-training) and 𝛽𝐺(𝜃ref , 𝐿) (for 𝜃ref -training) 
over the number of chosen sensors. We again observe a strong initial incline followed by stagnation for the Ξtrain-trained sensors, 
whereas the curve for 𝜃ref -training already starts at a large value to remain then almost constant. The latter is explained by the 
positions of the first 5 sensors in Fig. 9 (right), as they are already spaced apart in both directions for the identification of quadratic 
polynomials. In contrast, for Ξtrain-training, the “3 rows, 3 columns” structure is only completed after the sixth sensor (cf. Fig. 9, left). 
With 6 sensors, the observability coefficients in both training schemes have already surpassed the final observability coefficients with 
8 sensors in the previous training on the smaller library 5×5. The final observability coefficients at the reference parameter 𝜃ref are 
𝛽𝐺(𝜃ref , 𝐿) = 0.4042 for 𝜃ref -training, and 𝛽𝐺(𝜃ref , 𝐿) = 0.3595 for Ξtrain-training.

As a final experiment, we compare the eigenvalues of the posterior covariance matrix Σ𝐿,𝜃refpost for the Ξtrain- and 𝜃ref -trained sensors 
against 50,000 sets of 10 random sensors each. We confirm that all 50,000 sensor combinations comply with the combinatorial 
restrictions. Boxplots of the eigenvalues are provided in Fig. 10 (right side). We compare the largest eigenvalue of one matrix to 
the largest eigenvalue of another, the second largest to the second largest, and so on. The eigenvalues of the posterior covariance 
matrix with sensors chosen by Algorithm 1 are clearly smaller than all posterior eigenvalues for the random sensor combinations, 
on average by at least factor 10 for each eigenvalue. The comparison with the eigenvalues of the prior covariance matrix also shows 
how much the uncertainty has been reduced in total.

6. Conclusion

In this work, we analyzed the connection between the observation operator and the eigenvalues of the posterior covariance matrix 
in the inference of an uncertain parameter via Bayesian inversion for a linear, hyper-parameterized forward model. We identified 
an observability coefficient whose maximization decreases the uncertainty in the posterior probability distribution for all hyper-
parameters. To this end, we proposed a sensor selection algorithm that expands an observation operator iteratively to guarantee 
a uniformly large observability coefficient for all hyper-parameters. Computational feasibility is retained through a reduced-order 
model in the greedy step and a data-matching step for the next sensor that only requires a single full-order model evaluation. The 
validity of the approach was demonstrated on a large-scale heat conduction problem over a section of the Perth Basin in Western 
Australia. Future extensions of this work are planned to address 1) high-dimensional parameter spaces through parameter reduction 
techniques, 2) the combination with the PBDW inf-sup-criterion to inform sensors by functional analytic means in addition to the 
noise covariance, and 3) the expansion to non-linear models through a Laplace approximation.
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