Picosecond MLCT Deactivation in Co(ppy)₃ via Jahn-Teller Distortion

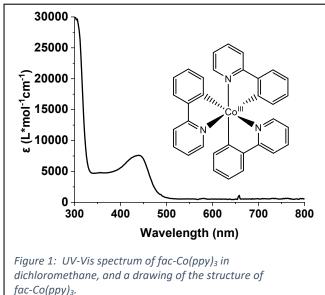
Justin T. Malme, Jenelle N. Weaver, Gregory S. Girolami, and Josh Vura-Weis*

Department of Chemistry, University of Illinois at Urbana-Champaign, Champaign 61801, United States

*email: vuraweis@illinois.edu

Abstract

The excited-state dynamics of *fac*-Co(ppy)₃, where ppy = 2-[2-(pyridyl)phenyl], are measured with femtosecond UV-Vis transient absorption spectroscopy. The initial state is confirmed with spectroelectrochemistry to have significant metal-to-ligand charge transfer (MLCT) character, unlike other Co complexes that generally have ligand-to-metal charge transfer or ligand-field transitions in this energy range. Ground-state recovery occurs in 8.65 ps in dichloromethane. Density functional theory (DFT) calculations show that the MLCT state undergoes Jahn-Teller distortion and converts to a 5-coordinate ³MC state in which one Co-N bond is broken. The results highlights a potential pitfall of heteroleptic-bidentate ligands when designing strong-field ligands for transition metal chromophores.


An important scientific goal is to replace photoredox chromophores such as $Ru(bpy)_3^{2+}$ and $Ir(bpy)_3^{3+}$ with more earth-abundant alternatives based on 3d transition metals. ^{1,2} Unfortunately, 3d transition metal complexes such as $Fe(bpy)_3^{2+}$ generally have much shorter metal-to-ligand charge transfer (MLCT) excited-state lifetimes than their 4d or 5d analogs, owing to rapid deexcitation mediated by low-energy metal-centered (MC) states. Strategies to lengthen the excited-state lifetimes of Fe^{II} complexes, for example by ligand modifications that raise the relative energy of the MC excited states by leveraging strong σ -donation or the nephelauxetic effect, are promising but so far have met with limited success. ^{3–}

Another strategy to raise the relative energy of the MC states is to change the metal but keep the ligands the same.¹ Switching from Fe^{II} to the isoelectronic d⁶ ion Co^{III} results in a stronger ligand field that should destabilize the MC excited states, but the higher oxidation state means that the metal may be more easily reduced than oxidized. As a result, photoexcitation of most Co^{III} complexes generates ligand-to-metal charge transfer (LMCT) excited states instead of the MLCT states that are common for Fe^{II} complexes. Sinha et all recently reported a Co^{III} complex with N-heterocyclic carbene ligands

(Co(L^{CNC})₂⁺) that has a strong absorption at 430 nm that generates an excited state with mixed MLCT/intraligand charge transfer character and a lifetime of 1.2 ns. 13

In the current work, ¹⁴ we present a study of the excited state dynamics of tris(2-[2-(pyridyl)phenyl]-

cobalt(III), fac-Co(ppy)₃, 15 which is the 3d congener of Ir(ppy)3, a widely used photosensitizer and photocatalyst. 16-19 Because the ppy ligand is a strong σ -donor, reduction of the cobalt center should be disfavored, and oxidation made more favorable. Consistent with this expectation, we report here that unusually for Co^{III} complexes – photoexcitation of Co(ppy)₃ generates an MLCT excited state. The lifetime of this state is significantly shorter than both Ir(ppy)₃²⁰ and Co(L^{CNC})₂⁺ and we describe DFT studies to determine the reasons for the short lifetime.

The UV-Vis spectrum of fac-Co(ppy)₃ (Figure 1) features one strong absorption band in the visible region at 438 nm (ε = 7600 L*mol⁻¹cm⁻¹ that has previously been assigned as a MLCT transition¹⁵ (for comparison, LMCT bands for Co^{III} complexes are typically in the UV^{1,21,22}). Spectroelectrochemical measurements confirm the MLCT character of the excited state. It is known from cyclic voltammetry (CV) studies that oxidation of fac-Co(ppy)₃ occurs reversibly at the metal to give a Co^{IV} product, whereas reduction of fac-Co(ppy)₃ is ligand-based. ¹⁵ We measured the UV-vis spectrum of fac-Co(ppy)₃ in DMF at 0.25 V vs. Ag/Ag+ (where the metal is oxidized) and -2.68 V vs. Ag/Ag+ (where the ligand is reduced). These spectra were combined according to the equation $\Delta A = (A_{ox} - A_{red}) - (2A_0)$ to give a simulated MLCT spectrum (Figure S2) that closely matches the transient spectrum (see below).

The preference of $Co(ppy)_3$ to form an MLCT excited state is due to the strong σ -donor and weak π donor character of the ppy ligand. 21 The strong σ -donation increases the energies of the metal-centered e_g^* orbitals; in fact, these orbitals must be higher energy than the ligand π^* orbitals, as shown by the finding that reduction of Co(ppy)₃ occurs at the ligand.

Femtosecond transient absorption studies show that excitation of dichloromethane solutions of fac-Co(ppy)₃ at 450 nm (see SI for procedure) causes ground state bleaching (GSB) of the MLCT band at 445 nm (Figure 2A). Two excited state absorption features can also be seen, one below 400 nm in the near

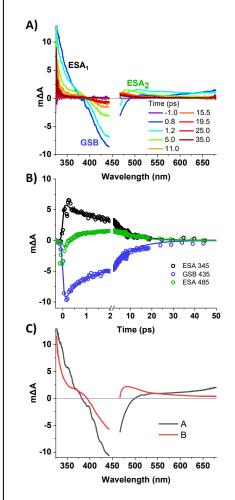


Figure 2 A) Transient absorption spectra of fac-Co(ppy)₃ in dichloromethanea at different time delays, pumped at 450 nm. B) Singlewavelength experimental kinetic traces at selected wavelengths and corrresponding global analysis kinetics. C) Evolution-associated spectra (EAS) extracted from global analysis.

UV (ESA₁) and one extending from 500 nm past the 700 nm limit of the probe window (ESA₂). Although ESA₁ and the GSB decay to zero with little apparent change in their shapes over their lifetimes, ESA₂ gradually blueshifts and sharpens, losing nearly all amplitude at wavelengths longer than \sim 600 nm.

Plots of the absorbance vs. time at several wavelengths (Figure 2B) show two general timescales, with one subpicosecond and one ~10 ps decay. The data set was therefore fit to a two-state

 $A \stackrel{\tau_1}{\to} B \stackrel{\tau_2}{\to} GS$ sequential model convolved with a Gaussian instrument response function using the program Glotatan.²³ This analysis produces a set of evolution-associated spectra A and B (Figure 2C) and exponential time constants τ_1 and τ_2 (see Supporting Information for more details). State A has a wide GSB centered at 440 nm with a broad ESA from 500 nm into the near IR. Given the 120 fs instrument response function of the transient absorption instrument and the rapid (<100 fs) intersystem crossing in metal polypyridyl complexes, ²⁴ state A likely represents the ³MLCT state close to the Franck-Condon geometry. It decays into state B with a time constant of τ_1 =0.80±0.01 ps: simultaneously, the GSB narrows and the broad ESA blue shifts, loses almost all near IR amplitude, and eventually forms a much more distinct ESA

centered at 485 nm with a tail extending into the near IR. State B decays back to the ground state with a

time constant of τ_2 =8.65±0.03 ps. The spectrum of state B resembles the spectroelectrochemically-simulated spectrum in Figure S2, and is therefore also assigned as having significant MLCT character.

To explore why Co(ppy)₃ has a relatively short excited state lifetime, and to confirm the MLCT character of its excited state, we performed both DFT geometry optimizations for the lowest energy singlet and lowest energy triplet states, and TDDFT calculations using the B3LYP^{25,26} functional, 6-311g* basis set, and CPCM(CH₂Cl₂) solvation model.^{27–29} All calculations were performed in the ORCA v5.0.3 software package.³⁰ To verify each optimized geometry was at a minimum, frequency calculations were

performed and checked for negative frequencies. In the singlet ground state, the Co^{III} ion has an octahedral coordination environment. In the lowest energy triplet state, which lies roughly 1.61 eV above the singlet ground state, the coordination environment is trigonal bipyramidal owing to rupture of one Co-N bond (Figure 3, also see SI).

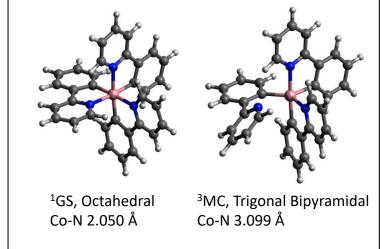


Figure 3: DFT (B3LYP/6-311g* CPCM(CH₂Cl₂)) geometries of the lowest energy singlet and triplet states of fac-Co(ppy)₃.

A TD-DFT simulation made with the

program GaussSum³¹ of the UV-Vis absorption spectrum of Co(ppy)₃ (Figure 4A) resembles the shape of the observed spectrum, though the UV band is underestimated and visible band overestimated. This overestimation is approximately 0.7 eV, which is large but within expectation for the charge transfer band 3d⁶ transition metal complexes at this level of theory.³² The band near 350 nm, corresponding to the experimental spectrum's visible 1 MLCT band, is dominated by several transitions with Co(d) to L(π *)

character, as demonstrated by the inset electron difference density (EDD) map, visualized using Avogadro.³³ A table of all major transitions under this band can be found in the SI (Table S1).²⁴

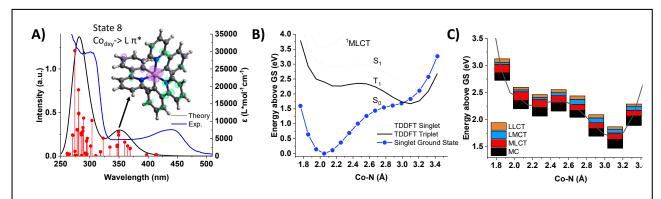


Figure 4 A) TD-DFT simulated spectrum of $Co(ppy)_3$, with transitions given full width at half maximum (fwhm) line widths of 3000 cm⁻¹; the insert shows the electron density difference (EDD) map of the most intense transition in the band near 440 nm; purple is a loss of electron density, and green is a gain. (b) Calculated ground- and excited-state energies along the singlet-triple reaction coordinate, showing the potential energy surfaces of selected states. (c) Simulated potential energy surface of the lowest energy TDDFT triplet (T_1 in B), with the character of the T_1 state overlaid for select geometries.

To simulate the excited-state potential energy surface, TDDFT calculations were performed for 17 intermediate geometries that interpolate between the optimized singlet and triplet geometries. The energy of the singlet ground state and three selected excited states are shown in Figure 4, representing a simplified version of a manifold of states that is shown in Figure S5. Individual TDDFT-calculated states were decomposed into ligand-to-ligand charge transfer (LLCT), ligand-to-metal charge transfer (LMCT), MLCT, and metal-centered (MC) character using the TheoDORE software package, 34 which achieves the decomposition through fragment-based analysis of the individual excitations contributing to a single TDDFT state. The lowest-lying triplet state is primarily of mixed MC/MLCT character, with the MLCT character decreasing from 40% to 29% as the potential energy surface is followed toward the ground state triplet geometry (Table S4). This mixed-character potential energy surface differs from those of prototypical Ir^{III} and Fe^{II} complexes. In the former there is a well-defined 3MC electronic state higher in energy than the 3MLCT state, whereas in the latter there are well-defined 3MC and 5MC states at significantly lower energy.

From these results, we propose the following deactivation mechanism for photo-excited $Co(ppy)_3$: By analogy with other d^6 chromophores, the initially-formed 1MLCT state undergoes intersystem crossing to a 3MLCT state in tens of fs. 24 Over the next 0.80 ps (corresponding to t_1 in the global analysis), the 3MLCT state relaxes though the dense manifold of electronic states to a triplet state with mixed $Co(d) \rightarrow L\pi^*$ and $Co(d) \rightarrow Co(d_{x2-y2})$ character. Vibrational relaxation of these states occurs on the same timescale. Occupation of the $Co(d_{x2-y2})$ orbital (which has strong metal-ligand σ -antibonding character) in the mixed

character state induces a Jahn-Teller distortion in which one pyridine donor group dissociates from the metal center, thus decreasing the coordination number from six- to five. Intersystem crossing back to the singlet ground state occurs in 8.65 ps (t_2 in the global analysis).

Photoexcitation of some other O_h d⁶ complexes containing bidentate ligands is known to generate five-coordinate excited states: for example, D_{3h} ³T states were implicated in the room temperature nonradiative deactivation of emissive Ir^{III} complexes.³⁵ Such states were deactivating only when the energy of the D_{3h} triplet was lower than that of the O_h triplet and the ligand dissociation barrier was small. Indeed, this is the case for *fac*-Co(ppy)₃: the D_{3h} triplet is computed to be 0.6 eV lower than the O_h triplet, with a barrier of only 0.09 eV. This low barrier and large energy difference implies that the five-coordinate geometry is generated rapidly and irreversibly, resulting in the rapid deactivation of the excited state. Additionally, bidentate pyridylcarbene Fe^{II} complexes exhibit similar elongation of one metal-nitrogen coordinate in their lowest-energy ³T geometry, and as a result have similarly short excited state lifetimes.^{36–38} A Cr⁰ scorpionate complex was also found to undergo dissociation of a single ligand in the 3MLCT state, followed by solvent coordination to the empty site.³⁹

Thus, the ³MC state of Co(ppy)₃ is short lived, as it is in Fe(bpy)₃²⁺ but for different reasons. For Co(ppy)₃ this state ejects a ligand and becomes five-coordinate, whereas in Fe(bpy)₃²⁺ and related complexes, the ³MC state undergoes cascading decay to a distorted but relatively long-lived ⁵MC state. ^{40,41} In some other Fe^{II} complexes, the ³MC state is implicated in the direct nonradiative or otherwise fast decay of a desired excited state.³ More interestingly, the picosecond ³MC lifetimes of Co(ppy)₃ contrasts with the nanosecond and microsecond ³MC lifetimes seen for most other Co^{III} complexes, which are often sufficiently long to give rise to luminescence⁴² and to make Co(bpy)₃³⁺ an active photocatalyst.^{43,44} To determine why the ${}^{3}MC$ states of Co(ppy)₃ and Co(bpy)₃ behave so differently, we computed the lowest-energy singlet and triplet geometries of Co(bpy)₃³⁺ (see Figure S9). Instead of ejecting a pyridine ligand and becoming five-coordinate, as seen for Co(ppy)₃, the lowest-energy triplet geometry of Co(bpy)₃³⁺ exhibits a Jahn-Teller distortion of a different symmetry (from D₃ to C₂) in which the six Co-N bonds lengthen but remain approximately the same length. We can attribute this difference to the unsymmetrical nature of the ppy ligand: the three phenyl rings are strong σ-donors that weaken the bonds to the trans-situated pyridine groups, thus facilitating dissociation of one of these groups. In addition, Eisenstein has shown that the triplet state of d₆ ML₅ complexes is Jahn-Teller active and that the presence of three strong σ -donating ligands favors the TBP geometry. ⁴⁵

The combination of ultrafast transient absorption spectroscopy and TDDFT calculations in this work reveals that visible-light photoexcitation of Co(ppy)₃ initially forms a ¹MLCT state of Co^{IV} that evolves into a mixed ³MLCT/³MC excited state. The latter undergoes Jahn-Teller distortion to a five-coordinate D_{3h} geometry. This potential energy surface crosses the singlet ground-state surface, enabling rapid ground-state recovery. This behavior sharply contrasts with that of other Co^{III} complexes that have ³MC excited states with lifetimes of up to several microseconds. 42,44 This report shows that a strong ligand field alone is not sufficient to achieve long excited-state lifetimes: one must also consider constraining the energetically-accessible molecular distortions that enable crossing points in the potential energy surfaces. We recently reported an Fe^{II} chromophore with a macrocyclic tetradentate ligand that restricted such crossings, leading to a 1.25 ns lifetime at room temperature.⁴⁶ Balancing the ligand field around the entire coordination sphere may also lead to the disfavoring of the single metal-ligand bond lengthening demonstrated here. Finally, if heteroleptic ligands mixing strong and weak field elements are desired, care should be taken to follow strategies that do not put strong-donor ligands at positions allowing easy eg* population. 47,48 Coordinating solvents could also be used to stabilize the fivecoordinate species, extending the excited-state lifetime.³⁹ Such strategies, combined with the inherently larger ligand field of Co^{III} complexes, may lead to even longer lifetimes of potentially photoactive states. Nevertheless, examination of the photophysics of the 3d analog of fac-Ir(ppy)₃ is an important benchmarking step in the development of Co^{III} chromophores. Much like previous work on the analogous Fe(bpy)₃²⁺, the sharply different photophysics of fac-Co(ppy)₃ reveal the weaknesses of replacing the metal with a more earth-abundant one, and the challenges that need to be overcome to realize high-performance 3d transition metal chromophores.

Supporting Information

Supporting Information: Experimental details and methods, ¹H NMR of the substance measured, additional global analysis, and additional computational data on the compound (PDF).

Author Information

Corresponding Author

* Josh Vura-Weis – Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States; http://orcid.org/0000-0001-7734-3130; Email: vuraweis@illinois.edu

Authors

Justin Malme – Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States

Jenelle N. Weaver – Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States

Gregory S. Girolami – Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States; http://orcid.org/0000-0002-7295-1775

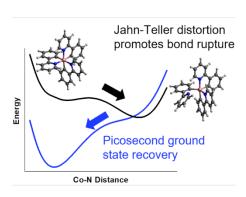
Notes. The authors declare no competing financial interest.

Acknowledgments. We thank Autumn S. Cook and Oliver D. Pichardo Peguero for synthetic assistance. This material is based upon work supported by the National Science Foundation under Grant No. 2102376. Experimental work was partially performed at the Materials Research Laboratory at the University of Illinois at Urbana–Champaign.

References

- (1) Sinha, N.; Wenger, O. S. Photoactive Metal-to-Ligand Charge Transfer Excited States in 3d⁶ Complexes with Cr⁰, Mn¹, Fe^{II}, and Co^{III}. *J Am Chem Soc* **2023**, *145* (9), 4903–4920. https://doi.org/10.1021/jacs.2c13432.
- (2) Förster, C.; Heinze, K. Photophysics and Photochemistry with Earth-Abundant Metals Fundamentals and Concepts. *Chem Soc Rev* **2020**, *49* (4), 1057–1070. https://doi.org/10.1039/C9CS00573K.
- (3) Liu, Y.; Kjær, K. S.; Fredin, L. A.; Chábera, P.; Harlang, T.; Canton, S. E.; Lidin, S.; Zhang, J.; Lomoth, R.; Bergquist, K.; Persson, P.; Wärnmark, K.; Sundström, V. A Heteroleptic Ferrous Complex with Mesoionic Bis(1,2,3-triazol-5-ylidene) Ligands: Taming the MLCT Excited State of Iron(II). *Chemistry A European Journal* **2015**, *21* (9), 3628–3639. https://doi.org/10.1002/chem.201405184.
- Kunnus, K.; Vacher, M.; Harlang, T. C. B.; Kjær, K. S.; Haldrup, K.; Biasin, E.; van Driel, T. B.; Pápai, M.; Chabera, P.; Liu, Y.; Tatsuno, H.; Timm, C.; Källman, E.; Delcey, M.; Hartsock, R. W.; Reinhard, M. E.; Koroidov, S.; Laursen, M. G.; Hansen, F. B.; Vester, P.; Christensen, M.; Sandberg, L.; Németh, Z.; Szemes, D. S.; Bajnóczi, É.; Alonso-Mori, R.; Glownia, J. M.; Nelson, S.; Sikorski, M.; Sokaras, D.; Lemke, H. T.; Canton, S. E.; Møller, K. B.; Nielsen, M. M.; Vankó, G.; Wärnmark, K.; Sundström, V.; Persson, P.; Lundberg, M.; Uhlig, J.; Gaffney, K. J. Vibrational Wavepacket Dynamics in Fe Carbene Photosensitizer Determined with Femtosecond X-Ray Emission and Scattering. *Nat Commun* 2020, *11* (1), 634. https://doi.org/10.1038/s41467-020-14468-w.

- (5) Kjær, K. S.; Zhang, W.; Alonso-Mori, R.; Bergmann, U.; Chollet, M.; Hadt, R. G.; Hartsock, R. W.; Harlang, T.; Kroll, T.; Kubiček, K.; Lemke, H. T.; Liang, H. W.; Liu, Y.; Nielsen, M. M.; Robinson, J. S.; Solomon, E. I.; Sokaras, D.; van Driel, T. B.; Weng, T.-C.; Zhu, D.; Persson, P.; Wärnmark, K.; Sundström, V.; Gaffney, K. J. Ligand Manipulation of Charge Transfer Excited State Relaxation and Spin Crossover in [Fe(2,2'-Bipyridine)₂(CN)₂]. Structural Dynamics 2017, 4 (4). https://doi.org/10.1063/1.4985017.
- (6) Chábera, P.; Kjaer, K. S.; Prakash, O.; Honarfar, A.; Liu, Y.; Fredin, L. A.; Harlang, T. C. B.; Lidin, S.; Uhlig, J.; Sundström, V.; Lomoth, R.; Persson, P.; Wärnmark, K. Fe^{II} Hexa *N* Heterocyclic Carbene Complex with a 528 ps Metal-to-Ligand Charge-Transfer Excited-State Lifetime. *J Phys Chem Lett* **2018**, *9* (3), 459–463. https://doi.org/10.1021/acs.jpclett.7b02962.
- (7) Braun, J. D.; Lozada, I. B.; Herbert, D. E. In Pursuit of Panchromatic Absorption in Metal Coordination Complexes: Experimental Delineation of the HOMO Inversion Model Using Pseudo-Octahedral Complexes of Diarylamido Ligands. *Inorg Chem* **2020**, *59* (23), 17746–17757. https://doi.org/10.1021/acs.inorgchem.0c02973.
- (8) Braun, J. D.; Lozada, I. B.; Kolodziej, C.; Burda, C.; Newman, K. M. E.; van Lierop, J.; Davis, R. L.; Herbert, D. E. Iron(II) Coordination Complexes with Panchromatic Absorption and Nanosecond Charge-Transfer Excited State Lifetimes. *Nat Chem* **2019**, *11* (12), 1144–1150. https://doi.org/10.1038/s41557-019-0357-z.
- (9) Liu, Y.; Harlang, T.; Canton, S. E.; Chábera, P.; Suárez-Alcántara, K.; Fleckhaus, A.; Vithanage, D. A.; Göransson, E.; Corani, A.; Lomoth, R.; Sundström, V.; Wärnmark, K. Towards Longer-Lived Metal-to-Ligand Charge Transfer States of Iron(II) Complexes: An N-Heterocyclic Carbene Approach. *Chemical Communications* 2013, 49 (57), 6412. https://doi.org/10.1039/c3cc43833c.
- (10) Liu, L.; Duchanois, T.; Etienne, T.; Monari, A.; Beley, M.; Assfeld, X.; Haacke, S.; Gros, P. C. A New Record Excited State ³MLCT Lifetime for Metalorganic Iron(II) Complexes. *Physical Chemistry Chemical Physics* **2016**, *18* (18), 12550–12556. https://doi.org/10.1039/C6CP01418F.
- (11) Leis, W.; Argüello Cordero, M. A.; Lochbrunner, S.; Schubert, H.; Berkefeld, A. A Photoreactive Iron(II) Complex Luminophore. *J Am Chem Soc* **2022**, *144* (3), 1169–1173. https://doi.org/10.1021/jacs.1c13083.
- (12) Duchanois, T.; Etienne, T.; Cebrián, C.; Liu, L.; Monari, A.; Beley, M.; Assfeld, X.; Haacke, S.; Gros, P. C. An Iron-Based Photosensitizer with Extended Excited-State Lifetime: Photophysical and Photovoltaic Properties. *Eur J Inorg Chem* **2015**, *2015* (14), 2469–2477. https://doi.org/10.1002/ejic.201500142.
- (13) Sinha, N.; Pfund, B.; Wegeberg, C.; Prescimone, A.; Wenger, O. S. Cobalt(III) Carbene Complex with an Electronic Excited-State Structure Similar to Cyclometalated Iridium(III) Compounds. J Am Chem Soc 2022, 144 (22), 9859–9873. https://doi.org/10.1021/jacs.2c02592.


- (14) Malme, J.; Weaver, J.; Girolami, G.; Vura-Weis, J. Picosecond MLCT Deactivation in Co(ppy)₃ via Jahn-Teller Distortion. *ChemRxiv* **2024**. DOI:10.26434/chemrxiv-2024-hlvjr-v2. This content is a preprint and has not been peer-reviewed.
- (15) Ren, X.; Alleyne, B. D.; Djurovich, P. I.; Adachi, C.; Tsyba, I.; Bau, R.; Thompson, M. E. Organometallic Complexes as Hole-Transporting Materials in Organic Light-Emitting Diodes. *Inorg Chem* **2004**, *43* (5), 1697–1707. https://doi.org/10.1021/ic035183f.
- (16) Hofbeck, T.; Yersin, H. The Triplet State of *fac*-Ir(ppy)₃. *Inorg Chem* **2010**, *49* (20), 9290–9299. https://doi.org/10.1021/ic100872w.
- (17) Zhao, W.; Castellano, F. N. Upconverted Emission from Pyrene and Di-*Tert*-Butylpyrene Using Ir(ppy)₃ as Triplet Sensitizer. *J Phys Chem A* **2006**, *110* (40), 11440–11445. https://doi.org/10.1021/jp064261s.
- (18) Föll, T.; Rehbein, J.; Reiser, O. Ir(ppy)₃-Catalyzed, Visible-Light-Mediated Reaction of α-Chloro Cinnamates with Enol Acetates: An Apparent Halogen Paradox. *Org Lett* **2018**, *20* (18), 5794–5798. https://doi.org/10.1021/acs.orglett.8b02484.
- (19) Baldo, M. A.; Lamansky, S.; Burrows, P. E.; Thompson, M. E.; Forrest, S. R. Very High-Efficiency Green Organic Light-Emitting Devices Based on Electrophosphorescence. *Appl Phys Lett* **1999**, *75* (1), 4–6. https://doi.org/10.1063/1.124258.
- (20) Auböck, G.; Chergui, M. Sub-50-fs Photoinduced Spin Crossover in $[Fe(bpy)_3]^{2+}$. *Nat Chem* **2015**, 7 (8), 629–633. https://doi.org/10.1038/nchem.2305.
- (21) Yarranton, J. T.; McCusker, J. K. Ligand-Field Spectroscopy of Co(III) Complexes and the Development of a Spectrochemical Series for Low-Spin d⁶ Charge-Transfer Chromophores. *J Am Chem Soc* **2022**, *144* (27), 12488–12500. https://doi.org/10.1021/jacs.2c04945.
- (22) Pal, A. K.; Li, C.; Hanan, G. S.; Zysman-Colman, E. Blue-Emissive Cobalt(III) Complexes and Their Use in the Photocatalytic Trifluoromethylation of Polycyclic Aromatic Hydrocarbons. *Angewandte Chemie International Edition* **2018**, *57* (27), 8027–8031. https://doi.org/10.1002/anie.201802532.
- (23) Snellenburg, J. J.; Laptenok, S. P.; Seger, R.; Mullen, K. M.; van Stokkum, I. H. M. Glotaran: A Java-Based Graphical User Interface for the R-Package TIMP. *J Stat Softw* **2012**, *49* (3), 1–22.
- (24) Gawelda, W.; Cannizzo, A.; Pham, V.-T.; van Mourik, F.; Bressler, C.; Chergui, M. Ultrafast Nonadiabatic Dynamics of [Fe^{II}(bpy)₃]²⁺ in Solution. *J Am Chem Soc* **2007**, *129* (26), 8199–8206. https://doi.org/10.1021/ja070454x.
- (25) Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. *J Chem Phys* **1993**, *98* (7), 5648–5652. https://doi.org/10.1063/1.464913.
- (26) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. *Phys Rev B* **1988**, *37* (2), 785–789. https://doi.org/10.1103/PhysRevB.37.785.

- (27) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model. *J Comput Chem* **2003**, *24* (6), 669–681. https://doi.org/10.1002/jcc.10189.
- (28) Hay, P. J. Gaussian Basis Sets for Molecular Calculations. The Representation of 3d Orbitals in Transition-Metal Atoms. *J Chem Phys* **1977**, *66* (10), 4377–4384. https://doi.org/10.1063/1.433731.
- (29) Raghavachari, K.; Trucks, G. W. Highly Correlated Systems. Excitation Energies of First Row Transition Metals Sc–Cu. *J Chem Phys* **1989**, *91* (2), 1062–1065. https://doi.org/10.1063/1.457230.
- (30) Neese, F. Software Update: The ORCA Program System—Version 5.0. *WIREs Computational Molecular Science* **2022**, *12* (5). https://doi.org/10.1002/wcms.1606.
- (31) O'boyle, N. M.; Tenderholt, A. L.; Langner, K. M. Cclib: A Library for Package-Independent Computational Chemistry Algorithms. *J Comput Chem* **2008**, *29* (5), 839–845. https://doi.org/10.1002/jcc.20823.
- (32) Escudero, D.; Thiel, W. Assessing the Density Functional Theory-Based Multireference Configuration Interaction (DFT/MRCI) Method for Transition Metal Complexes. *J Chem Phys* **2014**, *140* (19). https://doi.org/10.1063/1.4875810.
- (33) Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. *J Cheminform* **2012**, *4* (1), 17. https://doi.org/10.1186/1758-2946-4-17.
- (34) Plasser, F. TheoDORE: A Toolbox for a Detailed and Automated Analysis of Electronic Excited State Computations. *J Chem Phys* **2020**, *152* (8). https://doi.org/10.1063/1.5143076.
- (35) Sajoto, T.; Djurovich, P. I.; Tamayo, A. B.; Oxgaard, J.; Goddard, W. A.; Thompson, M. E. Temperature Dependence of Blue Phosphorescent Cyclometalated Ir(III) Complexes. *J Am Chem Soc* **2009**, *131* (28), 9813–9822. https://doi.org/10.1021/ja903317w.
- (36) Francés-Monerris, A.; Magra, K.; Darari, M.; Cebrián, C.; Beley, M.; Domenichini, E.; Haacke, S.; Pastore, M.; Assfeld, X.; Gros, P. C.; Monari, A. Synthesis and Computational Study of a Pyridylcarbene Fe(II) Complex: Unexpected Effects of *Fac / Mer* Isomerism in Metal-to-Ligand Triplet Potential Energy Surfaces. *Inorg Chem* **2018**, *57* (16), 10431–10441. https://doi.org/10.1021/acs.inorgchem.8b01695.
- (37) Magra, K.; Francés-Monerris, A.; Cebrián, C.; Monari, A.; Haacke, S.; Gros, P. C. Bidentate Pyridyl-NHC Ligands: Synthesis, Ground and Excited State Properties of Their Iron(II) Complexes and the Role of the Fac/Mer Isomerism. *Eur J Inorg Chem* **2022**, *2022* (7). https://doi.org/10.1002/ejic.202100818.
- (38) Magra, K.; Domenichini, E.; Francés-Monerris, A.; Cebrián, C.; Beley, M.; Darari, M.; Pastore, M.; Monari, A.; Assfeld, X.; Haacke, S.; Gros, P. C. Impact of the *Fac / Mer*

- Isomerism on the Excited-State Dynamics of Pyridyl-Carbene Fe(II) Complexes. *Inorg Chem* **2019**, *58* (8), 5069–5081. https://doi.org/10.1021/acs.inorgchem.9b00138.
- (39) Sinha, N.; Wellauer, J.; Maisuradze, T.; Prescimone, A.; Kupfer, S.; Wenger, O. S. Reversible Photoinduced Ligand Substitution in a Luminescent Chromium(0) Complex. *J Am Chem Soc* **2024**, *146* (15), 10418–10431. https://doi.org/10.1021/jacs.3c13925.
- (40) Zhang, K.; Ash, R.; Girolami, G. S.; Vura-Weis, J. Tracking the Metal-Centered Triplet in Photoinduced Spin Crossover of Fe(phen)₃²⁺ with Tabletop Femtosecond M-Edge X-Ray Absorption Near-Edge Structure Spectroscopy. *J Am Chem Soc* **2019**, *141* (43), 17180–17188. https://doi.org/10.1021/jacs.9b07332.
- (41) Iuchi, S.; Koga, N. Ultrafast Electronic Relaxation in Aqueous [Fe(bpy)₃]²⁺: A Surface Hopping Study. *J Phys Chem Lett* **2023**, *14* (18), 4225–4232. https://doi.org/10.1021/acs.jpclett.3c00686.
- (42) Kaufhold, S.; Rosemann, N. W.; Chábera, P.; Lindh, L.; Bolaño Losada, I.; Uhlig, J.; Pascher, T.; Strand, D.; Wärnmark, K.; Yartsev, A.; Persson, P. Microsecond Photoluminescence and Photoreactivity of a Metal-Centered Excited State in a Hexacarbene–Co(III) Complex. *J Am Chem Soc* **2021**, *143* (3), 1307–1312. https://doi.org/10.1021/jacs.0c12151.
- (43) Alowakennu, M. M.; Ghosh, A.; McCusker, J. K. Direct Evidence for Excited Ligand Field State-Based Oxidative Photoredox Chemistry of a Cobalt(III) Polypyridyl Photosensitizer. *J Am Chem Soc* **2023**, *145* (38), 20786–20791. https://doi.org/10.1021/jacs.3c09374.
- (44) Chan, A. Y.; Ghosh, A.; Yarranton, J. T.; Twilton, J.; Jin, J.; Arias-Rotondo, D. M.; Sakai, H. A.; McCusker, J. K.; MacMillan, D. W. C. Exploiting the Marcus Inverted Region for First-Row Transition Metal—Based Photoredox Catalysis. *Science* **2023**, *382* (6667), 191–197. https://doi.org/10.1126/science.adj0612.
- (45) Riehl, J. F.; Jean, Y.; Eisenstein, O.; Pelissier, M. Theoretical Study of the Structures of Electron-Deficient D6 ML5 Complexes. Importance of a Pi.-Donating Ligand. *Organometallics* **1992**, *11* (2), 729–737. https://doi.org/10.1021/om00038a035.
- (46) Malme, J. T.; Clendening, R. A.; Ash, R.; Curry, T.; Ren, T.; Vura-Weis, J. Nanosecond Metal-to-Ligand Charge-Transfer State in an Fe(II) Chromophore: Lifetime Enhancement via Nested Potentials. *J Am Chem Soc* **2023**, *145* (11), 6029–6034. https://doi.org/10.1021/jacs.2c13532.
- (47) Dixon, I. M.; Alary, F.; Boggio-Pasqua, M.; Heully, J.-L. Reversing the Relative ³MLCT–³MC Order in Fe(II) Complexes Using Cyclometallating Ligands: A Computational Study Aiming at Luminescent Fe(II) Complexes. *Dalton Transactions* **2015**, *44* (30), 13498–13503. https://doi.org/10.1039/C5DT01214G.
- (48) Zimmer, P.; Burkhardt, L.; Friedrich, A.; Steube, J.; Neuba, A.; Schepper, R.; Müller, P.; Flörke, U.; Huber, M.; Lochbrunner, S.; Bauer, M. The Connection between NHC Ligand Count and Photophysical Properties in Fe(II) Photosensitizers: An Experimental Study. *Inorg Chem* **2018**, *57* (1), 360–373. https://doi.org/10.1021/acs.inorgchem.7b02624.

Synopsis. The uneven coordination environment of fac-Co(ppy)₃ results in excited state bond rupture, leading to a short excited state lifetime in spite of its high ligand field.

FOR TABLE OF CONTENTS ONLY:

