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Abstract
Ranking schemes drive many real-world decisions, like, where to study, whom to hire, what to buy, etc. Many of these
decisions often come with high consequences. For example, a university can be deemed less prestigious if not featured in a
top-k list, and consumers might not even explore products that do not get recommended to buyers. At the heart of most of these
decisions are opaque ranking schemes, which dictate the ordering of data entities, but their internal logic is inaccessible or
proprietary. Drawing inferences about the ranking differences is like a guessing game to the stakeholders, like, the rankees (i.e.,
the entities who are ranked, like product companies) and the decision-makers (i.e., who use the rankings, like buyers). In
this paper, we aim to enable transparency in ranking interpretation by using algorithmic rankers that learn from available
data and by enabling human reasoning about the learned ranking differences using explainable AI (XAI) methods. To realize
this aim, we leverage the exploration–explanation paradigm of human–data interaction to let human stakeholders explore
subsets and groupings of complex multi-attribute ranking data using visual explanations of model fit and attribute influence
on rankings. We realize this explanation paradigm for transparent ranking interpretation in TRIVEA, a visual analytic system
that is fueled by: (i) visualizations of model fit derived from algorithmic rankers that learn the associations between attributes
and rankings from available data and (ii) visual explanations derived from XAI methods that help abstract important patterns,
like, the relative influence of attributes in different ranking ranges. Using TRIVEA, end users not trained in data science have
the agency to transparently reason about the global and local behavior of the rankings without the need to open black-box
ranking models and develop confidence in the resulting attribute-based inferences. We demonstrate the efficacy of TRIVEA
using multiple usage scenarios and subjective feedback from researchers with diverse domain expertise.

Keywords Visual analytics · Learning-to-rank · Explainable ML · ranking

1 Introduction

Rankings are convenient heuristics for the human mind to
make real-world choices. What we eat, shop, watch, study,
etc. - rank-ordered lists of data entities, like restaurants, prod-
ucts, and universities, ubiquitously guide those decisions.
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However, many of these ranking schemes are often propri-
etary and inaccessible, yet, they have high consequences.
For example, a university that is not on the top-k list can
be deemed as less prestigious; a product that is not recom-
mended to buyers can lose substantial amounts in revenue; a
job candidate who does not feature among the top appli-
cants would not objectively know how to improve their
chances relative to an applicant pool. From the perspective of
stakeholders, like, data subjects who are ranked (henceforth,
termed as rankees) or decision-makers, it is often a guess-
ing game for them to interpret the logic behind the ranking
information that matters to them.

Such inaccessibility and lack of transparency are ulti-
mately detrimental to creating equitable socio-technical
systems [1] where proprietary ranking schemes could be
questionable yet, hold disproportionate power over stake-
holders. Ourwork addresses this problem by conceptualizing
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an analytical workflow (Fig. 1) that combines machine-
learning explanationswith expressive visualizations formak-
ing ranking schemes interpretable and actionable to different
stakeholders. We learn a model by using the approach of
supervised learning: training learning-to-rank (LTR) algo-
rithms on publicly available ranking data. Then we use
explanations of learned rankings to express associations
between rank positions and attribute values. The learned
rankings derived through modeling thus serve as the means
to an end of discovering the signals in high-dimensional data
spaces. These signals, capturing the attribute influence of
rankings, need to be communicated effectively to end users.
As opposed to score-basedmulti-attribute rankings, the chal-
lenge here is to express the learned scoring function faithfully
and clearly. A concise mathematical formula may fail to
capture and communicate variance in local data neighbor-
hoods. We address this interpretability problem by using
model-agnostic local explanations [2] originally designed
for classifiers and adapt them to the problem of explain-
ing learned rankings. We leverage the trained models and
their computed measures of fit to explain the models’ local
behaviors using TRIVEA (Fig. 1). Transparency is achieved
by leveraging visualizations that help end users generate
attribute-focused, post hoc inferences [3] about local ranking
neighborhoods.

We enable user-initiated exploration of model explana-
tions by designing and developingTRIVEA, a visual analytic
system that facilitates linked exploration of the goodness of
fit of the models and local explanations. TRIVEA ensures
that end users have the agency [4, 5] to reason about rank-
ingswithout the need to open themachine-learning black box
and understand how attributes contribute to the differences
between high and low-ranked entities. We conceptualized
and developed the analytical and visualization components
of TRIVEA (Fig. 1) in collaboration with researchers in
machine learning, human-computer interaction, and domain

sciences, such as cyber security and energy, where trust-
augmented interpretation of learned rankings are a key
focus area. UsingTRIVEA, rankees and decision-makers can
develop confidence in themodel outcomes and build amental
model about the reasoning behind ranking differences across
data subsets of interest by probing the explanations.

As part of the conceptualization, design, and develop-
ment of TRIVEA, we make three key contributions in this
paper: (i) a principled analytical abstraction for modeling
ranking labels from attributes and adopting black-box model
explanation methods such as LIME for enabling the inter-
pretability of local model behavior. (ii) design of expressive
visualizations that help expressmodel fit togetherwith expla-
nations comprising significant correlations among essential
attributes and rankings. (iii) development of a web-based
interactive system for post hoc analysis of model outcomes
and explanations, the efficacy of which is demonstrated
through usage scenarios and subjective feedback from a
diverse group of domain experts.

2 Related work

We discuss the related work in the context of visual ana-
lytic techniques for exploring rankings and those for post
hoc model explanations.

2.1 Visual analytic techniques for exploring rankings

Ranking is a convenient abstraction for human observers
to quickly identify data items that can be classified into
“good” or “bad” categories. Several visualization techniques
have been proposed as a cognitive aid for navigating high-
dimensional data spaces [6, 7], constructing ranking scores
[8, 9], and also understanding changing ranking behavior
across items or over time [10]. Seo and Shneiderman pro-
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Fig. 1 We address the socio-technical problem of proprietary, inacces-
sible ranking schemes by using supervised learning-to-rankmodels that
learn from published rankings and available data. The learned attribute-
ranking associations are communicated to end users, like rankees and
decisionmakers, using a visual analytic system,TRIVEA, that combines

the goodness of model fit measures, XAI methods, and a set of interac-
tive visualizations.UsingTRIVEA, rankees can generate informed, post
hoc inferences about improving their rankings and decision-makers can
carefully compare and contrast their choices against competing alter-
natives
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posed a rank-by-feature framework where ordered bars were
used to guide users’ attention toward high or low-ranked data
items, alongwith a summary ranking score [6]. Shi et al. used
a combination of Themeriver [11] and glyph-based design for
showing ranking changes over time [10], focused on the goal
of scaling visualization to thousands of items. A similar goal
was achieved by Miranda et al., who proposed a data cube-
based abstraction for efficient exploration of top-ranked data
objects [12]. For understanding score-based rankers, LineUp
[9] uses a combination of stacked bar charts and interactive
user assignment of weights to help users, such as university
students, decide which universities could be a better choice
based on their preferences. In all these cases, the ranking
outcome is a product of human feedback or a pre-computed
combination of weights with which a user can interact. In
such cases, the logic of the algorithmic ranker(i.e., the scor-
ing function) is fully accessible to the ranking users.

We focus on problems where the ranking logic or scheme
is inaccessible. In that case, our approach is to build algo-
rithmic rankers that model the association between attributes
and rankings. Therefore, there is also a need to communicate
the goodness of fit of these models so that end users can rely
on them to explain the learned rankings.

Machine learning approaches for modeling rankings have
been used in Podium [13], which takes the user’s preference
of a few pairwise comparisons as training data to generate a
ranking for the entire list using RankingSVM [14]. Podium
allows users to provide a few comparisons of higher or lower-
rank candidates and interactively learns the user-generated
ranking by modeling a small amount of user input. In con-
trast, we take a supervised learning approach, allowing the
algorithms to model the entire ranking using ground truth
data from published rankings (e.g., university ranking from
the previous year). We use the goodness of fit measures and
visualizations that communicate if learned rankings are reli-
able. These learned rankings ultimately serve as a means to
generate post hoc inferences from visual explanations that
help end users interpret attribute influence on rank positions.

2.2 Visualization for post hocmodel explanation

We use explanation methods for black-box interpretation of
machine learningmodels, specifically, learning-to-rankmod-
els. We use visualization techniques to interpret and explore
the associations amongdata inputs and ranker outcomes. Sev-
eral researchers have explored this space where black-box
methods have been used for eliciting particular responses
from a model [15–19] from an end user’s perspective or
diagnosing the accuracy of classifiers [20–22] from a model
developer’s perspective. One of the key contributions of our
work is to adopt explanation methods like LIME [23], origi-
nally developed for classifiers, to communicate explanations
about learned rankings.

However, the output from XAI methods is limited to what
machine can produce and perceive themodel behavior, which
may not originate from a human-centered design. We pro-
vide users the agency to create alternative groupings and
observe data attribute signatures that serve as the explanation
for a group of ranked items. As observed by Chan et al. [18],
althoughmodel interpretation at the individual level is useful,
there are several visual analytic challenges for communicat-
ing group signatures. It is crucial to determine an aggregation
scheme that is reasonable for tasks and decision-makers.
Therefore, we designed a flexible and intuitive aggregation
for local ranges based on the attribute’s average importance
and dynamic visual anchoring for aggregating explanations
from multiple rankers.

For achieving these tasks, we use visual comparisonmeth-
ods for aiding in the navigation of ranker outputs, which has
been identified as a key gap in the literature [24]. Gleicher
[25] considered the relationship between the comparison
target and the action, the challenges under scalability and
complexity, and the visual strategies to solve the challenges
that were applied for the climate model evaluation [26].
By using a combination of visual cues and animation-based
interaction in TRIVEA, we communicate how rankings are
affected by changes in attribute importance levels.

3 Analytical abstraction

A rank designer creates the ranking with attributes they con-
sider important and the formula they consider reasonable.
The designer publishes the ranking and often only some
attribute data and the formula.

Despite the need for rank designers to publish all data
and formulas for total transparency, for a plethora of pub-
lished rankings, the ranking schemes are proprietary and
hence, inaccessible to the public. However, transparency can
be increased [27] by modeling the ranking with accessible
attribute data and enabling inference generation using visu-
alizations to communicate the modeled associations.

In this section, we discuss the rationale of each step in our
analytical workflow (Fig. 1) that helps achieve such trans-
parency.

3.1 Problem formulation

We define the following notations to formulate the problem.
The input data of an algorithmic ranker is a matrix X with
n rows and p columns. A set of n candidates or items to be
ranked (whom we term as rankees) are described with a col-
lectionof p features or attributes {X j }, j = 1, 2, . . . , p. For a
candidate i , its attribute values are represented as a rowvector
Xi = [Xi1, Xi2, . . . , Xip]. An algorithmic ranker consists
of a scoring formula f (·) and a ranking formula r(·). f (·)
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receives X as input, and outputs a score vector s. r(·) receives
s as input, and outputs the rank vector or ranking τ . The score
and ranking for a candidate i are represented as si and τi .
The explanation about the attribute importance of candidate
i in ranking τ is denoted as E(i, τ, X). We purposely do not
define E based only on τi and Xi since even a single can-
didate’s explanation is dependent on the entire ranking and
attribute input. In this work, we consider f (·) inaccessible,
and we can only reverse-engineer or learn f (·) from X and
τ . The result of such reverse engineering is f̂ (·). According
to different methods of reverse engineering, we may obtain
multiple f̂ (·)l and proxy ranking τ̂l , l = 1, 2, . . . ,m. Candi-
date i’s explanation based on f̂ (·)l is denoted as Ê(i, τ̂ , X)l .
We want to highlight that f̂ is not technically learning the
scoring function f since we only have access to τ but not
the scoring output s. Hence, f̂ mimics the mixed effect of
the scoring function f and ranking function r together. We
identify the following questions that ranking users might ask
to motivate our proposed analytical abstraction: Q1: Which
attributes have a strong influence on the ranking, and why?
Q2: Does one attribute have a stronger influence on the rank-
ing than another in local neighborhoods, and why? In this
work, we consider Q2 as a generalization of Q1 since we
allow users to expand the “neighborhood” to the entire rank-
ing range or narrow it down to a single candidate.

To answer the questions, we cannot simply use the ground
truth rankings given by any ranking publisher. If we only
rely on the ground truth data to understand the relationship
between ranking τ and attributes X , we may use a scatter
plot in which the x-axis and y-axis are τ and X j . We can
observe the trend of the dots in the scatter plot to get a sense
of either positive, negative, or no correlation between the
ranking τ and the attribute X j . However, such an approach
cannot answer Q1 or Q2. The alternative is to apply a trend
line on the scatter plot between τ and each X j . A steeper
trend line indicates a stronger correlation. This approach is
equivalent to applying a linear regression model between
pairs of attribute X j and the ranking τ and comparing each
pair’s regression coefficient. A step further would be using
a multi-variate linear regression model between attributes
X and ranking τ . Moreover, the regression coefficients, or
attribute weights, can infer which attribute has a stronger cor-
relation to the ranking.The inference from linear regression is
easy to interpret and familiar to the public due to the long his-
tory of statistical modeling. However, the algorithmmay not
be suitable for modeling rankings since even a ranker defined
by a linear scoring function produces a ranking that is non-
linear to the attribute inputs. Although one linear regression
is not a feasible approach to generate ranker explanations, a
carefully constructed collection of local linear regressions is
more capable of describing non-linear behaviors. Our choice
of explanation method, LIME, is one such approach. It leads

to opportunities to answer (Q2). But the basic linear regres-
sion can only answer (Q1).

3.2 Generating learned rankings

In ourwork,we usemachine-learned rankings instead of sim-
pler models like linear regression. Why is linear regression
not suitable for this task despite being more interpretable?
Rankings are not continuous but integer or ordinal numbers.
It is not a common response variable handled by statistical
modeling (e.g., linear regression). Hence, although one can
fit ranking with linear regression, the assumption of ranking
being a continuous variablemay be questionable. Algorithms
with more appropriate assumptions for ranking are being
actively developed in the field of information retrieval and are
commonly referred to as Learning-to-rank (LTR) algorithms.
A common case of information retrieval [28] is to rank a
group of webpages, so themost relevant webpages are shown
at the top of the search result. But sometimes, users click
many links to find the most relevant webpage. Researchers
developedLTRalgorithms tomodel user-perceived rankings.
In our case, the ranking data, not the scheme or the formula, is
provided by the publishers (e.g., the Times University rank-
ing [29]). The LTR algorithms have been widely adopted
outside the Information Retrieval field [30, 31] but need to
be explored more in the visualization field. Often, a ranking
publisher produces a ranking yearly, which provides multi-
ple rankings andmore rank candidate data formodel training.
The multiple rankings provided by the same rank publisher
across years may be considered repeated experiments, which
is a desirable trait for training the LTR algorithms. In this
work, we use the LTR algorithms to create a collection of
algorithmic rankers f̂ , produce the corresponding learned
ranking τ̂ across years from one publisher, with the ultimate
goal of modeling the influence of attributes X on the ranking
τ .

3.3 Explaining attribute-rank associations

We use posthoc explanations for answering Q2 and thereby
address the general need for understanding the local behav-
iors of the model. Many explainable AI (XAI) methods have
beendeveloped for quantifying the local behaviors ofmodels.
The two classic algorithms to explain model local behavior
are LIME [23] and SHAP [32]. We choose LIME because
of its grounding in local linear regression. Each explanation
from LIME can be understood as the regression coefficient
from a local linear regression. LIME is model-agnostic,
which allows us to explain LTR algorithms with different
flexibility and complexity to model the ranking.

The perturbation-based methods like LIME or SHAP
raise concerns that the produced explanation may rely on
the effectiveness of perturbation. In practice, there is no
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guarantee that more extensive perturbation leads to better
explanations. And perturbation is computationally expen-
sive. Another group of explanation methods based on partial
dependency plot (PDP) and individual conditional expecta-
tion (ICE) [33] does not rely on the perturbation of individual
data points and thus is relatively less computationally expen-
sive. Keeping the pre-processing steps the same, we compare
the degree of agreement between alternative explanation
methods and allow end users to visualize such comparisons.
LIMEexplanationsLIMEsummarizes the correlationbetween
the ranker input and output via perturbation on the input
based on the distribution of the background data. We set the
background data to be all the data points across the years,
comprising published rankings. The raw output of a ranker
is numerical ranking scores. One can convert the scores to a
ranking by sorting the scores, typically in descending order.
We chose to use the ranking scores instead of the ranking for
LIME to generate inferences since using ranking may result
in a sampling imbalance. For example, when LIME applies
perturbation on the ranking at rank position one, the scores
can increase or decrease. However, the rank can either stay
at rank one or decrease, so LIME cannot effectively derive
the correlation between attribute and ranking. Also, ranking
scores are a direct indicator of the ranker’s behavior.

LIME ignores attribute dependence, which, in our case,
can lead to negative contributions that are counter-intuitive.
For example, an attribute that is supposed to have a posi-
tive contribution as a rank stimulator, but is not as effective
as another dependent attribute, results in a negative regres-
sion coefficient. Since our goal is to use explanations as
decision-making aids for lay users, we choose to normal-
ize the contribution between 0 and 1 per ranker. For rankers,
such normalization retains the relative difference between
the attributes, which does not interfere with the comparison
of the attribute importance. The alternative is to force LIME
to produce non-negative contributions, but that would affect
the explanation quality and will not solve the attribute depen-
dency issue, which is out of the scope of this work. LIME
generates explanations for each rank candidate, which allows
us to group and compare themwithin and across rank ranges.
A key contribution of this work is to adapt the LIME output
and use interactive visualization to support users in making
post hoc inferences about local rank neighborhoods.

Gauging agreement between LIME and ICE feature impact:
In this work, we adopted the ICE feature impact explana-
tion and compared it with the LIME explanation output. We
analyzed the similarity between the ICE and LIME explana-
tion using Pearson correlation. We observed that, for some
rankers, when the ranker produced rank was closer to ground
truth, the explanationsmethods had a greater degree of agree-
ment between them. However, this was not consistent for all
rankers or all rank ranges, and hence we deemed it judi-

cious to leave it to the end user’s judgment for the choice
of an explanation method. The original ICE feature impact
paper [33] averages the ICE feature impact of all instances
to obtain a single overall impact score for a certain attribute.
We rewrote the equations (and the code) to seamlessly fulfill
instance-wise and group-wise feature impact calculations,
similar to the pre-processing steps for generating LIME
explanations. In this way, the ICE explanation data struc-
ture is aligned with LIME, leading to easier computational
comparison and a unified user interface back-end.

We train LTR models a collection of f̂ from the RankLib
package [34]. We compare their performance with the rank-
ing SVMmodel that is implemented according to the Podium
paper [13] (in Python), and explain themusing the LIME [35]
Python project and ICE Python project [36].We import mod-
els’ output τ̂ and corresponding inferences Ê(i, τ̂ , X) into
TRIVEA.

3.4 Comparison of model performance and
explanations

We use the university rankings data [29] and the state fis-
cal rankings data [37] for the two scenarios. The LTR
models trained in the scenarios have been evaluated with
the traditional metrics, like Normalized Discounted Cumu-
lative gain (NDCG@10) and Mean Average Precision
(Precision@10) as shown in Table 1. For both metrics, the
range is 0 to 1, and a model with a score closer to 1 is deemed
to be more accurate. Table 1 shows that a model high on one
metric may be low on the other. Also, based on the average
across both metrics, the best models for university data are
LambdaMART and Ranking SVM; and MART for Fiscal
data.

We analyzed the instance-wise agreements betweenLIME
and ICE explanations in Fig. 2. It shows that the agree-

Table 1 Evaluation metrics for trained algorithmic rankers

Ranking data Algorithm NDCG@10 P@10

University Cord.Ascent 0.20 0.07

LambdaMART 0.64 0.98

ListNet 0.19 0.08

MART 0.56 0.87

RankBoost 0.48 0.75

RankingSVM 0.65 0.97

Fiscal Cord.Ascent 0.35 0.32

LambdaMART 0.38 0.42

ListNet 0.39 0.55

MART 0.63 0.95

RankBoost 0.47 0.67

RankingSVM 0.52 0.87

Metric scores are between 0 (worst) and 1 (best)
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Fig. 2 Evaluation of
explanation agreement for the
most accurate models from
Table 1. The x-axis is the
item-wise Pearson correlation
between LIME and ICE
explanations. A higher value
indicates more agreement
between explanations for a
ranked data item. The y-axis is
the count of the data items

ment between LIME and ICE explainers differ across
rankers. Additionally, the ranker shows different distribu-
tions between the University and Fiscal data. Overall, a high
degree of agreement is indicated for the University data set,
as most of the plots show left-tail distribution, indicating
that for most ranked items, the Pearson correlation between
LIME and ICE explanations is high. On the other hand, for
the Fiscal data, we show that many rankers exhibit a uniform
or multi-modal distribution, indicating lesser agreement. We
conclude that the agreement among explanations is subject to
conditions (e.g., ranker, data properties, etc.) and should be
left to the judgment and interpretation by end-users. Hence,
we inject transparency into the ranker interpretation process
by designing an interactive user interface as part of TRIVEA
that seamlessly provides information about learned rankings
and corresponding explanations from multiple rankers and
explanation methods.

3.5 Measuring goodness of fit

Measures of goodness of fit can express model uncertainty
[38, 39] and can be described as the deviation between output
τ̂ to the ground truth ranking τ . A smaller deviation indi-
cates better goodness of fit. More flexible algorithms tend
to have better goodness of fit when modeling complex rela-
tions between attributes X and ground truth ranking τ . The
standard evaluation metrics for LTR models such as NDCG
[40] and MAP [41] are designed for better webpage ranking
or Information Retrieval ranking in general. For instance,
NDCG, or Normalized Discounted Accumulated Gain, mea-
sures the goodness of fit of top-ranked webpages with an
exponentially largerweight than the lower-rankedwebpages’
fit. However, users may be more focused on the goodness of
fit in a certain range other than the top.

The standard evaluation metrics (Table 1) or other sum-
mary metrics do not capture local model behavior. For
example, amodel A that has a greater average precision score
than model B, might have errors in local neighborhoods that
a user might care about. Hence, we need local and granular
measures of goodness of fit. One of the contributions of this
work is to adapt the deviation between model output ranking
τ̂ to the ground truth ranking τ and visualize the goodness
of fit interactively. By interactively visualizing both good-
ness of fit and the LIME and ICE explanations, end users
can transparently gauge model uncertainty and whether to
trust an explanation given the degree of deviation between
the ground truth and the learned ranking.

4 TRIVEA: tasks and interface design

We designed a web-based visual analytic system as part of
TRIVEA for facilitating learned ranking-driven inferences.
By enabling post hoc interpretation and reasoning about the
behavior ofmultiplemodels. Rankees, like university admin-
istrators, can try and understand competitors’ characteristics
and compare them with their own for improvement. On the
other hand, decision-makers, like students or stock market
investors, can draw inferences from published rankings and
the associated attributes to drive their future investment (i.e.,
educational or financial, respectively) decisions. In this sec-
tion, we outline the tasks and design rationale of our interface
that guides the organization of the interface components. We
confirmed the ecological validity of the tasks and the relevant
design rationale through discussions and pilot studies with
four data science practitioners in the industry. By demonstrat-
ing intermediate prototypes in the pilot studies and collecting
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their design feedback, we refined the tasks and visualization
design realized in TRIVEA.

4.1 Visual analytic tasks

After deriving the analytical abstraction (Sect. 3) we focused
on visualization interventions for communicating the good-
ness of fit of alternative algorithmic rankers and their
explanation, as well as for allowing end users rich interactiv-
ity for exploring local ranking neighborhoods. We derive the
following visual estimation and interpretation tasks accord-
ingly: (i) Estimate local goodness of fit of rankers (T1): As
part of this task, our focus is on detecting the discrepancy
between the learned ranking (τ̂ ) and ground truth (τ ) for
each data item. Global metrics such as mean average preci-
sion [41] cannot capture discrepancy item-wise. Therefore,
we use these metrics as a guide for automatically suggesting
models or rankerswith high accuracy (e.g.,mean averagepre-
cision is 1) but use visualizations to communicate itemized
discrepancy. (ii) Understand attribute importance in local
rank neighborhoods (T2): As part of this interpretation task,
our focus is on efficiently communicating the relative impor-
tance of attributes on rankings in local neighborhoods using
the LIME explanations (Ê(i, τ̂ , X) ), and iii) Detect correla-
tion between attribute values and importance (T3): This task
entails a more detailed inspection upon observation of rel-
ative attribute importance. Taken together, T2 and T3 help
gather evidence for generating inferences about what con-
tributes to rank with respect to any specified groupings (e.g.,
subset by attributes values, subset by attribute contribution
values). T2 results in observations that help to answer the
first part of Q2 (i.e., Does one attribute have a stronger influ-
ence on the ranking than another in local neighborhoods?),
and T3 results in inferences that help to answer the second
part (i.e., Why the influence differ?). T1 helps to estimate the
credibility of the observation and the inferences from T2 and
T3. All tasks can be applied to an arbitrary size of a local
neighborhood, hence Q1 can be answered as well.

4.2 Interface overview and design rationale

TRIVEA (Fig. 3) consists of the following components: a
control panel for user selection of instances and attributes,
based on rank-range and attribute ranges, respectively; a
set of filters for sub-setting across models, and data items,
attributes, or the year of interest; and visualizations such as
the deviation plot (Fig. 3c), attribute importance distribution
and correlation plots (Fig. 3e, g). We discuss the interface
components below in the context of the relevant design ratio-
nale for realizing the tasks T1, T2, and T3.

DR1: Enablemulti-way visual comparison For satisfying T1,
T2, and T3, we want to create appropriate interaction affor-

dances for quick user navigation of the data space based on
items and attributes of interest and comparing rankings by
understanding the algorithmic goodness of fit and reasons
behind model outputs. Comparison tasks can be expensive in
terms of the amount of human attention required to separate
signals from the noise caused by clutter or irrelevant informa-
tion. We link model outcomes and explanations using colors
that encode rank positions. We use a diverging color scheme
for the chosen rank range of data items displayed, which
helps add contrast between high and low-ranked itemswithin
the local range. To allow flexible comparison, TRIVEA has
multiple modes of comparison (Fig. 3a: (a) Ranker mode:
one can compare across multiple rankers, (b) Range mode:
one can compare between different rank ranges for a given
ranker, and (c) Time mode: one can compare between differ-
ent years for a given ranker and rank range. We use linked
views, where ranking positions in local neighborhoods need
to be associated with attributes that are considered important
for the model outputs. One can also visually link across mul-
tiple models, as shown by the black-highlighted attributes,
to observe if there is reasonable consensus about the model
output and the attribute-based explanations (T2).

DR2: Enable dynamic comparison anchoring Since we com-
municate the outcomes from algorithmic rankers ensemble,
it is essential to anchor comparisons based on an end user’s
perspective. We could either use the model outcomes as
comparison anchors or the ground truth ranks. Based on
pilot studies and feedback from our collaborators, we made
a deliberate design choice to anchor comparison and user
navigation based on ground truth ranks. Since the model’s
goodness of fit is conveniently communicated across all the
visualizations (T1), we preserve the mental model of an end
user who might choose data entities based on their prior
knowledge (e.g., university administrators or students who
are interested in schools belonging to some known rank
range) and also communicate the reliability of themodel out-
comes in that local rank range.We allowusers to highlight the
attributes and the rankees in the interface as visual anchors.
Users can observe the rankees and attributes of interest while
changing other functions. Users can adjust the rank range,
tweak the deviation threshold (Fig. 3f), change the model
selection, compare the current rank range to a different rank
range, compare the current ranking year to a different rank-
ing year, etc. We use animations to guide the users’ attention
toward relevant changes in explanations.

DR3: Provide user control for defining local groupings We
provide users with control over which items they want to
focus on, or which models they think best reflect their men-
tal model about ranked items, while at the same time, we
provide guidance to users to support their task of looking
at rankings from a model’s perspective. The data filters in
TRIVEA can help users to stay close to their mental models
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Fig. 3 Visualization Interface for TRIVEA: The control panel on the
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as Ranker mode, Range mode, and Time mode, b a group of items by
rank range, d a group of items by attribute values, and f the permis-
sible deviation threshold. The visualizations shown are: the deviation
plot (c), which encodes the goodness of fit for the learned rankings;
attribute importance distribution plots (e), which shows the attribute

importance distribution (x-axis) among the items in the selected range,
attribute importance correlation plots (g), which shows the attribute
importance (x-axis) versus the ground truth value (y-axis). In e we add
jittering along the y-axis to minimize overlapping. The Y -axis does not
carry any meaning. The attributes are sorted from top to bottom accord-
ing to the attribute average importance score for the given range and
ranker

about the ranked items. Users may evaluate the models based
on the outputs and the attribute importance associated with
the local groupings in the subset created through the data fil-
ters. The data filters consist of:Range selection: In the default
selection, where users may like to compare across different
models, they can use the range selection filter to select a spe-
cific rank range of interest. For example, users can select
rankees in the rank range of 30 to 60 (Fig. 3b).

Attribute selection: Users can use the attribute selection fil-
ter (Fig. 3d) to select the items by their attribute values. For
example, an analyst can select universities with a female stu-
dent ratio above forty percent.

5 Visualization design and interpretation

In this section, we describe how our design choices for
the interactive visualizations impact the interpretation of
learned rankings in local data neighborhoods. We use the

Times Higher Education ranking [29] as a running exam-
ple to explain the system component. The data comprises
818 unique universities from the year 2011 to 2016 with
10 attributes. There are 12 columns consisting of 1 ranking,
1 total score and 10 attributes, including teaching, teach-
ing, female percentage, international student percentage,
research,etc. Since the ranking formula is unknown, we can
use the historical university ranking data to build algorith-
mic rankers that approximate the original ranking formula
and generate inferences between attributes and ranking.

5.1 Understand goodness of model fit (T1)

We designed the deviation plot for visualizing item-wise
goodness of fit of learned rankings. For addressingT1,we use
the position channel as the primary visual cue for indicating
item-wise goodness of fit, measured by the absolute distance
between the original rank position and modeled rank posi-
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Fig. 4 Deviation Plot a encodes
ground truth ranking and the
deviation of the learned ranking
from the ground truth, b
interaction to focus on one
ranker by hovering over the
ranker button or c focus on one
ranker & item by hovering over
the dot
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Rank Modeled Rank deviation

b

Rank

1
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c

a

tions. We use a striped texture as a metaphor for “poor fit":
the larger a stripe, the greater the error in the learned ranking.

As shown in Fig. 4a, dots close to the y-axis on the left
indicate a more accurate ranker. If dots frommultiple models
converge close to the y-axis, as for rank position 9, we can
infer that most models are accurate. We can observe that for
most other rank positions, there are models that are inaccu-
rate, as indicated by dots farther away from the y-axis. To
identify the name of the model, one can select the dot or
highlight a ranker as shown in Fig. 4b. Users can also hover
over a dot to activate a tool-tipwindowdescribing the specific
model Fig. 4c.

Note that we do not differentiate between the directions of
rank position deviation. As observed in Fig. 4, the deviation
plot can communicate inter-model agreement/disagreement
by letting users compare multiple models’ goodness of fit
with respect to the same ground truth ranking position.
We considered several alternatives to deviation plots, and
evaluated intermediate prototypes through subjective feed-
back from our collaborators. Here, we discuss the rationale
behind the selection of the deviation plot as the final design
choice. It would be hard to see the actual deviation between
the ground truth and themodel outputs for a singlemodel or a
group of models with scatter plots. With bar charts, it would
be difficult to explicitly encode the relative ranking differ-
ence (between ground truth and model output) along with
the absolute value of the rank positions. With a heat map,
while color can help spot differences quickly, it would be
difficult to encode changes across years using color, leading
to change blindness. However, we preserve the use of color
channels by using a diverging color scheme for distinguish-
ing the rank range of the items. A neutral color reflects the
center rank for the selected rank range. In our pilot studies,
we used slope plots as an alternative. Slope plots effectively
demonstrate the rank increasing and decreasing between the
ground truth ranking andmodel output. However, the slope is

sensitive to smaller rank changes and gradually less sensitive
to larger ones. Also, slope plots can get cluttered when there
is a high degree of discrepancy betweenmodel outcomes and
ground truth ranks. The direction of increasing or decreas-
ing the rank is less meaningful. Deviation plots can directly
express the rank deviation nomatter the direction and identify
the less deviated output from one model or model ensemble
by letting users choose the deviation threshold as a tolerance
for the goodness of fit.

5.2 Interpreting explanations (T2, T3)

Understanding the importance of attributes to the ranking
is crucial for building trust and gaining insights into the
instance’s attributes. In this section, we will discuss how to
visualize attributes’ effects on ranking.

Interpreting attribute importance order LIME explanation
is a score-based explanation. For example, an attribute with
a high LIME score is more important than a low score.
However, the scores are not themost effectiveway to commu-
nicate which attribute is more important, for a single rankee
or a group of nearby rankees. For a group of rankees in
a certain rank range, users may want to know the overall
most important attribute in such a range. Hence, we take the
group average of each attribute’s contribution scores to sort
the attributes as shown in (Fig. 5).

The number of attributes can vary across data sets; thus,
it is essential to understand which attributes are important
for generating rankings by a ranker. Hence, we have sorted
the attributes based on attribute importance order. Attribute
importance order is the highest abstraction of the contribu-
tion scores, which allows users to understand the group-wise
attribute importance in a nutshell. For example, research
is a more influential attribute compared to the student staff
ratio, hence research is shown before the student staff ratio
(Fig. 5a, left). This will help an analyst skim through themost
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Fig. 5 Attribute importance plot encodes outcomes from ranker expla-
nations and helps reveal if attributes are important to rankees in the
local region, rankees compared among themselves, and the rankees’
attributes value. The different components, as shown in this figure, are a
Attribute importance distribution plots that show the relative attributes’
importance among the rankees for each ranker, b Attribute importance

orders that show the attributes’ relative importance for the local region
for each ranker, c Attribute importance correlation plot that shows the
correlation between attribute (e.g., International) value (y-axis) and
importance (x-axis) for one ranker, or add more overlaid rankers for
gauging their consensus

important attributes. Although we, by default, allow users to
see the eight most influential attributes, due to the limita-
tion of the browser window, we provide a “remove" bottom
to eliminate an attribute from the queue. And the next most
important attribute in the queue appears in the interface. In
this way, we allow users to access the entire attributes for
exploration and benefit from the XAI-driven attribute impor-
tance suggestions.

Interpreting attribute importance distribution We designed
the attribute importance distribution plot for attributes’ con-
tributions scores from one ranker (Fig. 5a). It consists of
attribute dot plots and provides visual cues of proximity to
identify distributions in the attribute space. Each dot plot
contains an average line for each attribute aiding in the com-
parison across attributes. The attribute importance order is
based on this average score. We also encode the rank devia-
tion defined in the deviation plot as the dot size. The larger
the deviation, the smaller the dot size. So more accurate data
points are more visible in the attribute importance distri-
bution plots. Hence, not only the deviation plot is used to
communicate the goodness of fit of the algorithmic ranker
and algorithmic rankers ensemble, but attribute importance
distribution plots are designed to facilitate linked compari-

son of the goodness of fit and explanation across multiple
rankers. Users can filter out less accurate dots by the devia-
tion thresholds. By controlling the deviation thresholds and
visualizing the deviation as the dot size, users are guided to
paymore attention to the attribute with larger dots, indicating
more reliable explanations. In practice, users can first under-
stand the relative attribute importance within a local range
of interest. Then, users can investigate the attributes of inter-
est as ordered. Sorting the importance distribution plots by
importance order is particularly useful when the number of
attributes is large.

The contribution scores can have varying ranges for differ-
ent attributes, making it difficult to compare the contributions
across attributes and rankers. Hence, we have standardized
the attribute contributions between 0 and 1 per ranker in the
given rank range. The average reference line on the x-axis
reduces the information load for individual comparisons and
gives users an intuitive understanding of the relative dif-
ference in attribute contributions. It also maintains useful
decision-making guidance based on the relative contribution
of each attribute, such as the relative reliability or stability of
the attribute importance.
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For example, we can observe that in attribute importance
distribution plot (Fig. 5a, left), for the attribute research,
data points are all distributed near the average, but for inter-
national, they are distributed across the range. This means
research’s importance is more stable than international in
the given rank range, but international’s importance varies
across rankees, and they also appear to be clustered at differ-
ent rank positions. An analyst can also observe that the dot
size encodes the rank deviation (i.e., the larger the deviation,
the smaller the dot size). Not only the rank deviation links the
attribute importance distribution plot and the deviation plot,
but also the color that encodes the relative rank positions in
a given rank range. But based on the color of the dots, we
cannot tell if the international’s importance correlates to rel-
ative rank positions. But for Student staff ratio, the green dots
are mostly on the right side of the average and purple on the
left. That means the Student staff ratio is more important for
higher-ranked rankees in the given rank range. On the other
hand, for Number of students, we observe that the dots are
randomly scattered with no correlation pattern between the
color of the dots and their respective importance scores.

Interpreting correlation between attribute importance and
attribute value Users may want to compare the attribute
value and contribution in one ranker or across several
rankers to understand inferences about attribute value and
attribute importance. The attribute importance correlation
plot (Fig. 5b) shows the attribute’s contribution to the rank-
ing on the x-axis and the attribute value on the y-axis. The
attribute importance correlation plot inherits the dot size
encoding from the attribute importance distribution plot so
that users can generate inferences based on better goodness
of fit. In the attribute importance correlation plot for interna-
tional, for each point, the y-axis is the international score for
a school, and the x-axis is the contribution of a such interna-
tional score for that school’s ranking. Users can choose to see
a specific ranker to understand how such ranker regards this
attribute’s importance or let multiple rankers overlay their
points on one plot to understand the consensus among the
rankers. For example, if a school’s international score is 30
on the y-axis, and the user wants to see the five rankers’ con-
sensus on an international score of 30 in the given rank range.
In that case, five points represent five different rankers, hav-
ing the same y-axis value of 30, but different x-axis values
according to their contribution scores.

As shown in Fig. 5b, this popup view shows the attribute
importance correlation plot with an explicit y-axis so that the
users can refer to the actual attribute values. We expand each
attribute’s importance to the entire x-axis range. This will
help an analyst understand the attributes’ values that have
relatively strong or weak importance for an individual ranker
or among rankers. For example, if a university administrator
observes that lower international scores show weaker impor-

tance for a certain ranker, they can improve the international
student percentage during their admission process. But what
if the administrator wants to understand the multi-rankers
consensus around this attribute, i.e., if this same attribute’s
importance is similar across other models? This task can
be achieved using the “Add more Ranker" option. Select-
ing different rankers from this option will plot the attribute
contribution scores of each of those rankers. It helps the
user compare and understand the attribute importance for
several rankers altogether. Through the comparison, users
can understand ranker consensus on the particular attribute.
The inferences derived in the attribute importance correlation
plots are actionable. An example of such an inference would
be: increasing international student percentage or interna-
tional collaboration can promote the rank of certain schools
in the rank range. Using TRIVEA, one may derive multiple
such inferences and use their domain knowledge to determine
which inferences are actionable.

6 Usage scenarios

In this section, we discuss two usage scenarios using
TRIVEA. We use the university rankings data [29] and the
state fiscal rankings data [37] for the two scenarios. Themod-
els and explanations are first generated and imported into the
interface.

6.1 Understanding states’ fiscal ranking change

We present a usage scenario demonstrating how TRIVEA
can be used by state administrators for interpreting and act-
ing upon state fiscal rankings and their explanations. The
state fiscal data set [37] comprises rankings of 50 U.S. states
with 33 attributes about the financial performance of each
state from year 2006 to 2016. The attributes include state
financial metrics such as primary government debt, total net
asset, cash ratio, tax income ratio, and more. The rankings
depict the financial status of eachU.S. state and are generated
using a formula that the formula maker predefines to produce
the ranking. However, the entire methodology of making
such a formula is complicated and confusing. How can a
state administrator judge if the formula is reasonable with-
out knowing the formula? Especially since every formula
is a simplification of the real world. Hence, the administra-
tor can run algorithmic rankers that abstract the important
attributes for ranking and see if that is reasonable. With the
XAI techniques, it will also provide formula makers another
perspective regarding the formulae and how well it works
with the data. We assume a scenario in which a govern-
ment officer from New Jersey (NJ) working in the finance
department wants to understand why an NJ’s fiscal ranking
increases or decreases over the years.
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Fig. 6 Usage Scenario: States’ fiscal rankings (Sect. 6.1). a Deviation
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distribution plots for rankers in the years 2006, 2007, and 2008. Each

column is sorted by the importance score average; e–g show attribute
importance correlation plots between the years 2006 and 08, with high-
lights on the state of NJ. Here, the x-axis is the attribute importance,
and the y-axis is the attribute value

She set the year as 2006 and wanted to observe the ranker
consensus for a small deviation threshold on the deviation
plot.MARTandLambdaMART (Fig. 6a, b)were the twobest
rankers (T1). She observed that LambdaMART’s explana-
tions (Fig. 6b–d), as indicated by the spread of the importance
scores for the different attributes, were in contrast toMART’s
and could provide alternative interpretations about attribute
influence on the rankings (T1).

She understood that out of the 33 attributes in the data,
the rankers showed consensus patterns on the top eight
attributes (T2) that are shown on the TRIVEA interface. She
now focused on understanding the relative importance of
the attributes from the rankers’ explanation. She removed
the quick ratio since it did not seem interesting to investi-
gate right now. She highlighted the UAAL pension risk free,
tax income ratio, total current assets, the top three accord-
ing to the MART ranker (shown as the rectangle boxes in
Fig. 6b), which shewanted to investigate. The three attributes
also appeared on LambdaMART explanation (shown as the
rectangle boxes in Fig. 6b), but the relative importance of
those three attributes varied across years in the top eight
attributes (T2). Therefore, she inferred that in the year 2006,

the LambdaMART ranker agreed with the relative order
among the top three attributes with MART ranker, but the
third attribute was the eighth (shown as the third rectangle
boxes in Fig. 6b) ranked for LamdaMART (T2). At this point,
she highlighted NJ (shown as the red dot) and saw that, in
LambdaMART ranker explanation, UAAL pension risk free
was not important to NJ’s ranking. This meant it was not
helping NJ compete with other states. The tax income ratio
had average importance compared to the average line, and
total current asset was very important. She suspected that
NJ benefited more on the total current assets than the other
two attributes. The values of the three attributes compared to
other states were high, middle, and high, observed from the
importance correlation plot (T2) (Fig. 6e–g).

She wanted to observe the importance of the three
attributes across the years. From 2006 to 2007, all three
attributes’ importance decreased for NJ (Fig. 6b, c). NJ’s
rank dropped five positions as observed in the deviation
plots (Fig. 6a). From 2007 to 2008, the rank dropped another
seven positions (Fig. 6c, d), the tax income ratio and total cur-
rent assets’ attributes’ importance decreased for NJ (Fig. 6a).
She was curious about what happened to NJ between 2006
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and 08 that led to the drop from rank 34 to 46. For NJ’s
attribute values, the UAAL pension risk free increased from
100G to 150G (Fig. 6f). tax income ratio increase from 0.06
to 0.07 (Fig. 6e), and the total current asset dropped from
22M to 19M (Fig. 6g) (T3). This observation implies that
the increasing of tax income ratio and decreasing the total
current assets of NJ hurt the fiscal ranking. Thus, the govern-
ment officer understood the comparably important attributes
that affected the ranking of NJ. She could ultimately focus
on a few specific attributes instead of the datasets’ numerous
attributes for investigating the fiscal ranking of an individual
state.

6.2 Making choices for higher education

In this usage scenario, we focused on understanding how
TRIVEA can be used by student applicants, forwhomsearch-
ing for a good university is a challenging task since their
priorities may not match directly with that of the universities.
A good way to understand a university’s priority is to under-
stand the correlation between its yearly rankings and the
factors affecting them. Hence, they can look for a university
thatmatches their priority best andmay bemore suitable than
a top-ranked university that does not suit their priorities. For
this scenario, we use the university data set [29] introduced
earlier in Sect. 5. An applicant first examined the rankers in
the range of 1–100 in the default ranker mode. Using Mean
Average Precision and manually checking the rank devia-
tions, he concluded that the Ranking SVMmodel performed
the best. Then the applicant used the range comparison mode
in TRIVEA and chose the range 1–50 and 51–100 as the
two groups for comparison using the Ranking SVM model.
Group 1 dots were green-yellow, and group 2 yellow-purple.
He saw female percentage was an important attribute. Using
the time navigation in TRIVEA, he observed that it was not
a high priority in both ranges over the years. The highest
priorities were research, teaching, and citations (T2), which
may reflect that a university emphasizes research. However,
the basic needs for students are good education and a sense
of community. He was less interested in the most impor-
tant attributes as computed by the explanations. Instead,
his priorities were female percentage, teaching, student staff
ratio. He first investigated the importance of correlation plots
for female percentage and teaching. The female percentage
showed a no correlation in group 1 (1–50), but a positive
correlation in group 2 (51–100) (Fig. 7a) (T3). The higher-
ranked school in group 2 mostly have high values too. Group
1 schools also have high values, but a female student may be
more competitivewhen applying for group 2 schools because
of the positive correlation. The same correlation patterns can
be observed for teaching (Fig. 7b) (T3). Although the teach-
ing scores for group 2 were 20 percent lower than group
1 on average (shown on the y-axis of Fig. 7b), there were

schools that both had high teaching importance and were on
par with the group 1 school teaching scores. According to
the color gradient, teaching correlated to the rank change in
group 2 (Fig. 7b). Hence, choosing a school where a high
teaching score was of high importance fulfilled one of the
needs of the student. He found a school A (Brown Uni)
in group 2. Its teaching attribute had high importance and
value (Fig. 7b). School A appeared to be balanced in female
percentage (Fig. 7h) and high on teaching (Fig. 7f) (T2), but
all high on importance. The school matched the student’s
needs and was less competitive for applicants than the group
1 schools. Yet, it could compete with group 1 schools on the
attributes that the student cared about. The school might also
intend to improve on the same attributes since they appeared
important for its ranking. But for the group 1 schools, they
might devote most of their effort to research. Exploring and
choosing a school based on the explanation broadened the
applicants’ perspective on school selection. He wanted to see
if using another explainer may yield additional choices. He
switched the explainer from LIME to ICE. Immediately, he
noticed that ICE explanation for ranking SVM prioritizes the
student staff ratio (T2),which contradictedLIME (Fig. 7c, d).
He noticed that schoolA still showed a high impact in student
staff ratio in ICE. He also noticed a nearby dot, with lower
student staff ratio compared to school A, representing school
B (Vanderbilt Uni). He chose to carefully examine if school B
is better than A. Across all absolute attribute values, school
B was better than school A on student staff ratio, female
percentage, but lower in teaching. LIME and ICE explainers
both agreed that student staff ratio and female percentagewas
more important to school A but did not agree on teaching.
He concluded that he favors school A since the explainers’
agreement favors school A over B. Thus, he observed the dif-
ference between the top 50, 51–100 from 2011 to 2016 and
found schools thatmatched the student’s interests.As a result,
he understood the advantages and disadvantages of applying
to those universities in the coming year and strengthened his
higher education strategy. Leveraging different explainers,
he was able to quickly identify the schools according to his
interest and examine their attributes for school decisions.

7 Subjective feedback from domain experts

For evaluating TRIVEA, we asked four researchers from
diverse domains, such as energy, cyber security, data science,
etc., who are familiar with and use ranking applications, for
their subjective feedback [42]. We used questionnaires and
online feedback (using emails and discussions) to understand
how people can benefit from using TRIVEA for interpreting
the algorithmic rankers used as part of our surrogate model
for explaining inaccessible ranking schemes. All four experts
have doctoral degrees in computer science or engineering,
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Fig. 7 Usage Scenario: School rankings (Sect. 6.2). a Attribute impor-
tance correlation plots for female percentage between the rank range
1–50 and 51–100. bAttribute importance correlation plots for teaching
between the rank range 1–50 and 51–100. c and d The attribute impor-
tance distribution plots for rank range 51–100 between LIME and ICE

explanations, with highlights on schools B and A. e–i The attribute
importance correlation plots for the five attributes in the rank range 51–
100 between LIME and ICE explanations. The x-axis is the attribute
importance, and the y-axis is the attribute value

with experience ranging from 5 years to 10 years. Two of
them have experience developing or using machine learning
models and are somewhat familiar with visualization tools.

We provided them with a training video where we
described all the functionalities of TRIVEA and asked them
to use it for free-form exploration of learned rankings using
any of the data sets we used. We assessed their perceived
ease of use, comfort, level of confidence, challenges in using
TRIVEA, and potential shortcomings from their written and
verbal feedback.

We found that all participants were comfortable using
TRIVEA and particularly appreciated the ability to probe
the model outcomes by linking uncertainty information with
the explanation: “The textured bars and the dot sizes are very
helpful for me to quickly filter out inaccurate ranks". Two of
them could immediately relate to how TRIVEA can be used
for problem-solving in cases where there is a need to learn
rankings from data and explain them to augment end user’s
trust: “This could be helpful in the energy domain. Some use
cases could be: Ranking of energy efficient different build-
ings", and “utility ranking and priority of loads are some of
them come to mind”, and “can be valuable for operators who

need to balance different criteria before making decisions for
operating the grid”.

All of them noted the benefit of the flexibility the interac-
tions like filtering and animation afforded. Two participants,
who develop machine learning models as part of their
research, noted how TRIVEA can help them in model selec-
tion: “This is a very helpful tool for ML researchers who are
often confused between which ML algorithms to use for a
particular task. It provides a nice visual analysis.”

One of themmentioned the need to potentially incorporate
multiple explanation techniques for an even detailed compar-
ison of attribute contributions: “The attribute importance is
well presented. The designer might consider adding more
criteria for attribute importance ranking”. Another partici-
pant noted that while the explanation plots and color-coded
rankings are helpful in building a mental model of attribute
contributions quickly, one might augment this view with the
ability to save one’s results in the interface. This comment
encourages us to pursue directions such as knowledge exter-
nalization based on inferences from ensemble algorithmic
rankers.
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8 Discussion

In this section, we discuss the effectiveness of TRIVEA
in communicating outcomes from ensemble algorithmic
rankers by reflecting on the subjective feedback from partici-
pants and based on our assessment of state of the art.TRIVEA
is able to encouragemulti-model comparison ofmodel fitness
and explanations for evaluating and interpreting rankings.
However, there is a performance trade-off owing to the
data range and the number of models, especially when we
are simultaneously analyzing rankings and explanations. We
noted that for optimal user experience, one either selects a
limited number of rankers (about 5) or limits the data range
to about 100when analyzing both rankings and explanations.
We will address this issue in the future. For the animations,
we noticed that augmenting more visual indicators of what
is changing and the before and after states will be helpful
in further communicating salient changes. On the machine
learning side, we can afford to link TRIVEAmore explicitly
to model training and selection. While we are not re-training
themodels in our case, insights from TRIVEA can be used for
such purposes and to better align a domain expert’s mental
model of how an attribute contributes to rankings. TRIVEA
can also provide insight into model stability across years
and encourage looking at developing new metrics for cali-
brating performance in local neighborhoods. When we used
the advanced learning-to-rank models (LTR) for webpage
ranking, we used simpler models, like linear regression or
Random Forest, for performance comparison. In some cases,
the latter outperformed advanced LTR models. This can be
explained by the fact that advanced LTR models are data-
hungry, and the size of our training data, in some cases, did
not meet those requirements. However, learning to predict
rankings from smaller data sets is a viable task, and TRIVEA
provides a way to incorporate those ranking-driven infer-
ence scenarios. The explanation plots are now limited with
respect to the quality of LIME output. However, our abstrac-
tion of LIMEoutput can be generalized to otherXAImethods
for understanding dynamic local attribute importance about
ranking output. We plan to expand the explanation meth-
ods to other XAI methods like SHAP [32] and Anchor [43],
for aiding in more generalizable inferences from observa-
tion of local attribute importance. Also, our interface can
be adapted to explain other models, such as classifiers, by
redesigning the deviation plot module in the interface. Our
work is related to the accessibility and transparency issue of
the data and ranker to humans, especially the end users of
the rankings. We will continue to focus on the accessibility
issue of data and rankers where data and formulas may not
be completely accessible in the public domain, as is common
in many socio-technical applications of ranking, like, hiring,
admissions, etc.

9 Conclusion

In this paper, we demonstrate how the TRIVEA visual
analytic system can aid in the interpretation of algorith-
mic rankers and drive user inferences for both rankees and
decision-makers. This is an important contribution for mak-
ing sure proprietary ranking schemes are made broadly
accessible and auditable in the future.We enablemulti-model
comparisons of learned rankings and their explanations for
generating user inferences. While these tasks are of high
reasoning complexity, we demonstrated through the usage
scenarios and expert feedback that our visualization and
interface design choices, combined with filtering and ani-
mation strategies, can provide appropriate affordances for
solving these tasks. We plan to conduct controlled user stud-
ies in the future further to evaluate the effectiveness of
TRIVEA.
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