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Molecular predissociation, the spontaneous nonradiative bond breaking process, can limit the ability to scatter a
large number of photons required to reach the ultracold regime in laser cooling. Unlike rovibrational branching,
predissociation is irreversible since the fragments fly apart with high kinetic energy. Of particular interest
is the simple diatomic molecule, CaH, for which the two lowest electronically excited states used in laser
cooling, A2Π1/2 and B2Σ+, lie above the dissociation threshold of the ground potential. In this work, we
present measurements and calculations that quantify the predissociation probabilities Ppd affecting the cooling
cycle. For the lowest vibrational levels, we find Ppd of ∼ 10−6 for A(v′ = 0) and ∼ 10−3 for B(v′ = 0). The
results allow us to design a laser cooling scheme that will enable the creation of an ultracold and optically
trapped cloud of CaH molecules. In addition, we use the results to propose a two-photon pathway to controlled
dissociation of the molecules in order to gain access to their ultracold fragments, including hydrogen.

I. INTRODUCTION

Rapid and repeated photon scattering is not only an efficient
method of removing entropy from an atom or a molecule via
photon recoils [1], but it also enables the high-fidelity single
quantum state preparation and measurement needed for quan-
tum information protocols [2, 3]. Optical cycling between
the ground state and a low-lying electronic excited state, pio-
neered with SrF [4] and CaF [5, 6], has led to recent progress
with laser cooled molecules such as tweezer arrays of CaF
[7], a three-dimensional lattice of YO [8], magneto-optical
trapping (MOT) of CaOH [9], and one-dimensional Sisyphus
cooling of CaOCH3 [10].

The primary challenge of direct laser cooling is the large
photon budget necessary for bringing a cryogenically pre-
cooled molecular beam to within the MOT capture velocity
[11, 12]. For example, typical molecular beams emanating
from a cryogenic buffer gas beam (CBGB) source travel at
mean forward velocities of ∼ 200 m/s [13]. The recoil ve-
locity per photon is ∼ 2 cm/s, hence > 104 photon scat-
ters are needed to bring the molecular beam to a standstill.
The photons must be scattered faster than 106 s−1 to accom-
plish slowing within a ∼ 1 m distance. Satisfying these cri-
teria can be challenging for molecules with complex inter-
nal structures. Indeed, alternative slowing schemes such as
traveling wave Stark deceleration [14], the electro-optic Sisy-
phus effect [15], centrifuge deceleration [16], and Zeeman-
Sisyphus slowing [17] have been demonstrated. These al-
ternative schemes leverage state-dependent electric and mag-
netic field dependencies to remove entropy with minimal pho-
ton scatters. However, quantum-state resolved detection still
requires optical cycling.

Although calcium monohydride (CaH) was among the ear-
liest candidates proposed for laser cooling [18], experimen-
tal progress was made only recently [19]. One of the rea-
sons is the unique electronic structure of CaH compared
to alkaline-earth monohalides [20]. In CaH, the lowest-

energy excited state A2Π1/2 (v′ = 0) lies 556 cm−1 above
the Ca(1S)+H(2S) dissociation threshold of the ground X2Σ+

manifold (Fig. 1(a)), so a molecule in the excited state could
decay into the continuum via a radiationless transition. This
phenomenon, known as predissociation [21, 22], is tradition-
ally studied by observing spectral line shapes and widths in-
consistent with radiative decay. A predissociated molecule
cannot be repumped into optical cycling because of the sig-
nificant physical separation and relative velocity of the frag-
ments. Hence the predissociation probability (Ppd) sets a limit
on the number of photons one can scatter with laser cooling.

Despite the fact that the A2Π state in CaH lies above
the ground state threshold energy, predissociation from A2Π

to the X2Σ+ continuum is nominally forbidden due to the
von Neumann-Wigner noncrossing rule [23]. For diatomic
molecules, states with different symmetries cross while those
with the same symmetries form avoided crossings [24, 25]
(i.e., the molecular Hamiltonian does not couple states with
different symmetries). The second-lowest excited B2Σ+ state
is allowed to predissociate. However, effects such as spin-
orbit coupling can lead to mixing of A2Π and B2Σ+ states
resulting in a small but finite Ppd for A2Π. Both A and B states
are important for efficient optical cycling.

In this work, we present theoretical analysis and measure-
ments of predissociation probability for the B2Σ+ state of
CaH. We perform ab initio calculations of the potential en-
ergy surfaces for CaH, and confirm their accuracy by extract-
ing the Franck-Condon factors (FCFs) for the primary A2Π1/2

→ X2Σ+ and B2Σ+ → X2Σ+ decays and comparing them to
our previous measurements. We calculate a nonradiative de-
cay rate, and obtain an estimate of Ppd by comparing it to
the radiative decay rate. Next, we present a novel experimen-
tal protocol to measure an upper bound of Ppd. We find that
Ppd ≈ 1× 10−3 for the vibrational ground state (v′ = 0) and
≈ 6×10−2 for the first vibrationally excited state (v′ = 1) of
the B2Σ+ manifold. We deduce that the vibrational ground
state of the A2Π1/2 manifold predissociates with a ∼ 5×10−7
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Figure 1. CaH molecular properties relevant to this work. (a) Potential energy surfaces (PES) for the 4 lowest electronic states: X2Σ+, A2Π,
B2Σ+, and D2Σ+. Spin-orbit interaction is omitted. The x-axis is the internuclear separation r in Bohr radii (a0) and the y-axis is energy in
cm−1 (1 cm−1 ≈ 30 GHz). The energy origin is chosen as the Ca(1S)+H(2S) continuum threshold (vth). Superimposed are the wavefunctions
(bottom to top) for the X(v′′ = 0) absolute ground state, X(v′′ = 15) least-bound state, and B(v′ = 4) excited state. (b) Experimental layout
used in this work. A buffer-gas cooled molecular beam emanates from the cryogenic cell and encounters 4 spatially separated regions: state
preparation (S), interaction (I), cleanup (C), and detection (D). Each region includes multipassed lasers described in the text. The diagram is
not aligned to scale. (c) Relevant vibrational branching ratios (squiggly arrows) calculated for the B2Σ+ state. The hyperfine structure of the
excited states is unresolved. Measured predissociation probabilities for B(v′ = 0) and B(v′ = 1) are denoted by dashed lines.

probability due to spin-orbit mixing with the B state. The mea-

sured values of Ppdimply a ∼ 50% predissociative molecule

loss after scattering 104 photons, suggesting that a MOT of

CaH is feasible. We further extract the dipole matrix ele-

ments for all transitions connecting the ground X2Σ+ (v′′)
states to the excited B2Σ+ (v′) states. This allows us to predict

a viable stimulated Raman adiabatic passage (STIRAP) path-

way to controllably dissociate the CaH molecules and subse-

quently trap the resulting ultracold hydrogen atoms, which is

a prospective goal for molecular laser cooling and cold chem-

istry research [26].

II. CALCULATION OF MOLECULAR POTENTIAL
ENERGIES

The starting point for our calculations is the construction of

the potential energy surface (PES) for CaH. All calculations

are performed using the Molpro program [27–29]. We adopt

a basis set and active space as in Ref. [30], where we use cc-

pwCVQZ [31] for the Ca atom and aug-cc-pVQZ [32] for the

H atom. Calculations are performed in C2v symmetry, which

is the nearest Abelian point group to C∞v. Orbitals are gen-

erated with a restricted Hartree-Fock (RHF) formalism, then

further optimized in a state-averaged complete active space

self-consistent field (SA-CASSCF) [33] calculation involving

3 active electrons and 9 active orbitals. For the Σ+ states, 4

states are averaged at equal weights in the SA-CASSCF cal-

culation, with (5,2,2,0) closed and (9,4,4,1) occupied orbitals.

For the A2Π state, since only Abelian group symmetries are

available, a two-state SA-CASSCF calculation with the same

active space is performed in C2v symmetry involving symme-

tries 2 and 3 of equal weight to represent the C∞v A2Π state.

These wavefunctions are then used in a multireference con-

figuration interaction calculation with Davidson corrections

for higher excitations (MRCI+Q) [34–36]. Here, (3,1,1,0)

orbitals make up the core, (5,2,2,0) are closed and (9,4,4,1)

are occupied. Electron correlation involving double and sin-

gle excitations is allowed. The spin-orbit interaction is incor-

porated at the MRCI level using the Breit-Pauli Hamiltonian

[37].
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Transition
Vibrational Quanta

(v′′)

FCF Calculated

( f0v′′)

FCF Measured

( f0v′′)

A → X

0 0.9788 0.9572(43)

1 0.0205 0.0386(32)

2 6.8×10−4 4.2(3.2)×10−3

3 4.1×10−5 -

B → X

0 0.9789 0.9807(13)

1 0.0192 0.0173(13)

2 1.8×10−3 2.0(0.3)×10−3

3 1.4×10−4 -

Table I. The calculated Franck-Condon factors (FCFs) for CaH, com-
pared to experimental FCFs [19]. The experimental FCFs are de-
rived from measured vibrational branching ratios. Note that the ac-
tive space is optimized for the B state in this work.

III. CALCULATION OF FRANCK-CONDON FACTORS

Next, we employ the vibrational wavefunctions obtained in
Section II to calculate the Frank-Condon factors (FCFs) for
the CaH transitions of interest. FCFs are calculated using a
grid representation of the vibrational wavefunctions. A spline
interpolation is fit to the potential energy surfaces calculated
in Molpro to create the potential energy functions, V (r). The
real space kinetic energy operator is approximated with the
Colbert-Miller derivative [38]. Nonadiabatic coupling vectors
are computed analytically with the CP-MCSCF program [39]
in Molpro and fit to a spline interpolation. They are incorpo-
rated into the Hamiltonian by directly adding the nonadiabatic
coupling to the momentum operator [40]. The Hamiltonian is
diagonalized to obtain eigenvalues and eigenvectors. Our cal-
culations converge with a grid-spacing (dr) of 0.007 a0 and a
box size of 16.5 a0. Details are discussed in Appendix E.

We compare our calculated FCFs to previous experimen-
tal measurements [19] in Table I. We choose the active space
which matched B2Σ+ and X2Σ+ state FCFs and vibrational
energies in all calculations, since MRCI spin-orbit coupling
(SOC) requires the same active space for all involved states.
Therefore, the FCFs for A2Π could be improved with varied
active space, but a compromise is made to estimate SOC split-
tings. Despite this compromise, we find the A2Π1/2 potential
has the correct shape but a slightly incorrect equilibrium bond
length. More details are in Appendix E.

IV. B2Σ+ PREDISSOCIATION ESTIMATE

Predissociation probability estimates are computed using
an optical absorbing potential with previously predicted scat-
tering cross sections close to experiment [41–43]. An absorb-
ing potential resembling a decaying half-parabola of the form
−iV (r− r0)

2/w2 is added to the X2Σ+ potential energy start-

ing and centered at r0 = 8 a0 with a width w= 8 a0 and a depth
of V = 0.2 a.u. (4.4×104 cm−1). Results are insensitive to ab-
sorber placement as long as it is placed along the potential
energy surface’s asymptote [43] and has a width larger than
the typical de Broglie wavelength [44]. This creates a chan-
neled flux equation which imposes a boundary condition on
the wavefunction and eigenvalues attain an imaginary compo-
nent. Details can be found in Appendix E.

This component, such as the imaginary eigenvalue of
B(v′ = 0), is directly related to the nonadiabatic coupling
between that vibrational wavefunction and the X continuum
(where we place the absorber) as the nonradiative transition
rate ANR. We estimate the predissociation probability as the
ratio of the calculated nonradiative (ANR) and radiative (AR)
decay rates, ANR/(ANR +AR).

V. B2Σ+ PREDISSOCIATION MEASUREMENT

A. Experimental setup

The experimental setup has been previously described [19].
Briefly, CaH is generated through ablation of a CaH2 target
by a pulsed Nd:YAG laser at a ∼ 1 Hz rate. CaH is buffer-
gas cooled by helium at 6 K and ejected from the cell aper-
ture to form a beam. The molecules are predominantly in the
X2Σ+ (v′′ = 0) state. The beam of CaH then enters a high-
vacuum chamber which is divided into four regions: state
preparation, interaction, cleanup, and detection, as shown in
Fig. 1(b). In the first three regions, the molecular beam in-
tersects with transverse lasers that address X → A or X → B
transitions. These lasers can be switched on and off by in-
dependent optical shutters. The laser beams are multipassed
to increase the interaction time with the molecular beam. In
the detection region, we apply a single-pass X → A or X → B
light and use an iXon888 electron multiplying charge coupled
device (EMCCD) camera and a Hamamatsu R13456 photo-
multiplier tube to collect the laser-induced fluorescence (LIF)
signals for spatially and temporally resolved detection. Every
molecule scatters ∼ 20 photons in the detection region, which
implies that we are not sensitive to the initial spin-rotation and
hyperfine distribution. All addressed transitions are from the
X2Σ+ (N′′ = 1) state (N is the rotational quantum number) to
A2Π1/2 (J′ = 1/2) (J is the total angular momentum quantum
number) or B2Σ+ (N′ = 0) states in order to obtain rotational
closure [18]. We use electro-optic modulators (EOMs) to gen-
erate sidebands on all lasers to cover all hyperfine states (HFS)
as well as to address spin-rotation manifolds. The transitions
used here are first measured experimentally with HFS resolu-
tion. Details of the lasers and transition frequencies can be
found in Appendix B.

To concisely describe the lasers used in this study we adopt
the notation MR

v′−v′′ , which denotes the transitions addressed
and the spatial positions of the lasers. M is A or B, repre-
senting the electronic state of the excited manifold. R is S, I,
C, or D (state preparation, interaction, cleanup, or detection
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region). In addition, the FMv′v′′ notation describes the vibra-

tional branching ratios (VBRs) from either A2Π1/2 or B2Σ+

states (represented by M) to X2Σ+ states. For example, FB01

is the VBR from B2Σ+ (v′ = 0) to X2Σ+ (v′′ = 1). We use

similar notation, FB0a and FB1a, to represent predissociation

probabilities from B2Σ+ (v′ = 0) and (v′ = 1) states.

Unperturbed

Unperturbed

X-A Depletion

X-A Depletion
+ Cleanup

Cleanup

Unperturbed

Unperturbed

Unperturbed

X-B Depletion
+ Cleanup

X-B Depletion

Unperturbed

Repeat
N times

Signals Integrate & take ratios Distribution of ratiosSequence

ratios

num
ber of occurrences

R1

R2

R3

R4

R5

Figure 2. Illustration of the ratio extraction process for the B2Σ+

(v′ = 0) predissociation measurement. We run the stages sequentially
with an interlaced reference stage, and collect LIF with an EMCCD.
We integrate the images along both axes to obtain the signals, which
we then used to calculate ratios. By repeating the entire sequence N
times, we collect N sets of five ratios. Here we first show examples
of one-shot camera images. We then present the integrated signal
along one axis, using colored traces for science stages and black for
reference stages (horizontal lines are the baselines). Finally we show
the histograms of the five ratios. Vertical dashed lines represent the
means of the ratios.

B. B2Σ+ (v′ = 0) predissociation measurement method

To measure the predissociation probability of the B2Σ+

(v′ = 0) state, we need to scatter many photons via B2Σ+

(v′ = 0) and detect population loss that cannot be explained by

known effects, predominantly rovibrational losses. To char-

acterize the loss we design several experimental stages, each

stage corresponding to a unique configuration of lasers inter-

acting with the molecular beam. We monitor the population

of the v′′ = 0 ground state in the detection region by detect-

ing LIF signals from the BD
0−0 laser. For this measurement we

employ 6 stages. By defining temporally stable parameters

that describe the properties of our system, we can express the

molecular population distribution at each stage.

For example, in the Unperturbed stage we detect X(v′′ = 0)
population denoted by N. This is the calibration signal used

as a reference. In the Cleanup stage we apply the BC
0−1 laser,

and the resulting X(v′′ = 0) population is N +n1NκFB00/FB0

where n1 is the normalized natural population of X(v′′ = 1),
κ is the cleanup laser efficiency, and FB0

≡ FB0a +∑i�=1 FB0i
is the VBR normalization factor. This factor accounts for the

discrete probability distribution of decay processes based on

the VBRs and Ppd. By taking the ratio of the integrated sig-

nal of the X(v′′ = 0) population from the Cleanup stage with

signal from the Unperturbed stage, we get the parametrized

ratio R1 = 1+ n1κFB00/FB0. In addition to the Unperturbed
and Cleanup stages, we have four more stages in this measure-

ment, resulting in a total of 5 ratios and 5 parameters (includ-

ing Ppd). The details of all the stages, such as the laser con-

figurations and expressions for the normalized signal, are in

Table II and Appendix C. Thus we acquire 5 equations (mea-

sured ratios equal to the parametrized expressions) and 5 vari-

ables. We can solve the equations and express FB0a via Ris.

By precisely measuring Ri we can estimate the B2Σ+ (v′ = 0)
predissociation probability.

C. B2Σ+ (v′ = 1) predissociation measurement method

For the B(v′ = 1) state, predissociation is also measured

within the framework of stages. We implement two differ-

ent methods, each consisting of multiple laser configurations,

to measure the same quantity. In method I we use 6 stages,

always monitoring the X(v′′ = 0) population downstream us-

ing laser AD
0−0. The aim is to populate X(v′′ = 1) via an off-

diagonal pumping laser AS
1−0 and perform optical cycling be-

tween X(v′′ = 1) and B(v′ = 1). We expect to see an increase

of the X(v′′ = 0) population as a result of the cycling. We re-

pump the molecules remaining in X(v′′ = 1) to v′′ = 0. The

recovered population might be less than expected due to vi-

brational loss. By ruling out other effects, we attribute the

loss to B(v′ = 1) predissociation. The details of the 6 stages

are in Table III.

Method II differs in several ways. We monitor the X(v′′ =
1) population instead of v′′ = 0, accounting for loss to both

v′′ = 0 and v′′ = 2 with a sufficient signal-to-noise ratio (SNR)

using laser BD
1−1. The 10 stages in this method lead to 9 mea-

sured ratios. And the 7 required parameters imply that there

are more equations than variables. To find the optimal solution

of this over-constrained system, we define a least-squares ob-

jective function and use the Levenberg-Marquardt algorithm

to search for the local minimum in the parameter space with

reasonable initial guesses.
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Purpose Upstream Laser Config Downstream Normalized X2Σ+ (v′′ = 0) State Pop Averaged Signal Ratio

Unperturbed - 1 -

Cleanup BC
0−1 1+n1κFB00/FB0 1.05(2)

X-A Cycling AI
0−0 dA 0.018(6)

X-A Cycling + Cleanup AI
0−0 +BC

0−1 dA +[(1−dA)FA01/FA0 +n1]κFB00/FB0 0.94(2)

X-B Cycling BI
0−0 dB 0.086(8)

X-B Cycling + Cleanup BI
0−0 +BC

0−1 dB +[(1−dB)FB01/FB1 +n1]κFB00/FB0 0.87(2)

Table II. Experimental stages for B(v′ = 0) state predissociation measurement. In the second column, MR
v′−v′′ denotes the laser information.

M is A or B, representing the electronic excited state. R denotes the region S, I, or C (see text). The third column contains the normalized
ground-state populations using unknown variables and calculated VBRs. The five variables n1, κ, FB0a, dA and dB represent X(v′′ = 1) state
natural population, cleanup efficiency of laser BC

1−0, B(v′ = 0) state predissociation probability, depletion efficiency of laser AI
0−0 and depletion

efficiency of laser BI
0−0. We denote the VBR normalization factors as FA0 ≡ ∑i̸=0 FA0i, FB0 ≡ FB0a +∑i̸=1 FB0i, and FB1 ≡ FB0a +∑i̸=0 FB0i.

Additional information is in Appendix C.

Purpose Upstream Laser Config Downstream Normalized X2Σ+ (v′′ = 0) State Pop Averaged Signal Ratio

Unperturbed - 1 -

State Prep AS
1−0 1−a 0.22(2)

Cleanup AC
0−1 1+n1κFA00/FA1 1.10(3)

State Prep + Cleanup AS
1−0 +AC

0−1 1−a+(n1 +aFA11/FA2)κFA00/FA1 1.01(3)

State Prep + X-B 1-1 Cycling AS
1−0 +BI

1−1 1−a+(n1 +aFA11/FA2)dBFB10/FB2 0.39(2)

State Prep +

X-B 1-1 Cycling + Cleanup
AS

1−0 +BI
1−1 +AC

0−1
1−a+(n1 +aFA11/FA2)(dBFB10/FB2

+(1−dB)κFA00/FA1)
0.40(2)

Table III. Method I of B2Σ+ (v′ = 1) predissociation measurement. Notation is similar to Table II. In the third column, the variables include a,
n1, κ, FB1a and dB, representing state preparation (from X(v′′ = 0) to X(v′′ = 1)) efficiency, X(v′′ = 1) natural population, cleanup efficiency of
laser AC

0−1, B(v′ = 1) predissociation probability and depletion efficiency of laser BI
1−1. The VBR normalization factors are FA1 ≡ ∑i̸=1 FA0i,

FA2 ≡ ∑i̸=0 FA1i, and FB2 ≡ FB1a +∑i̸=1 FB1i. Additional information is in Appendix C.

Purpose Upstream Laser Config Downstream Normalized X2Σ+ (v′′ = 1) State Pop Avg Ratio

State Prep + Cleanup v0 AS
1−0 +AC

1−0 n1 +(a+κ1 −aκ1)FA11/FA2 -

Unperturbed - n1 0.13(3)

State Prep AS
1−0 n1 +aFA11/FA2 ≡ Z 0.89(4)

Cleanup v0 AC
1−0 n1 +κ1FA11/FA2 0.93(4)

State Prep + X-A 1-1 Cycling AS
1−0 +AI

1−1 Z(1−dA) 0.03(3)

State Prep + X-A 1-1 Cycling + Cleanup v0 AS
1−0 +AI

1−1 +AC
1−0 Z(1−dA)+(1−a+ZdAFA10/FA3)κ1FA11/FA2 0.33(3)

State Prep + X-A 1-1 Cycling + Cleanup v2 AS
1−0 +AI

1−1 +AC
1−2 Z(1−dA)+(aFA12/FA2 +ZdAFA12/FA3)κ2FA11/FA4 0.57(4)

State Prep + X-B 1-1 Cycling AS
1−0 +BI

1−1 Z(1−dB) 0.12(3)

State Prep + X-B 1-1 Cycling + Cleanup v0 AS
1−0 +BI

1−1 +AC
1−0 Z(1−dB)+(1−a+ZdBFB10/FB2)κ1FA11/FA2 0.35(3)

State Prep + X-B 1-1 Cycling + Cleanup v2 AS
1−0 +BI

1−1 +AC
1−2 Z(1−dB)+(aFA12/FA2 +ZdBFB12/FB2)κ2FA11/FA4 0.42(3)

Table IV. Method II of B2Σ+ (v′ = 1) predissociation measurement. In the third column, the 7 variables include a, n1, κ1, κ2, FB1a, dA and
dB, representing state preparation (from X(v′′ = 0) to X(v′′ = 1)) efficiency, X(v′′ = 1) natural population, cleanup efficiency of laser AC

1−0,
cleanup efficiency of laser AC

1−2, B(v′ = 1) predissociation probability, depletion efficiency of laser AI
1−1 and depletion efficiency of laser BI

1−1.
The VBR normalization factors are FA2 ≡ ∑i̸=0 FA1i, FA3 ≡ ∑i̸=1 FA1i, FA4 ≡ ∑i̸=2 FA1i, and FB2 ≡ FB1a +∑i̸=1 FB1i. Additional information
is in Appendix C.
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Figure 3. CaH predissociation. Red squares are theoretical results
for nonradiative decay rates of different vibrational states of B2Σ+.
Blue circles are experimental results, where error bars represent the
95% confidence interval.

D. Predissociation measurement analysis

The yield of our CBGB source exhibits some slow drift.

In order to reduce errors due to molecule number fluctua-

tions, we insert a reference stage before and after every other

stage within a group when taking data. For example, in the

B(v′ = 0) predissociation measurement, data are taken in the

following order: Unperturbed→ Cleanup→Unperturbed→
X-A Cycling → Unperturbed ... X-B Cycling + Cleanup →
Unperturbed. The reference stage for B(v′ = 1) method I is

Unperturbed, while for method II it is State Prep + Cleanup
v0. To calculate the ratios, we divide the signal by the average

signal from the calibration shots before and after. The entire

group of measurements is repeated multiple times. The aver-

aged ratios can be found in Tables II, III, and IV. The values in

parentheses denote the 2σ statistical errors. A graphical rep-

resentation of the analysis process and histograms of all five

ratios can be found in Fig. 2.

With the ratios measured, we use a bootstrap method [45–

47] to derive the mean values and build the confidence in-

tervals of the predissociation probabilities depicted in Fig. 3.

This method is particularly useful as it does not require any as-

sumptions about the data such as independence assumptions

typically made for standard error calculations. We consider

several other analysis methods, such as pairwise bootstrap-

ping and regular error propagation, and the outcomes are all

in agreement with each other. Details of the bootstrap method

are in Appendix D.

After considering all systematic effects and analyzing sta-

tistical errors, we find the predissociation probability for the

B2Σ+ (v′ = 0) state to be 0.00097+0.00059
−0.00057 and for the B2Σ+

(v′ = 1) state to be 0.056+0.044
−0.034. The reported value for

B(v′ = 1) is the average of the two methods (method I yields

0.079+0.021
−0.017 and method II yields 0.033+0.013

−0.011), and the 95%

confidence interval is the largest of the two methods com-

bined. These values are consistent with the probabilities cal-

culated in Sec. IV within the order of magnitude. Other po-

tential loss channels are discussed in Appendix A. In addition,

to demonstrate the robustness of our measurements to small

variations in FCFs, we perform a comparative analysis by uti-

lizing the FCFs obtained in previous theoretical work on CaH

[20, 48]. The results consistently produce nonzero predisso-

ciation probabilities and are within error bars of each other.

The sharp monotonic increase in Ppd seen in Fig. 3 can be

understood as a bound molecule quantum tunneling through

the B2Σ+ potential into the X2Σ+ continuum at the same en-

ergy. As the energy of the incident quantum state increases, so

does the transmission probability, which is aided by stronger

wavefunction overlaps.

VI. A2Π1/2 PREDISSOCIATION ESTIMATE

The A2Π state in CaH does not undergo predissociation via

the process described for the B2Σ+ state. However, spin-orbit

coupling can induce mixing between the A and B states, lead-

ing to non-vanishing predissociation of the A2Π1/2 spin-orbit

state. For a linear molecule, the z-component of total an-

gular momentum, Jz, is a good quantum number. Therefore

the spin-orbit component A2Π1/2can interact with B2Σ+(Jz =
1/2) due to the same Jz value. A similar interaction exists be-

tween A2Π1/2 and X2Σ+(Jz = 1/2) but the energy separation

is much larger (∼14,000 cm−1) compared to that between the

A and B states (∼1,400 cm−1). Higher vibrational states of the

X manifold are closer in energy to A but the effective coupling

to the states relevant for laser cooling is weaker due to a poor

vibrational wavefunction overlap.

We estimate the mixing between the A(v′ = 0) and the

B(v′ = 0) states separated by 1400 cm−1. The spin-orbit pa-

rameters are obtained with the Breit-Pauli Hamiltonian at the

MRCI level [37] and are given in Table V. Diagonalization of

this Hamiltonian matrix leads to a 0.05% B(v′ = 0) admixture

into the A(v′ = 0) state. Similarly, we can compute the mix-

ing between A(v′= 1), B(v′= 0), and B(v′= 1). The coupling

between A(v′ = 1) and B(v′ = 1) is expected to be similar to

the case of v′ = 0 since the energy difference of 1310 cm−1 is

similar to that in the case of v′ = 0. However, the A(v′ = 1)
and B(v′ = 0) states are only 64 cm−1 apart, hence even a

small FCF can lead to significant mixing. Note that the mea-

sured FCF for the A(v′ = 0)→ X(v′′ = 1) transition is 4%

(Table I) and that our calculated A−B bond length difference

is smaller than the X − A bond length. We use f = 5% as

an upper limit for the A(v′ = 1)→ B(v′ = 0) FCF. Diagonal-

ization of the corresponding Hamiltonian matrix in Table V

yields a 8.4% B(v′ = 0) character for A(v′ = 1). Combining

these admixtures with the measured Ppd for B(v′ = 0,1), we

estimate that the A(v′ = 0) state very weakly predissociates

with a probability of ∼ 5×10−7 and the A(v′ = 1) state with

a higher probability of ∼ 3× 10−5. The FCF used here is an
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A2Πx

(v = 0,ms = 1/2)

A2Πy

(v = 0,ms = 1/2)

B2Σ+

(v = 0,ms =−1/2)

A2Πx

(v = 0,ms = 1/2)
0 -35.5i 21.5

A2Πy

(v = 0,ms = 1/2)
35.5i 0 -21.5i

B2Σ+

(v = 0,ms =−1/2)
21.5 21.5i 1400

A2Πx

(v = 1,ms = 1/2)

A2Πy

(v = 1,ms = 1/2)

B2Σ+

(v = 0,ms =−1/2)

B2Σ+

(v = 1,ms =−1/2)

A2Πx

(v = 1,ms = 1/2)
0 -35.5i 21.5 f 21.5

A2Πy

(v = 1,ms = 1/2)
35.5i 0 -(21.5 f )i -21.5i

B2Σ+

(v = 0,ms =−1/2)
21.5 f (21.5 f )i 64 0

B2Σ+

(v = 1,ms =−1/2)
21.5 21.5i 0 1310

Table V. Spin-orbit matrices accounting for vibrational mixing of the A and B states. The Πx and Πy basis states split under SOC to produce
Π1/2 and Π3/2 states. The top matrix is for A2Π (v′ = 0) and B2Σ+ (v′ = 0), while the bottom one is for A2Π (v′ = 1), B2Σ+ (v′ = 1) and
B2Σ+ (v′ = 0). The Franck-Condon factor f is introduced to account for the off-diagonal vibrational wavefunction overlap. The diagonal
terms represent the energies of unperturbed states. All values are in cm−1.

upper-bound value and therefore the estimated probabilities
serve as upper bounds.

VII. CONTROLLED DISSOCIATION PATHWAY

As mentioned in Sec. I, an enticing application of ultra-
cold CaH and other molecules is controlled dissociation into
fragments that are not directly laser-coolable, such as H. In
order to trap the resulting H atoms, their maximum kinetic
energy must be below typical optical trap depths. A magic-
wavelength trap for H atoms at 513 nm has a depth of 1.2 kHz
per 10 kW/cm2 [49]. A practical dipole trap with an inten-
sity of at most ∼100 kW/cm2 would result in a maximum trap
depth of only ∼ 0.5 µK. Since the binding energy of B2Σ+

(v′ = 0) corresponds to a temperature of ∼ 1,000 K, the trap-
ping of the fragments relies on the ability to dissociate the
molecules as closely as possible to the threshold [26], such as
via a stimulated two-photon process [50, 51].

Stimulated Raman adiabatic passage (STIRAP) is a tech-
nique that has been successfully employed to generate
ground-state bialkali molecules starting from a weakly bound
state [52, 53]. Although STIRAP has been predominantly
demonstrated for adiabatic population transfers from weakly
bound to deeply bound molecular states, the mechanism can

be extended to unbound continuum states [54, 55]. A pre-
requisite for efficient transfer is the identification of an in-
termediate state that strongly couples to both initial and final
states. Additionally, a desirable intermediate state would be
connected via readily accessible laser wavelengths to the ini-
tial and final states.

Molecular structure calculations give us access to branch-
ing ratios and line strengths for a multitude of vibrational
levels, some of which have advantages for controlled dis-
sociation. We calculate the dipole transition line strength
Sv′v′′ , which is the square of the transition dipole moment
(| ⟨v′|µ |v′′⟩ |2), for both A2Π1/2 →X2Σ+ and B2Σ+ →X2Σ+

transitions (Figs. 4(a,b)). The PES for A and X state are
similar in shape (Fig. 1(a)) which leads to highly diago-
nal transition strengths. However, the second minimum in
the B state PES leads to strong off-diagonal coupling start-
ing around v′ = 4. This feature enables strong coupling of
B(v′ = 4) to both X(v′′ = 0) and X(v′′ = 15) (Fig. 4(c)).
Our calculations do not show a significant coupling between
the B(v′ = 4) state and the vibrationally excited states of the
A manifold. Here we calculate the coupling to the weakest
bound state, rather than to the continuum, for two reasons.
First, we expect the coupling to the lowest-energy continuum
states and to the least-bound state to be similar since their en-
ergy difference is only ∼ 500 cm−1. Second, we expect the
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STIRAP process to be more efficient if all three states are
bound states. Hence it is worthwhile to consider a transfer to
X(v′′ = 15) followed by photodissociation [51] or Feshbach
dissociation [56].

In Fig. 4(d) we plot the laser wavelengths required to con-
nect X(v′′ = 0) as well as the ground-state continuum to the B
manifold. We estimate that the “upleg" STIRAP wavelength
for X(v′′ = 0)→ B(v′ = 4) is 512.7 nm while the “downleg"
wavelength for B(v′ = 4)→ X(v′′ = vth) is 1744.7 nm. Both
these wavelengths are accessible via current technology such
as Raman fiber amplifiers and difference-frequency genera-
tion (DFG). Thus we expect high-power and narrow-linewidth
laser sources to be within reach for STIRAP.

VIII. CONCLUSION

Predissociation is a challenge for laser cooling of new
molecular species. We have theoretically and experimen-
tally studied it for laser cooling CaH as well as in the con-
text of controlled ultracold dissociation. We find that the
lowest-excited electronic state A2Π1/2 (v′ = 0), which is the
workhorse for optical cycling, only weakly predissociates (Ppd
≈ 10−6) via spin-orbit coupling. The next excited manifold
B2Σ+, crucial for repumping vibrational dark states, has much
stronger predissociation by virtue of having the same symme-
try as X2Σ+. We measure Ppd for B(v′ = 0) and B(v′ = 1)
states and obtain ∼ 10−3 and ∼ 6× 10−2, respectively. This
sharp increase is substantiated by theoretical calculations, and
we expect Ppd → 1 for v′ ≳ 4. The results are summarized in
Table VI.

To obtain high photon scattering rates, one must repump
the A(v′ = 0) → X(v′′ = 1) vibrational loss channel via the
B(v′ = 0) state. Due to predissociation, we find that the op-
timal laser cooling scheme requires avoiding the B(v′ ≥ 1)
states in favor of using the A manifold. On average, every
cycling molecule will scatter ∼ 20 photons (1/(1−FA00)) be-
fore being lost to X(v′′ = 1). Each of these molecules only
needs to scatter one photon via B(v′ = 0) to return to cycling,
but it will predissociate with a 0.1% probability. Hence we es-
timate that ∼ 50% of molecules will be lost to predissociation
after scattering the requisite ∼ 104 photons.

Last, we propose to take advantage of the high predissoci-
ation probability for B(v′ = 4) state to engineer a two-photon
STIRAP pathway for transferring the molecular population
from the ground X(v′′ = 0) state to the low-energy continuum
X(v′′ = vth). We find that B(v′ = 4) couples strongly to both
these X states via optical transitions at wavelengths within ac-
cessible laser technologies.

∗ dm3710@columbia.edu
[1] H. J. Metcalf and P. van der Straten, Laser Cooling and Trap-

ping (1999).

[2] A. H. Myerson, D. J. Szwer, S. C. Webster, D. T. C. Allcock,
M. J. Curtis, G. Imreh, J. A. Sherman, D. N. Stacey, A. M.
Steane, and D. M. Lucas, High-Fidelity Readout of Trapped-
Ion Qubits, Phys. Rev. Lett. 100, 200502 (2008).

[3] R. Blatt and C. F. Roos, Quantum Simulations with Trapped
Ions, Nature Physics 8, 277 (2012).

[4] S. Shuman, J. Barry, and D. DeMille, Laser cooling of a di-
atomic molecule, Nature 467, 820 (2010).

[5] S. Truppe, H. J. Williams, M. Hambach, L. Caldwell, N. J.
Fitch, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, Molecules
cooled below the Doppler limit, Nat. Phys. 13, 1173 (2017).

[6] L. Anderegg, B. L. Augenbraun, Y. Bao, S. Burchesky, L. W.
Cheuk, W. Ketterle, and J. M. Doyle, Laser cooling of optically
trapped molecules, Nat. Phys. 14, 890 (2018).

[7] L. Anderegg, L. W. Cheuk, Y. Bao, S. Burchesky, W. Ketterle,
K.-K. Ni, and J. M. Doyle, An Optical Tweezer Array of Ultra-
cold Molecules, Science 365, 1156 (2019).

[8] Y. Wu, J. J. Burau, K. Mehling, J. Ye, and S. Ding, High Phase-
Space Density of Laser-Cooled Molecules in an Optical Lattice,
Phys. Rev. Lett. 127, 263201 (2021).

[9] N. B. Vilas, C. Hallas, L. Anderegg, P. Robichaud, A. Win-
nicki, D. Mitra, and J. M. Doyle, Magneto-optical Trapping and
Sub-Doppler Cooling of a Polyatomic Molecule, Nature 606, 70
(2022).

[10] D. Mitra, N. B. Vilas, C. Hallas, L. Anderegg, B. L. Augen-
braun, L. Baum, C. Miller, S. Raval, and J. M. Doyle, Direct
Laser Cooling of a Symmetric Top Molecule, Science 369, 1366
(2020).

[11] B. Hemmerling, E. Chae, A. Ravi, L. Anderegg, G. K. Drayna,
N. R. Hutzler, A. L. Collopy, J. Ye, W. Ketterle, and J. M.
Doyle, Laser Slowing of CaF Molecules to Near The Capture
Velocity of a Molecular MOT, Journal of Physics B: Atomic,
Molecular and Optical Physics 49, 174001 (2016).

[12] H. J. Williams, S. Truppe, M. Hambach, L. Caldwell, N. J.
Fitch, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, Charac-
teristics of a Magneto-Optical Trap of Molecules, New Journal
of Physics 19, 113035 (2017).

[13] N. R. Hutzler, H.-I. Lu, and J. M. Doyle, The Buffer Gas Beam:
An Intense, Cold, and Slow Source for Atoms and Molecules,
Chem. Rev. 112, 4803 (2012).

[14] P. Aggarwal, Y. Yin, K. Esajas, H. L. Bethlem, A. Boeschoten,
A. Borschevsky, S. Hoekstra, K. Jungmann, V. R. Marshall,
T. B. Meijknecht, M. C. Mooij, R. G. E. Timmermans,
A. Touwen, W. Ubachs, and L. Willmann (NL−eEDM Collab-
oration), Deceleration and Trapping of SrF Molecules, Phys.
Rev. Lett. 127, 173201 (2021).

[15] M. Zeppenfeld, B. G. U. Englert, R. Glöckner, A. Prehn,
M. Mielenz, C. Sommer, L. D. van Buuren, M. Motsch, and
G. Rempe, Sisyphus Cooling of Electrically Trapped Poly-
atomic Molecules, Nature 491, 570 (2012).

[16] X. Wu, T. Gantner, M. Koller, M. Zeppenfeld, S. Chervenkov,
and G. Rempe, A Cryofuge for Cold-Collision Experiments with
Slow Polar Molecules, Science 358, 645 (2017).

[17] B. L. Augenbraun, A. Frenett, H. Sawaoka, C. Hallas, N. B. Vi-
las, A. Nasir, Z. D. Lasner, and J. M. Doyle, Zeeman-Sisyphus
Deceleration of Molecular Beams, Phys. Rev. Lett. 127, 263002
(2021).

[18] M. D. DiRosa, Laser-Cooling Molecules: Concept, Candi-
dates, and Supporting Hyperfine-Resolved Measurements of
Rotational Lines in the A−X(0,0) Band of CaH, The Euro-
pean Physical Journal D 31, 395 (2004).

[19] S. F. Vázquez-Carson, Q. Sun, J. Dai, D. Mitra, and T. Zelevin-
sky, Direct Laser Cooling of Calcium Monohydride Molecules,
New Journal of Physics 24, 083006 (2022).

mailto:dm3710@columbia.edu
https://doi.org/10.1103/PhysRevLett.100.200502
https://doi.org/10.1038/nphys2252
https://doi.org/10.1038/nature09443
https://doi.org/10.1038/s41567-018-0191-z
https://doi.org/10.1126/science.aax1265
https://doi.org/10.1103/PhysRevLett.127.263201
https://doi.org/10.1038/s41586-022-04620-5
https://doi.org/10.1038/s41586-022-04620-5
https://doi.org/10.1126/science.abc5357
https://doi.org/10.1126/science.abc5357
https://doi.org/10.1088/0953-4075/49/17/174001
https://doi.org/10.1088/0953-4075/49/17/174001
https://doi.org/10.1088/1367-2630/aa8e52
https://doi.org/10.1088/1367-2630/aa8e52
https://doi.org/10.1021/cr200362u
https://doi.org/10.1103/PhysRevLett.127.173201
https://doi.org/10.1103/PhysRevLett.127.173201
https://doi.org/10.1038/nature11595
https://doi.org/10.1126/science.aan3029
https://doi.org/10.1103/PhysRevLett.127.263002
https://doi.org/10.1103/PhysRevLett.127.263002
https://doi.org/10.1140/epjd/e2004-00167-2
https://doi.org/10.1140/epjd/e2004-00167-2
https://doi.org/10.1088/1367-2630/ac806c


9

0

5

10

15

A 
vi

br
at

io
na

l l
ev

el

5 10 15
X vibrational level

0

5

10

15

B 
vi

br
at

io
na

l l
ev

el

10
-4

10
-3

10
-2

10
-1

10
0

0

Sv’v”
(ea )²

10
-2

10
0

10
2

10
4

/
 (2

 k
H

z/
m

W
/c

m
²)

10 15
B vibrational level

200

600

1000

1400

1800

Tr
an

si
tio

n 
w

av
el

en
gt

h 
(n

m
)

0 5

(a)

(b)

(c)

(d)

Figure 4. Suggested controlled dissociation pathway for CaH molecules. Line strengths (Sv′v′′ ) in atomic units for dipole allowed transitions:
(a) X2Σ+ (v′′)→A2Π1/2 (v′) and (b) X2Σ+ (v′′)→B2Σ+ (v′). The A state potential is more harmonic as is reflected by the diagonal Sv′v′′ . The

B state, however, significantly deviates from the diagonal starting around v′ = 4 because of the second potential minimum at∼ 6 a0 (Fig. 1(a)).
Note that B(v′ = 4) has comparable line strengths between X(v′′ = 0) and X(v′′ = 15). (c) Intensity-normalized Rabi rate (Ω/

√
I =

√
Sv′v′′/�)

for dipole transitions X(v′′ = 0)→ B(v′) (red squares) and B(v′)→ X(v = 15) (blue circles). Around v′ = 4 (shaded points), the Rabi rates are
comparable. (d) Wavelengths in nanometers for optical transitions X(v′′ = 0)→ B(v′) (blue circles) and B(v′)→ X(continuum) (red squares).
The theoretical energy differences are adjusted by a common offset of 240 cm−1 to match experimental data for X(v′′ = 0)→ B(v′ = 0,1,2)
transitions [57]. The wavelengths corresponding to v′ = 4 (shaded points) are 512.7 nm and 1744.7 nm.

State
Vibrational

quantum (v′′)

Radiative

lifetime (ns)

Radiative decay

rate (AR, s−1)

Nonradiative decay

rate (ANR, s−1)

Predissociation

(PD) probability

Experimental

PD probability

B

0 52.0 1.924×107 8.040×104 0.0042 0.00097+0.00059
−0.00057

1 54.3 1.842×107 3.304×106 0.1521 0.056+0.044
−0.034

2 58.9 1.698×107 1.245×107 0.4230 -

3 78.2 1.278×107 1.571×107 0.5514 -

4 59.2 1.688×107 2.181×107 0.5637 -

5 83.9 1.193×107 5.482×107 0.8213 -

6 84.4 1.185×107 5.960×107 0.8342 -

A
0 34.3 2.913×107 - - 5×10−7

1 34.5 2.902×107 - - 3×10−5

Table VI. Theoretical and experimental values of predissociation probability for B2Σ+ and A2Π1/2. Both radiative (AR) and non-radiative

(ANR) decay rates are calculated. The radiative lifetime is τ≡ 1/AR. Predissociation Ppd probability is defined as the ratio of the nonradiative

decay rate to the total decay rate (AR +ANR). Measurements of Ppd are only provided for the B2Σ+ (v′ = 0) and (v′ = 1) states. For the latter,

we report the mean of two different measurement methods described in Section V C. The values given for the A2Π1/2 (v′ = 0) and (v′ = 1)
states are estimated by calculating the spin-orbit mixing between A and B as described in Section VI.
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Appendix A: Other possible loss channels and their
contributions

Other potential loss channels that disrupt optical cycling
could lead to overestimating the predissociation probability.
The theoretical results are agnostic to such processes. We
consider the following processes that may contribute to popu-
lation loss:

• Off-resonant excitation to the B2Σ+ (v′ = 0,N′ =
2) state. The nearest parity-allowed transition from
X(v′′ = 0,N′′ = 1) is to B(v′ = 0,N′ = 2) which is
768 GHz away from B(v′ = 0,N′ = 1). The transition
linewidth is ∼ 2π×3 MHz. Assuming a two-level-like
system, the scattering rate is [1]

Rsc =
sΓ/2

1+ s+(2∆/Γ)2 .

In our system, the saturation parameter is s ≲ 1,000,
and thus Rsc ≲ 2 s−1. This rate is low compared to the
estimated nonradiative decay rate of 105 s−1, therefore
off-resonant excitation should not affect the result.

• External electric fields ε can induce mixing between
B2Σ+ (v′ = 0,N′ = 0) and N′ = 1 states (e.g., Ref. [58],
Section 8.4.2.1). For the A2Π1/2 state, the matrix el-
ement of the dipole operator T 1

p (d) in Hund’s case a
basis is − 1

3 εd. For the B2Σ+ state expressed in Hund’s
case b basis, we first project to Hund’s case a basis, then
calculate the matrix element to be − 1

2 εd. The rotational
spacing for B2Σ+ is 250 GHz, while the Λ-doubling for
A2Π1/2 is 26 GHz [57]. The effective decay rate is given
by

1
τN=0,2 = Rsc

(dε/2)2

4ω2 +Γ2/4
,

where for the A and B states respectively, the values
are d = 2.57 D and 3.1 D, ω = 2π × 13 GHz and
2π×125 GHz, and Γ = 2π×5 MHz and 2π×3 MHz.

We assume Rsc ≈ 1 MHz. Since we electrically ground
the entire vacuum chamber, the electric field amplitude
inside the chamber should be < 100 V/m. We find that
the possible remixing rate is 6.2×10−4 s−1 for A2Π1/2

and 9.7× 10−6 s−1 for B2Σ+. These numbers are sev-
eral orders of magnitude smaller than nonradiative de-
cay rates and should have a negligible effect.

• Photon scattering along the molecular beam can cause
acceleration or deceleration and affect signal strength.
In the interaction region we scatter < 100 photons per
molecule. The laser beams are reflected in a zig-zag
pattern, i.e. the incidence is not perfectly perpendicu-
lar and there is a projection on the beam propagation
direction. The angle is estimated to be arctan(1/15) ≈
4◦. Hence less than 10 photons worth of momentum
is added to the molecular beam, and that would only
yield a 15 cm/s velocity change. The beam velocity is
∼ 200 m/s, implying that the effect on the signal is at
the 8×10−4 level which negligible.

• We consider off-diagonal vibrational loss due to spin-
orbit mixing. As discussed in Sec. VI, the B2Σ+

(v′ = 0) state mixes with the A2Π1/2 (v′ = 1) state
at the 0.06% level. This implies that population from
B(v′ = 0) can decay to X(v′′ = 1) via A(v′ = 1) at a rate
of 6× 10−4 ×FA10 ≈ 5× 10−4. This value is 40 times
smaller than the FCF for the B(v′ = 0) → X(v′′ = 1)
decay (1.92× 10−2) and hence is a negligible correc-
tion to our model. A similar argument holds for off-
diagonal vibrational loss induced by spin-orbit mixing
of the B(v′ = 1) state with either A(v′ = 0) or A(v′ = 2).

Appendix B: Laser parameters and spectroscopy of transitions
used in this work

Here we describe the lasers used in the experiment, and
the transition frequencies. All laser beams pass through
an electro-optic modulator (EOM) to generate the sidebands
needed to address HFS.

• In the state preparation region, the AS
1−0 light (637 nm)

is generated from two sets of injection-locked ampli-
fiers (ILAs) to address the spin-rotation states, with
95 mW of power.

• In the interaction region, multiple lasers are applied.
AI

0−0 (695 nm) or AI
1−1 (693 nm) light is derived from

two ILAs that provide 60 mW in total. BI
0−0 (635 nm) or

BI
1−1 (636 nm) is from two external-cavity diode lasers

(ECDLs) with 52 mW in total.

• In the cleanup region, BC
0−1 (690 nm) is from two sets

of ILAs with 90 mW of power, AC
1−0 (637 nm) is from

two sets of ILAs with 88 mW, and AC
1−2 (758 nm)

or AC
0−1 (762 nm) is from a SolsTiS continuous-wave
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Ti:sapphire laser, with 93 mW and a 1 GHz EOM to
address the spin-rotation states.

• In the detection region, BD
0−0 (635 nm) is from two

ECDLs with 60 mW of power, AD
0−0 (695 nm) or AD

1−1
(693 nm) is from two ILAs with 96 mW of power.

The frequencies of all the transitions that we used are in
Table VII. All frequencies are measured transversely to the
molecular beam, with ≤ 10 MHz statistical uncertainties and
≤ 60 MHz systematic uncertainties from the wavemeter. The
HFS in the ground states is clearly resolved in all spectra,
while the HFS in the excited states is not resolved. Our mea-
surements are consistent with previous work [57].

Appendix C: Details of measurement stages

The general principle for designing measurement stages is
to have at least as many independent equations as parame-
ters, which includes the B state predissociation probability. If
the number of equations and parameters are equal, as in the
cases of B(v′ = 0) and B(v′ = 1) using method I, we can di-
rectly express Ppd using the measured ratios. Other parameters
will also be determined and analyzed, to serve as consistency
checks. When there are more equations than parameters, we
define a cost function to minimize the differences between the
left- and right-hand sides of all equations (Appendix D). Here
we present a detailed explanation of how the stages are used
for predissociation probability measurements. We first discuss
the simplest B2Σ+ (v′ = 0) measurement, where the stages in-
clude the following:

• Unperturbed. Only the X(v′′ = 0) → B(v′ = 0) detec-
tion lasers are turned on. This stage serves as molecule
number calibration. By taking ratios of other stages to
this stage, we can eliminate molecule number N from
the expressions.

• Cleanup. BC
0−1 vibrational repumpers are turned on.

This stage helps to estimate the X(v′′ = 1) natural pop-
ulation.

• X-A Cycling. AI
0−0 cycling lasers are turned on. This

stage can be used to estimate the vibrational population
distribution after X −A cycling, and measure the deple-
tion efficiency.

• X-A Cycling + Cleanup. AI
0−0 cycling lasers and BC

0−1
repumps are turned on. This stage helps to measure the
repump efficiency, given the X(v′′ = 1) natural popula-
tion.

• X-B Cycling. BI
0−0 cycling lasers are turned on. This

stage helps to measure the vibrational population distri-
bution after X −B cycling.

• X-B Cycling + Cleanup. BI
0−0 cycling lasers and BC

0−1
repumpers are turned on. Combined with previous
stages, this helps to measure the B2Σ+ state predisso-
ciation probability.

To understand the stages better, let us take an example
when N ground-state molecules interact with the X(v′′ = 0)→
A(v′ = 0) laser. After optical cycling, the downstream ground-
state population decreases to dAN (where dA < 1 and is mea-
surable simply by taking the ratios of signals). In this process,
we describe the depletion efficiency as 1− dA. We can also
describe how dA is distributed among the different vibrational
levels of X2Σ+ using the known VBRs. For example, the pop-
ulation in X(v′′ = 1) is N(1−dA)FA01/FA0+n1N, where FA01,
FA0 and n1 represent the VBR for A(v′ = 0)→ X(v′′ = 1), the
sum of VBRs for A(v′ = 0)→ X(v′′ = 1,2,3...), and normal-
ized X(v′′ = 1) natural population, because when a molecule
is excited to B(v′ = 0) it eventually decays to a vibrational
level or breaks apart. This process follows a discrete prob-
ability distribution based on the VBRs and Ppd. In the case
discussed above, (1− dA)N molecules leave B(v′ = 0), and,
based on the law of large numbers, we expect the X(v′′ = 1)
population to become N(1−dA)FA01/FA0.

Note that our description relies on population transfer (1−
dA) rather than the number of scattered photons. In addition,
the measurement protocol does not rely on the lasers having
good overlap with the molecular beam or with each other, be-
cause as long as molecules share the same spatial and velocity
distributions shot to shot, the parameters (e.g., cleanup effi-
ciency) remain constant.

Here we briefly introduce the stages in method I of the
B2Σ+ (v′ = 1) Ppd measurement:

• Unperturbed. We always monitor the X(v′′ = 0) popu-
lation, which serves as calibration.

• Cleanup. With an AC
0−1 laser, we pump the natural pop-

ulation in X(v′′ = 1) to X(v′′ = 0) to check cleanup ef-
ficiency.

• State Prep. With an AS
1−0 laser, we pump the natural

population in X(v′′ = 0) to X(v′′ = 1) to check state
preparation efficiency. Only after efficiently pumping
molecules to X(v′′ = 1) can we perform high-SNR op-
tical cycling on X(v′′ = 1)→ B(v′ = 1). Otherwise, the
predissociation loss is too low to measure.

• State Prep + Cleanup. We first populate X(v′′ = 1) with
AS

1−0 laser, then move the X(v′′ = 1) population back to
X(v′′ = 0). The signal size should be comparable to
the unperturbed case. This step helps to measure κ, a
and n1, which are cleanup efficiency, state preparation
efficiency and X(v′′ = 1) natural population.

• State Prep + X-B 1-1 Cycling. With most molecules in
the X(v′′ = 1) state, we can perform optical cycling via
B(v′ = 1). We expect a signal increment compared to
State Prep due to optical cycling and a redistribution of
population based on VBR and Ppd.
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Ground v′′ N′′ J′′ F ′′ Excited v′ N′ J′ Frequency (THz)

X 0 1

3/2
2

A 0 - 1/2

431.274552

1 431.274653

1/2
1 431.276565

0 431.276512

X 0 1

3/2
2

B 0 0 1/2

472.026689

1 472.026790

1/2
1 472.028702

0 472.028649

X 1 1

3/2
2

A 1 - 1/2

432.342011

1 432.342120

1/2
1 432.343958

0 432.343902

X 1 1

3/2
2

B 1 0 1/2

471.557078

1 471.557178

1/2
1 471.559025

0 471.558969

X 0 1

3/2
2

A 1 - 1/2

470.113870

1 470.113971

1/2
1 470.115873

0 470.115819

X 2 1

3/2
2

A 1 - 1/2

395.717108

1 395.717218

1/2
1 395.718978

0 395.718928

X 1 1

3/2
2

B 0 0 1/2

434.254840

1 434.254949

1/2
1 434.256787

0 434.256731

X 1 1

3/2
2

A 0 - 1/2

393.502723

1 393.502832

1/2
1 393.504670

0 393.504614

Table VII. Frequencies of all transitions used in the experiment. The A2Π1/2 and B2Σ+ states have unresolved hyperfine splittings. The
uncertainties are 10 MHz statistical and 60 MHz systematic due to the wavemeter.

• State Prep + X-B 1-1 Cycling + Cleanup. By clean-
ing up the population in X(v′′ = 1), we measure the
molecules left in X(v′′ = 1) after optical cycling. Com-
bined with previous stages, this provides 5 equations
and 5 variables including Ppd.

Method II is designed as follows. We first perform state
preparation to populate the X(v′′ = 1) state, similar to method

I. By individually repumping the population that leaks to
X(v′′ = 0) and X(v′′ = 2) we get a measure of unwanted loss.
This also serves as a comparison of A2Π1/2 and B2Σ+ states
in terms of the loss distribution. The 10 stages are detailed in
Table IV. The fact that method II accounts for losses to both
X(v′′ = 0) and X(v′′ = 2) has advantages and disadvantages
On the one hand, method II provides an additional confidence
check, with more equations than variables. Our approach to
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solving the over-constrained equation sets is in Appendix D.
On the other hand, the method relies on detection using the
X(v′′ = 1) state, which leads to lower signals and higher drift
sensitivity than detecting on X(v′′ = 0). Hence the SNR for
method II is not significantly higher than for method I.

Measuring the predissociation probability for B2Σ+ (v′ = 2)
and higher vibrational levels would require pumping the pop-
ulation to X2Σ+ (v′′ = 2) and higher and performing optical
cycling there, with repumping to recover the population, and
monitoring unexplained loss. However, due to practical limi-
tations in available space and number of lasers, as well as the
increased complexity of the required stages, we did not pursue
these measurements.

Table VIII contains stage details for the three types of mea-
surement described above.

Appendix D: Bootstrap method used in the predissociation data
analysis

Bootstrapping is a statistical technique that involves gen-
erating multiple samples from a dataset by sampling with re-
placement [45]. It is a useful tool for constructing confidence
intervals for a population parameter, − in this case, the expec-
tation values of predissociation probabilities.

A key benefit of bootstrapping is that it allows one to make
inferences about a population based on a sample, without
making any assumptions about the underlying distribution of
the population. Given the complexity of the functional form
of predissociation probability with respect to experimentally
measured ratios, utilizing a bootstrap method helps to avoid
assuming a normal distribution when determining the confi-
dence interval of predissociation probabilities.

One way to use such a method on a set of data d with size n
is to use the array of d data points to generate n “bootstrapped”
samples by sampling with replacement. We can then com-
pute a statistic of interest, such as the mean, from the n boot-
strapped samples, and save it to a new array. We repeatedly
generate n bootstrapped samples, calculate the mean, and save
it to the storage array. The resulting distribution of the statistic
can then be used to make inferences about the population.

Let us consider the B(v′ = 0) predissociation probability
as an example. The experimental procedure to acquire ratios
is shown in Fig. 2 and explained in Sec. V D. All the ratios
(r1, r2, r3, r4, r5) are expressed using the variables in Table
II, including n1, κ, FB0a, dA and dB. Five equations can be
explicitly written as

r1 = 1+n1κFB00/FB0 ,

r2 = dA,

r3 = dA +[(1−dA)FA01/FA0 +n1]κFB00/FB0 ,

r4 = dB,

r5 = dB +[(1−dB)FB01/FB1 +n1]κFB00/FB0 .

(D1)

By solving these 5 equations for 5 variables, we can ex-
press FB0a as a function of ri (i ∈ {1,2,3,4,5}) with known

VBRs. Therefore, we obtain a function fB0a that takes in
ri (i ∈ {1,2,3,4,5}) and outputs predissociation probability
FB0a. Here we describe the procedure of performing bootstrap
analysis on the data, where the data consists of n ≈ 200 sets
of ratios {r1,r2,r3,r4,r5}, with ri (i ∈ {1,2,3,4,5}) being an
array of length n:

1. Randomly sample n elements from the original r1 ar-
ray with replacement, i.e., elements from the original r1
can appear more than once in the new array rbt

1 . This
step mimics the situation where the same measurement
is performed again. We carry out independent random
sampling with replacement for r2, r3, r4, and r5 as well,
and obtain rbt

i (i ∈ {1,2,3,4,5}) arrays.

2. Calculate the mean of the newly generated rbt
i arrays

individually, which can be denoted as rbt
i . We can feed

these rbt
i s to the function fB0a and store the output in an

array F .

3. Repeat steps 1 and 2 for ∼ 106 times, until the statistical
properties such as mean and standard deviation of the
normalized distribution of array F converge.

4. Analyze the distribution of F . For the expectation
value, we use the mean of array F . To determine the
95% confidence interval, we take the 2.5% quantile
from the distribution of F as the lower bound, and the
97.5% quantile as the upper bound.

The data analysis for B(v′ = 1) method I is almost identical
to that for B(v′ = 0). The bootstrap procedures are the same,
and the analysis code can be found online1.

The data analysis for B(v′ = 1) method II is slightly differ-
ent from the previous two cases. We no longer have a deter-
ministic function of FB1a because there are 9 equations with 7
variables. To solve this over-constrained system, we perform
a least square fit. We write down the 9 equations with all the
terms on the right hand side and zeros on the left hand side.
Then we define the cost function as the sum of squares of all
the right hand sides of the equations, and use the Levenberg-
Marquardt algorithm to search for the local minimum with a
reasonable initial guess.

Appendix E: Theoretical details

The following three-state Hamiltonian (for the X2Σ+, B2Σ+

and D2Σ+ electronic states) is diagonalized to obtain wave-
functions, FCFs, and predissociation estimates:

3

∑
j

H j = ∑
I

(p̂I +AI
i j(r))

2

2µ
φ j(r)+Vj(r)φ j(r). (E1)

1 github.com/QiSun97/CaH_Predissociation/bootstrapping_v6_final_github.ipynb
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The first term is the kinetic energy operator, in which p̂ is
the standard momentum operator, expressed on a grid via the
Colbert-Miller derivative. We represent the momentum oper-
ator in position space so that we can incorporate the nona-
diabatic coupling term directly. This term is computed in
the position representation, Ai j(r) = ⟨Ψi|p̂Ψ j⟩. We obtain
⟨Ψi| ∂

∂r Ψ j⟩ from a dr = 0.001a0 potential energy surface scan
via Molpro electronic structure calculations, and interpolate
this onto a spline to represent Ai j(r). The reduced mass of
CaH is µ. Finally, V (r) is obtained from the dr = 0.001a0 scan
via the MRCI+Q Davidson energies and interpolated onto a
spline before being incorporated into the Hamiltonian.

At r0 = 8 a.u., an optical potential of the form −iV (r −
r0)

2/w2 is added only to the X2Σ+ state’s V (r) at the PES
asymptote with each grid-point to simulate the continuum and
create a flux equation. Specifically, the optical absorbing po-
tential must have a width w and depth V which guarantees
complete wavepacket absorption and ensures the potential is
smooth so that hardly any reflection takes place before the
wavepacket enters the potential [44]. The absorber width is
chosen to be w = 8 a0, much larger than the typical de Broglie
wavelength of ∼ 0.2 a0. We choose a depth as the typical en-
ergy of the wavepacket, or 0.2 a.u. (4.4× 104 cm−1). The
Hamiltonian is then diagonalized. The optical potential en-
forces imaginary eigenvalues that are directly related to non-
radiative loss rates, which are then compared to the radiative

rates calculated from the MRCI-computed transition dipole
moments to obtain a predissociation probability.

For spin-orbit coupling, the active space for X2Σ+, A2Π1/2

and B2Σ+ states must be the same, therefore a compromise is
chosen to optimize the X2Σ+ and B2Σ+ FCFs over the A2Π1/2.
Interestingly, we note that using our basis set and active space
but shifting the A2Π1/2 potential energy surface can produce
FCFs that are equivalent to experimentally measured values,
as shown in Table IX. This is because static electron corre-
lation has converged, but important dynamic correlation is
missing. This depends on the original orbital active space
from CASSCF which then affects the MRCI equilibrium bond
length.

Transition
Vibrational Quanta

(v′′)

FCF Calculated

( f0v′′)

FCF Measured

( f0v′′)

A′ → X

0 0.9568 0.9572(43)

1 0.0401 0.0386(32)

2 2.9×10−3 4.2(3.2)×10−3

3 2.5×10−4 -

Table IX. Calculated and measured values of FCFs for CaH. We show
experimental FCFs [19] for comparison. A′ is the same active space
as the B2Σ+ state in this work, shifting the potential to the left by
0.0375a0.
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