
SYNTHTAB: LEVERAGING SYNTHESIZED DATA FOR GUITAR TABLATURE
TRANSCRIPTION

Yongyi Zang*, Yi Zhong*, Frank Cwitkowitz, Zhiyao Duan

Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA

ABSTRACT

Guitar tablature is a form of music notation widely used among gui-
tarists. It captures not only the musical content of a piece, but also its
implementation and ornamentation on the instrument. Guitar Tabla-
ture Transcription (GTT) is an important task with broad applica-
tions in music education, composition, and entertainment. Existing
GTT datasets are quite limited in size and scope, rendering models
trained on them prone to overfitting and incapable of generalizing
to out-of-domain data. In order to address this issue, we present
a methodology for synthesizing large-scale GTT audio using com-
mercial acoustic and electric guitar plugins. We procure SynthTab,
a dataset derived from DadaGP, which is a vast and diverse collec-
tion of richly annotated symbolic tablature. The proposed synthesis
pipeline produces audio which faithfully adheres to the original fin-
gerings and a subset of techniques specified in the tablature, and
covers multiple guitars and styles for each track. Experiments show
that pre-training a baseline GTT model on SynthTab can improve
transcription performance when fine-tuning and testing on an indi-
vidual dataset. More importantly, cross-dataset experiments show
that pre-training significantly mitigates issues with overfitting.

Index Terms— guitar tablature transcription dataset, string-
accurate, timbre-rich, sample-based synthesis, music transcription

1. INTRODUCTION

Automatic Music Transcription (AMT) is the task of converting mu-
sic audio into some kind of music notation, with broad applications
in music education, search, and analysis [1]. Guitar Tablature Tran-
scription (GTT) is an instrument-specific characterization of AMT
[2], aiming to transcribe guitar audio into guitar tablature. Beyond
musical content, tablature specifies the string for each note and any
guitar-specific playing techniques that should be employed. With
only minimal musical training needed, tablature is highly intuitive
for guitarists of all levels. Consequently, it has become the primary
means to represent and communicate information regarding guitar
performances for both educational and practical purposes1. Due to
the additional information specified in tablature notation, GTT poses
several unique challenges over standard AMT tasks.

Although the utility and necessity of GTT is duly recognized, its
progress has been slower relative to other instrument-specific tran-
scription tasks such as piano transcription. One of the main reasons
for this is the lack of large-scale annotated datasets. Some exist-
ing datasets, such as MedleyDB [3], include a substantial amount of
guitar audio but omit specific string-level annotations. Other datasets

*Authors contributed equally. This work is partially supported by Na-
tional Science Foundation (NSF) grants No. 1846184 and No. 2222129, and
synergistic activities funded by NSF grant DGE-1922591.

1As evidenced by the large community surrounding websites such as
https://www.ultimate-guitar.com.

that include string-level annotations, such as IDMT-SMT-Guitar [4],
GuitarSet [5], or EGDB [6], are limited in size and diversity due to
significant labor costs in recording and tablature annotation. This
issue of data scarcity makes GTT models trained on such datasets
susceptible to overfitting issues and limits the development of novel
and more advanced transcription methods. In order to continue pro-
gressing GTT, innovative and scalable strategies for significantly ex-
panding guitar audio-tablature datasets are imperative.

In this paper, we propose a methodology for synthesizing guitar
audio directly from tablature using virtual instrument software. The
tablature used for synthesis intrinsically represents the annotations
for the resulting audio, allowing us to produce data perfectly suitable
for GTT. We leverage the symbolic tablature dataset DadaGP [7] and
employ our methodology to realize SynthTab, a large-scale, string-
accurate, and timbre-rich GTT dataset. Our work bears resemblance
to Slakh [8] and AAM [9], datasets which comprise audio synthe-
sized from multi-instrument MIDI tracks. However, our approach
differs primarily in that we specifically leverage virtual instrument
software with string-level note control, and design our synthesis
pipeline accordingly. We also synthesize each track with multiple
virtual guitars and playing styles, support a subset of playing tech-
niques specified in DadaGP, and incorporate humanization effects
such as varying vibrato levels. SynthTab contains roughly 13,113
hours of audio spanning 20,715 tracks and 23 timbral profiles.

In order to investigate the utility of SynthTab, we conduct cross-
dataset experiments using three existing GTT datasets featuring real
guitar recordings. Our experiments shows that a baseline model
trained individually on any of these datasets tends to exhibit poor
generalization with respect to the others. We demonstrate that by
pre-training on SynthTab, such overfitting can be mitigated, leading
to improvements in both same-dataset and cross-dataset scenarios.
As the first large-scale guitar audio dataset with tablature annota-
tions, SynthTab paves the way for training larger and more complex
machine learning models for GTT and adjacent tasks. Additionally,
our proposed synthesis pipeline2 can enable the research community
to synthesize custom or even larger and more diverse guitar audio-
tablature datasets using arbitrary symbolic tablature.

2. RELATED WORK

Recently, there has been increasing attention on the task of GTT,
largely driven by the development of guitar audio-tablature datasets.
The IDMT-SMT-Guitar [4] dataset is an early example featuring
recordings of various electric guitars, pickup settings, playing styles,
and playing techniques. It is split into subsets, three of which include
string-level note annotations and contain isolated notes and chords,
twelve short licks, and five short pieces, respectively. GuitarSet [5]
consists of 360 improvised short recordings of experienced guitarists

2All code and data is made available at www.synthtab.dev.
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playing a single acoustic guitar, along with corresponding tablature
annotations, acquired through the use of a hexaphonic pickup. An-
notations are obtained by de-bleeding and performing pitch track-
ing on the isolated audio from each separate string. The EGDB [6]
dataset extends the methodology of GuitarSet to collect 240 clean
direct input (DI) audio signals from an experienced guitarist playing
a single electric guitar using a hexaphonic pickup. Various pieces
of guitar tablature are precisely played with the assistance of a click
track, and an alignment procedure based on onset detection is lever-
aged to obtain high-resolution note annotations. Additional audio is
created by feeding the DI signals into several virtual amplifiers.

While these datasets have been immense contributions to the re-
search community, they are relatively limited, with each amounting
to only a few hours of audio. Their size pales in comparison to the
datasets available for other AMT tasks, such as MAESTRO [10] for
piano transcription or E-GMD [11] for drum transcription, which
each contain hundreds of hours of data. They also contain little vari-
ation in guitar timbre and therefore inharmonicity, a property known
to be crucial for differentiating between strings [12]. Recent work
on GTT has largely utilized only GuitarSet [13, 14, 15], following
the cross-validation paradigm. As such, it is unclear whether these
approaches can successfully generalize to out-of-domain data.

In parallel, there has also been work on guitar tablature language
modeling [16, 17], enabled by recent success in sequence modeling
[18] for music and the proliferation of large collections of symbolic
tablature. The DadaGP [7] dataset is one such collection contain-
ing symbolic tablature for 26,181 popular songs in the multi-track
GuitarPro3 format. DadaGP offers diverse and high quality guitar
tablature at scale, and has created new opportunities for regularizing
GTT models [19] and synthesizing realistic data.

3. AUDIO SYNTHESIS PIPELINE

In this section, we outline the major steps carried out in order to syn-
thesize symbolic tablature from DadaGP [7] and to create SynthTab.

3.1. Sourcing Tracks from DadaGP

Given the time and memory requirements associated with render-
ing audio, and for additional practical considerations, only a subset
of the tablature within the multi-track GuitarPro files of DadaGP is
selected for synthesis. We synthesize tracks corresponding to acous-
tic and electric guitars (MIDI instrument numbers 25-31) with six
strings and no tempo changes, following a simple procedure to avoid
synthesizing duplicate tracks with different GuitarPro versions.

3.2. Converting GuitarPro to JAMS

Track data is parsed from the respective GuitarPro files using the
PyGuitarPro package [20]. In order to more conveniently repre-
sent the data for synthesis and as ground-truth, information relevant
to timing, notes, and a subset of playing techniques is extracted and
stored by string using the JAMS [21] format, as in GuitarSet [5].

3.3. Converting JAMS to MIDI

JAMS annotations for each track are split by string and converted to
MIDI data. Virtual instrument software with string-level note con-
trol can then be driven with the MIDI to produce audio for each
string. Pitch modulation techniques, including bends and vibrato,

3See https://www.guitar-pro.com for more information.

P F Th B N B/N B/Mi Mi/N
L × ×
T × ×
M × ×
SJ ×
SH × ×
TC × ×
VC × ×
LP × ×
PF × × ×
SC × × × ×
E ×

Table 1. Timbral variations in SynthTab, organized by guitar plugin
(rows) and playing style (columns). See Section 3.5 for more details.

are encoded via standard MIDI control channels. Random perturba-
tions are made to the pitch ceiling of notes with vibrato, and a small
amount of vibrato is applied randomly to the remaining notes to sim-
ulate human playing. Other supported playing techniques, including
hammer-ons, pull-offs, slides, palm-muting, and harmonics, are en-
coded by region via keyswitches, dedicated MIDI notes recognized
by virtual instruments with pitch outside of their playing range.

3.4. Rendering & Mixing Audio

Rendering is automated using the DawDreamer package [22]. With
little effort, DawDreamer can be used to load MIDI into standalone
VST plugins, render the corresponding audio, and store the entirety
of the signal in random-access memory. String-level MIDI is ren-
dered individually to ensure proper string usage. Before mixing the
audio signals, fundamental frequency annotations surrounding each
note are extracted using the YIN [23] algorithm. Mixtures are sub-
sequently created by averaging the string-level audio signals.

3.5. SynthTab

Using the methodology described above, we acquire ground-truth
and synthesize symbolic tablature using the Ample Sound guitar
plugin suite4. Acoustic guitar tracks are synthesized using the L,
T, M, and SJ acoustic guitar plugins. Electric guitar tracks are syn-
thesized using the SH, LP, TC, VC, PF, SC, and E electric guitar
plugins. All synthesized audio for electric guitar corresponds to DI.
Each track is synthesized multiple times with varying styles for each
guitar, including pick (P), finger (F), and thumb (Th) style playing,
and bridge (B), neck (N), and middle (Mi) pickup settings. In to-
tal, there are 7 timbral variations for acoustic guitar and 16 timbral
variations for electric guitar. Tables 1 and 2 summarize the timbral
variation and distribution of tracks in SynthTab. Further statistics re-
lated to DadaGP tracks are reported in [7]. All audio is rendered at
24-bit with a 44,100 Hz sampling rate and encoded as FLAC files.
Rendering took roughly a week with a 24-core Mac Studio M2 Ultra.

4. EXPERIMENTS

Since the cues that help differentiate between strings are highly de-
pendent on instrument-specific properties, cross-dataset evaluation
is especially important for GTT. We conduct experiments where a
baseline model is trained and evaluated on real guitar recordings

4Available at https://amplesound.net/en/index.asp.
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Midi Guitar # Tracks Styles Total Hours
Acoustic Nylon (25) 5501 7 1620.40
Acoustic Steel (26) 5149 1890.95
Electric Jazz (27) 1572

16

1305.73
Electric Clean (28) 2989 2793.04
Electric Muted (29) 504 467.47

Overdriven (30) 1556 1534.21
Distortion (31) 3444 3501.09

Table 2. SynthTab track distribution by MIDI instrument.

from the IDMT-SMT-Guitar [4] (abbreviated IDMT), GuitarSet [5],
and EGDB [6] datasets, which each contain unique timbral proper-
ties (see Section 2 for more details). To our knowledge, this is the
first attempt to perform cross-dataset benchmarking for GTT. For
our experiments, we only utilize the twelve-lick subset of IDMT,
due to limited content within the other subsets, and the clean DI sig-
nals from EGDB, to maintain consistency with the audio rendered
for SynthTab. We create training, validation, and testing splits ran-
domly by track for IDMT and GuitarSet, following 8:1:1 and 10:1:1
ratios, respectively. For EGDB we adopt the pre-defined 8:1:1 split.

In order to explore the capacity of SynthTab to progress research
on GTT, we then utilize a larger version of the model and perform
the same set of experiments with and without pre-training on Syn-
thTab. Due to potential conflicts between tablature distributions, we
only train on data originating from tracks corresponding to Acoustic
Nylon, Acoustic Steel, Electric Jazz, and Electric Clean. We also
hold out 10% of tracks and the SJ-Th and E-N timbral profiles for
validating the model during the pre-training phase.

4.1. Baseline Model

We adopt TabCNN [13], one of the earliest DNNs proposed for GTT,
as the baseline model in order to carry out all experiments. TabCNN
is a lightweight convolutional neural network (CNN) which pro-
duces string-level fret class estimates for fixed-length windows of
the Constant-Q Transform (CQT) [24] of an audio signal. Classes
consist of silence, open string, and the first 19 frets, and are predicted
separately for each string using softmax activation. Since there are
six strings, the output of TabCNN is a 126-dimensional six-hot vec-
tor. For the second set of experiments with and without pre-training,
we add more complexity to the model by quadrupling the number of
filters in each convolution layer. This version of the model is referred
to as TabCNNx4. Although more recent GTT models have been pro-
posed, no models have yet been subject to cross-dataset evaluation,
and TabCNN is comparatively simple and yields solid performance.

4.2. Evaluation Metrics

All models are evaluated using the GTT metrics proposed in [13],
which measure frame-level tablature and multi-pitch estimation pro-
ficiency. However, we only report F1-score % (F1) for a more com-
pact presentation of results. Fret class predictions must be made on
the correct string for tablature estimation, whereas only the nominal
pitch of predictions are considered for multi-pitch estimation. Tab-
lature F1 signifies the ability of a model to correctly estimate pitch
activity and differentiate between strings, which is essential for GTT.
As such, it is used as the validation criterion to select the best model
for each experiment. Both F1-scores are averaged across all tracks
within the validation or evaluation set for final scores.

4.3. Training Details

All training and fine-tuning is done with AdaDelta optimizer using
an initial learning rate of 1.0 and batch size 32 on a single NVIDIA
RTX 4090. When fine-tuning pre-trained models, the initial learn-
ing rate and batch size are reduced to 0.1 and 8, respectively. Prior
to training, all audio is downsampled to 22,050 Hz. CQT features
with 192 bins, 24 bins per octave, and a hop size of 512 is computed
for each track during the feature extraction stage. Batches are cre-
ated randomly from the respective training datasets, and each track is
sampled only once per epoch with a sequence length of 500 frames.

5. RESULTS

5.1. Initial Cross-Dataset Benchmarking

The initial cross-dataset benchmarking results for TabCNN are pre-
sented in Table 3. As a sanity check, we note that the performance of
TabCNN trained and tested on GuitarSet is comparable5 to what was
originally reported in [13]. However, it is clear that in each case the
model has trouble generalizing to unseen data. Performance for the
unmatched datasets is substantially weaker than that of the matched
dataset for all three experiments. This issue is more prominent for
tablature estimation, and is likely caused by the domain mismatch
across GuitarSet, IDMT, and EGDB, which each feature different
guitars and recording conditions. These experiments indicate that
timbral features learned by a GTT model for an individual dataset
exhibit low transferability under this experimental setup.

Tablature F1 (%) Test
GuitarSet IDMT EGDB

Train
GuitarSet 80.1 57.9 55.2

IDMT 15.3 63.1 28.8
EGDB 37.1 23.5 70.5

Multi-Pitch F1 (%) Test
GuitarSet IDMT EGDB

Train
GuitarSet 84.5 72.5 67.2

IDMT 27.7 66.8 43.4
EGDB 48.2 45.1 74.0

Table 3. Transcription results for TabCNN when trained on individ-
ual datasets and evaluated on the testing subset of each dataset.

F1 (%) Val. Test
SynthTab GuitarSet IDMT EGDB

Tablature 64.2 43.1 13.8 57.0
Multi-Pitch 77.4 70.2 74.2 74.4

Table 4. SynthTab validation results and individual dataset testing
results for TabCNNx4 pre-trained on SynthTab with no fine-tuning.

5.2. Investigating Pre-Training on SynthTab

The results for TabCNNx4 pre-trained on SynthTab, without any fur-
ther fine-tuning, are presented in Table 4. In general, the pre-trained
model appears to follow the same trends as described in Section 5.1.
There are several possible explanations for this phenomenon, includ-
ing once again domain mismatch between SynthTab and the evalu-
ation datasets, training data that is too broadly distributed with no

5Note that the original paper conducted six-fold cross-validation.
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Fig. 1: Transcription results for TabCNNx4 with and without pre-training on SynthTab when trained or fine-tuned on individual datasets and
evaluated on the testing subset of each dataset. Training or fine-tuning datasets are listed above testing datasets for each experiment scenario.

specificity (e.g. acoustic-only, electric-only, or data from a specific
guitar model), or use of a GTT model with insufficient complex-
ity. We observe that the tablature estimation performance of the
pre-trained model improves slightly with respect to the unmatched
experiments on GuitarSet and EGDB, though this could be due to
the larger model. Multi-pitch estimation performance improves for
all unmatched experiments, indicating that SynthTab can provide a
solid foundation for training more general transcription models.

The cross-dataset results for TabCNNx4 with randomly initial-
ized weights versus the model pre-trained on SynthTab are plot-
ted in Figure 1. Without pre-training, TabCNNx4 achieves simi-
lar performance to TabCNN under all training and testing scenar-
ios for both tablature estimation and multi-pitch estimation. In all
same-dataset and cross-dataset experiments, pre-training on Syn-
thTab yields improved performance, which in some cases is quite
substantial. The relative improvement in most cross-dataset experi-
ments is more pronounced for tablature estimation, meaning it can-
not be explained wholly by more robust multi-pitch estimation. In
several cross-dataset experiments, fine-tuning lowered performance
on the testing dataset relative to the pre-trained model without fine-
tuning. However this is not too surprising, given the domain mis-
match between the individual datasets and the small amount of fine-
tuning data available in some cases. Interestingly, for the pre-trained
model fine-tuned on GuitarSet, the performance on IDMT actually
exceeds that of the corresponding same-dataset experiments.

5.3. Discussion

Our results show that SynthTab has the potential to benefit GTT
models by helping them learn more general timbral features and by
improving their underlying multi-pitch estimation robustness. Mod-

els pre-trained on SynthTab and fine-tuned on subsequent data unani-
mously outperform the models that are only trained on the individual
datasets. This observation validates the utility of the proposed syn-
thesis methodology and the use of SynthTab for GTT. However, the
results also suggest that there are significant challenges in training
GTT models to generalize to completely unseen guitar data.

Future work will consist of further investigating the issue of gen-
eralization and further exploring the utility of SynthTab for GTT and
related tasks. We plan to expand and improve the quality of dataset,
with particular focus on better humanization strategies, varying the
virtual recording environment and post-processing techniques for
synthesis, and the incorporation of data augmentation for more ef-
fective training. Finally, with the realization of SynthTab, we will
proceed with novel and more advanced model development focused
on leveraging the scale and diversity of the dataset.

6. CONCLUSION

In this work, we presented SynthTab, the first large-scale synthesized
guitar audio dataset with string-accurate tablature annotations. Uti-
lizing the large collection of symbolic tablature available in DadaGP
and commercial virtual instrument software, our proposed synthe-
sis pipeline produces high-quality, string-accurate audio with varied
timbre. We have shown through cross-dataset experimentation that
training a baseline model on existing guitar audio datasets leads to
poor generalization due to domain mismatch and the homogeneity
of such datasets. We also demonstrate that pre-training on SynthTab
and fine-tuning on individual datasets can lead to more robustness
and improved generalization capacity. SynthTab creates new oppor-
tunities for advancing guitar transcription research, and future work
will consist of further expansion, improvement, and exploration.
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