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Abstract

While (I) serverless computing is emerging as a popular form
of cloud execution, datacenters are going through major
changes: (I) storage dissaggregation in the system infras-
tructure level and (III) integration of domain-specific accel-
erators in the hardware level. Each of these three trends in-
dividually provide significant benefits; however, when com-
bined the benefits diminish. On the convergence of these
trends, the paper makes the observation that for serverless
functions, the overhead of accessing dissaggregated stor-
age overshadows the gains from accelerators. Therefore, to
benefit from all these trends in conjunction, we propose In-
Storage Domain-Specific Acceleration for Serverless Comput-
ing (dubbed DSCS-Serverless'). The idea contributes a server-
less model that utilizes a programmable accelerator embedded
within computational storage to unlock the potential of accel-
eration in disaggregated datacenters. Our results with eight
applications show that integrating a comparatively small
accelerator within the storage (DSCS-Serverless) that fits
within the storage’s power constraints (25 Watts), signifi-
cantly outperforms a traditional disaggregated system that
utilizes NVIDIA RTX 2080 Ti GPU (250 Watts). Further, the
work highlights that disaggregation, serverless model, and
the limited power budget for computation in storage device
require a different design than the conventional practices of

1DSCS-Serverless is short for Domain-Specific Computational Storage for
Serverless Computing.
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integrating microprocessors and FPGAs. This insight is in
contrast with current practices of designing computational
storage devices that are yet to address the challenges associ-
ated with the shifts in datacenters. In comparison with two
such conventional designs that use ARM cores or a Xilinx
FPGA, DSCS-Serverless provides 3.7x and 1.7X end-to-end
application speedup, 4.3% and 1.9X energy reduction, and
3.2x and 2.3X better cost efficiency, respectively.
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1 Introduction

(I) Serverless computing is emerging as a prevalent form of cloud
execution that has been adopted across different market sectors such
as smart transportation [1, 2], entertainment/broadcasting [3-5], e-
commerce [6], fintech [7], etc. This adoption is backed by the public
cloud services such as AWS Lambda [8], Google Cloud Functions [9],
and Azure Serverless Computing [10]. The popularity of serverless
is driven by ease of programming, pay-as-you-go pricing model,
and alleviating the need for managing the cloud execution by the
developers.
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Besides this shift in the cloud-native application development,
datacenters are going through major changes: (II) storage disaggre-
gationin the system infrastructure level [11-17], and (III) integration
of domain-specific accelerators [18-50] at the hardware architecture
level. Disaggregation is enabled by the increase in network band-
width to hundreds of Gbps and reduction in latency to single-digit mi-
croseconds [14]. Disaggregation has shown promising results in re-
source utilization, elasticity, and failure mitigation in datacenters [ 14,
51, 52]. While the improvements in networking is making storage
disaggregation a viable solution, the failure of Dennard scaling [53]
and the dark silicon phenomenon [54-56] has ignited a golden age
of domain-specific accelerators [57]. These accelerators have made
their way into the datacenters of major cloud providers including
Amazon [20], Google [18, 58], Meta [21], and Microsoft [59, 60].

The trend towards serverless has coincided with these two struc-
tural changes in the infrastructure and the hardware. Each of these
trends individually provide significant benefits but collectively poses
challenges. On the one hand, the gains from domain-specific accel-
erators can potentially expand serverless usecases [61-64] and/or
potentially improve their speed and efficiency. On the other hand,
serverless functions operate on ephemeral data and they need to
read and store their inputs and outputs from persistent storage for
every invocation [15, 65-67]. To that end, we make the observation
that with disaggregated storage, the overhead of moving input and
output data from remote storage limits the benefits from acceleration.
The gains will be limited since current accelerators are inherently
designed to myopically focus on the compute and are not meant to
deal with the significant data movement cost in serverless functions.
Observing these insights, as shown in Figure 1, the paper explores the
confluence of the three trends and devises a pathway towards max-
imizing the benefits from accelerators for serverless computing on
disaggregated datacenters. We propose In-Storage Domain-Specific
Acceleration for Serverless Computing (dubbed DSCS-Serverless).

This idea contributes a serverless model that leverages a relatively
small programmable accelerator within storage to unlock the po-
tential of acceleration in disaggregated datacenters. The proposed
model does not advocate moving back heavy compute to the storage
but takes a more balanced approach by integrating a rather small
accelerator within the storage device to mitigate the communication
overheads when applicable. These programmable accelerators are
activated and utilized when a serverless function belongs to their
corresponding domain. However, placing an accelerator within the
storage comes with challenges.

Tight power constraints. According to commercial designs, stor-
age devices adhere to stringent power budgets [68—71]. Furthermore,
this power budget is apportioned between the flash and the accel-
erator. As such, one of the primary challenges is to architect an
in-storage accelerator that not only covers a broad range of applica-
tions in the domain, but also adheres to the tight design constraints.
We explore using various in-storage compute platforms (Domain-
Specific Accelerator, ARM CPU, Low-power GPU, and FPGA) for a
domain of serverless application while abiding by the constraints
imposed by the storage. Considering the constraints, we also per-
form a Pareto design space exploration that examines more than 650
accelerator configurations.
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Figure 1. This paper devises DSCS-Serverless at the conjunc-
tion of three different trends in datacenters: (1) serverless
computing in the programming level; (2) storage disaggrega-
tion in the system infrastructure level; and (3) domain-specific
accelerators in the hardware level.

In-storage accelerator integration with serverless system stack.
Serverless functions use frameworks such as OpenFaa$ [72] and Ku-
bernetes [73] for deployment and orchestration. The challenge is

how to minimally change the serverless system stack to integrate

DSCS-Serverless without disruption to traditional application op-
erations within a disaggregated datacenter. Our solution enables

serverless functions to be offloaded to the in-storage accelerator

seamlessly using software hints provided at function deployment

time. We also design an OpenCL device driver that enables server-
less functions to access the accelerator. Furthermore, we handle the

scheduling of both data and functions and the challenges associated

with storage scaling, data replication, and fault tolerance in a disag-
gregated datacenter that leverages Domain-Specific Computational

Storage Drive (DSCS-Drive).

We choose machine learning/neural networks as the domain to
design a programmable accelerator and showcase an implementa-
tion of DSCS-Serverless. We evaluate the system through a rigorous
study with eight real-world, latency-critical, end-to-end serverless
applications inspired from AWS Lambda case studies [74-81]. Eval-
uations show that integrating a comparatively small accelerator
for DSCS-Serverless significantly outperforms a traditional disaggre-
gated system that utilizes the NVIDIA RTX 2080 Ti GPU. In com-
parison, DSCS-Serverless achieves 2.7Xx end-to-end speedup, 4.2X
energy reduction, and 3.0X better cost efficiency. DSCS-Serverless
also performs better than existing computational storage solutions
that either use microprocessors [69, 82] (3.7X end-to-end speedup,
4.3% energy reduction, and 3.2X better cost efficiency) or FPGAs [70]
(1.7x end-to-end application speedup, 1.9 energy reduction, and
2.3X better cost efficiency).

To put it in a nutshell, the paper contributes:

o Theinsight that overhead of moving data from remote stor-
age limits the benefits from acceleration for serverless functions in
disaggregated datacenters.

o The DSCS-Serverless execution model that leverages a rela-
tively small programmable accelerator within the storage device to
accelerate a domain of serverless functions.

o A software stack that seamlessly integrates in-storage accel-
erator with existing serverless models, handling storage-specific
challenges such as data placement, scalability, and utilization, along
with serverless considerations such as function placement, scalability,
and cold starts.
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e The insight that disaggregation, serverless model, and the
limited power budget for computation in storage require an
alternative design than the conventional practices of integrating
microprocessors and FPGAs within storage.

2 Background and Motivation

Serverless computing is a cloud computing model that allows devel-
opers to write and run code without worrying about the underlying
infrastructure, scaling, or billing.

Why Serverless? A motivating use-case. Wildfires pose a serious
threat to California’s flora and fauna, environment, and infrastruc-
ture. San Diego Gas & Electric (SDG&E), an energy services company
in Southern California, uses drones to capture images of forest and
uploads them to the cloud, as shown in Figure 2. An object detection
serverless application hosted on AWS analyzes the images for po-
tential fire hazards in real-time [81, 83], enabling SDG&E to respond
effectively and swiftly to wildfire risk. We use this application below
to describe a model serverless execution flow.

Disaggregated Storage (eg., AWS S3)

Edge ! Cloud

rmr\@

Sto, ’e
‘\9\)\‘3‘5
Sto, ‘e
‘@\)\e‘b

Cloud
Endpoint

®
[Ed
ML/DNN Notification
Pre-processin| Model Service

Data
Compute Nodes (eg., AWS EC2)

Figure 2. A serverless computing workflow for an object
detection application that detects wildfires using drones. The
drones capture images of the forest and send them to the cloud,
where a serverless application consisting of three functions
analyzes the images to detect potential fire. The functions
uses disaggregated storage for data exchange.

2.1 Life of Serverless Application

Deployment. Figure 2 depicts a widely used serverless pipeline
for object detection [76] that consists of three functions: Data Pre-
processing, Machine Learning/Neural Network (ML/DNN) Infer-
ence, and Notification Service. During deployment, the applications
are modeled as serverless functions and chained together using
RESTful APIs. The application developer (in this case SDG&E) also
configures metadata constraints (timeout, trigger mechanisms, hard-
ware requirements, etc.) into a configuration file (eg., YAML in AWS)
for each of the functions. Since serverless functions are stateless,
SDG&E also allocates a persistent storage (such as AWS S3) that
is used by the functions to retrieve and store data. SDG&E then
deploys the application to a cloud serverless provider such as AWS
Lambda [8], Google Cloud Functions [9], etc.

Invocation. The Remote Sensing application is invoked when data
(eg., image) is sent from the drone to the cloud datacenter where
the Remote Sensing application is deployed. The data arrives at the
storage that was configured during deployment by SDG&E. Based
on the function’s deployment constraints outlined in the YAML file,
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the serverless framework running on the cloud (AWS Lambda, Open-
FaaS, etc.) launches the function on a compute node. The function
then retrieves the data using an RPC from the storage node as shown
in Figure 2. At the storage node, this RPC invokes a series of system
calls to read data from the physical storage over PCle. The data are
then serialized [58], converted to network packets and transmit-
ted to the compute node. After function execution, the output data
(ephemeral or not) are stored back to the persistent storage following
similar steps discussed above for reading the data. Moreover, if the
function utilizes a specialized domain-specific accelerator (DSA)
such as GPUs, ASICs or FPGA at the compute node, the compute
node has to further initiate a data transfer (e.g. cudaMemcpy for
GPUs) to the DSA devices’ memory generally over PCle [50, 61].
Overall, these steps are expensive for serverless functions that come
with strict Service Level Objective requirements [67, 84] since they
involve RPCs [65, 85], system calls [86], and I/Os [67].

2.2 Characterization of Serverless Applications

As demonstrated above, there are variegated components that con-
tribute to the end-to-end latency of a serverless application. We
profile serverless applications (Table 1) on AWS EC2 instances using
the methodology described in Section 6.1 to understand how these
components contribute to the end-to-end application latency.
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—e—Clinical Analysis —e—Content Moderation —+—Remote Sensing|
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Figure 3. Cumulative distribution function for reading inputs
from AWS S3 for different benchmarks.

Communication in disaggregated storage datacenters. Figure 3
shows the cumulative distribution function for reading data from
remote S3 storage across a range of benchmarks (refer Table 1). The
results show that accessing storage suffer from tail latency. The average
latency difference between the median and the 99* h percentile is a
factor of 110% for read accesses. This long tail latency is primarily be-
cause of remote storage that increases the network communication
overhead. Our analyses about tail latency of serverless functions is
commensurate with prior studies [65, 87, 88]. Indeed, recent work
has devised solutions to mitigate network latency for microservices
or serverless functions through RPC accelerations [58, 85, 89], spe-
cialized network protocol for RPC [90], and communication bypass-
ing/fused functions [66, 67].

Computation vs. communication. Figure 4 shows the compute,
communication (network + I/0), and the system stack overhead of
launching the function using OpenFaaS and Kubernetes. We observe
that latency to access the remote storage accounts for a significant
portion of the end-to-end application runtime (on average > 55%).
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The average latency for reading and writing the data to the remote
storage is greater than the time it takes to perform the computation. In
fact, Credit Risk Assessment, Asset Damage Detection, and Content
Moderation consists of > 70% communication. This communi-
cation overheadis naturally expected because of the serverless
function execution flows discussed earlier (§2.1).
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Figure 4. Runtime latency breakdown for application mod-
eled as serverless functions deployed on AWS EC2 with re-
mote S3 storage.

Domain-specific acceleration. Accelerators have been in-
tegrated into major cloud providers including Google [18, 58],
Amazon [20], Meta [21], and Microsoft [60]. The efficiency of
these accelerators can unlock additional usecases in serverless
computing [61, 63, 64]. However, the primary target of these
accelerators is commonly focused on computation efficiency.
Figure 4 shows that the maximum speedup attainable by ac-
celerating the compute is capped at 1.52x. This is because
with remote storage, the overhead of moving input and output
data (on average > 55%) limits the benefits from acceleration
in serverless applications. As such, the overall benefits of the
current paradigm of acceleration for serverless computing in
disaggregated storage datacenters is strictly limited by the
Amdahl’s Law [91].

3 Overview of DSCS-Serverless

DSCS-Serverless is an execution model for serverless comput-
ing that integrates small programmable accelerators within

some of the storage drives in disaggregated datacenters. The

model aims to leverage in-storage accelerator to reduce the

communication overheads, without shifting high-performance
compute devices (eg., GPUs) back to the storage node. The

accelerators are designed for a specific domain of functions

and provide acceleration when applicable.

Figure 5 (a) shows how DSCS-Serverless fits into the cur-
rent datacenter rack infrastructure. Specifically, in the DSCS-
Serverless model, we replace some of the existing storage
drives with computation storage drives that house an in-
storage domain-specific accelerator (DSA). We term this type
of storage device as Domain-Specific Computational Storage
Drive (dubbed DSCS-Drive).
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Figure 5. System architecture of DSCS-Serverless. (a) How
DSCS-Serverless fits into the datacenter rack infrastructure.
(b) The architecture of DSCS-Drive that integrates a DSA next
to the flash array.

DSCS-Drive. Figure 5 (b) shows the architecture of DSCS-
Drive. DSCS-Drive integrates arelatively small in-storage DSA
on which a domain of functions execute. The DSA within the
DSCS-Drive directly communicates with the flash array (e.g.
NAND flash, SLC, MLC, SSD, etc.) using the dedicated data
bus (eg., PCle peer-2-peer links [70]). The DSCS-Drive also
houses a small DRAM memory that acts as a staging buffer
to exchange data between the host CPU, the flash array, and
the DSA. The DMA engine is used to transfer data between
each of these components.

With such system architecture, serverless functions that are
amenable to acceleration using the in-storage DSA obviate the
extravagant network and I/O data transfer overheads (remote
read/write parts in Figure 4). Furthermore, DSCS-Serverless
does not consume CPU cycles in the storage node, except for
initiating the data transfer to the DSA located near the storage
node. Thus, it does not interfere with the applications that
run concurrently on the storage node’s CPU. DSCS-Serverless
also improves the resource utilization of the storage node
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by enhancing the storage drives with an additional computa-
tional capability without hampering the conventional storage
functionality to serve applications.

3.1 Life of a Serverless Function in DSCS-Serverless

We contrast the life of a serverless function in DSCS-Serverless
and the traditional serverless execution model.

(D In contrast to traditional system, in DSCS-Serverless, a
function that is amenable to acceleration is directly deployed
to DSCS-Drive that has the data. This thereby eliminates the
costly invocation of a compute node. In §5.3, we describe
the details of how DSCS-Serverless identifies the functions
amenable to acceleration.

@+ Instead of fetching data from remote storage via costly
RPC requests, DSCS-Serverless employs its driver to initiate a
peer-to-peer (P2P) data transfer from flash array to DRAM
memory within the DSCS-Drive. As described in §2.2, each
function invocation in the traditional system confers a notable
data read/write latency. Specifically, in the traditional system
an AWS S3 read request is translated into a RPC that incurs
the network latency to access the remote storage. Upon reach-
ing the storage node, the request further requires a protobuf
deserialization and a read system call to access the data over
PCle interface. In fact, to reduce the high cost of protobuf op-
erations, prior work has proposed hardware accelerators [58].
In contrast, DSCS-Serverless circumvents the costly protobuf
operations by performing a single system calls that initiates
a P2P data transfer from the flash array to the DRAM mem-
ory bypassing the host’s software stack. Once the data are
entirely transferred to the DRAM memory, the execution of
the serverless function starts.

(3 +— After the function execution completes, the DSA
sends an interrupt over PCle to the host CPU to initiate a P2P
transfer of the results to the flash array. Once the transfer
completes, the host may invoke subsequent serverless func-
tion calls. This is in contrast to the traditional system in which
data transfer over network and I/O events occur to write the
results to persistent storage.

4 Architecture Design for DSCS-Serverless

In this section, we first discuss the architecture of the pro-
grammable domain-specific accelerator (DSA). Then, we show-
case a methodology to derive the optimal DSA configuration
under tight storage power constraints. We also demonstrate
a technology scaling analysis to project the performance for
more recent technology nodes. While we present the design
space exploration framework for a single domain of appli-
cations, it can be readily employed to find optimal DSAs for
arbitrary application domains.

Architecture for machine learning/neural networks ap-
plications. As per an IBM survey, machine learning/neural
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Figure 6. Architecture of the in-storage domain-specific ac-
celerator (DSA) for machine learning/neural networks within
the DSCS-Drive.

network (ML/DNN) including transformers such as large lan-
guage models inference applications are one of the fastest
growing domains in serverless computing, accounting for
more than 40% of services [10, 92, 93]. As such, we set the
primary target of our design to accelerate such applications.
The important design decisions that we considered for the
architecture are: programmability such that it can cater to
a wide range of commonly deployed ML/DNN applications
and low-power such that it can abide by the stringent power
constraint imposed by the storage [68, 70, 94]. Specifically,
the architecture should support a wide range tasks such as
image classification, object detection, semantic segmenta-
tion, linear/logistic regression, neural machine translation,
conversational Al generative Al, data pre-processing, etc.

We analyze the applications listed in Table 1 to identify the
various types of operations that are present. We find that apart
from the General Matrix Multiplication (GeMM) operations
(matrix multiplication, convolution, etc.), the ML/DNN mod-
els used in the applications also consists of operations such
as element-wise mathematical operations (add, sub, multiply,
etc.), element-wise activation functions (ReLU, GeLU, TanH,
Sigmoid, etc.), data layout transformations (eg., reshape, trans-
pose, etc.), reduction-based operations (layer-normalization,
batch normalization, mean, etc.), and data type conversion
operations (eg., fp32 to fp16). To this end, as illustrated in Fig-
ure 6(b), we design a DSA that consists of a Matrix Processing
Unit (MPU) to execute the GeMM layers and tightly couple it
with a Vector Processing Unit (VPU) to execute the other layers
described above.

4.1 Domain-Specific Accelerator Microarchitecture

Matrix Processing Unit. Figure 6 shows the MPU and the
microarchitecture of a processing engine (PE) inside the MPU.
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The MPU consists of a 2D array of Processing Elements (PEs)
and dedicated multi-bank buffers (scratchpad) for input ac-
tivations, weights, and outputs as shown in Figure 6. Each
bank of the buffer unit is exclusively shared across PEs within
arow. The execution flow of such architecture is similar to
conventional systolic-array accelerators [24, 31, 95]. At each
cycle input activation tensors are fetched from input buffers
and shared across the PE units within a row. The partial sum
from the PEs are forwarded in a waterfall fashion per column.
Once the computations across the array of PEs conclude, the
results are either fed to the VPU for ensuing operations or
written back to DRAM.

Vector Processing Unit. Figure 6 shows the microarchiec-
ture of the VPU and vector engine (VE) that performs the
computations. The VPU is a Single Instruction Multiple Data
(SIMD) architecture designed primarily to execute activation
functions (e.g. Relu, LeakyRelu, Tanh, Sigmoid), pooling, quan-
tization, vector arithmetic computations, and datatype casting
which are prevalent in emerging data analytic workloads [49,
96]. The Vector Processing Unit and the Matrix Processing Unit
are closely connected through the shared multi-bank output
buffer, as Figure 6 shows. This way, the VPU can access the
data from the MPU directly, without having to get it from the
DRAM. Furthermore, ML/DNN applications also require data
pre-processing/post-processing such as tokenization, normal-
ization, scaling, and datatype casting [75, 78,97, 98], etc. These
transformations are commonly packaged as separate server-
less functions [80, 97]. We utilize the VPU to execute these
data pre/post-processing functions as well thereby expanding
the type of functions that can leverage the DSA.

4.2 Design-Space Exploration for
Optimal In-Storage Domain-Specific Accelerator

Design-space exploration is crucial to ensure that DSA archi-
tecture adheres by the tight power and thermal constraints
of storage drives. In this section, we discuss the power and
thermal constraints imposed by the storage drives and then
describe the details for the design-space exploration.

Power and thermal constraints of storage drives. Stor-
age drives have tight design constraints primarily because
of the limited PCle power budget (< 25 watts [68]) that is
the exclusive source of power for these units. To provide an
estimate of the storage drive’s limited power budget, com-
mercially available computational storage drives such as the
Samsung’s SmartSSD [70, 71] have merely a TDP (ideal) of 25
watts. Furthermore, the power source in these computational
storage drives is shared between the flash array and com-
pute (eg., FPGA) [69-71]. As such, performing design-space
exploration for DSA is crucial.

Design-space exploration objective. There are various con-
flicting factors to take into account to identify optimal DSA
design points for storage drives. Commensurate with prior
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work [55, 99], we use throughput (frames per second/tokens
per second) as the performance metric. Capital expense in-
curred by ASIC fabrication is another determining factor for
designing data centers [100, 101]. However, measuring the
precise capital expense is not pragmatic and kept confidential
by major cloud providers. Therefore, we use chip area as a
proxy for the ASIC fabrication cost. We use DSA’s power con-
sumption to assess the feasibility of a design point, which is
capped by the storage drive’s limited power budget. The objec-
tive of design-space exploration is to find design points that
are on the Pareto frontier of the power-performance and area-
performance. Particularly, we only select DSA architecture
configurations that are on the Pareto frontiers while abiding
by the tight power and area constraints of storage drive. We
choose the open source 45 nm FreePDK [102] technology node
for our baseline analysis in the design-space exploration.

FPGA implementation and simulation methodology. To
effectively support the design space exploration of DSA, we
designate the number of PEs, systolic array X-Y dimension,
on-chip buffer sizes, and memory bandwidth as configurable
parameters. We then implement and synthesize DSA using
the methodology detailed in §6.1. Since hardware simulations
for the entire design points (> 650) is not practical, we develop
a cycle-accurate simulator to closely model the latency and
power of our designed DSA (refer §6.1). For power and area
numbers, we use the synthesized values using 45 nm technol-
ogy node. We followed the methodology in [103] to scale the
results to 14 nm, which is relatively similar to the technology
node of Samsung SmardSSD [71]. We provide the details of
methodology in Section 6.1.

Domain-specific accelerator search space. We use Google
TPUv1 [18] with 256%x256 PEs, 28 MB of on-chip buffers, and
34 GB/s memory bandwidth as the standard design point. We
then scale this design by varying the number of PEs from
4X4 to 1024x1024 with a power of 2 stride. We proportion-
ally scale the buffers to provide sufficient on-chip resources
for PEs. However, we set the maximum total buffer size to
32 MB because large buffer sizes significantly increase the
power consumption, exceeding the tight power constraints
for DSA. We use three realistic memory bandwidth in the
search space, namely DDR4 (19.2 GB/s), DDRS5 (38 GB/s) and
HBM2 (460 GBY/s).

Pareto-optimal design points. Figure 7 demonstrate the
power-performance and Figure 8 shows the area-performance
results across a range of design points. The curved lines
(Pareto frontier) shows the best power-performance and area-
performance tradeoffs for DSA configurations. By definition,
Pareto frontier provides the most optimal points in a design
space. We exclude the design points that are either infeasi-
ble because of design constraints or significantly inefficient
in terms of throughput. The power and throughput of each
design point is an average across set of target benchmarks
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(See Table 1). The design point at the bottom left portion of
Figure 7 (power-performance), represents a 4x4 systolic ar-
ray with 128 KB on-chip buffer and DDR4 memory. The top
right design configuration shows a 128x128 systolic array
with 4 MB on-chip buffer and DDR5 memory (denoted by
Dim128-4MB in Figure 7).

The results of our design-space exploration indicates that a
1024Xx1024 systolic array delivers significantly lower through-
put compared with 128x128 array. This is because the DSA
employs a tiling-based execution mechanism. For a batch size
of one, a 1024x1024 systolic array does not show the most op-
timal performance because the compiler (Section 5.1) aims to
obtain the optimal tiling such that the DSA overlaps the mem-
ory transfers for a tile with the computation of preceding tile.
If the tile sizes are large, the cycles spent on memory transfer
outweigh the compute cycles. This is similar to CPU pipelines
where stalls reduce the IPC. Through our design space explo-
ration, we find the most optimal DSA configuration to be a
128%128 systolic array with 4 MB on-chip scratchpad, and
DDR5 memory.

5 In-Storage Accelerator
Integration with Serverless System Stack

DSCS-Serverlessintegrates in-storage accelerators with server-
less computing framework by addressing system software,
storage, and serverless specific considerations. In achiev-
ing this goal, DSCS-Serverless strives to introduce minimal
changes to the existing software/framework avoiding disrup-
tions to traditional application operations in a disaggregated
storage datacenter.

5.1 Integration
of DSCS-Serverless with System Software

This section discusses the challenges and solutions of adapt-
ing DSCS-Serverless into the existing system software, such as
modifying the programming model, the compiler, the device
drivers, etc. The goal is to make DSCS-Serverless easy to use
without adding any extra work for the application developer.

536

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Afc) = 5E-07x° + 0.0005x° - 0.1413x + 15.678
rvy ®

8000
— 6000 A Dim128-4MB
E us a @ Dim1024-32MB
= 4000[** * J Dim1024-24MB
g
< a s

2000 s » a

421 A W Alc)
0 | a * A
0 1000 2000 3000

Throughput (frames per second)

Figure 8. Area-Performance frontiers, 45 nm Tech Node.

System software stack. DSCS-Serverless is deployed atop
OpenFaa$, an open source serverless framework. OpenFaa$S
is deployed on Kubernetes to orchestrate containers, and uses
Promethus [104] for cluster monitoring and telemetry. DSCS-
Serverless can also be readily deployed into other serverless
platforms such as Apache OpenWhisk [105].

Programming model. In serverless, developers define their
applications as a Directed Acyclic Graph (DAG) of decou-
pled functions [67]. During deployment of these functions,
the developer provides a configuration file (eg., YAML) that
describe the properties and constraints of the function (eg. de-
pendencies, timeout, access mechanism, storage, etc.). DSCS-
Serverless extends this YAML file to enable developers to mark
in-storage DSA acceleratable functions. In addition, develop-
ers provide a container that packages the accelerated server-
less function with the appropriate device drivers and libraries.

Device driver and libraries. To support in-storage acceler-
ation, DSCS-Serverless includes an OpenCL device driver. The
driver implements standard interfaces for mapping storage
space to physical address space of both the storage node and
the DSA’s configuration registers and memory. Additionally,
the driver orchestrates direct P2P data transfer between the
storage and the DSA that bypass the storage node’s system
stack and utilizes dedicated PCle links. The OpenCL driver
also abides by the OS security checks for access control to
both storage and DSA. The acceleratable function’s container
include all dependent libraries such as OpenCL framework
and associated runtime/tools that is needed by the DSA.

Compiler support. We develop a compilation stack capable
of code generation for different DSA configurations and for a
range of evaluated machine learning/neural networks bench-
marks. The functions that utilized the DSA are implemented
using Pytorch and stored as ONNX (Open Neural Network
Exchange) files. The front-end part of the compiler performs
arange of optimizations [106], including operator fusion to
minimize off-chip data movement. Then the compiler per-
forms DSA design configuration (e.g. number of PEs, memory
bandwidth) specific optimizations such as padding and tiling
to maximize the DSA’s utilization. Once these optimization
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passes complete, the compiler generates the hardware con-
figuration specific optimized executable code. This code is
packaged along with the serverless function in the container.
Note that we rely on the developer to partition their applica-
tion into server functions that can or cannot be accelerated
using a in-storage DSA.

5.2 Storage Node Considerations for DSCS-Serverless

In this section, we present how to integrate DSCS-Serverless
into the storage servers. We address three key challenges:
how to place the data intelligently on the storage drives near
the accelerator, how to transfer data seamlessely between
the accelerator, storage drive, and the host CPU, and how to
ensure scalability of DSCS in disaggregated datacenters.

Data placement. To enable effective utilization of in-storage
accelerators, it is essential that the data to be processed is
situated on the same storage drive that houses the accel-
erator. Cloud service providers today offer various storage
classes [107] for different types of data (hot and frequently ac-
cessed data, cold data, and archived data, etc.). DSCS-Serverless
resembles the baseline system that uses a disaggregated key-
value storage setup, similar to AWS S3. This setup involves
replicating data across multiple storage nodes to ensure data
reliability. If a serverless function is acceleratable, DSCS-
Serverless maps one of its replicas to a DSCS-Drive (a new
class of storage). Storage nodes typically divide data into
fixed-size chunks (ranging from 1MB to 64MB [108]) before
storing them on physical media. However, DSCS-Serverless
assumes requests (data) are not distributed across multiple
devices within the same storage node due to the small size
(< 20MB in AWS S3 [109]) of serverless requests. In those
exceptional instances where data is indeed distributed across
multiple storage drives, DSCS-Serverless has the flexibility
to either revert to default CPU execution or execute data in
parallel across multiple CSDs.

During invocation, all data requests for a function des-
ignated as acceleratable during deployment are directed to
these DSCS-Serverless capable storage drives. As the number
of requests (data) increases, it is possible to store different
requests on separate drives that support DSCS-Serverless. This
is because requests (data) are independent of each other, and
therefore, the scheduling of requests can be distributed across
different drives. The scheduler relies on Prometheus teleme-
try to decide whether to employ in-storage acceleration or
execute the function in a conventional manner depending on
if the node is busy.

Storage utilization. The accelerator in DSCS-Serverless is an
optional extra capability to utilize the storage more. It does
not affect conventional serverless or storage functionality, as
it can be bypassed for normal storage operations.
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Storage scalability. One of the design goals of disaggrega-
tion is the independent scalability of resources. For exam-
ple, compute resources can be scaled independently from
remote storage (such as S3), which offers virtually unlim-
ited storage capacity. DSCS-Serverless does not compromise
this since DSCS-Serverless capable nodes can also function as
conventional storage node for applications that do not need
compute acceleration capabilities. DSCS-Serverless scales hor-
izontally by adding more compute capability drives. Hence,
DSCS-Serverless does not limit independent storage scalability.

Host and storage communication. The DSA and the flash
storage device in the computational storage use the same PCle
links to communicate with the host node. A switch in the
computational storage routes the requests to either the flash
storage device or the DSA, based on the request type. There
is also a dedicated P2P connection between the flash storage
device and the DSA for fast data transfer. DSCS-Serverless uses
this P2P connection to communicate with the flash storage
device over PCle links, bypassing the host CPU.

5.3 Serverless
Function Considerations for DSCS-Serverless

DSCS-Serverless is a system that uses a specialized hardware
accelerator to run serverless functions on the storage nodes
that contain the data. This requires the functions to be as-
signed to the same node that has the data and the accelera-
tor. We also need to examine how DSCS-Serverless enables
serverless-specific features such as fail-over support, function
chaining, and cold start. In this section, we describe how we
support these serverless-specific properties.

Function scheduling. We extend the centralized Kubernetes
scheduler to expose storage nodes that can utilize in-storage
accelerators and map acceleratable serverless functions ex-
ecution to such nodes if the data resides on the node. The
scheduler uses a simple First Come First Serve (FCFS) schedul-
ing policy for the incoming requests, leveraging Prometheus
to monitor availability and prevent overloading a single Ku-
bernetes pod (in this case the storage node). Note that similar
to traditional serverless [8—10], a function instance on the
accelerators also does not support preemption and follows
a run-to-completion execution policy. Once a function is of-
floaded for computation on DSCS-Serverless, the storage node
marks its compute status as busy. The scheduler does not
offload more functions until the node becomes available.

Future directions for optimized scheduling for DSCS-
Serverless. Previous works have explored various schedul-
ing optimizations for different applications, both serverless
and non-serverless [66, 67, 110-115]. However, none of them
have considered the DSCS-Serverless execution model, which
enables in-storage acceleration of serverless functions. Ap-
plying these optimizations to DSCS-Serverless is a potential
future direction that can improve performance. For instance,
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scheduling functions based on their criticality and importance
can enhance the performance of DSCS-Serverless by assigning
long-running functions to nodes that support DSCS-Serverless.
Likewise, scheduling policies that consider the whole server-
less application DAG and use DSCS-Serverless for applications
that have many acceleratable functions can also boost the
performance. However, scheduling techniques that depend
on task heterogeneity and affinity to different accelerators
may not be effective, as DSCS-Serverless already knows which
functions can be accelerated at deployment time.

Fail-over support. In the event of DSA unavailability within
the storage, DSCS-Serverless may be unable to process a func-
tion. The scheduler then defaults to conventional execution
using remote compute nodes (e.g., CPU) for function exe-
cution (§2.1). This is possible as DSCS-Drive can operate as
standard storage drives supporting storage APIs (e.g., AWS
S3 APIs [107]). We utilize existing Kubernetes mechanisms
for fail-over and container migration, leveraging telemetry
(via Prometheus) for node health monitoring.

Function chaining. DSCS-Serverless maps chained functions
to the same DSCS-Drive that has the data if they can be accel-
erated by the same DSA. If not, the function falls back to CPU.
Additionally, DSCS-Serverless handles stateless functions that
don’t write to shared data structures, simplifying function
scheduling and duplication.

Cold starts. Functions in DSCS-Serverless incur the same
cold start as functions in traditional platforms. A function
experiences cold start when the function’s container image
is pulled from a remote registry, unpacked, and has to pass
a health check. This happens when a function is deployed for
the first time to a node or when function replicas are created
by increasing the number of nodes (horizontal scaling) from
N to N+1. Similar to the conventional serverless execution
mechanism where the function is kept warm on the compute
node’s memory for a certain period of time, DSCS-Serverless
also stores the function on the DSA’s memory for some du-
ration preemptively waiting for new requests. In case when
another different function is scheduled on the DSA, instead
of evicting the old function, the DSA offloads the function’s
container image to the flash storage using the P2P intercon-
nect. Next time the same function is scheduled on the same
storage node, DSCS-Serverless can just use the P2P to load
the function instead of fetching it over the network from
the serverless framework such as OpenFaa$S which store the
container image in their registry.

6 Evaluation
6.1 Methodology
Benchmarks. To evaluate the efficacy of DSCS-Serverless,

we use eight real-world latency critical machine learning
or neural network including large language models (LLMs)
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applications representing serverless pipelines deployed on
AWS Lambda [74-81]. Table 1 shows the suite of applications,
their description, serverless functions, the machine learn-
ing/neural network model, the number of parameters, and
the corresponding inputs/outputs sizes. Since the exact mod-
els used in AWS Lambda functions are not publicly available
for some benchmarks, we use representative and state-of-the-
art inference models from Hugging Face [116] that provide
similar functionality (e.g. we use ResNet-50 [117] for AWS
Rekognition [76] that offers image classification). We con-
tainerize all the serverless functions by using OpenFaaS.

Baseline system setup. For the Baseline (CPU), we use Ama-
zon EC2 c5.4xlarge instance with Intel® Xeon® Platinum 8275CL
CPU and use an JAM account to connect the instance to a
S3 object storage in the same region. The EC2 instances run
Ubuntu 20.04.4 LTS with kernel version 5.13.0-1029-aws. We
launch a Kubernetes cluster on the EC2 instance and deploy
OpenFaaS on a pod [73]. During deployment phase, applica-
tions are enlisted in the OpenFaaS$ function registry.

Evaluation of compute platforms. Table 2 lists the spec-
ifications of all the evaluated platforms. The Traditional Plat-
forms that are currently utilized for serverless function de-
ployment, where the compute (consisting of Baseline (CPU),
GPU, or FPGA) accesses the remote storage via the network.
We also evaluate Conventional In-Storage/Near-Storage plat-
forms (NS), where the compute is within the storage. Since
these platforms are not available in datacenters, we set up
the infrastructure locally similar to the baseline setup de-
scribed above. We consider three low power near-storage
platforms: quad-core ARM CPU [118] (denoted by NS-ARM),
alow-power Nvidia Jetson TX2 mobile GPU [118] (denoted
by NS-Mobile-GPU), and Samsung SmartSSD that houses an
FPGA [71] (denoted by NS-FPGA). Since we did not have ac-
cess to ARM Cortex A53 used in commercial CSDs [69, 82], we
use a more powerful ARM core (Cortex A-57) for our evalua-
tion. Upon invocation, for Baseline (CPU), each function within
the application is launched on a Kubernetes pod running on
the CPU. On all platforms, we use the available compute unit
such as the ARM CPUs, GPU, FPGA, or DSA to execute both
the data pre-processing (Function 1) and ML/DNN model in-
ference (Function 2) for each application. Function 3 always
runs on a CPU in a compute node.

System performance measurements. For the Baseline (CPU)
measurement, we use the aforementioned baseline setup
on AWS EC2 instance and invoke the application by gen-
erating 10,000 sequential requests using hey [119], an open-
sourced http load generator to measure the latency. We use
the 95 percentile latency for all our analyses similar to prior
work [66, 67]. To measure the latency for all other traditional
compute platforms, we create containers with the required
environments (e.g. ONNX Runtime for GPU or Xilinx XRT for
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Table 1. Benchmarks, their brief description, interconnected chain of serverless functions, machine learning/neural network
model, parameters, and input/output dimension.

Interconnected Serverless Functions Number of Input/Output
Function 1 Function 2 Function 3 Parameters Dimensions
(o[-0 14111 9. IT-E3Y, 1) | 3l | dentify positive and negative credit risks for loan approval Notification 200 (200)/ (1)

T D BT ER-LR I [ )| Detect damages to objects using images captured by CCTV| Image Preprocessing Image Classification Notification ResNet-50 25 million (3,224,224)/ (1,1000)

DNN Model

Application Description

Normalization Logistic Regression Logistic Regression

Detect workers' safety gear in factories to prevent hazards | Image Preprocessing Object Detection Notification YOLOv3 65 million | (3,416,416)/ (255,52,52)

Identify salient elements in medical scans Image Preprocessing| Semantic Segmentation | Notification FCN 54 million | (3,224,224/ (3,224,224)
Content Moderation Detect inappropriate or offensive content Image Preprocessing Image Classification Notification EfficientNet 11.5 million (3,227,227)/ (1000)
(o T\ a1 C 1Ko E 1 1o 3l Answers input text questions Tokenization Question & Answering Response BERT-Base 110 million (128,768)/ (128,768)
Document Translation Localize website contents for cross-lingual communication Tokenization Neural Machine Translation | Response GPT-2 1.5 billion (1,128)/(1,128)
Remote Sensing Infrastructure monitoring using drones Image Preprocessing Scene Classification Notification |Vision Transformer | 632 million (3,224,224)/ (1000)

Table 2. Specification of the traditional, conventional near-storage, and proposed platforms used for evaluation.

PROPOSED
DSCS-Serverless
Domain-Specific Accelerator

TRADITIONAL PLATFORMS
Baseline (CPU) NS-ARM
Xeon 8275CL RTX 2080 Ti Xilinx Alveo U280 Arm Cortex AS57

CONVENTIONAL NEAR-STORAGE PLATFORMS (NS)
NS-Mobile-GPU NS-FPGA
Pascal GPU Samsung SmartSSD

Cores/ PEs 16 cores 4352 CUDA Cores 1024 PEs 4 cores 256 CUDA cores 256 PEs 16,384 PEs
Memory 32GB 11 GB GDDR6 |32 GB(2 MB on-chip) 4GB 4GB 4GB (2 MB on-chip) | 4GB (4 MB on-chip)
240 W 250 W 225 W 15w 15w 18 W 42W
Frequency 3GHz 1.35 GHz 250 MHz 2GHz 13GHz 250 MHz 1GHz
Technology Node 14 nm 12 nm 16 nm N/A N/A 16 nm 14 nm
N/A Gen3x16 Gendx8 N/A N/A Gen3x4 Gen3x4
FPGA in addition to their corresponding drivers) that access which uses compiler-generated instructions, and provides
the remote storage via the host CPU. cycle counts and energy statistics. We compare the simulator

results with the FPGA implementation of DSA on the Samsung
SmartSSD for the same design configuration and frequency to
verify the closeness of the cycles by an error margin of < 10%.
We use this simulator to obtain the performance/energy num-
bers for DSA ASIC implementation and design projections
mentioned in §3.

For DSCS-Serverless, we utilize Samsung SmartSSD to imple-
ment the DSA configuration specified in Table 2 and utilize
the OpenCL driver (§5.1) to measure the end-to-end execu-
tion time, that encompasses the P2P read/write data transfer
latencies and computation latency. Additionally, we include
the system software overhead by incorporating it from the

Baseline (CPU) into the end-to-end latency of DSCS-Serverless. To evaluate DSCS-Serverless at scale under high request
We execute each application 10,000 times on the Samsung arrival rates, we develop a simulation infrastructure that mod-
SmartSSD and sample the 95 percentile latency. For the case els a datacenter rack. We assume the maximum number of
of Conventional Near-Storage platforms, we develop an an- compute platforms (DSCS-Serverless or Baseline (CPU) with
alytical model where we replace the DSA compute latency remote storage) available on a data center system is 200. The
measured for the DSCS-Serverless system with the respective simulator also has a scheduler with a queue (depth 10,000)
compute latency of NS-ARM, NS-Mobile-GPU, or NS-FPGA. that holds incoming requests that cannot be executed on a

node. The scheduler handles the incoming requests using the
policy described in §5.3. Similar to prior work [120], we also
generate an application trace (Figure 13 (a)) by randomly sam-
pling functions from the benchmarks (Table 1) using Poisson
distribution and impose load on the system for 20 minutes. We
use this setup to measure the wall clock time (§6.2.2), which is
the cumulative wall clock time the platforms take to process
all the incoming requests from the application trace. We also
use this setup to measure the effect of cold starts (Figure 17).

Hardware implementation and synthesis. We implement
the DSA in 15k lines of Verilog and synthesize it using Synop-
sys Design Compiler R-2020.09-SP4 with FreePDK 45nm standard
cell library. The design achieved a 1GHz frequency. To synthe-
size the DSA for Samsung Xilinx SmartSSD FPGA, we use the
Xilinx Vitis/Vivado toolchain. We also use the Xilinx Vivado
to obtain the resource utilization, timing, power, and thermal
statistics for the FPGA analysis.

Simulation infrastructure. We compile each machine learn-
ing/neural network model to the domain-specific accelera-
tor’s ISA and generate executable binaries. We develop a
cycle-accurate simulator for DSA’s ASIC implementation,

Power measurement. We measure the compute, PCle and
system stack power dissipation and combine them to report
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Figure 9. Normalized speedup for applications designed as serverless functions.

the energy efficiency of the system. Although, serverless sys-
tems also use the network (Ethernet/Internet), measuring the
power for it was not feasible and therefore we omit the net-
work power for all the traditional systems. We use the Intel
RAPL[121] and MSR registers to get the Baseline (CPU) power.
To obtain the power for the NS-ARM and NS-Mobile-GPU, we
use the NVPModel tool from NVIDIA Jetson TX2 Development
Kit [118]. We use Xilinx Vivado to measure the power for FPGA
implementation of DSA on Samsung SmartSSD and Alveo u280.
To obtain power for the ASIC DSA, we use synthesis results
to measure the logic cell power and CACTI-P [122] to model
on-chip memory energy. For PCle, we use the per-bit PCle
power reported in prior work [123].

Cost efficiency model. To assess if a new design offers cost
savings over other systems, we evaluate cost efficiency using
the methodology in prior work [101], which is the average
peak throughput over total cost and time of ownership as
shown in the equation below.

ThroughputxT

CAPEX+OPEX

The total cost is composed of two key components: CAPEX
and OPEX. CAPEX represents the initial capital expenditure,
encompassing the entire system’s cost, including processing
units, networking, compute servers, and storage. We use mar-
ket prices for off-the-shelf components [18, 69, 71, 118, 124—
127] and estimate ASIC’s $ cost using the analytical model
from ASIC Clouds [100]. OPEX covers the ongoing operat-
ing costs (over a three year period with 30% utilization rate)
and consists of power expenses for processing units, network
transfer, storage, and cooling similar to E3 [101]. It is the prod-
uct of the power (watts) for various components in the cluster,
the time for which the cluster is active (T) and the average in-
dustrial electricity rate in the U.S. ($0.0975/kWh) in 2023 [128].

Cost Efficiency =

6.2 Experimental Results

6.2.1 Single Node Evaluations. In this section, we eval-
uate the performance, runtime breakdown, and energy re-
duction of DSCS-Serverless on a single node with various
benchmarks.

Performance comparison with traditional serverless
platforms. Figure 9 compares the performance of various
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traditional platforms (with remote storage) listed in Table 2
across all studied benchmarks. The speedups are normalized
to the Baseline (CPU) that is commonly used for serverless exe-
cution in public clouds. On average, DSCS-Serverless provides
3.6X speedup over the baseline across all benchmarks. DSCS-
Serverless also outperforms GPU with remote storage by 2.7x.
This is because, first, the inherent data movement latency to
remote storage limits the performance benefits from the high-
end GPU. Second, using batch size one for serverless scenarios
causes underutilization in GPUs. Utilizing FPGA with remote
storage exhibits a slight performance dip compared to the
Baseline (CPU). This is attributed to the constrained resources
of the FPGA for implementing a high performance DSA, cou-
pled with the driver overhead associated with the FPGA.

For the applications we studied, results show a lightweight
in-storage accelerator (4.2 watts) outperforms a high-end
GPU (250 watts) with remote storage. This is because the
data movement overhead from remote storage limits the
acceleration benefits in disaggregated datacenters.

Performance comparison with conventional in-storage
platforms. To tackle the communication overheads, we also
analyze various in-storage computing platforms. Figure 9
compares the performance (normalized to Baseline (CPU)) of
various conventional in-storage (denoted as NS) scenarios
across all studied benchmarks. As shown in Figure 9, NS-ARM
which utilizes a general-purpose compute platform (quad-
core ARM CPUs) within the storage slightly underperforms
compared to the Baseline (CPU). Using specialized accelera-
tors such as NS-Mobile-GPU provides 1.35X speedup while
leveraging NS-FPGA unlocks 2.2x speedup. The speedup for
low-power NS-FPGA seems counter-intuitive compared to
high-power FPGA (with remote storage) because the latter
was bottlenecked by the communication overhead. This anal-
ysis shows that the overhead of moving input and output data
from remote storage limits the benefits from acceleration. Never-
theless, NS-FPGA’s performance is still bounded by its limited
resources and low frequency.

As shown in Figure 9, leveraging a domain-specific architec-
ture within the storage (DSCS-Serverless) unlocks additional
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Figure 10. Normalized runtime breakdown.

benefits and provides 3.7x and 1.7x speedups over the conven-
tional approaches of using microprocessors (NS-ARM) and FPGAs
(NS-FPGA) in the storage, respectively. Credit Risk Assessment
shows the least speedup because logistic regression is not
computationally intensive while PPE Detection achieves the
maximum speedup because moving compute to in-storage
reduces the significant data movement that the benchmark
otherwise incurs. In general, DSCS-Serverless offers perfor-
mance benefits for functions characterized by an intensity
in both computational and communication aspects, while
functions with low compute intensity can still benefit from
a general-purpose in-storage processor (e.g., Credit Risk As-
sessment that uses logistic-regression in Figure 10).

To address the challenges at the confluence of infrastructure
disaggregation, serverless computing, and storage power
constraints, the results advocate for domain-specific accel-
erators within storage, departing from conventional ap-
proaches of integrating CPUs and FPGA.

Runtime breakdown analysis. Figure 10 shows the run-
time breakdown across the individual system components
for the benchmarks and platforms. We see that for traditional
platforms with GPU/FPGA (with remote storage), the compute
portion is significantly reduced due to hardware acceleration.
However, the data transfer over the network limits the effec-
tive speedup achieved by the hardware acceleration. This sig-
nificant data transfer is addressed by the in-storage platforms
where moving the compute closer to storage reduces the data
movement, shifting the bottleneck back to the compute. The
DSA further accelerates this compute portion unlocking addi-
tional performance gains. Overall, we observe that leveraging
DSCS-Serverless shifts the bottleneck from the compute and
communication to other components such as the system stack.

For benchmark Credit Risk Assessment, Figure 4 shows
that data movement accounts for approximately 75% of the
runtime. Intuitively, moving compute to in-storage should
provide at least a 3X speedup. However, we observe a 1.8x
speedup because of two reasons. First, as mentioned in the
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methodology 6.1, function 3 is launched on the CPU and ex-
periences the network and IO latency similar to traditional
systems. Second, the latency incurred due to the in-storage
driver reduces the theoretical speedup. As depicted in Fig-
ure 10, for DSCS-Serverless the bottleneck now is the latency
incurred by the function 3 to read the data from persistent
storage and the system stack overheads.

Energy reduction comparison. Figure 11 analyzes the end-
to-end system energy reduction achieved by DSCS-Serverless.
On average, DSCS-Serverless provides 3.5X energy reduction
over the Baseline (CPU) system and 1.9X reduction over the
NS-FPGA (Samsung SmartSSD), the most competitive baseline.
FPGAs have significantly higher static energy dissipation
and thus cannot match the energy efficiency on an ASIC. Al-
though leveraging DSA provides significant energy reduction
(29% over Baseline (CPU)), the total system energy reduction is
bounded by the system stack and f3 function being executed
on the CPU. The trends in energy reduction are similar to
the speedup, with PPE Detection showing the maximum gains
(8%) and Credit Risk Assessment showing the minimum (1x).

6.2.2 At Scale Evaluations. This section assesses the cost
efficiency of DSCS-Serverless when integrated into a large-
scale datacenter setting. It also shows how DSCS-Serverless
can handle concurrent applications and lower latency than
Baseline (CPU) on a large scale with a substantial number of
requests.

Cost efficiency. Figure 12 shows the cost efficiency for var-
ious platforms normalized to the Baseline (CPU). Results show
DSCS-Serverless offers the highest cost efficiency (3.4%) com-
pared to the Baseline (CPU), while NS-FPGA (Samsung SmartSSD)
ranks second (1.6X). This result is intuitive, since over the ini-
tial period of usage, the CAPEX cost of building hardware
is dominant. As time goes on, the OPEX cost, that is cost of
operating (electricity cost) becomes more dominant. Since
DSCS-Serverless consumes less energy compared to other plat-
forms, its cost efficiency increases over time.
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Number of concurrent function invocations. Figure 13
(a) shows the synthetic input trace of requests with different
inter-arrival rates; specifically with bursty arrival patterns
similar to prior work [120]. Figure 13 (b) illustrates the num-
ber of concurrent functions that are at the scheduled queue
of both DSCS-Serverless and Baseline (CPU) under different
load conditions. DSCS-Serverless has a lesser number of func-
tions compared to the Baseline (CPU) due to its near-storage
acceleration, which reduces latency thereby enabling a single
function instance to service alarger number of requests. More-
over, both systems exhibit a delayed response to the decline
in input requests because functions persist in the memory
for some time even after the load decreases. However, this is
more pronounced for the Baseline (CPU) because it has more
function invocations that can handle requests less efficiently.
On the contrary, DSCS-Serverless improves the throughput of
the system since each DSCS-Serverless instance can process
more requests per second as compared to the baseline.

Wall clock latency comparison. Serverless systems scale
horizontally by replicating function instances on demand
to handle additional requests and improve performance and
availability. However, developers often set a maximum num-
ber of function instances for their applications to control
the cost. We set the maximum number of function instances
to 200 for both DSCS-Serverless and Baseline (CPU). We use
the synthetic workload shown in Figure 13 (a) to simulate
different request patterns and measure the latency to eval-
uate DSCS-Serverless. Figure 13 (c) and Figure 13 (d) show
the wall clock latency of both systems using the input load
shown in Figure 13 (a). The Baseline (CPU) shows a steady
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increase in latency with time. This is because the baseline
has higher request processing latency since it not only has to
move data from remote storage to memory but also cannot
accelerate the workload. This means that the baseline sys-
tem accumulates more and more requests in the scheduler’s
queue, which increases the latency of request processing. One
way to improve the baseline would be to increase the number
of function instances, which in turn would incur additional
costs. DSCS-Serverless on the other hand achieves scalability
and low wall clock latency by processing larger number of
requests efficiently at each node level (DSCS-Drive).

For the applications trace we studied, DSCS-Serverless im-
proves cost efficiency (3.4X) and reduces wall clock latency
latency in large-scale evaluations, demonstrating its eco-
nomic and performance advantages.

6.2.3 Sensitivity Analysis. In this section, we conduct a
sensitivity study to evaluate the impact of different factors
on the performance of DSCS-Serverless compared to Baseline
(CPU), suchas batch size, tail latency effect, increasing number
of accelerated functions, and cold start.

Batch size. Figure 14 shows the sensitivity of the DSCS-
Serverless end-to-end performance with respect to batch size
(refer 1). We sweep the batch size from one to 64 across all
benchmarks and report the latency of DSCS-Serverless nor-
malized to the Baseline (CPU) with remote storage, using the
same batch size. The rationale behind limiting the batch size
to 64 is that AWS Lambda has a strict cap on the network pay-
load size for serverless functions [109]. Relative to the Baseline
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(CPU), the performance improvements of DSCS-Serverless in-
crease from 3.6X for batch size 1 to 15.8% for batch size 64.
This performance improvement stems from (1) reducing the
communication overheads of transferring batched data to the
compute node and (2) the capability of the DSA in reusing the
weights across the batch, thereby improving the computation
significantly. The improvements are more pronounced for
Conversational Chatbot and Document Translation, since these
benchmarks deploy language models with a large number of
weights, where DSCS-Serverless leverages batching to amor-
tize the cost of loading weights by reusing them across the
input batch.

Tail latency effect. Accessing remote storage can incur long
tail latency (§2). To understand this variability and its impli-
cations on DSCS-Serverless performance, we perform a sweep
across various latency distributions for the PCle, P2P, and
network. Figure 15 shows the implications of tail latency nor-
malized to Baseline (CPU) with the same latency distribution.
Results suggest DSCS-Serverless is robust to network and I/O
tail latency since it removes the data movement over them.
On average, DSCS-Serverless provides 5.0x speedup for the
99*h percentile and 3.1x speedup for 50" percentile.

Number of accelerated functions. To analyze the sensi-
tivity of the DSCS-Serverless to the number of accelerated
functions, we create synthetic benchmarks by adding either
one, two, or three additional accelerated functions to the appli-
cation. These functions are duplicates from the original bench-
marks’ function 2. The label in Figure 16 refers to the number
of replicated functions and performance is normalized to the
Baseline (CPU) running the same function configuration. Re-
sults show that by increasing the number of functions that are
offloaded to DSCS-Serverless, the improvements escalate (from
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Figure 17. Sensitivity to cold vs. warm containers.

3.6X t08.1x). This isbecause it emulates the scenarios in which
the serverless applications are composed of more complex
pipelines with multiple functions [129, 130]. Using these com-
plex pipelines would incur more pronounced computation
and communication overheads to the end-to-end execution,
both are addressed significantly by domain-specialization and
near-storage computation of DSCS-Serverless.

Cold start. Figure 17 shows the speedup of DSCS-Serverless
over Baseline (CPU). Both DSCS-Serverless and the baseline use
cold containers where they pull the container image (includ-
ing the weights for the model) and load it to the memory of
the DSA. Since the models are large, the time to load a model
accounts for a significant portion of the end-to-end latency,
thereby reducing the speedup from 3.6X to 2.6x. However,
as mentioned in Section 5.3, cold latency is incurred by both
DSCS-Serverless and the baseline systems. Further, only the
first invocation incurs a cold latency while all subsequent
invocations can potentially hide the cold latency using pre-
emptive horizontal scaling (Refer Section 5.3).

7 Related Work

Individually, the emergence of serverless computing, the shift
towards storage disaggregation, and the adoption of domain-
specific accelerators has provided significant benefits but col-
lectively they pose interesting challenges. The paper explores
the confluence of the three trends and provides a pathway
to unlock the true benefits from accelerators for serverless
computing in disaggregated datacenters.

Serverless and storage. Serverless functions are stateless
and ephemeral [65-67, 84]. They use persistent storage to
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transfer intermediate data between functions. Locus [131] fo-
cused on deriving an optimal combination of storage and fast
in-memory caching while SONIC [132] used local and remote
storage to pass databetween functions. Pocket [15] proposed a
storage system to allocate different storage resources depend-
ing on workloads to reduce cost. NumPyWren [133] identified
appropriate block size to remote storage for serverless linear
algebra. Jiffy [134] used in-memory caching on remote servers
to accommodate intermediate data. However, it still incurs
the network latency to remote storage. These papers are or-
thogonal to our work since they consider multi-tier storage
and the possibility of efficient data passing between functions.
DSCS-Serverless introduces a novel model of serverless com-
puting by leveraging near-storage DSA to reduce the data
movement and unlock additional benefits from acceleration.

Systems for serverless functions. Various systems have
been proposed that optimize the performance for serverless
functions. SmartNICs have been used to accelerate serverless
functions [135]. Speedo [136] placed the function dispatcher
on SmartNIC to avoid latency overhead. Dagger [85] accel-
erated RPCs using FPGA-based NIC. BlastFunction [137] ex-
poses FPGAs to serverless framework for acceleration while
Shredder [138] executes programs on CPU in the storage con-
troller. Molecule [61] and Hardless [64] propose runtimes to
enable hardware accelerators for serverless. HiveMind [139]
proposes a hardware-software solution for serverless edge
swarms. Overall, these solutions either enable data-movement-
aware acceleration or compute-focused acceleration using
GPUs/FPGAs. DSCS-Serverless on the other hand, leverages
the insight that serverless functions are stateless and require
remote storage in a disaggregated datacenter to devise a com-
prehensive, cross-stack near-storage serverless acceleration
solution.

Near-storage acceleration. Prior works have explored near-
data ASICs for various domains demanding large amount of
data transfer. [47, 140-151]. There are commercially available
products such as Eideticom’s NoLoad [152] for transparent
compression, Samsung SmartSSD for utilities (encryption,
compression, etc.) [70], and NGD system’s Newport for en-
cryption on ARM cores [69, 82]. Deepstore [142] introduces a
microarchitecture tailored for in-storage processing of DNNs
and delves into SSD parallelism methods. In contrast, DSCS-
Serverless performs an extensive design-space analysis of us-
ing various in-storage compute platforms while abiding by the
constraints imposed by the storage and identifies an optimal
DSA configuration to unlock the potential for acceleration of
serverless functions in disaggregated datacenters.
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8 Conclusion

Emergence of serverless computing coupled with disaggre-
gation and hardware specialization introduces unique chal-
lenges and opportunities that emanate the overhead of com-
municating data from remote storage. To address this issue,
the paper devises a serverless execution model that integrates
a domain-specific accelerator within the storage device. Eval-
uation with a diverse set of benchmarks against variety of
compute platforms shows significant gains in terms of perfor-
mance, energy, and cost efficiency. As such, this paper marks
an initial step towards utilizing accelerators for serverless
execution in disaggregated datacenters.
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