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Abstract
While (I) serverless computing is emerging as a popular form
of cloud execution, datacenters are going through major
changes: (II) storage dissaggregation in the system infras-
tructure level and (III) integration of domain-speci�c accel-
erators in the hardware level. Each of these three trends in-
dividually provide signi�cant bene�ts; however, when com-
bined the bene�ts diminish. On the convergence of these
trends, the paper makes the observation that for serverless
functions, the overhead of accessing dissaggregated stor-
age overshadows the gains from accelerators. Therefore, to
bene�t from all these trends in conjunction, we propose In-
StorageDomain-Speci�cAcceleration for Serverless Comput-
ing (dubbed DSCS-Serverless1). The idea contributes a server-
lessmodel thatutilizes aprogrammable accelerator embedded
within computational storage to unlock the potential of accel-
eration in disaggregated datacenters. Our results with eight
applications show that integrating a comparatively small
accelerator within the storage (DSCS-Serverless) that �ts
within the storage’s power constraints (25 Watts), signi�-
cantly outperforms a traditional disaggregated system that
utilizes NVIDIA RTX 2080 Ti GPU (250Watts). Further, the
work highlights that disaggregation, serverless model, and
the limited power budget for computation in storage device
require a di�erent design than the conventional practices of

1DSCS-Serverless is short for Domain-Speci�c Computational Storage for
Serverless Computing.
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integrating microprocessors and FPGAs. This insight is in
contrast with current practices of designing computational
storage devices that are yet to address the challenges associ-
ated with the shifts in datacenters. In comparison with two
such conventional designs that use ARM cores or a Xilinx
FPGA, DSCS-Serverless provides 3.7⇥ and 1.7⇥ end-to-end
application speedup, 4.3⇥ and 1.9⇥ energy reduction, and
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1 Introduction
(I) Serverless computing is emerging as a prevalent form of cloud
execution that has been adopted across di�erentmarket sectors such
as smart transportation [1, 2], entertainment/broadcasting [3–5], e-
commerce [6], �ntech [7], etc. This adoption is backed by the public
cloud services such as AWS Lambda [8], Google Cloud Functions [9],
and Azure Serverless Computing [10]. The popularity of serverless
is driven by ease of programming, pay-as-you-go pricing model,
and alleviating the need for managing the cloud execution by the
developers.
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Besides this shift in the cloud-native application development,
datacenters are going through major changes: (II) storage disaggre-
gation in the system infrastructure level [11–17], and (III) integration
of domain-speci�c accelerators [18–50] at the hardware architecture
level. Disaggregation is enabled by the increase in network band-
width tohundreds ofGbps and reduction in latency to single-digitmi-
croseconds [14]. Disaggregation has shown promising results in re-
sourceutilization, elasticity, and failuremitigation indatacenters [14,
51, 52]. While the improvements in networking is making storage
disaggregation a viable solution, the failure of Dennard scaling [53]
and the dark silicon phenomenon [54–56] has ignited a golden age
of domain-speci�c accelerators [57]. These accelerators have made
their way into the datacenters of major cloud providers including
Amazon [20], Google [18, 58], Meta [21], and Microsoft [59, 60].

The trend towards serverless has coincided with these two struc-
tural changes in the infrastructure and the hardware. Each of these
trends individually provide signi�cant bene�ts but collectively poses
challenges. On the one hand, the gains from domain-speci�c accel-
erators can potentially expand serverless usecases [61–64] and/or
potentially improve their speed and e�ciency. On the other hand,
serverless functions operate on ephemeral data and they need to
read and store their inputs and outputs from persistent storage for
every invocation [15, 65–67]. To that end, we make the observation
that with disaggregated storage, the overhead of moving input and
output data fromremote storage limits the bene�ts fromacceleration.
The gains will be limited since current accelerators are inherently
designed to myopically focus on the compute and are not meant to
deal with the signi�cant data movement cost in serverless functions.
Observing these insights, as shown inFigure 1, thepaper explores the
con�uence of the three trends and devises a pathway towards max-
imizing the bene�ts from accelerators for serverless computing on
disaggregated datacenters. We propose In-Storage Domain-Speci�c
Acceleration for Serverless Computing (dubbed DSCS-Serverless).

This idea contributes a serverlessmodel that leverages a relatively
small programmable accelerator within storage to unlock the po-
tential of acceleration in disaggregated datacenters. The proposed
model does not advocate moving back heavy compute to the storage
but takes a more balanced approach by integrating a rather small
accelerator within the storage device tomitigate the communication
overheads when applicable. These programmable accelerators are
activated and utilized when a serverless function belongs to their
corresponding domain. However, placing an accelerator within the
storage comes with challenges.

Tight power constraints.According to commercial designs, stor-
age devices adhere to stringent power budgets [68–71]. Furthermore,
this power budget is apportioned between the �ash and the accel-
erator. As such, one of the primary challenges is to architect an
in-storage accelerator that not only covers a broad range of applica-
tions in the domain, but also adheres to the tight design constraints.
We explore using various in-storage compute platforms (Domain-
Speci�c Accelerator, ARMCPU, Low-power GPU, and FPGA) for a
domain of serverless application while abiding by the constraints
imposed by the storage. Considering the constraints, we also per-
form a Pareto design space exploration that examines more than 650
accelerator con�gurations.

Storage	
Disaggrega,on

Domain
Specific

	Accelera,on

Serverless
Compu,ng

DSCS
Serverless

Figure 1. This paper devisesDSCS-Serverless at the conjunc-
tion of three di�erent trends in datacenters: (1) serverless
computing in the programming level; (2) storage disaggrega-
tion in the system infrastructure level; and (3) domain-speci�c
accelerators in the hardware level.

In-storageaccelerator integrationwithserverlesssystemstack.
Serverless functions use frameworks such as OpenFaaS [72] and Ku-
bernetes [73] for deployment and orchestration. The challenge is
how to minimally change the serverless system stack to integrate
DSCS-Serverless without disruption to traditional application op-
erations within a disaggregated datacenter. Our solution enables
serverless functions to be o�oaded to the in-storage accelerator
seamlessly using software hints provided at function deployment
time. We also design an OpenCL device driver that enables server-
less functions to access the accelerator. Furthermore, we handle the
scheduling of both data and functions and the challenges associated
with storage scaling, data replication, and fault tolerance in a disag-
gregated datacenter that leveragesDomain-Speci�cComputational
StorageDrive (DSCS-Drive).

We choose machine learning/neural networks as the domain to
design a programmable accelerator and showcase an implementa-
tion of DSCS-Serverless. We evaluate the system through a rigorous
study with eight real-world, latency-critical, end-to-end serverless
applications inspired from AWS Lambda case studies [74–81]. Eval-
uations show that integrating a comparatively small accelerator
for DSCS-Serverless signi�cantly outperforms a traditional disaggre-
gated system that utilizes the NVIDIA RTX 2080 Ti GPU. In com-
parison, DSCS-Serverless achieves 2.7⇥ end-to-end speedup, 4.2⇥
energy reduction, and 3.0⇥ better cost e�ciency. DSCS-Serverless
also performs better than existing computational storage solutions
that either use microprocessors [69, 82] (3.7⇥ end-to-end speedup,
4.3⇥ energy reduction, and 3.2⇥ better cost e�ciency) or FPGAs [70]
(1.7⇥ end-to-end application speedup, 1.9⇥ energy reduction, and
2.3⇥ better cost e�ciency).

To put it in a nutshell, the paper contributes:
• The insight that overhead ofmoving data from remote stor-
age limits the bene�ts from acceleration for serverless functions in
disaggregated datacenters.

• The DSCS-Serverless execution model that leverages a rela-
tively small programmable accelerator within the storage device to
accelerate a domain of serverless functions.

• A so�ware stack that seamlessly integrates in-storage accel-
erator with existing serverlessmodels, handling storage-speci�c
challenges such as data placement, scalability, and utilization, along
with serverless considerations suchas functionplacement, scalability,
and cold starts.
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• The insight that disaggregation, serverless model, and the
limited power budget for computation in storage require an
alternative design than the conventional practices of integrating
microprocessors and FPGAs within storage.

2 Background andMotivation
Serverless computing is a cloud computing model that allows devel-
opers to write and run code without worrying about the underlying
infrastructure, scaling, or billing.

Why Serverless? Amotivating use-case.Wild�res pose a serious
threat to California’s �ora and fauna, environment, and infrastruc-
ture. SanDiegoGas&Electric (SDG&E), an energy services company
in Southern California, uses drones to capture images of forest and
uploads them to the cloud, as shown in Figure 2. An object detection
serverless application hosted on AWS analyzes the images for po-
tential �re hazards in real-time [81, 83], enabling SDG&E to respond
e�ectively and swiftly to wild�re risk.We use this application below
to describe a model serverless execution �ow.

Edge Cloud

Cloud	
Endpoint

Disaggregated	Storage		(eg.,	AWS	S3)

St
or
e

Retrieve St
or
e

Retrieve

Retrieve

Compute	Nodes		(eg.,	AWS	EC2)

Data	
Pre-processing

ML/DNN
Model

NoEficaEon	
Service

Figure 2. A serverless computing work�ow for an object
detection application that detects wild�res using drones. The
drones capture imagesof the forest and send themto the cloud,
where a serverless application consisting of three functions
analyzes the images to detect potential �re. The functions
uses disaggregated storage for data exchange.

2.1 Life of Serverless Application

Deployment. Figure 2 depicts a widely used serverless pipeline
for object detection [76] that consists of three functions: Data Pre-
processing, Machine Learning/Neural Network (ML/DNN) Infer-
ence, and Noti�cation Service. During deployment, the applications
are modeled as serverless functions and chained together using
RESTful APIs. The application developer (in this case SDG&E) also
con�guresmetadata constraints (timeout, triggermechanisms, hard-
ware requirements, etc.) into a con�guration �le (eg., YAML in AWS)
for each of the functions. Since serverless functions are stateless,
SDG&E also allocates a persistent storage (such as AWS S3) that
is used by the functions to retrieve and store data. SDG&E then
deploys the application to a cloud serverless provider such as AWS
Lambda [8], Google Cloud Functions [9], etc.

Invocation. The Remote Sensing application is invoked when data
(eg., image) is sent from the drone to the cloud datacenter where
the Remote Sensing application is deployed. The data arrives at the
storage that was con�gured during deployment by SDG&E. Based
on the function’s deployment constraints outlined in the YAML �le,

the serverless framework running on the cloud (AWSLambda, Open-
FaaS, etc.) launches the function on a compute node. The function
then retrieves the data using an RPC from the storage node as shown
in Figure 2. At the storage node, this RPC invokes a series of system
calls to read data from the physical storage over PCIe. The data are
then serialized [58], converted to network packets and transmit-
ted to the compute node. After function execution, the output data
(ephemeral or not) are stored back to the persistent storage following
similar steps discussed above for reading the data. Moreover, if the
function utilizes a specialized domain-speci�c accelerator (DSA)
such as GPUs, ASICs or FPGA at the compute node, the compute
node has to further initiate a data transfer (e.g. cudaMemcpy for
GPUs) to the DSA devices’ memory generally over PCIe [50, 61].
Overall, these steps are expensive for serverless functions that come
with strict Service Level Objective requirements [67, 84] since they
involve RPCs [65, 85], system calls [86], and I/Os [67].

2.2 Characterization of Serverless Applications
As demonstrated above, there are variegated components that con-
tribute to the end-to-end latency of a serverless application. We
pro�le serverless applications (Table 1) on AWS EC2 instances using
the methodology described in Section 6.1 to understand how these
components contribute to the end-to-end application latency.
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Figure 3.Cumulative distribution function for reading inputs
from AWS S3 for di�erent benchmarks.

Communication in disaggregated storage datacenters. Figure 3
shows the cumulative distribution function for reading data from
remote S3 storage across a range of benchmarks (refer Table 1). The
results show that accessing storage su�er from tail latency.The average
latency di�erence between the median and the 99C⌘ percentile is a
factor of 110% for read accesses. This long tail latency is primarily be-
cause of remote storage that increases the network communication
overhead. Our analyses about tail latency of serverless functions is
commensurate with prior studies [65, 87, 88]. Indeed, recent work
has devised solutions to mitigate network latency for microservices
or serverless functions through RPC accelerations [58, 85, 89], spe-
cialized network protocol for RPC [90], and communication bypass-
ing/fused functions [66, 67].
Computation vs. communication. Figure 4 shows the compute,
communication (network + I/O), and the system stack overhead of
launching the function usingOpenFaaS andKubernetes.We observe
that latency to access the remote storage accounts for a signi�cant
portion of the end-to-end application runtime (on average >55%).
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The average latency for reading and writing the data to the remote
storage is greater than the time it takes to perform the computation. In
fact,Credit RiskAssessment,AssetDamageDetection, andContent
Moderation consists of � 70% communication. This communi-
cationoverhead isnaturallyexpectedbecauseof theserverless
function execution �ows discussed earlier (§2.1).

Figure 4. Runtime latency breakdown for application mod-
eled as serverless functions deployed on AWS EC2 with re-
mote S3 storage.

Domain-speci�c acceleration.Accelerators have been in-
tegrated intomajor cloud providers includingGoogle [18, 58],
Amazon [20], Meta [21], andMicrosoft [60]. The e�ciency of
theseaccelerators canunlockadditionalusecases in serverless
computing [61, 63, 64]. However, the primary target of these
accelerators is commonly focused on computation e�ciency.
Figure 4 shows that the maximum speedup attainable by ac-
celerating the compute is capped at 1.52⇥. This is because
with remote storage, the overhead of moving input and output
data (on average > 55%) limits the bene�ts from acceleration
in serverless applications.As such, the overall bene�ts of the
current paradigm of acceleration for serverless computing in
disaggregated storage datacenters is strictly limited by the
Amdahl’s Law [91].

3 Overview of DSCS-Serverless
DSCS-Serverless is an execution model for serverless comput-
ing that integrates small programmable accelerators within
some of the storage drives in disaggregated datacenters. The
model aims to leverage in-storage accelerator to reduce the
communicationoverheads,withoutshiftinghigh-performance
compute devices (eg., GPUs) back to the storage node. The
accelerators are designed for a speci�c domain of functions
and provide acceleration when applicable.

Figure 5 (a) shows how DSCS-Serverless �ts into the cur-
rent datacenter rack infrastructure. Speci�cally, in theDSCS-
Serverless model, we replace some of the existing storage
drives with computation storage drives that house an in-
storage domain-speci�c accelerator (DSA). We term this type
of storage device asDomain-Speci�cComputational Storage
Drive (dubbedDSCS-Drive).
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Figure 5. System architecture of DSCS-Serverless. (a) How
DSCS-Serverless �ts into the datacenter rack infrastructure.
(b) The architecture ofDSCS-Drive that integrates a DSA next
to the �ash array.

DSCS-Drive. Figure 5 (b) shows the architecture of DSCS-
Drive.DSCS-Drive integrates a relatively small in-storageDSA
on which a domain of functions execute. The DSAwithin the
DSCS-Drive directly communicates with the �ash array (e.g.
NAND �ash, SLC, MLC, SSD, etc.) using the dedicated data
bus (eg., PCIe peer-2-peer links [70]). The DSCS-Drive also
houses a small DRAMmemory that acts as a staging bu�er
to exchange data between the host CPU, the �ash array, and
the DSA. The DMA engine is used to transfer data between
each of these components.

Withsuchsystemarchitecture, serverless functions thatare
amenable to accelerationusing the in-storageDSAobviate the
extravagant network and I/O data transfer overheads (remote
read/write parts in Figure 4). Furthermore,DSCS-Serverless
does not consume CPU cycles in the storage node, except for
initiating the data transfer to theDSA located near the storage
node. Thus, it does not interfere with the applications that
run concurrently on the storage node’s CPU. DSCS-Serverless
also improves the resource utilization of the storage node
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by enhancing the storage drives with an additional computa-
tional capabilitywithout hampering the conventional storage
functionality to serve applications.

3.1 Life of a Serverless Function inDSCS-Serverless
Wecontrast the life of a serverless function inDSCS-Serverless
and the traditional serverless execution model.

1 7! In contrast to traditional system, inDSCS-Serverless, a
function that is amenable to acceleration is directly deployed
toDSCS-Drive that has the data. This thereby eliminates the
costly invocation of a compute node. In §5.3, we describe
the details of how DSCS-Serverless identi�es the functions
amenable to acceleration.

2 7! Insteadof fetchingdata fromremote storagevia costly
RPC requests, DSCS-Serverless employs its driver to initiate a
peer-to-peer (P2P) data transfer from �ash array to DRAM
memory within the DSCS-Drive. As described in §2.2, each
function invocation in the traditional systemconfers anotable
data read/write latency. Speci�cally, in the traditional system
an AWS S3 read request is translated into a RPC that incurs
the network latency to access the remote storage. Upon reach-
ing the storage node, the request further requires a protobuf
deserialization and a read system call to access the data over
PCIe interface. In fact, to reduce the high cost of protobuf op-
erations, prior work has proposed hardware accelerators [58].
In contrast, DSCS-Serverless circumvents the costly protobuf
operations by performing a single system calls that initiates
a P2P data transfer from the �ash array to the DRAMmem-
ory bypassing the host’s software stack. Once the data are
entirely transferred to the DRAMmemory, the execution of
the serverless function starts.

3 7! After the function execution completes, the DSA
sends an interrupt over PCIe to the host CPU to initiate a P2P
transfer of the results to the �ash array. Once the transfer
completes, the host may invoke subsequent serverless func-
tion calls. This is in contrast to the traditional system inwhich
data transfer over network and I/O events occur to write the
results to persistent storage.

4 Architecture Design for DSCS-Serverless
In this section, we �rst discuss the architecture of the pro-
grammabledomain-speci�caccelerator (DSA).Then,weshow-
case a methodology to derive the optimal DSA con�guration
under tight storage power constraints. We also demonstrate
a technology scaling analysis to project the performance for
more recent technology nodes. While we present the design
space exploration framework for a single domain of appli-
cations, it can be readily employed to �nd optimal DSAs for
arbitrary application domains.

Architecture formachine learning/neural networks ap-
plications.As per an IBM survey, machine learning/neural
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Figure 6.Architecture of the in-storage domain-speci�c ac-
celerator (DSA) formachine learning/neural networkswithin
theDSCS-Drive.

network (ML/DNN) including transformers such as large lan-
guage models inference applications are one of the fastest
growing domains in serverless computing, accounting for
more than 40% of services [10, 92, 93]. As such, we set the
primary target of our design to accelerate such applications.
The important design decisions that we considered for the
architecture are: programmability such that it can cater to
a wide range of commonly deployedML/DNN applications
and low-power such that it can abide by the stringent power
constraint imposed by the storage [68, 70, 94]. Speci�cally,
the architecture should support a wide range tasks such as
image classi�cation, object detection, semantic segmenta-
tion, linear/logistic regression, neural machine translation,
conversational AI, generative AI, data pre-processing, etc.

We analyze the applications listed in Table 1 to identify the
various types of operations that are present.We�nd that apart
from the General Matrix Multiplication (GeMM) operations
(matrix multiplication, convolution, etc.), the ML/DNNmod-
els used in the applications also consists of operations such
as element-wise mathematical operations (add, sub, multiply,
etc.), element-wise activation functions (ReLU, GeLU, TanH,
Sigmoid, etc.), data layout transformations (eg., reshape, trans-
pose, etc.), reduction-based operations (layer-normalization,
batch normalization, mean, etc.), and data type conversion
operations (eg., fp32 to fp16). To this end, as illustrated in Fig-
ure 6(b), we design a DSA that consists of aMatrix Processing
Unit (MPU ) to execute the GeMM layers and tightly couple it
with aVector Processing Unit (VPU ) to execute the other layers
described above.

4.1 Domain-Speci�c AcceleratorMicroarchitecture

Matrix Processing Unit. Figure 6 shows theMPU and the
microarchitecture of a processing engine (PE) inside theMPU .
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TheMPU consists of a 2D array of Processing Elements (PEs)
and dedicated multi-bank bu�ers (scratchpad) for input ac-
tivations, weights, and outputs as shown in Figure 6. Each
bank of the bu�er unit is exclusively shared across PEswithin
a row. The execution �ow of such architecture is similar to
conventional systolic-array accelerators [24, 31, 95]. At each
cycle input activation tensors are fetched from input bu�ers
and shared across the PE units within a row. The partial sum
from the PEs are forwarded in a waterfall fashion per column.
Once the computations across the array of PEs conclude, the
results are either fed to the VPU for ensuing operations or
written back to DRAM.

Vector Processing Unit. Figure 6 shows the microarchiec-
ture of the VPU and vector engine (VE) that performs the
computations. The VPU is a Single Instruction Multiple Data
(SIMD) architecture designed primarily to execute activation
functions (e.g.Relu,LeakyRelu,Tanh,Sigmoid),pooling,quan-
tization, vectorarithmetic computations, anddatatypecasting
which are prevalent in emerging data analytic workloads [49,
96]. The Vector Processing Unit and theMatrix Processing Unit
are closely connected through the shared multi-bank output
bu�er, as Figure 6 shows. This way, the VPU can access the
data from theMPU directly, without having to get it from the
DRAM. Furthermore, ML/DNN applications also require data
pre-processing/post-processing such as tokenization, normal-
ization, scaling, anddatatype casting [75, 78, 97, 98], etc.These
transformations are commonly packaged as separate server-
less functions [80, 97]. We utilize the VPU to execute these
data pre/post-processing functions aswell thereby expanding
the type of functions that can leverage the DSA.

4.2 Design-Space Exploration for
Optimal In-Storage Domain-Speci�c Accelerator

Design-space exploration is crucial to ensure that DSA archi-
tecture adheres by the tight power and thermal constraints
of storage drives. In this section, we discuss the power and
thermal constraints imposed by the storage drives and then
describe the details for the design-space exploration.

Power and thermal constraints of storage drives. Stor-
age drives have tight design constraints primarily because
of the limited PCIe power budget ( 25 watts [68]) that is
the exclusive source of power for these units. To provide an
estimate of the storage drive’s limited power budget, com-
mercially available computational storage drives such as the
Samsung’s SmartSSD [70, 71] have merely a TDP (ideal) of 25
watts. Furthermore, the power source in these computational
storage drives is shared between the �ash array and com-
pute (eg., FPGA) [69–71]. As such, performing design-space
exploration for DSA is crucial.

Design-spaceexplorationobjective.Therearevarious con-
�icting factors to take into account to identify optimal DSA
design points for storage drives. Commensurate with prior

work [55, 99], we use throughput (frames per second/tokens
per second) as the performance metric. Capital expense in-
curred by ASIC fabrication is another determining factor for
designing data centers [100, 101]. However, measuring the
precise capital expense is not pragmatic and kept con�dential
by major cloud providers. Therefore, we use chip area as a
proxy for the ASIC fabrication cost. We use DSA’s power con-
sumption to assess the feasibility of a design point, which is
cappedby the storage drive’s limitedpower budget. The objec-
tive of design-space exploration is to �nd design points that
are on the Pareto frontier of the power-performance and area-
performance. Particularly, we only select DSA architecture
con�gurations that are on the Pareto frontiers while abiding
by the tight power and area constraints of storage drive. We
choose theopensource45nmFreePDK[102] technologynode
for our baseline analysis in the design-space exploration.

FPGA implementation and simulationmethodology.To
e�ectively support the design space exploration of DSA, we
designate the number of PEs, systolic array X-Y dimension,
on-chip bu�er sizes, and memory bandwidth as con�gurable
parameters. We then implement and synthesize DSA using
themethodology detailed in §6.1. Since hardware simulations
for the entire design points (> 650) is not practical, we develop
a cycle-accurate simulator to closely model the latency and
power of our designed DSA (refer §6.1). For power and area
numbers, we use the synthesized values using 45 nm technol-
ogy node. We followed the methodology in [103] to scale the
results to 14 nm, which is relatively similar to the technology
node of Samsung SmardSSD [71]. We provide the details of
methodology in Section 6.1.

Domain-speci�c accelerator search space.WeuseGoogle
TPUv1 [18] with 256⇥256 PEs, 28 MB of on-chip bu�ers, and
34 GB/s memory bandwidth as the standard design point. We
then scale this design by varying the number of PEs from
4⇥4 to 1024⇥1024 with a power of 2 stride. We proportion-
ally scale the bu�ers to provide su�cient on-chip resources
for PEs. However, we set the maximum total bu�er size to
32 MB because large bu�er sizes signi�cantly increase the
power consumption, exceeding the tight power constraints
for DSA. We use three realistic memory bandwidth in the
search space, namely DDR4 (19.2 GB/s), DDR5 (38 GB/s) and
HBM2 (460 GB/s).

Pareto-optimal design points. Figure 7 demonstrate the
power-performanceandFigure8 shows thearea-performance
results across a range of design points. The curved lines
(Pareto frontier) shows the best power-performance and area-
performance tradeo�s for DSA con�gurations. By de�nition,
Pareto frontier provides the most optimal points in a design
space. We exclude the design points that are either infeasi-
ble because of design constraints or signi�cantly ine�cient
in terms of throughput. The power and throughput of each
design point is an average across set of target benchmarks
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(See Table 1). The design point at the bottom left portion of
Figure 7 (power-performance), represents a 4x4 systolic ar-
ray with 128 KB on-chip bu�er and DDR4memory. The top
right design con�guration shows a 128⇥128 systolic array
with 4 MB on-chip bu�er and DDR5 memory (denoted by
Dim128-4MB in Figure 7).

The results of our design-space exploration indicates that a
1024⇥1024 systolic array delivers signi�cantly lower through-
put compared with 128⇥128 array. This is because the DSA
employs a tiling-based executionmechanism. For a batch size
of one, a 1024⇥1024 systolic array does not show the most op-
timal performance because the compiler (Section 5.1) aims to
obtain the optimal tiling such that the DSA overlaps themem-
ory transfers for a tile with the computation of preceding tile.
If the tile sizes are large, the cycles spent on memory transfer
outweigh the compute cycles. This is similar to CPU pipelines
where stalls reduce the IPC. Through our design space explo-
ration, we �nd the most optimal DSA con�guration to be a
128⇥128 systolic array with 4 MB on-chip scratchpad, and
DDR5 memory.

5 In-Storage Accelerator
Integration with Serverless System Stack

DSCS-Serverless integrates in-storageacceleratorswithserver-
less computing framework by addressing system software,
storage, and serverless speci�c considerations. In achiev-
ing this goal, DSCS-Serverless strives to introduce minimal
changes to the existing software/framework avoiding disrup-
tions to traditional application operations in a disaggregated
storage datacenter.

5.1 Integration
of DSCS-Serverless with System Software

This section discusses the challenges and solutions of adapt-
ingDSCS-Serverless into the existing system software, such as
modifying the programming model, the compiler, the device
drivers, etc. The goal is to makeDSCS-Serverless easy to use
without adding any extra work for the application developer.

System software stack. DSCS-Serverless is deployed atop
OpenFaaS, an open source serverless framework. OpenFaaS
is deployed on Kubernetes to orchestrate containers, and uses
Promethus [104] for cluster monitoring and telemetry. DSCS-
Serverless can also be readily deployed into other serverless
platforms such as Apache OpenWhisk [105].

Programmingmodel. In serverless, developers de�ne their
applications as a Directed Acyclic Graph (DAG) of decou-
pled functions [67]. During deployment of these functions,
the developer provides a con�guration �le (eg., YAML) that
describe the properties and constraints of the function (eg. de-
pendencies, timeout, access mechanism, storage, etc.).DSCS-
Serverless extends this YAML�le to enable developers tomark
in-storage DSA acceleratable functions. In addition, develop-
ers provide a container that packages the accelerated server-
less functionwith the appropriate device drivers and libraries.

Device driver and libraries. To support in-storage acceler-
ation,DSCS-Serverless includes an OpenCL device driver. The
driver implements standard interfaces for mapping storage
space to physical address space of both the storage node and
the DSA’s con�guration registers and memory. Additionally,
the driver orchestrates direct P2P data transfer between the
storage and the DSA that bypass the storage node’s system
stack and utilizes dedicated PCIe links. The OpenCL driver
also abides by the OS security checks for access control to
both storage and DSA. The acceleratable function’s container
include all dependent libraries such as OpenCL framework
and associated runtime/tools that is needed by the DSA.

Compiler support.We develop a compilation stack capable
of code generation for di�erent DSA con�gurations and for a
range of evaluated machine learning/neural networks bench-
marks. The functions that utilized the DSA are implemented
using Pytorch and stored as ONNX (Open Neural Network
Exchange) �les. The front-end part of the compiler performs
a range of optimizations [106], including operator fusion to
minimize o�-chip data movement. Then the compiler per-
formsDSA design con�guration (e.g. number of PEs, memory
bandwidth) speci�c optimizations such as padding and tiling
to maximize the DSA’s utilization. Once these optimization
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passes complete, the compiler generates the hardware con-
�guration speci�c optimized executable code. This code is
packaged along with the serverless function in the container.
Note that we rely on the developer to partition their applica-
tion into server functions that can or cannot be accelerated
using a in-storage DSA.

5.2 Storage Node Considerations for DSCS-Serverless
In this section, we present how to integrateDSCS-Serverless
into the storage servers. We address three key challenges:
how to place the data intelligently on the storage drives near
the accelerator, how to transfer data seamlessely between
the accelerator, storage drive, and the host CPU, and how to
ensure scalability of DSCS in disaggregated datacenters.

Data placement. To enable e�ective utilization of in-storage
accelerators, it is essential that the data to be processed is
situated on the same storage drive that houses the accel-
erator. Cloud service providers today o�er various storage
classes [107] for di�erent types of data (hot and frequently ac-
cesseddata, colddata, andarchiveddata, etc.).DSCS-Serverless
resembles the baseline system that uses a disaggregated key-
value storage setup, similar to AWS S3. This setup involves
replicating data across multiple storage nodes to ensure data
reliability. If a serverless function is acceleratable, DSCS-
Serverless maps one of its replicas to a DSCS-Drive (a new
class of storage). Storage nodes typically divide data into
�xed-size chunks (ranging from 1MB to 64MB [108]) before
storing them on physical media. However, DSCS-Serverless
assumes requests (data) are not distributed across multiple
devices within the same storage node due to the small size
( 20MB in AWS S3 [109]) of serverless requests. In those
exceptional instances where data is indeed distributed across
multiple storage drives, DSCS-Serverless has the �exibility
to either revert to default CPU execution or execute data in
parallel across multiple CSDs.
During invocation, all data requests for a function des-

ignated as acceleratable during deployment are directed to
theseDSCS-Serverless capable storage drives. As the number
of requests (data) increases, it is possible to store di�erent
requests on separate drives that supportDSCS-Serverless. This
is because requests (data) are independent of each other, and
therefore, the scheduling of requests can be distributed across
di�erent drives. The scheduler relies on Prometheus teleme-
try to decide whether to employ in-storage acceleration or
execute the function in a conventional manner depending on
if the node is busy.

Storage utilization. The accelerator inDSCS-Serverless is an
optional extra capability to utilize the storage more. It does
not a�ect conventional serverless or storage functionality, as
it can be bypassed for normal storage operations.

Storage scalability.One of the design goals of disaggrega-
tion is the independent scalability of resources. For exam-
ple, compute resources can be scaled independently from
remote storage (such as S3), which o�ers virtually unlim-
ited storage capacity.DSCS-Serverless does not compromise
this since DSCS-Serverless capable nodes can also function as
conventional storage node for applications that do not need
compute acceleration capabilities.DSCS-Serverless scales hor-
izontally by adding more compute capability drives. Hence,
DSCS-Serverless does not limit independent storage scalability.

Host and storage communication. The DSA and the �ash
storage device in the computational storage use the samePCIe
links to communicate with the host node. A switch in the
computational storage routes the requests to either the �ash
storage device or the DSA, based on the request type. There
is also a dedicated P2P connection between the �ash storage
device and theDSA for fast data transfer.DSCS-Serverless uses
this P2P connection to communicate with the �ash storage
device over PCIe links, bypassing the host CPU.

5.3 Serverless
Function Considerations for DSCS-Serverless

DSCS-Serverless is a system that uses a specialized hardware
accelerator to run serverless functions on the storage nodes
that contain the data. This requires the functions to be as-
signed to the same node that has the data and the accelera-
tor. We also need to examine how DSCS-Serverless enables
serverless-speci�c features such as fail-over support, function
chaining, and cold start. In this section, we describe howwe
support these serverless-speci�c properties.

Functionscheduling.Weextend the centralizedKubernetes
scheduler to expose storage nodes that can utilize in-storage
accelerators and map acceleratable serverless functions ex-
ecution to such nodes if the data resides on the node. The
scheduler uses a simple First Come First Serve (FCFS) schedul-
ing policy for the incoming requests, leveraging Prometheus
to monitor availability and prevent overloading a single Ku-
bernetes pod (in this case the storage node). Note that similar
to traditional serverless [8–10], a function instance on the
accelerators also does not support preemption and follows
a run-to-completion execution policy. Once a function is of-
�oaded for computation onDSCS-Serverless, the storage node
marks its compute status as busy. The scheduler does not
o�oad more functions until the node becomes available.

Future directions for optimized scheduling for DSCS-
Serverless. Previous works have explored various schedul-
ing optimizations for di�erent applications, both serverless
and non-serverless [66, 67, 110–115]. However, none of them
have considered the DSCS-Serverless execution model, which
enables in-storage acceleration of serverless functions. Ap-
plying these optimizations toDSCS-Serverless is a potential
future direction that can improve performance. For instance,
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scheduling functionsbasedon their criticality and importance
can enhance the performance ofDSCS-Serverless by assigning
long-running functions tonodes that supportDSCS-Serverless.
Likewise, scheduling policies that consider the whole server-
less applicationDAGand useDSCS-Serverless for applications
that have many acceleratable functions can also boost the
performance. However, scheduling techniques that depend
on task heterogeneity and a�nity to di�erent accelerators
may not be e�ective, asDSCS-Serverless already knowswhich
functions can be accelerated at deployment time.

Fail-over support. In the event of DSA unavailability within
the storage, DSCS-Serverlessmay be unable to process a func-
tion. The scheduler then defaults to conventional execution
using remote compute nodes (e.g., CPU) for function exe-
cution (§2.1). This is possible as DSCS-Drive can operate as
standard storage drives supporting storage APIs (e.g., AWS
S3 APIs [107]). We utilize existing Kubernetes mechanisms
for fail-over and container migration, leveraging telemetry
(via Prometheus) for node health monitoring.

Functionchaining.DSCS-Serverlessmaps chained functions
to the same DSCS-Drive that has the data if they can be accel-
erated by the same DSA. If not, the function falls back to CPU.
Additionally,DSCS-Serverless handles stateless functions that
don’t write to shared data structures, simplifying function
scheduling and duplication.

Cold starts. Functions in DSCS-Serverless incur the same
cold start as functions in traditional platforms. A function
experiences cold start when the function’s container image
is pulled from a remote registry, unpacked, and has to pass
a health check. This happens when a function is deployed for
the �rst time to a node or when function replicas are created
by increasing the number of nodes (horizontal scaling) from
N toN+1. Similar to the conventional serverless execution
mechanism where the function is kept warm on the compute
node’s memory for a certain period of time,DSCS-Serverless
also stores the function on the DSA’s memory for some du-
ration preemptively waiting for new requests. In case when
another di�erent function is scheduled on the DSA, instead
of evicting the old function, the DSA o�oads the function’s
container image to the �ash storage using the P2P intercon-
nect. Next time the same function is scheduled on the same
storage node, DSCS-Serverless can just use the P2P to load
the function instead of fetching it over the network from
the serverless framework such as OpenFaaS which store the
container image in their registry.

6 Evaluation
6.1 Methodology
Benchmarks. To evaluate the e�cacy of DSCS-Serverless,
we use eight real-world latency critical machine learning
or neural network including large language models (LLMs)

applications representing serverless pipelines deployed on
AWS Lambda [74–81]. Table 1 shows the suite of applications,
their description, serverless functions, the machine learn-
ing/neural network model, the number of parameters, and
the corresponding inputs/outputs sizes. Since the exact mod-
els used in AWS Lambda functions are not publicly available
for some benchmarks, we use representative and state-of-the-
art inference models fromHugging Face [116] that provide
similar functionality (e.g. we use ResNet-50 [117] for AWS
Rekognition [76] that o�ers image classi�cation). We con-
tainerize all the serverless functions by using OpenFaaS.

Baseline system setup. For the Baseline (CPU), we use Ama-
zon EC2 c5.4xlarge instancewith Intel®Xeon®Platinum 8275CL
CPU and use an IAM account to connect the instance to a
S3 object storage in the same region. The EC2 instances run
Ubuntu 20.04.4 LTS with kernel version 5.13.0-1029-aws. We
launch a Kubernetes cluster on the EC2 instance and deploy
OpenFaaS on a pod [73]. During deployment phase, applica-
tions are enlisted in the OpenFaaS function registry.

Evaluation of compute platforms. Table 2 lists the spec-
i�cations of all the evaluated platforms. The Traditional Plat-
forms that are currently utilized for serverless function de-
ployment, where the compute (consisting of Baseline (CPU),
GPU, or FPGA) accesses the remote storage via the network.
We also evaluate Conventional In-Storage/Near-Storage plat-
forms (NS), where the compute is within the storage. Since
these platforms are not available in datacenters, we set up
the infrastructure locally similar to the baseline setup de-
scribed above. We consider three low power near-storage
platforms: quad-core ARMCPU [118] (denoted by NS-ARM),
a low-power Nvidia Jetson TX2mobile GPU [118] (denoted
by NS-Mobile-GPU), and Samsung SmartSSD that houses an
FPGA [71] (denoted by NS-FPGA). Since we did not have ac-
cess toARMCortexA53 used in commercial CSDs [69, 82],we
use a more powerful ARM core (Cortex A-57) for our evalua-
tion.Upon invocation, forBaseline (CPU), each functionwithin
the application is launched on a Kubernetes pod running on
the CPU. On all platforms, we use the available compute unit
such as the ARMCPUs, GPU, FPGA, or DSA to execute both
the data pre-processing (Function 1) and ML/DNNmodel in-
ference (Function 2) for each application. Function 3 always
runs on a CPU in a compute node.

Systemperformancemeasurements.For theBaseline (CPU)
measurement, we use the aforementioned baseline setup
on AWS EC2 instance and invoke the application by gen-
erating 10,000 sequential requests using hey [119], an open-
sourced http load generator to measure the latency. We use
the 95th percentile latency for all our analyses similar to prior
work [66, 67]. To measure the latency for all other traditional
compute platforms, we create containers with the required
environments (e.g. ONNXRuntime for GPU or Xilinx XRT for
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Table 1. Benchmarks, their brief description, interconnected chain of serverless functions, machine learning/neural network
model, parameters, and input/output dimension.

Table 2. Speci�cation of the traditional, conventional near-storage, and proposed platforms used for evaluation.

FPGA in addition to their corresponding drivers) that access
the remote storage via the host CPU.

For DSCS-Serverless, we utilize Samsung SmartSSD to imple-
ment the DSA con�guration speci�ed in Table 2 and utilize
the OpenCL driver (§5.1) to measure the end-to-end execu-
tion time, that encompasses the P2P read/write data transfer
latencies and computation latency. Additionally, we include
the system software overhead by incorporating it from the
Baseline (CPU) into the end-to-end latency of DSCS-Serverless.
We execute each application 10,000 times on the Samsung
SmartSSD and sample the 95th percentile latency. For the case
of Conventional Near-Storage platforms, we develop an an-
alytical model where we replace the DSA compute latency
measured for the DSCS-Serverless system with the respective
compute latency of NS-ARM, NS-Mobile-GPU, or NS-FPGA.

Hardware implementation and synthesis.We implement
the DSA in 15k lines of Verilog and synthesize it using Synop-
sys Design Compiler R-2020.09-SP4with FreePDK 45nm standard
cell library. The design achieved a 1GHz frequency. To synthe-
size the DSA for Samsung Xilinx SmartSSD FPGA, we use the
Xilinx Vitis/Vivado toolchain. We also use the Xilinx Vivado
to obtain the resource utilization, timing, power, and thermal
statistics for the FPGA analysis.

Simulation infrastructure.Wecompile eachmachine learn-
ing/neural network model to the domain-speci�c accelera-
tor’s ISA and generate executable binaries. We develop a
cycle-accurate simulator for DSA’s ASIC implementation,

which uses compiler-generated instructions, and provides
cycle counts and energy statistics. We compare the simulator
resultswith the FPGA implementation ofDSAon the Samsung
SmartSSD for the same design con�guration and frequency to
verify the closeness of the cycles by an error margin of  10%.
We use this simulator to obtain the performance/energy num-
bers for DSA ASIC implementation and design projections
mentioned in §3.

To evaluate DSCS-Serverless at scale under high request
arrival rates, we develop a simulation infrastructure thatmod-
els a datacenter rack. We assume the maximum number of
compute platforms (DSCS-Serverless or Baseline (CPU) with
remote storage) available on a data center system is 200. The
simulator also has a scheduler with a queue (depth 10,000)
that holds incoming requests that cannot be executed on a
node. The scheduler handles the incoming requests using the
policy described in §5.3. Similar to prior work [120], we also
generate an application trace (Figure 13 (a)) by randomly sam-
pling functions from the benchmarks (Table 1) using Poisson
distribution and impose load on the system for 20minutes.We
use this setup tomeasure thewall clock time (§6.2.2), which is
the cumulative wall clock time the platforms take to process
all the incoming requests from the application trace. We also
use this setup to measure the e�ect of cold starts (Figure 17).

Powermeasurement.Wemeasure the compute, PCIe and
system stack power dissipation and combine them to report
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Figure 9.Normalized speedup for applications designed as serverless functions.

the energy e�ciency of the system. Although, serverless sys-
tems also use the network (Ethernet/Internet), measuring the
power for it was not feasible and therefore we omit the net-
work power for all the traditional systems.We use the Intel
RAPL[121] and MSR registers to get the Baseline (CPU) power.
To obtain the power for the NS-ARM and NS-Mobile-GPU, we
use theNVPModel tool fromNVIDIAJetsonTX2Development
Kit [118].We use Xilinx Vivado tomeasure the power for FPGA
implementation ofDSAon Samsung SmartSSD andAlveo u280.
To obtain power for the ASIC DSA, we use synthesis results
to measure the logic cell power and CACTI-P [122] to model
on-chip memory energy. For PCIe, we use the per-bit PCIe
power reported in prior work [123].

Cost e�ciencymodel. To assess if a new design o�ers cost
savings over other systems, we evaluate cost e�ciency using
the methodology in prior work [101], which is the average
peak throughput over total cost and time of ownership as
shown in the equation below.

Cost E�ciency=
Throughput⇥)
CAPEX+OPEX

The total cost is composed of two key components: CAPEX
and OPEX. CAPEX represents the initial capital expenditure,
encompassing the entire system’s cost, including processing
units, networking, compute servers, and storage.We use mar-
ket prices for o�-the-shelf components [18, 69, 71, 118, 124–
127] and estimate ASIC’s $ cost using the analytical model
from ASIC Clouds [100]. OPEX covers the ongoing operat-
ing costs (over a three year period with 30% utilization rate)
and consists of power expenses for processing units, network
transfer, storage, and cooling similar to E3 [101]. It is the prod-
uct of the power (watts) for various components in the cluster,
the time for which the cluster is active (T) and the average in-
dustrial electricity rate in theU.S. ($0.0975/kWh) in 2023 [128].

6.2 Experimental Results
6.2.1 Single Node Evaluations. In this section, we eval-
uate the performance, runtime breakdown, and energy re-
duction of DSCS-Serverless on a single node with various
benchmarks.

Performance comparison with traditional serverless
platforms. Figure 9 compares the performance of various

traditional platforms (with remote storage) listed in Table 2
across all studied benchmarks. The speedups are normalized
to the Baseline (CPU) that is commonly used for serverless exe-
cution in public clouds. On average,DSCS-Serverless provides
3.6⇥ speedup over the baseline across all benchmarks. DSCS-
Serverless also outperforms GPUwith remote storage by 2.7⇥.
This is because, �rst, the inherent data movement latency to
remote storage limits the performance bene�ts from the high-
endGPU. Second, using batch size one for serverless scenarios
causes underutilization in GPUs. Utilizing FPGAwith remote
storage exhibits a slight performance dip compared to the
Baseline (CPU). This is attributed to the constrained resources
of the FPGA for implementing a high performance DSA, cou-
pled with the driver overhead associated with the FPGA.

For the applications we studied, results show a lightweight
in-storage accelerator (4.2 watts) outperforms a high-end
GPU (250 watts) with remote storage. This is because the
data movement overhead from remote storage limits the
acceleration bene�ts in disaggregated datacenters.

Performance comparisonwith conventional in-storage
platforms. To tackle the communication overheads, we also
analyze various in-storage computing platforms. Figure 9
compares the performance (normalized to Baseline (CPU)) of
various conventional in-storage (denoted as NS) scenarios
across all studied benchmarks. As shown in Figure 9,NS-ARM
which utilizes a general-purpose compute platform (quad-
core ARMCPUs) within the storage slightly underperforms
compared to the Baseline (CPU). Using specialized accelera-
tors such as NS-Mobile-GPU provides 1.35⇥ speedup while
leveraging NS-FPGA unlocks 2.2⇥ speedup. The speedup for
low-power NS-FPGA seems counter-intuitive compared to
high-power FPGA (with remote storage) because the latter
was bottlenecked by the communication overhead. This anal-
ysis shows that the overhead of moving input and output data
from remote storage limits the bene�ts fromacceleration.Never-
theless, NS-FPGA’s performance is still bounded by its limited
resources and low frequency.

As shown in Figure 9, leveraging a domain-speci�c architec-
ture within the storage (DSCS-Serverless) unlocks additional
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Figure 10.Normalized runtime breakdown.

bene�ts and provides 3.7⇥ and 1.7⇥ speedups over the conven-
tional approaches ofusingmicroprocessors (NS-ARM) andFPGAs
(NS-FPGA) in the storage, respectively. Credit Risk Assessment
shows the least speedup because logistic regression is not
computationally intensive while PPE Detection achieves the
maximum speedup because moving compute to in-storage
reduces the signi�cant data movement that the benchmark
otherwise incurs. In general, DSCS-Serverless o�ers perfor-
mance bene�ts for functions characterized by an intensity
in both computational and communication aspects, while
functions with low compute intensity can still bene�t from
a general-purpose in-storage processor (e.g., Credit Risk As-
sessment that uses logistic-regression in Figure 10).

To address the challenges at the con�uence of infrastructure
disaggregation, serverless computing, and storage power
constraints, the results advocate for domain-speci�c accel-
erators within storage, departing from conventional ap-
proaches of integrating CPUs and FPGA.

Runtime breakdown analysis. Figure 10 shows the run-
time breakdown across the individual system components
for the benchmarks and platforms. We see that for traditional
platformswithGPU/FPGA (with remote storage), the compute
portion is signi�cantly reduced due to hardware acceleration.
However, the data transfer over the network limits the e�ec-
tive speedup achieved by the hardware acceleration. This sig-
ni�cant data transfer is addressed by the in-storage platforms
where moving the compute closer to storage reduces the data
movement, shifting the bottleneck back to the compute. The
DSA further accelerates this compute portion unlocking addi-
tional performance gains. Overall, we observe that leveraging
DSCS-Serverless shifts the bottleneck from the compute and
communication to other components such as the systemstack.
For benchmark Credit Risk Assessment, Figure 4 shows

that data movement accounts for approximately 75% of the
runtime. Intuitively, moving compute to in-storage should
provide at least a 3⇥ speedup. However, we observe a 1.8⇥
speedup because of two reasons. First, as mentioned in the

methodology 6.1, function 3 is launched on the CPU and ex-
periences the network and IO latency similar to traditional
systems. Second, the latency incurred due to the in-storage
driver reduces the theoretical speedup. As depicted in Fig-
ure 10, forDSCS-Serverless the bottleneck now is the latency
incurred by the function 3 to read the data from persistent
storage and the system stack overheads.

Energy reduction comparison. Figure 11 analyzes the end-
to-end system energy reduction achieved by DSCS-Serverless.
On average,DSCS-Serverless provides 3.5⇥ energy reduction
over the Baseline (CPU) system and 1.9⇥ reduction over the
NS-FPGA (Samsung SmartSSD), the most competitive baseline.
FPGAs have signi�cantly higher static energy dissipation
and thus cannot match the energy e�ciency on an ASIC. Al-
though leveragingDSAprovides signi�cant energy reduction
(29⇥ over Baseline (CPU)), the total system energy reduction is
bounded by the system stack and f3 function being executed
on the CPU. The trends in energy reduction are similar to
the speedup, with PPE Detection showing the maximum gains
(8⇥) and Credit Risk Assessment showing the minimum (1⇥).

6.2.2 At Scale Evaluations. This section assesses the cost
e�ciency of DSCS-Serverless when integrated into a large-
scale datacenter setting. It also shows how DSCS-Serverless
can handle concurrent applications and lower latency than
Baseline (CPU) on a large scale with a substantial number of
requests.

Cost e�ciency. Figure 12 shows the cost e�ciency for var-
ious platforms normalized to the Baseline (CPU). Results show
DSCS-Serverless o�ers the highest cost e�ciency (3.4⇥) com-
pared to theBaseline (CPU),whileNS-FPGA (SamsungSmartSSD)
ranks second (1.6⇥). This result is intuitive, since over the ini-
tial period of usage, the CAPEX cost of building hardware
is dominant. As time goes on, the OPEX cost, that is cost of
operating (electricity cost) becomes more dominant. Since
DSCS-Serverless consumes less energy compared to other plat-
forms, its cost e�ciency increases over time.
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Figure 11.Normalized system energy reduction for application. Figure 12.Normalized cost e�ciencies.
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Figure 13. (a) Input trace. (b) Number of concurrent functions at the queue. Latency (c) Baseline CPU (d)DSCS-Serverless latency.

Number of concurrent function invocations. Figure 13
(a) shows the synthetic input trace of requests with di�erent
inter-arrival rates; speci�cally with bursty arrival patterns
similar to prior work [120]. Figure 13 (b) illustrates the num-
ber of concurrent functions that are at the scheduled queue
of both DSCS-Serverless and Baseline (CPU) under di�erent
load conditions. DSCS-Serverless has a lesser number of func-
tions compared to the Baseline (CPU) due to its near-storage
acceleration, which reduces latency thereby enabling a single
function instance to service a largernumberof requests.More-
over, both systems exhibit a delayed response to the decline
in input requests because functions persist in the memory
for some time even after the load decreases. However, this is
more pronounced for the Baseline (CPU) because it has more
function invocations that can handle requests less e�ciently.
On the contrary, DSCS-Serverless improves the throughput of
the system since eachDSCS-Serverless instance can process
more requests per second as compared to the baseline.

Wall clock latency comparison. Serverless systems scale
horizontally by replicating function instances on demand
to handle additional requests and improve performance and
availability. However, developers often set a maximum num-
ber of function instances for their applications to control
the cost. We set the maximum number of function instances
to 200 for both DSCS-Serverless and Baseline (CPU). We use
the synthetic workload shown in Figure 13 (a) to simulate
di�erent request patterns and measure the latency to eval-
uate DSCS-Serverless. Figure 13 (c) and Figure 13 (d) show
the wall clock latency of both systems using the input load
shown in Figure 13 (a). The Baseline (CPU) shows a steady

increase in latency with time. This is because the baseline
has higher request processing latency since it not only has to
move data from remote storage to memory but also cannot
accelerate the workload. This means that the baseline sys-
tem accumulates more and more requests in the scheduler’s
queue,which increases the latency of request processing. One
way to improve the baseline would be to increase the number
of function instances, which in turn would incur additional
costs.DSCS-Serverless on the other hand achieves scalability
and low wall clock latency by processing larger number of
requests e�ciently at each node level (DSCS-Drive).

For the applications trace we studied,DSCS-Serverless im-
proves cost e�ciency (3.4⇥) and reduces wall clock latency
latency in large-scale evaluations, demonstrating its eco-
nomic and performance advantages.

6.2.3 Sensitivity Analysis. In this section, we conduct a
sensitivity study to evaluate the impact of di�erent factors
on the performance ofDSCS-Serverless compared to Baseline
(CPU), such as batch size, tail latency e�ect, increasingnumber
of accelerated functions, and cold start.

Batch size. Figure 14 shows the sensitivity of the DSCS-
Serverless end-to-end performance with respect to batch size
(refer 1). We sweep the batch size from one to 64 across all
benchmarks and report the latency of DSCS-Serverless nor-
malized to the Baseline (CPU)with remote storage, using the
same batch size. The rationale behind limiting the batch size
to 64 is that AWS Lambda has a strict cap on the network pay-
load size for serverless functions [109]. Relative to theBaseline
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Figure 14. Sensitivity to batch size. Figure 15. Sensitivity to storage access latency.

Figure 16. Sensitivity to the number of accelerated functions. Figure 17. Sensitivity to cold vs. warm containers.

(CPU), the performance improvements of DSCS-Serverless in-
crease from 3.6⇥ for batch size 1 to 15.8⇥ for batch size 64.
This performance improvement stems from (1) reducing the
communication overheads of transferring batched data to the
compute node and (2) the capability of the DSA in reusing the
weights across the batch, thereby improving the computation
signi�cantly. The improvements are more pronounced for
Conversational Chatbot andDocument Translation, since these
benchmarks deploy language models with a large number of
weights, whereDSCS-Serverless leverages batching to amor-
tize the cost of loading weights by reusing them across the
input batch.

Tail latency e�ect.Accessing remote storage can incur long
tail latency (§2). To understand this variability and its impli-
cations onDSCS-Serverless performance, we perform a sweep
across various latency distributions for the PCIe, P2P, and
network. Figure 15 shows the implications of tail latency nor-
malized to Baseline (CPU)with the same latency distribution.
Results suggest DSCS-Serverless is robust to network and I/O
tail latency since it removes the data movement over them.
On average, DSCS-Serverless provides 5.0⇥ speedup for the
99C⌘ percentile and 3.1⇥ speedup for 50C⌘ percentile.

Number of accelerated functions. To analyze the sensi-
tivity of the DSCS-Serverless to the number of accelerated
functions, we create synthetic benchmarks by adding either
one, two, or three additional accelerated functions to the appli-
cation.These functions areduplicates from theoriginal bench-
marks’ function 2. The label in Figure 16 refers to the number
of replicated functions and performance is normalized to the
Baseline (CPU) running the same function con�guration. Re-
sults show that by increasing the number of functions that are
o�oaded toDSCS-Serverless, the improvements escalate (from

3.6⇥ to8.1⇥).This isbecause it emulates thescenarios inwhich
the serverless applications are composed of more complex
pipelines withmultiple functions [129, 130]. Using these com-
plex pipelines would incur more pronounced computation
and communication overheads to the end-to-end execution,
both are addressed signi�cantly bydomain-specialization and
near-storage computation ofDSCS-Serverless.

Cold start. Figure 17 shows the speedup of DSCS-Serverless
over Baseline (CPU). BothDSCS-Serverless and the baseline use
cold containers where they pull the container image (includ-
ing the weights for the model) and load it to the memory of
the DSA. Since the models are large, the time to load a model
accounts for a signi�cant portion of the end-to-end latency,
thereby reducing the speedup from 3.6⇥ to 2.6⇥. However,
as mentioned in Section 5.3, cold latency is incurred by both
DSCS-Serverless and the baseline systems. Further, only the
�rst invocation incurs a cold latency while all subsequent
invocations can potentially hide the cold latency using pre-
emptive horizontal scaling (Refer Section 5.3).

7 RelatedWork
Individually, the emergence of serverless computing, the shift
towards storage disaggregation, and the adoption of domain-
speci�c accelerators has provided signi�cant bene�ts but col-
lectively they pose interesting challenges. The paper explores
the con�uence of the three trends and provides a pathway
to unlock the true bene�ts from accelerators for serverless
computing in disaggregated datacenters.

Serverless and storage. Serverless functions are stateless
and ephemeral [65–67, 84]. They use persistent storage to
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transfer intermediate data between functions. Locus [131] fo-
cused on deriving an optimal combination of storage and fast
in-memory cachingwhile SONIC [132] used local and remote
storage topassdatabetween functions.Pocket [15]proposeda
storage system to allocate di�erent storage resources depend-
ing onworkloads to reduce cost. NumPyWren [133] identi�ed
appropriate block size to remote storage for serverless linear
algebra. Ji�y [134]used in-memorycachingon remote servers
to accommodate intermediate data. However, it still incurs
the network latency to remote storage. These papers are or-
thogonal to our work since they consider multi-tier storage
and the possibility of e�cient data passing between functions.
DSCS-Serverless introduces a novel model of serverless com-
puting by leveraging near-storage DSA to reduce the data
movement and unlock additional bene�ts from acceleration.

Systems for serverless functions. Various systems have
been proposed that optimize the performance for serverless
functions. SmartNICs have been used to accelerate serverless
functions [135]. Speedo [136] placed the function dispatcher
on SmartNIC to avoid latency overhead. Dagger [85] accel-
erated RPCs using FPGA-based NIC. BlastFunction [137] ex-
poses FPGAs to serverless framework for acceleration while
Shredder [138] executes programs on CPU in the storage con-
troller. Molecule [61] and Hardless [64] propose runtimes to
enable hardware accelerators for serverless. HiveMind [139]
proposes a hardware-software solution for serverless edge
swarms.Overall, thesesolutionseitherenabledata-movement-
aware acceleration or compute-focused acceleration using
GPUs/FPGAs.DSCS-Serverless on the other hand, leverages
the insight that serverless functions are stateless and require
remote storage in a disaggregated datacenter to devise a com-
prehensive, cross-stack near-storage serverless acceleration
solution.

Near-storage acceleration. Priorworks have explored near-
data ASICs for various domains demanding large amount of
data transfer. [47, 140–151]. There are commercially available
products such as Eideticom’s NoLoad [152] for transparent
compression, Samsung SmartSSD for utilities (encryption,
compression, etc.) [70], and NGD system’s Newport for en-
cryption on ARM cores [69, 82]. Deepstore [142] introduces a
microarchitecture tailored for in-storage processing of DNNs
and delves into SSD parallelismmethods. In contrast,DSCS-
Serverless performs an extensive design-space analysis of us-
ingvarious in-storagecomputeplatformswhile abidingby the
constraints imposed by the storage and identi�es an optimal
DSA con�guration to unlock the potential for acceleration of
serverless functions in disaggregated datacenters.

8 Conclusion
Emergence of serverless computing coupled with disaggre-
gation and hardware specialization introduces unique chal-
lenges and opportunities that emanate the overhead of com-
municating data from remote storage. To address this issue, 
the paper devises a serverless execution model that integrates 
a domain-speci�c accelerator within the storage device. Eval-
uation with a diverse set of benchmarks against variety of 
compute platforms shows signi�cant gains in terms of perfor-
mance, energy, and cost e�ciency. As such, this paper marks 
an initial step towards utilizing accelerators for serverless 
execution in disaggregated datacenters.

Acknowledgement
We thank the anonymous reviewers for their valuable com-
ments. We thank our shepherd, Jian Huang, for his feedback 
and encouragement. This work was in part supported by 
generous gifts from Google, Microsoft, Samsung, Qualcomm, 
AMD Xilinx as well as the National Science Foundation (NSF) 
awards CCF#2107598, CNS#1822273, National Institute of 
Health (NIH) award #R01EB028350, and Defense Advanced 
Re-search Project Agency (DARPA) under agreement 
number #HR0011-18-C-0020. The U.S. Government is 
authorized to reproduce and distribute reprints for Govern-
mental purposes not withstanding any copyright notation 
thereon. The views and conclusions contained herein are 
those of the authors and should not be interpreted as repre-
senting the official policies or endorsements, either expressed 
or implied of Google, Qualcomm, Microsoft, Xilinx, Samsung, 
NSF, NIH, DARPA or the U.S. Government.

References

[1] BMW uses AWS. h�ps://aws.amazon.com/solutions/case-studies/
bmw-group-case-study/.

[2] Lufthansa Technik: Keeping airlines �ying optimally with ai-powered
techops platform aviatar. h�ps://cloud.google.com/customers/
lu�hansa/.

[3] Net�ix &AWS lambda case study. h�ps://aws.amazon.com/solutions/
case-studies/netflix-and-aws-lambda/.

[4] Guardian news &media automates subscription ful�llment using aws
step functions. h�ps://aws.amazon.com/solutions/case-studies/the-
guardian/.

[5] Photovogue case study. h�ps://aws.amazon.com/solutions/case-
studies/photovogue/.

[6] Coca cola uses AWS serverless. h�ps://aws.amazon.com/solutions/
case-studies/coca-cola-freestyle/.

[7] Pwc helps make compliance easier, automates regulatory obli-
gation identi�cation with microsoft azure cognitive search.
h�ps://customers.microso�.com/en-us/story/811347-pwc-partner-
professional-services-azure.

[8] AWS lambda. h�ps://aws.amazon.com/lambda/, .
[9] Google cloud functions. h�ps://cloud.google.com/functions/docs/

concepts/overview.
[10] Azure serverless. h�ps://azure.microso�.com/en-us/solutions/

serverless/#overview.

544

https://aws.amazon.com/solutions/case-studies/bmw-group-case-study/
https://aws.amazon.com/solutions/case-studies/bmw-group-case-study/
https://cloud.google.com/customers/lufthansa/
https://cloud.google.com/customers/lufthansa/
https://aws.amazon.com/solutions/case-studies/netflix-and-aws-lambda/
https://aws.amazon.com/solutions/case-studies/netflix-and-aws-lambda/
https://aws.amazon.com/solutions/case-studies/the-guardian/
https://aws.amazon.com/solutions/case-studies/the-guardian/
https://aws.amazon.com/solutions/case-studies/photovogue/
https://aws.amazon.com/solutions/case-studies/photovogue/
https://aws.amazon.com/solutions/case-studies/coca-cola-freestyle/
https://aws.amazon.com/solutions/case-studies/coca-cola-freestyle/
https://customers.microsoft.com/en-us/story/811347-pwc-partner-professional-services-azure
https://customers.microsoft.com/en-us/story/811347-pwc-partner-professional-services-azure
https://aws.amazon.com/lambda/
https://cloud.google.com/functions/docs/concepts/overview
https://cloud.google.com/functions/docs/concepts/overview
https://azure.microsoft.com/en-us/solutions/serverless/#overview
https://azure.microsoft.com/en-us/solutions/serverless/#overview


ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Mahapatra et al.

[11] Ana Klimovic, Christos Kozyrakis, Eno Thereska, Binu John, and
Sanjeev Kumar. Flash storage disaggregation. In EuroSys, 2016.

[12] Mihir Nanavati, JakeWires, and AndrewWar�eld. Decibel: Isolation
and sharing in disaggregated Rack-Scale storage. In NSDI, 2017.

[13] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. Re�ex: Remote
�ash ⇡ local �ash. InASPLOS, 2017.

[14] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. LegoOS:
A disseminated, distributed OS for hardware resource disaggregation.
InOSDI, 2018.

[15] Ana Klimovic, YawenWang, Patrick Stuedi, Animesh Trivedi, Jonas
Pfe�erle, and Christos Kozyrakis. Pocket: Elastic ephemeral storage
for serverless analytics. InOSDI, 2018.

[16] Huaicheng Li, Mingzhe Hao, Stanko Novakovic, Vaibhav Gogte,
Sriram Govindan, Dan R. K. Ports, Irene Zhang, Ricardo Bianchini,
Haryadi S. Gunawi, and Anirudh Badam. Leapio: E�cient and
portable virtual nvme storage on arm socs. In ASPLOS, 2020.

[17] Shuai Xue, Shang Zhao, QuanChen, GangDeng, Zheng Liu, Jie Zhang,
Zhuo Song, Tao Ma, Yong Yang, Yanbo Zhou, Keqiang Niu, Sijie Sun,
and Minyi Guo. Spool: Reliable virtualized NVMe storage pool in
public cloud infrastructure. In ATC, 2020.

[18] Norman P Jouppi, Cli� Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, et al. In-datacenter performance analysis of a tensor
processing unit. In ISCA, 2017.

[19] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd
Massengill, Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman,
Logan Adams, Mahdi Ghandi, Stephen Heil, Prerak Patel, Adam
Sapek, GabrielWeisz, LisaWoods, Sitaram Lanka, Steven K. Reinhardt,
Adrian M. Caul�eld, Eric S. Chung, and Doug Burger. A con�gurable
cloud-scale dnn processor for real-time ai. In ISCA, 2018.

[20] AWS inferentia. h�ps://aws.amazon.com/machine-learning/
inferentia/, .

[21] Michael Anderson, BennyChen, StephenChen, SummerDeng, Jordan
Fix, Michael Gschwind, Aravind Kalaiah, Changkyu Kim, Jaewon Lee,
Jason Liang, et al. First-generation inference accelerator deployment
at facebook. arXiv, 2021.

[22] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong
Wu, Yunji Chen, and Olivier Temam. Diannao: a small-footprint
high-throughput accelerator for ubiquitous machine-learning. In
ASPLOS, 2014.

[23] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li,
Qi Guo, Tianshi Chen, and Yunji Chen. Cambricon-x: An accelerator
for sparse neural networks. InMICRO, 2016.

[24] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro,
Joon Kim, Chenkai Shao, Asit Misra, and Hadi Esmaeilzadeh. From
high-level deep neural models to fpgas. InMICRO, 2016.

[25] Soroush Ghodrati, Hardik Sharma, Sean Kinzer, Amir Yazdanbakhsh,
Jongse Park, Nam Sung Kim, Doug Burger, and Hadi Esmaeilzadeh.
Mixed-signal charge-domain acceleration of deep neural networks
through interleaved bit-partitioned arithmetic. In PACT, 2020.

[26] Soroush Ghodrati, Hardik Sharma, Cli� Young, Nam Sung Kim, and
Hadi Esmaeilzadeh. Bit-parallel vector composability for neural
acceleration. In DAC, 2020.

[27] DivyaMahajan, Jongse Park, Emmanuel Amaro, Hardik Sharma, Amir
Yazdanbakhsh, Joon Kyung Kim, and Hadi Esmaeilzadeh. Tabla: A
uni�ed template-based framework for accelerating statistical machine
learning. InHPCA, 2016.

[28] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio
Puglielli, Rangharajan Venkatesan, Brucek Khailany, Joel Emer,
StephenWKeckler, andWilliam J Dally. SCNN: An Accelerator for
Compressed-sparse Convolutional Neural Networks. In ISCA, 2017.

[29] Yongming Shen, Michael Ferdman, and Peter Milder. Maximizing cnn
accelerator e�ciency through resource partitioning. In ISCA, 2017.

[30] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. Maeri:
Enabling �exible data�ow mapping over dnn accelerators via

recon�gurable interconnects. In ASPLOS, 2018.
[31] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial

architecture for energy-e�cient data�ow for convolutional neural
networks. In ISCA, 2016.

[32] Yakun Sophia Shao, Jason Clemons, Rangharajan Venkatesan, Brian
Zimmer, Matthew Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter,
Nathaniel Pinckney, Priyanka Raina, et al. Simba: Scaling deep-
learning inference with multi-chip-module-based architecture. In
MICRO, 2019.

[33] Mingyu Gao, Xuan Yang, Jing Pu, Mark Horowitz, and Christos
Kozyrakis. Tangram: Optimized coarse-grained data�ow for scalable
nn accelerators. In ASPLOS, 2019.

[34] Soroush Ghodrati, Byung Hoon Ahn, Joon Kyung Kim, Sean
Kinzer, Brahmendra Reddy Yatham, Navateja Alla, Hardik Sharma,
Mohammad Alian, Eiman Ebrahimi, Nam Sung Kim, et al. Planaria:
Dynamic architecture �ssion for spatial multi-tenant acceleration
of deep neural networks. InMICRO, 2020.

[35] Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella,
Sudarshan Srinivasan, Dipankar Das, Bharat Kaul, and Tushar
Krishna. Sigma: A sparse and irregular gemm accelerator with �exible
interconnects for dnn training. InHPCA, 2020.

[36] Tae Jun Ham, Lisa Wu, Narayanan Sundaram, Nadathur Satish,
and Margaret Martonosi. Graphicionado: A high-performance and
energy-e�cient accelerator for graph analytics. InMICRO, 2016.

[37] Jinho Lee, Heesu Kim, Sungjoo Yoo, Kiyoung Choi, H. Peter Hofstee,
Gi-Joon Nam, Mark R. Nutter, and Damir Jamsek. Extrav: Boosting
graph processing near storage with a coherent accelerator. In VLDB
Endowment, 2017.

[38] Linghao Song, Youwei Zhuo, Xuehai Qian, Hai Li, and Yiran Chen.
Graphr: Accelerating graph processing using reram. InHPCA, 2018.

[39] Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan,
Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh, Nastaran
Hajinazar, Krishna T. Malladi, Hongzhong Zheng, and Onur Mutlu.
Conda: E�cient cache coherence support for near-data accelerators.
In ISCA, 2019.

[40] Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez. Phi:
Architectural support for synchronization- and bandwidth-e�cient
commutative scatter updates. InMICRO, 2019.

[41] Sha�ur Rahman, Nael Abu-Ghazaleh, and Rajiv Gupta. Graphpulse:
An event-driven hardware accelerator for asynchronous graph
processing. InMICRO, 2020.

[42] Yu Zhang, Xiaofei Liao, Hai Jin, Ligang He, Bingsheng He, Haikun
Liu, and Lin Gu. Depgraph: A dependency-driven accelerator for
e�cient iterative graph processing. InHPCA, 2021.

[43] Sha�urRahman,MahbodAfarin,NaelAbu-Ghazaleh, andRajivGupta.
Jetstream: Graph analytics on streaming data with event-driven
hardware accelerator. InMICRO, 2021.

[44] Anirban Nag, C. N. Ramachandra, Rajeev Balasubramonian, Ryan
Stutsman, Edouard Giacomin, Hari Kambalasubramanyam, and
Pierre-Emmanuel Gaillardon. Gencache: Leveraging in-cache
operators for e�cient sequence alignment. InMICRO, 2019.

[45] Damla Senol Cali, Gurpreet S. Kalsi, Zülal Bingöl, Can Firtina, Lavanya
Subramanian, Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed
Alser, Juan Gomez-Luna, Amirali Boroumand, Anant Norion, Allison
Scibisz, Sreenivas Subramoneyon, Can Alkan, Saugata Ghose, and
Onur Mutlu. Genasm: A high-performance, low-power approximate
string matching acceleration framework for genome sequence
analysis. InMICRO, 2020.

[46] Daichi Fujiki, ShunhaoWu, Nathan Ozog, Kush Goliya, David Blaauw,
Satish Narayanasamy, and Reetuparna Das. Seedex: A genome
sequencing accelerator for optimal alignments in subminimal space.
InMICRO, 2020.

[47] Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim,
Ataberk Olgun, Arvid Gollwitzer, Damla Senol Cali, Can Firtina,

545

https://aws.amazon.com/machine-learning/inferentia/
https://aws.amazon.com/machine-learning/inferentia/


In-Storage Domain-Specific Acceleration for Serverless Computing ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Haiyu Mao, Nour Almadhoun Alserr, Rachata Ausavarungnirun,
Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu. Genstore: A
high-performance in-storage processing system for genome sequence
analysis. InASPLOS, 2022.

[48] Damla Senol Cali, Konstantinos Kanellopoulos, Joël Lindegger,
Zülal Bingöl, Gurpreet S. Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu
Cavlak, Jeremie Kim, Nika Mansouri Ghiasi, Gagandeep Singh, Juan
Gómez-Luna, Nour Almadhoun Alserr, Mohammed Alser, Sreenivas
Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu. Segram:
A universal hardware accelerator for genomic sequence-to-graph and
sequence-to-sequence mapping. In ISCA, 2022.

[49] Soroush Ghodrati, Sean Kinzer, Hanyang Xu, Rohan Mahapatra,
Yoonsung Kim, Byung Hoon Ahn, Dong Kai Wang, Lavanya
Karthikeyan, Amir Yazdanbakhsh, Jongse Park, Nam Sung Kim, and
Hadi Esmaeilzadeh. Tandem processor: Grappling with emerging
operators in neural networks. In ASPLOS, 2024.

[50] Shu-TingWang, HanyangXu, AminMamandipoor, RohanMahapatra,
Byung Hoon Ahn, Soroush Ghodrati, Krishnan Kailas, Mohammad
Alian, and Hadi Esmaeilzadeh. Data motion acceleration: Chaining
cross-domain multi accelerators. InHPCA, 2024.

[51] Arjun Singhvi, Aditya Akella, Dan Gibson, Thomas F. Wenisch,
MonicaWong-Chan, Sean Clark, Milo M. K. Martin, Moray McLaren,
Prashant Chandra, Rob Cauble, Hassan M. G. Wassel, Behnam
Montazeri, Simon L. Sabato, Joel Scherpelz, and Amin Vahdat. 1RMA:
Re-envisioning remote memory access for multi-tenant datacenters.
In SIGCOMM, 2020.

[52] Youngmoon Lee, Hasan Al Maruf, Mosharaf Chowdhury, Asaf Cidon,
and Kang G. Shin. Hydra : Resilient and highly available remote
memory. In FAST, 2022.

[53] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R.
LeBlanc. Design of ion-implantedMOSFET’s with very small physical
dimensions. In JSSC, 1974.

[54] N. Hardavellas, M. Ferdman, B. Falsa�, and A. Ailamaki. Toward dark
silicon in servers. IEEE Micro, 2011.

[55] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan
Sankaralingam, and Doug Burger. Dark silicon and the end of
multicore scaling. In ISCA, 2011.

[56] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino
Garcia, Vladyslav Bryksin, Jose Lugo-Martinez, Steven Swanson, and
Michael Bedford Taylor. Conservation cores: Reducing the energy
of mature computations. In ASPLOS, 2010.

[57] John L Hennessy and David A Patterson. A new golden age for
computer architecture. CACM and Turing Lecture, 2019.

[58] Sagar Karandikar, Chris Leary, Chris Kennelly, Jerry Zhao, Dinesh
Parimi, Borivoje Nikolic, Krste Asanovic, and Parthasarathy Ran-
ganathan. Ahardware accelerator for protocol bu�ers. InMICRO, 2021.

[59] Andrew Putnam, Adrian Caul�eld, Eric Chung, Derek Chiou, Kypros
Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers,
Gopi Prashanth, Jan Gray, Michael Haselman, Scott Hauck, Stephen
Heil, Amir Hormati, Joo-Young Kim, Sitaram Lanka, James R. Larus,
Eric Peterson, Aaron Smith, Jason Thong, Phillip Yi Xiao, and Doug
Burger. A recon�gurable fabric for accelerating large-scale datacenter
services. In ISCA, 2014.

[60] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael,
AdrianCaul�eld, ToddMassengil,MingLiu,Daniel Lo, ShlomiAlkalay,
Michael Haselman, Christian Boehn, Oren Firestein, Alessandro Forin,
Kang Su Gatlin, Mahdi Ghandi, Stephen Heil, Kyle Holohan, Tamas
Juhasz, Ratna Kumar Kovvuri, Sitaram Lanka, Friedel van Megen,
Dima Mukhortov, Prerak Patel, Steve Reinhardt, Adam Sapek, Raja
Seera, Balaji Sridharan, LisaWoods, Phillip Yi-Xiao, Ritchie Zhao, and
Doug Burger. Accelerating persistent neural networks at datacenter
scale. InHotChips, 2017.

[61] Dong Du, Qingyuan Liu, Xueqiang Jiang, Yubin Xia, Binyu Zang, and
Haibo Chen. Serverless computing on heterogeneous computers. In
ASPLOS, 2022.

[62] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. Icebreaker:Warm-
ing serverless functions better with heterogeneity. In ASPLOS, 2022.

[63] Henrique Fingler, Zhiting Zhu, Esther Yoon, Zhipeng Jia, Emmett
Witchel, and Christopher J. Rossbach. Dgsf: Disaggregated gpus for
serverless functions. In IPDPS, 2022.

[64] SebastianWerner andTrever Schirmer. Hardless:Ageneralized server-
less compute architecture for hardware processing accelerators, 2022.

[65] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. Characterizing
andmitigating the i/o scalability challenges for serverless applications.
In IISWC, 2021.

[66] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Eshaan
Minocha, Sameh Elnikety, Saurabh Bagchi, and Somali Chaterji.
Wisefuse: Workload characterization and dag transformation for
serverless work�ows. In SIGMETRICS, 2022.

[67] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Sameh
Elnikety, Somali Chaterji, and Saurabh Bagchi. ORION and the three
rights: Sizing, bundling, and prewarming for serverless DAGs. In
OSDI, 2022.

[68] Antonio Barbalace and Jaeyoung Do. Computational storage: Where
are we today? In CIDR, 2021.

[69] Ngd system nvme computational storage. h�ps://ngdsystems.com/
nvme-computational-storage-a-compelling-solution-for-bringing-
intelligence-to-the-edge/, .

[70] Joo Hwan Lee, Hui Zhang, Veronica Lagrange, Praveen Krishnamoor-
thy, Xiaodong Zhao, and Yang Seok Ki. Smartssd: Fpga accelerated
near-storage data analytics on ssd. IEEE Computer Architecture Letters,
2020.

[71] Xilinx SmartSSD Computational Storage Drive Product Brief. h�ps:
//www.xilinx.com/content/dam/xilinx/publications/product-briefs/
xilinx-smartssd-computational-storage-drive-product-brief.pdf.

[72] Openfaas: Serverless functions, made simple. h�ps:
//www.openfaas.com, .

[73] Kubernetes. Kubernetes. h�ps://kubernetes.io.
[74] IBM. h�ps://www.ibm.com/docs/en/spss-statistics/saas?topic=

regression-using-binary-logistic-assess-credit-risk.
[75] Spot product defects using computer vision to automate quality

inspection. h�ps://aws.amazon.com/lookout-for-vision/.
[76] PPE Detection using Amazon Rekognition. h�ps://aws.amazon.com/

blogs/machine-learning/automatically-detecting-personal-
protective-equipment-on-persons-in-images-using-amazon-
rekognition/, .

[77] Using dnn to classify acute myeloidlymphoblastic. h�ps:
//www.intel.com/content/www/us/en/developer/articles/technical/
inception-v3-deep-convolutional-architecture-for-classifying-
acute-myeloidlymphoblastic.html.

[78] AWS Content Moderation using Serverless. h�ps:
//docs.aws.amazon.com/rekognition/latest/dg/
moderation.html?pg=ln&sec=�, .

[79] AWS Serverless-bot-framework. h�ps://aws.amazon.com/solutions/
implementations/serverless-bot-framework/, .

[80] AWS Translate. h�ps://aws.amazon.com/translate/, .
[81] Yakoub Bazi, Laila Bashmal, MohamadMAl Rahhal, Reham Al Dayil,

and Naif Al Ajlan. Vision transformers for remote sensing image
classi�cation. In Remote Sensing. MDPI.

[82] Ali Heydari Gorji, Mahdi Torabzadehkashi, Siavash Rezaei, Hossein
Bobarshad, Vladimir Castro Alves, and Pai H. Chou. In-storage
processing of I/O intensive applications on computational storage
drives. arXiv, 2021.

[83] How machine learning and drones are helping prevent wild�res.
h�ps://www.aboutamazon.com/news/aws/how-machine-learning-
and-drones-are-helping-prevent-wildfires, 2022.

[84] David Schall, Artemiy Margaritov, Dmitrii Ustiugov, Andreas Sand-
berg, andBorisGrot. Lukewarmserverless functions:Characterization
and optimization. In ISCA, 2022.

546

https://ngdsystems.com/nvme-computational-storage-a-compelling-solution-for-bringing-intelligence-to-the-edge/
https://ngdsystems.com/nvme-computational-storage-a-compelling-solution-for-bringing-intelligence-to-the-edge/
https://ngdsystems.com/nvme-computational-storage-a-compelling-solution-for-bringing-intelligence-to-the-edge/
https://www.xilinx.com/content/dam/xilinx/publications/product-briefs/xilinx-smartssd-computational-storage-drive-product-brief.pdf
https://www.xilinx.com/content/dam/xilinx/publications/product-briefs/xilinx-smartssd-computational-storage-drive-product-brief.pdf
https://www.xilinx.com/content/dam/xilinx/publications/product-briefs/xilinx-smartssd-computational-storage-drive-product-brief.pdf
https://www.openfaas.com
https://www.openfaas.com
https://kubernetes.io
https://www.ibm.com/docs/en/spss-statistics/saas?topic=regression-using-binary-logistic-assess-credit-risk
https://www.ibm.com/docs/en/spss-statistics/saas?topic=regression-using-binary-logistic-assess-credit-risk
https://aws.amazon.com/lookout-for-vision/
https://aws.amazon.com/blogs/machine-learning/automatically-detecting-personal-protective-equipment-on-persons-in-images-using-amazon-rekognition/
https://aws.amazon.com/blogs/machine-learning/automatically-detecting-personal-protective-equipment-on-persons-in-images-using-amazon-rekognition/
https://aws.amazon.com/blogs/machine-learning/automatically-detecting-personal-protective-equipment-on-persons-in-images-using-amazon-rekognition/
https://aws.amazon.com/blogs/machine-learning/automatically-detecting-personal-protective-equipment-on-persons-in-images-using-amazon-rekognition/
https://www.intel.com/content/www/us/en/developer/articles/technical/inception-v3-deep-convolutional-architecture-for-classifying-acute-myeloidlymphoblastic.html
https://www.intel.com/content/www/us/en/developer/articles/technical/inception-v3-deep-convolutional-architecture-for-classifying-acute-myeloidlymphoblastic.html
https://www.intel.com/content/www/us/en/developer/articles/technical/inception-v3-deep-convolutional-architecture-for-classifying-acute-myeloidlymphoblastic.html
https://www.intel.com/content/www/us/en/developer/articles/technical/inception-v3-deep-convolutional-architecture-for-classifying-acute-myeloidlymphoblastic.html
https://docs.aws.amazon.com/rekognition/latest/dg/moderation.html?pg=ln&sec=ft
https://docs.aws.amazon.com/rekognition/latest/dg/moderation.html?pg=ln&sec=ft
https://docs.aws.amazon.com/rekognition/latest/dg/moderation.html?pg=ln&sec=ft
https://aws.amazon.com/solutions/implementations/serverless-bot-framework/
https://aws.amazon.com/solutions/implementations/serverless-bot-framework/
https://aws.amazon.com/translate/
https://www.aboutamazon.com/news/aws/how-machine-learning-and-drones-are-helping-prevent-wildfires
https://www.aboutamazon.com/news/aws/how-machine-learning-and-drones-are-helping-prevent-wildfires


ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Mahapatra et al.

[85] Nikita Lazarev, Shaojie Xiang, Neil Adit, Zhiru Zhang, and Christina
Delimitrou. Dagger: E�cient and fast rpcs in cloud microservices
with near-memory recon�gurable nics. In ASPLOS, 2021.

[86] Sarah McClure, Amy Ousterhout, Scott Shenker, and Sylvia Rat-
nasamy. E�cient scheduling policies for Microsecond-Scale tasks.
In NSDI, 2022.

[87] Dmitrii Ustiugov, Theodor Amariucai, and Boris Grot. Analyzing tail
latency in serverless clouds with stellar. In IISWC, 2021.

[88] Joel Scheuner, Simon Eismann, Sacheendra Talluri, Erwin Van Eyk,
Cristina L. Abad, Philipp Leitner, and Alexandru Iosup. Let’s trace
it: Fine-grained serverless benchmarking using synchronous and
asynchronous orchestrated applications. arXiv, 2022.

[89] Arash Pourhabibi, Mark Sutherland, Alexandros Daglis, and Babak
Falsa�. Cerebros: Evading the rpc tax in datacenters. InMICRO, 2021.

[90] KaiyuHou,SenLin,YanChen, andVinodYegneswaran. Qfaas:Acceler-
ating and securing serverless cloud networks with quic. In SoCC, 2022.

[91] Gene M. Amdahl. Validity of the single processor approach to
achieving large scale computing capabilities. In Proceedings of the
Spring Joint Computer Conference, 1967.

[92] Hossein Sha�ei, Ahmad Khonsari, and PayamMousavi. Serverless
computing: A survey of opportunities, challenges, and applications.
ACMComputing Surveys, 2022.

[93] Serverless in the enterprise, 2021:IBM Market Development and
Insights. h�ps://www.ibm.com/downloads/cas/ZJLWQOAQ .

[94] NGD Systems Power limitation. h�ps://www.snia.org/sites/default/
files/SDCEMEA/2020/7%20-%20Eli%20Tiomkin%20NGD%20-
%20Computational%20Storage.pdf, .

[95] Norman P Jouppi, Cli� Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, et al. In-datacenter performance analysis of a tensor
processing unit. In ISCA, 2017.

[96] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv, 2018.

[97] Lixiang Ao, Liz Izhikevich, Geo�rey M. Voelker, and George Porter.
Sprocket: A serverless video processing framework. In SoCC, 2018.

[98] Content Moderation in Social Media. h�ps://
www.mygreatlearning.com/blog/content-moderation-in-social-
media-with-aws-services/, .

[99] Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi, Alex
Solomatnikov, Benjamin C Lee, Stephen Richardson, Christos
Kozyrakis, andMark Horowitz. Understanding sources of ine�ciency
in general-purpose chips. In ISCA, 2010.

[100] Ikuo Magaki, Moein Khazraee, Luis Vega Gutierrez, and Michael Bed-
ford Taylor. Asic clouds: Specializing the datacenter. In ISCA, 2016.

[101] MingLiu, SimonPeter, ArvindKrishnamurthy, andPhitchayaMangpo
Phothilimthana. E3: Energy-e�cient microservices on smartnic-
accelerated servers. In ATC, 2019.

[102] James E. Stine, Ivan Castellanos, Michael Wood, Je� Henson, Fred
Love, W. Rhett Davis, Paul D. Franzon, Michael Bucher, Sunil
Basavarajaiah, Julie Oh, and Ravi Jenkal. Freepdk: An open-source
variation-aware design kit. InMSE, 2007.

[103] Satyabrata Sarangi and Bevan Baas. Deepscaletool: A tool for the
accurate estimation of technology scaling in the deep-submicron era.
In ISCAS, 2021.

[104] Prometheus: FromMetrics to Insight. h�ps://prometheus.io/.
[105] Apache OpenWhisk. h�ps://openwhisk.apache.org/, .
[106] Sean Kinzer, Soroush Ghodrati, Rohan Mahapatra, Byung Hoon

Ahn, EdwinMascarenhas, Xiaolong Li, Janarbek Matai, Liang Zhang,
and Hadi Esmaeilzadeh. Restoring the broken covenant between
compilers and deep learning accelerators. arXiv, 2023.

[107] CloudObject Storage | Store & Retrieve Data Anywhere | Amazon Sim-
ple Storage Service (S3). h�ps://aws.amazon.com/s3/storage-classes/.

[108] Sanjay Ghemawat, Howard Gobio�, and Shun-Tak Leung. The google
�le system. In SOSP, 2003.

[109] AWS Lambda Quotas. h�ps://docs.aws.amazon.com/lambda/latest/
dg/ge�ingstarted-limits.html, .

[110] Guoqi Xie, Gang Zeng, Liangjiao Liu, Renfa Li, and Keqin Li. High
performance real-time scheduling of multiple mixed-criticality
functions in heterogeneous distributed embedded systems. Journal
of Systems Architecture, 2016.

[111] Guoqi Xie, Gang Zeng, Zhetao Li, Renfa Li, and Keqin Li. Adaptive
dynamic scheduling on multifunctional mixed-criticality automotive
cyber-physical systems. Transactions on Vehicular Technology, 2017.

[112] Gang Chen, Nan Guan, Di Liu, Qingqiang He, Kai Huang, Todor
Stefanov, andWang Yi. Utilization-based scheduling of �exible mixed-
criticality real-time tasks. IEEE Transactions on Computers, 2018.

[113] RohanMahapatra, Byung Hoon Ahn, Shu-TingWang, Hanyang Xu,
and Hadi Esmaeilzadeh. Exploring e�cient ml-based scheduler for
microservices in heterogenous clusters. InMLArchSys, 2022.

[114] Benjamin Carver, Jingyuan Zhang, Ao Wang, and Yue Cheng. In
search of a fast and e�cient serverless dag engine. In PDSW, 2019.

[115] Dimitrios Tychalas and Helen Karatza. Samw: a probabilistic meta-
heuristic algorithm for job scheduling in heterogeneous distributed
systems powered by microservices. Cluster Computing, 2021.

[116] Hugging Face. h�ps://huggingface.co/models.
[117] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep

residual learning for image recognition. In CVPR, 2016.
[118] Nvidia jetson tx2. h�ps://developer.nvidia.com/embedded/jetson-tx2,

.
[119] hey http Load Generator. h�ps://github.com/rakyll/hey.
[120] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni.

Optimizing inference serving on serverless platforms. In VLDB
Endowment, 2022.

[121] Efraim Rotem, Alon Naveh, Avinash Ananthakrishnan, Eliezer Weiss-
mann, and Doron Rajwan. Power-management architecture of the
intel microarchitecture code-named sandy bridge. IEEE Micro, 2012.

[122] Sheng Li, Ke Chen, Jung Ho Ahn, Jay B Brockman, and Norman P
Jouppi. CACTI-P: Architecture-level Modeling for SRAM-based Struc-
tures with Advanced Leakage Reduction Techniques. In ICCAD, 2011.

[123] Noah Beck, Sean White, Milam Paraschou, and Samuel Na�ziger.
Zeppelin: An soc for multichip architectures. In IEEE ISSCC, 2018.

[124] Nvidia-turing-architecture-whitepaper. h�ps://images.nvidia.com/
aem-dam/en-zz/Solutions/design-visualization/technologies/
turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf, .

[125] Intel platanium xeon scalable processors. h�ps://www.intel.com/
content/www/us/en/products/details/processors/xeon/scalable/
platinum/products.html.

[126] Alveo u280 data center accelerator card. h�ps://www.xilinx.com/
products/boards-and-kits/alveo/u280.html.

[127] Nvidia v100 overview. h�ps://www.nvidia.com/en-us/data-
center/v100/, .

[128] U.s. energy information administration (eia) average price of
electricity. h�ps://www.eia.gov/electricity/data/browser/#/topic/7.

[129] RamSrivatsa Kannan, Lavanya Subramanian, Ashwin Raju, Jeongseob
Ahn, Jason Mars, and Lingjia Tang. Grandslam: Guaranteeing slas
for jobs in microservices execution frameworks. In EuroSys, 2019.

[130] Francisco Romero, Mark Zhao, Neeraja J. Yadwadkar, and Christos
Kozyrakis. Llama: A heterogeneous & serverless framework for
auto-tuning video analytics pipelines. In SoCC, 2021.

[131] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. Shu�ing, fast and
slow: Scalable analytics on serverless infrastructure. In NSDI, 2019.

[132] Ashraf Mahgoub, Karthick Shankar, Subrata Mitra, Ana Klimovic,
Somali Chaterji, and Saurabh Bagchi. SONIC: Application-aware data
passing for chained serverless applications. In ATC, 2021.

[133] Vaishaal Shankar, Karl Krauth, Kailas Vodrahalli, Qifan Pu, Benjamin
Recht, Ion Stoica, Jonathan Ragan-Kelley, Eric Jonas, and Shivaram
Venkataraman. Serverless linear algebra. In SoCC, 2020.

547

https://www.ibm.com/downloads/cas/ZJLWQOAQ
https://www.snia.org/sites/default/files/SDCEMEA/2020/7%20-%20Eli%20Tiomkin%20NGD%20-%20Computational%20Storage.pdf
https://www.snia.org/sites/default/files/SDCEMEA/2020/7%20-%20Eli%20Tiomkin%20NGD%20-%20Computational%20Storage.pdf
https://www.snia.org/sites/default/files/SDCEMEA/2020/7%20-%20Eli%20Tiomkin%20NGD%20-%20Computational%20Storage.pdf
https://www.mygreatlearning.com/blog/content-moderation-in-social-media-with-aws-services/
https://www.mygreatlearning.com/blog/content-moderation-in-social-media-with-aws-services/
https://www.mygreatlearning.com/blog/content-moderation-in-social-media-with-aws-services/
https://prometheus.io/
https://openwhisk.apache.org/
https://aws.amazon.com/s3/storage-classes/
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://huggingface.co/models
https://developer.nvidia.com/embedded/jetson-tx2
https://github.com/rakyll/hey
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.intel.com/content/www/us/en/products/details/processors/xeon/scalable/platinum/products.html
https://www.intel.com/content/www/us/en/products/details/processors/xeon/scalable/platinum/products.html
https://www.intel.com/content/www/us/en/products/details/processors/xeon/scalable/platinum/products.html
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://www.nvidia.com/en-us/data-center/v100/
https://www.nvidia.com/en-us/data-center/v100/
https://www.eia.gov/electricity/data/browser/#/topic/7


In-Storage Domain-Specific Acceleration for Serverless Computing ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

[134] Anurag Khandelwal, Yupeng Tang, Rachit Agarwal, Aditya Akella,
and Ion Stoica. Ji�y: Elastic far-memory for stateful serverless
analytics. In EuroSys, 2022.

[135] Sean Choi, Muhammad Shahbaz, Balaji Prabhakar, and Mendel
Rosenblum. _-nic: Interactive serverless compute on programmable
smartnics. In IEEE ICDCS, 2020.

[136] Nilanjan Daw, Umesh Bellur, and Purushottam Kulkarni. Speedo: Fast
dispatch and orchestration of serverless work�ows. In SoCC, 2021.

[137] Andrea Damiani, Giorgia Fiscaletti, Marco Bacis, Rolando Brondolin,
andMarco D. Santambrogio. Blastfunction: A full-stack framework
bringing fpga hardware acceleration to cloud-native applications.
ACM TRETS, 2022.

[138] TianZhang,DongXie,FeifeiLi, andRyanStutsman. Narrowing thegap
between serverless and its state with storage functions. In SoCC, 2019.

[139] Liam Patterson, David Pigorovsky, Brian Dempsey, Nikita Lazarev,
Aditya Shah, Clara Steinho�, Ariana Bruno, Justin Hu, and Christina
Delimitrou. Hivemind: A hardware-software system stack for
serverless edge swarms. In ISCA, 2022.

[140] Sahand Salamat, Armin Haj Aboutalebi, Behnam Khaleghi, Joo Hwan
Lee, Yang Seok Ki, and Tajana Rosing. Nascent: Near-storage
acceleration of database sort on smartssd. In FPGA, 2021.

[141] Seongyoung Kang, Jiyoung An, Jinpyo Kim, and Sang-Woo Jun.
Mithrilog: Near-storage accelerator for high-performance log
analytics. InMICRO, 2021.

[142] Vikram SharmaMailthody, Zaid Qureshi, Weixin Liang, Ziyan Feng,
Simon Garcia de Gonzalo, Youjie Li, Hubertus Franke, Jinjun Xiong,
Jian Huang, andWen-mei Hwu. Deepstore: In-storage acceleration
for intelligent queries. InMICRO, 2019.

[143] Mohammadreza Soltaniyeh, Veronica LagrangeMoutinho Dos Reis,
Matt Bryson, Xuebin Yao, Richard P. Martin, and Santosh Nagarakatte.
Near-storage processing for solid state drive based recommendation

inference with smartssds®. In ICPE, 2022.
[144] Miryeong Kwon, Donghyun Gouk, Sangwon Lee, and Myoungsoo

Jung. Hardware/Software Co-Programmable framework for computa-
tional SSDs to accelerate deep learning service on Large-Scale graphs.
In FAST, 2022.

[145] Jaeyoung Do, Yang-Suk Kee, Jignesh M. Patel, Chanik Park,
Kwanghyun Park, and David J. DeWitt. Query processing on smart
ssds: Opportunities and challenges. In SIGMOD, 2013.

[146] Gunjae Koo, Kiran Kumar Matam, Te I, H. V. Krishna Giri Narra,
Jing Li, Hung-Wei Tseng, Steven Swanson, and Murali Annavaram.
Summarizer: Trading communication with computing near storage.
InMICRO, 2017.

[147] Sudharsan Seshadri, Mark Gahagan, Sundaram Bhaskaran, Trevor
Bunker, Arup De, Yanqin Jin, Yang Liu, and Steven Swanson. Willow:
A User-Programmable SSD. InOSDI, 2014.

[148] Devesh Tiwari, Simona Boboila, Sudharshan Vazhkudai, Youngjae
Kim, Xiaosong Ma, Peter Desnoyers, and Yan Solihin. Active �ash:
Towards Energy-E�cient, In-Situ data analytics on Extreme-Scale
machines. In FAST, 2013.

[149] DeveshTiwari, Sudharshan S.Vazhkudai, YoungjaeKim,XiaosongMa,
SimonaBoboila, andPeter J.Desnoyers. Reducingdatamovementcosts
using Energy-E�cient, active computation on SSD. InHotPower, 2012.

[150] Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung Lee,
Jonghyun Yoon, Jeong-Uk Kang, Moonsang Kwon, Chanho Yoon,
SangyeunCho, Jaeheon Jeong, andDuckhyunChang. Biscuit:A frame-
work for near-data processing of big data workloads. In ISCA, 2016.

[151] Zhenyuan Ruan, Tong He, and Jason Cong. INSIDER: Designing
In-Storage computing system for emerging High-Performance drive.
InATC, 2019.

[152] Eideticom NoLoad SmartSSD. h�ps://www.eideticom.com/media/
a�achments/2020/11/09/noload_smartssd_product_brief1.pdf.

548

https://www.eideticom.com/media/attachments/2020/11/09/noload_smartssd_product_brief1.pdf
https://www.eideticom.com/media/attachments/2020/11/09/noload_smartssd_product_brief1.pdf

