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Abstract: We propose a method for training photonic neuromorphic accelerators using

only software, and demonstrate its potential in autonomous driving. The method is modular

and drop-in compatible with existing PyTorch training pipelines. © 2023 The Author(s)
OCIS codes: 200.4260 Neural networks; 200.4700 Optical neural systems

1. Introduction

LiDAR is a promising technology for applications in machine vision and autonomous driving systems [1]. Be-
cause of this, various machine learning researchers have designed architectures which are able to classify objects
using LiDAR point clouds. One such model is PointNet [2], which is depicted in Fig. la. While models like these
are designed to be as computationally efficient as possible, inference throughput remains a key challenge in im-
plementing these models in such real-time applications. This is due to the high volume of data being presented
to the models by commercial sensors, which cannot be lowered without a severe loss in classification accuracy,
meaning that the computations must be accelerated to meet the real-time requirements of autonomous vehicles.
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Fig. 1. a) Block diagram of PointNet [2] b) Schematlc of the DEAP accelerator described in [3]

Photonic analog tensor processors have been an emerging technology in academia [4], and support from digital
electronics has recently enabled them to be scalable enough to accelerate deeper neural networks in practice [3].
These scalable architectures, referred to as Digital Electronic and Analog Photonic (DEAP) architectures, per-
form partial Multiply-Accumulate (MAC) operations on vectors encoded as optical intensities. This is done using
electrically tunable optical micro-ring resonators (MRRs), which can be combined with a balanced photodetector
to independently multiply different wavelengths of light by coefficients on the interval [-1,1], sum the products
together, and output the resulting value as an electrical current. A transimpedance amplifier (TIA) can then be
used to transform the weights into any arbitrary range, along with converting the electrical current to a voltage
which can be measured and digitized. This architecture, proposed by [3] and depicted in Fig. 1b, is capable of
performing four multiplications and four additions at once, with a maximum operation rate of 5GHz being set by
the sampling circuitry. These operations can be chained together with digital additions to implement full vector
and matrix multiplications at much higher rates than conventional digital computers.

In this paper, we propose a method for training these DEAP neuromorphic accelerators, and demonstrate its
effectiveness on PointNet. This is done through digital simulations implemented on the PyTorch machine learning
library [5], so as to enable scalability of the model, flexibility of the setup, and ease of reproduction for machine
learning engineers with no prior knowledge in analog computing. The model uses the control signals as trainable
parameters, meaning that the training process requires no access to hardware, as well as that the effects of all
MRRs are accounted for when calculating weights, as recommended by [6].

2. System Setup

The digital DEAP processor model is described in Eqgs. 7, 10 and 11 of [3], and has been fitted to match the
transmission spectrum of the device used in that paper’s experiments. This simulated spectrum enables the imple-
mentation of four neural network weights at a time, which can be tuned via the power in mW applied to the four
MRR heaters and the gain of the TIA as shown in Fig. 1b. For vectors of more than four elements, different tuning
powers and gains can be applied, representing different passes through the circuit. After generating the weights,
a simple batch-matrix multiplication can be used to apply the weights to the inputs, enabling any basic PyTorch
module to be replaced by a simulated DEAP processor.

To verify that this model works as intended, we replaced all of the trainable layers in PointNet with simulated
DEAP processor layers, and trained the new model as one would the original. The model was made to minimize
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negative-log-likelihood loss using the ADAM optimizer with a learn rate of 0.001 and 3 values of 0.9 and 0.999.
The model was trained on point clouds of 2500 points sampled from one of 16 types of ShapeNet object [7], with
12137 objects per epoch separated into batches of 32 and evaluation stops every 10 batches. A test benchmark
was made to be used after training on model snapshots from after each epoch. To ensure a quality local minimum
is reached, the model was set to anneal its learn rate by a y of 0.9 in the event of 5 evaluation stops not yielding
improved results over the observed peak performance.

3. Results and Analysis

The classification accuracy over epoch for the DEAP model is shown in Fig. 2b. This figure shows that the control
parameters of a DEAP accelerator can be trained directly to learn a pattern, though the training process is slower
and less stable than its digital counterpart. It is important to note that the final accuracy displayed in this model is
lower than that of a software network due to the high sensitivity of the model’s parameters, and not the ability of
the architecture to learn patterns. This accuracy could be improved with longer training, hyper-parameter tuning,
or by using least-squares minimization to fit the DEAP model to a pre-trained software model with satisfactory
accuracy.
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Fig. 2. a) Point cloud of a coffee mug sampled from the ShapeNet dataset [7]. b) Evaluation accuracy
and loss over epoch for DEAP model.

697609280 passes through the DEAP core are required to compute one inference of PointNet. This means that,
at the current bandwidth limit of 5GHz, a single instance of the DEAP architecture is capable of performing an
inference on PointNet in as little as 139.522ms. This could be reduced further by adding more DEAP units, or by
adding more MRRs to the units under test, allowing for the process to be further parallelized.

4. Conclusion

We propose a method for training digital electronic and analog photonic neuromorphic accelerators using only
software. This method uses the modeled spectral response from existing hardware to simulate the circuits that
generate weights in photonic neural networks. We then illustrate that these models can be made drop-in compatible
with existing software modules and trained in the same pipeline. The model was able to reach accuracies above
75% without specialized hyperparameter tuning, and is capable of classifying point cloud object data in as little
as 139.522ms with only one core operating at a time.
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