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ABSTRACT

Freshwater scarcity is a global problem that requires collective

efforts across all industry sectors. Nevertheless, a lack of access

to operational water footprint data bars many applications from

exploring optimization opportunities hidden within the temporal

and spatial variations. To break this barrier into research in water

sustainability, we build a dataset for operation direct water usage

in the cooling systems and indirect water embedded in electricity

generation. Our dataset consists of the hourly water efficiency

of major U.S. cities and states from 2019 to 2023. We also offer

cooling system models that capture the impact of weather on water

efficiency. We present a preliminary analysis of our dataset and

discuss three potential applications that can benefit from it. Our

dataset is publicly available at Open Science Framework (OSF) [1].
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1 INTRODUCTION

Global freshwater supply is under immense pressure due to the

growing population and deteriorating climate conditions, making

extended droughts a norm in many parts of the world [2]. For

example, Fig. 1 shows that 37.03% of the U.S. area was under se-

vere drought or worse in 2022 [3]. Even in regions not historically

prone to drought, such as the eastern U.S., the importance of water

conservation persists due to aging public water infrastructure [4].

Therefore, every industry and application sector must scrutinize
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Drought Impact Types:

S = Short-Term, typically less than 
6 months (e.g. agriculture, grasslands)

L = Long-Term, typically greater than 
6 months (e.g. hydrology, ecology)

Delineates dominant impacts

Intensity:

D0 Abnormally Dry
D1 Moderate Drought
D2 Severe Drought
D3 Extreme Drought
D4 Exceptional Drought

None

Figure 1: US drought map for August 2, 2022, with 4.47%

area under exceptional drought (D4), 18.96% area under ex-

treme drought orworse (D3-D4), and 37.03% area under severe

drought or worse (D2-D4) [3]

its water footprint and actively contribute to water sustainability

efforts [5–7].

In this paper, we focus on two pervasive components that signif-

icantly contribute to the water footprint across many sectors — the

water consumption in the cooling system and the water footprint

embedded in the electricity consumption. Evaporative cooling has

been extensively used for the temperature regulation of buildings,

and the water usage in these cooling systems can account for more

than 50% of the building’s total use [8]. Meanwhile, the water foot-

print in electricity generation remains high despite a steady gain

in water efficiency over the years. In 2021, every megawatt-hour of

electricity generation used nearly 12,000 gallons of water [9].

The substantial water footprints in cooling systems and elec-

tricity consumption also present considerable opportunities for

savings. More importantly, both of these water footprints under

scrutiny vary over time — the cooling system’s water consumption

varies with local weather conditions, whereas the water embed-

ded in electricity changes with variations in electricity generation

sources. These temporal variations can be leveraged by applica-

tions like EV charging, which benefit from scheduling flexibilities

[10]. Moreover, large cloud-scale data center applications can also

incorporate in their load balancing the variations in water footprint

across geographical locations [11, 12]. However, the general lack of

access to operational water footprint data hinders the development

of water-sustainable operation strategies across many applications,

such as building management and EV charging.
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Table 1: Estimated water intensity of different electricity generation sources in the U.S. [13].

Energy Source Coal Hydro Natural Gas Nuclear Other Petroleum Solar Wind

Water Intensity (L/kWh) 1.817 22.675 0.795 2.309 0.757 1.363 0.000 0.000

To foster water sustainability research and open up the largely

untapped optimization opportunities in the temporal and spatial

variations of water footprints, we build a water efficiency dataset

that provides the hourly water efficiency of the cooling system

and electricity generation across major U.S. cities and states from

January 2019 to December 2023. We also present our cooling system

models to capture the impact of weather conditions on the water

consumption rate of the cooling system. Our dataset, along with

all source data, models, and scripts, are made publicly available

at Open Science Framework (OSF) [1]. We conduct a preliminary

analysis of our dataset, offering insights into temporal and spatial

variations of water efficiency. Additionally, we discuss three sample

applications that can benefit from our dataset.

2 PRELIMINARIES

2.1 Water Footprint

Withdrawal vs consumption. These are two important terms in

the context of water management that warrant clarification [14, 15].

Water withdrawal is the total amount of water taken from a water

source. It does not imply permanent removal and can be returned

to the source after use, although it may undergo changes in quality

or temperature during the process. Water consumption refers to

the portion of withdrawn water that is not returned to its source. It

represents the amount of water that is either evaporated, incorpo-

rated into products, or otherwise not available for immediate reuse

in the same water source. While water withdrawal is integral for

sustainable water use [14], our focus in this work centers on water

consumption, which poses a more imminent threat to available

water and also consistent with the water footprint literature [15].

Direct water consumption. It refers to the water, an entity

consumes for its own operational processes and activities. It in-

volves water that is physically used on-site and is often directly

under the control or management of the entity. Examples of direct

water consumption are water consumed in the cooling systems,

sanitation and cleaning, irrigation, and fire suppression.

Indirect water consumption. It refers to the water consumed

beyond an entity’s operational boundaries and direct control. Exam-

ples of an entity’s indirect water consumption are water usage in

the production of energy consumed, supply chain, manufacturing

and transportation equipment, and consumer use.

To enable holistic sustainability, we can align the direct and

indirect water footprint with the Greenhouse Gas Protocol’s (GHG

Protocol) widely accepted accounting approach for measuring and

managing greenhouse gas emissions [16]. While the GHG Protocol

has been primarily associated with greenhouse gas emissions, it

can be extended to include water usage as well [13]. Following the

GHG Protocol, the direct water footprint can be considered Scope

1, while the indirect water footprint falls under Scopes 2 and 3.

2.2 Water Consumption in Cooling Systems

Commercial high-capacity cooling systems, including those used

in office buildings and many data centers, typically use water in

their cooling system for heat transport and dissipation into the

environment [17]. As illustrated in Fig. 2, these cooling systems

consist of two water loops — the inner loop carries the heat from

the facility air handlers to the chiller heat exchanger, and the outer

loop carries the heat from the chiller heat exchanger to the cooling

tower for releasing the heat. The inner loop is closed and does

not lose any water. The outer loop, on the other hand, sends hot

water to the cooling tower, which cools down the water using water

evaporation and, therefore, loses water in the process. This water

loss through evaporation is the direct water consumption for the

cooling system. Note that the water in the outer loop also requires

regular recycling (known as blowdown) to avoid any buildup from

concentrated minerals due to evaporation. The water lost through

blowdown, however, is not considered water consumption as it is

returned to the source as grey water.

2.3 Water Consumption in Electricity
Generation

Different electricity generation sources have varying water con-

sumption patterns, and their impact on water resources depends

on the technology and processes involved [18, 19]. Thermal power

plants such as coal, natural gas, and oil use water for cooling pur-

poses in the generation process. Nuclear power plants also require

water for cooling, typically through cooling towers or direct dis-

charges. Solar and wind power generation technologies have min-

imal water consumption during the electricity generation phase.

Water use is mostly associated with the manufacturing and mainte-

nance of the equipment. Hydropower plants’ water consumption,

on the other hand, mainly comes from expedited surface evapora-

tion in their water reservoirs. Table 1 shows the U.S. average water

consumption to generate a kilowatt-hour of electricity [13].

2.4 Water Usage Effectiveness (WUE)

Water Usage Effectiveness (WUE) is an operational water metric

that quantifies the water efficiency of a system, as defined below

WUE =
Water Consumption

Energy Processed/Generated
(1)

For a cooling system, WUE is the ratio of water consumption to the

amount of heat dissipated, whereas, for electricity, it is the ratio of

water consumption and electric energy generation.

3 WATER EFFICIENCY DATASET

3.1 Methodology

Estimation of direct WUE. A cooling tower’s water consump-

tion varies with the outside air temperature and humidity. More

specifically, the cooling tower consumes more water (i.e., water
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Figure 2: Cooling system with evaporative cooling.

evaporates away) for the same cooling load when the outside air

temperature is higher or more humid. While the precise relation-

ship between WUE and weather conditions for a specific cooling

system can vary, we here offer a generic model that captures the

impact of the weather conditions on commercial cooling towers.

We utilize the Water Calculator tool offered by SPX Technologies

[20] to derive our model.

Before introducing our model, we briefly discuss the operational

set points that are crucial to understanding cooling towers and the

SPX water calculator, as illustrated in Fig. 2. The “range” denotes

the temperature difference between hot and cold water in the outer

loop. The range and flow rate determine the system’s cooling load.

SPX water calculator captures the impact of weather conditions by

including the wet bulb temperature. Wet bulb temperature indicates

the temperature of air saturated with water and can be measured

from a wet cloth exposed to airflow. Wet bulb temperature can be

measured from a wet cloth exposed to airflow. For cooling tower

operation, there must be a temperature difference between the wet-

bulb temperature and the cold water temperature. This temperature

difference is called the “approach”.

Next, to analyze the impact of weather conditions on cooling

tower water consumption using the SPX water calculator, first

we set the flow rate to 1000 gallons per minute and a range of

10 Fahrenheit. Note that the flow rate set point here is chosen

to be an arbitrary round number and does not affect the WUE.

This configuration results in a cooling capacity of 1466 kW or 417

tons. Meanwhile, the drift rate and concentration are maintained

at their SPX default values of 0.005% and 3, respectively. The drift

rate refers to water droplets carried away from the cooling tower

by airflow, while concentration indicates how many times water

circulates in the outer loop before being discarded. In the SPX water

calculator, drift rate and concentration values do not influence the

water evaporation rate.

Fig. 3(a) shows the water efficiency of the cooling tower at dif-

ferent wet-bulb temperatures and different approaches. We see

that at any given wet-bulb temperature, the WUE goes up with a

decreasing approach. While this indicates a higher approach will

result in lower water consumption, it also leads to a higher tem-

perature of the cold water in the chiller heat exchanger, requiring

the heat exchanger to work harder (and consume more energy) to

transfer the heat from the inner loop to the outer loop. Here, we

offer two different models, considering two operation strategies.

In the first one, we fix the approach to 5◦F to maximize the heat

exchanger efficiency. In the second one, we fix the cold water tem-

perature to 85◦F (the typical maximum allowed temperature for

a heat exchanger) and, therefore have a variable approach with
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Figure 3: (a) Change in WUE with wet bulb temperatures

with different approaches (i.e., the difference between cold

water temperature and wet bulb temperature). (b) Model of

weather impact on direct WUE. For the "Fixed Approach"

model, the approach is set at 5◦F. For the "Fixed Cold Water"

temperature model, cold water temperature is set at 85◦F.

changing wet bulb temperature. Using these two strategies on our

data points in Fig. 3(b), we derive the following two models

𝑊
𝐹𝑖𝑥𝑒𝑑𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ
𝑑𝑖𝑟𝑒𝑐𝑡

= −0.0001896 ·𝑇 2
𝑤 + 0.03095 ·𝑇𝑤 + 0.4442 (2)

𝑊 𝐹𝑖𝑥𝑒𝑑𝐶𝑜𝑙𝑑𝑊𝑎𝑡𝑒𝑟
𝑑𝑖𝑟𝑒𝑐𝑡 = 0.0005112 ·𝑇 2

𝑤 − 0.04982 ·𝑇𝑤 + 2.387 (3)

where𝑇𝑤 is the wet bulb temperature in Fahrenheit. Note here that,

due to incompatible operation set points in cold weather conditions,

in Eqns. (2) and (3), the lower limits for 𝑇𝑤 are 30◦F and 45◦F,

respectively. We show our models in Fig. 3(b).

In deriving Eqns. (2) and (3) above, we consider 100% heat-

transfer efficiency at the chiller heat exchanger and perfect thermal

isolation in the water loops. That is, the cooling load is solely de-

termined by the flow rate and temperature difference between hot

and cold water. Moreover, we use SPX’s own estimation of water

evaporation rates in their cooling towers.

In practice, the cooling system efficiency can vary depending

on the specific installation and manufacturer. This may increase

or decrease the tower’s water evaporation rate. To capture such

variability, we can introduce a cooling tower efficiency multiplier

𝜆 > 0 and update Eqns. (2) and (3) as 𝑊
𝐹𝑖𝑥𝑒𝑑𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ
𝑑𝑖𝑟𝑒𝑐𝑡

= 𝜆 ·

(−0.0001896 ·𝑇 2
𝑤 + 0.03095 ·𝑇𝑤 + 0.4442) and𝑊 𝐹𝑖𝑥𝑒𝑑𝐶𝑜𝑙𝑑𝑊𝑎𝑡𝑒𝑟

𝑑𝑖𝑟𝑒𝑐𝑡
=

𝜆 · (0.0005112 ·𝑇 2
𝑤 − 0.04982 ·𝑇𝑤 + 2.387). The value of 𝜆 for a par-

ticular cooling system can be estimated by measuring its cooling

load, water flow rate, range, and evaporation rate for a few different

operational set points. For the rest of this paper, we consider 𝜆 = 1

unless otherwise specified.

Estimation of indirect water. The electricity consumed from

the power grid comes from various generation sources such as

coal, oil, hydro, natural gas, nuclear, wind, and solar. These various

electricity generation sources have a varying degree of water foot-

print associated with their electricity generation. However, once

the electricity enters the power grid, it is difficult to separate the

generation sources. Hence, the water footprint embedded in the

electricity from the power grid is a mix of water footprints from

multiple sources. Following prior literature and common practice

[13], we calculate indirect water footprint using a weighted mix of

water footprints from energy sources where each source’s weight

corresponds to the fraction of electricity generation it is responsible
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Figure 4: Water efficiency across different U.S. locations in

2023.

for. We use the following formula

𝑊𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 (𝑡) =
∑
𝑘 𝑒𝑘 (𝑡) ·𝑤𝑘
∑
𝑘 𝑒𝑘 (𝑡)

(4)

where 𝑒𝑘 (𝑡) is the electricity generation from energy source 𝑘 at

time 𝑡 and𝑤𝑘 is water footprint of energy source 𝑘 .

3.2 Scope and Source of the Data

We now provide some details of our dataset.

Temporal resolution and duration. In our dataset, we present

five-year data from January 2019 to December 2023. We collect our

data at a temporal resolution of one hour.

Locations. We incorporate 58 major US cities with at least one

city from each state (except Hawaii).

Weather data. To capture the temporal variation in direct WUE

due toweather conditions, we collect theweather data fromWeather

Underground [21]. It offers location-wise hourly air temperature

and relative humidity. We estimate the wet bulb temperature from

the air temperature and relative humidity using the Stull formula

[22].

Electricity data.We collect our hourly electricity data from EIA

OpenData [23], which provides hourly electricity generation from

different energy sources, as reported by the 76 different balancing

authorities that operate in the U.S. Each balancing authority covers

a certain geographical area. However, many of these balancing

authorities interconnect with each other and, therefore, share the

generation source of electricity. Hence, we follow the EPA eGrids

zones mapping used for emission data [24]. eGrid divides the U.S.

into 25 subregions and maps the balancing authorities to these

subregions.We aggregate the balancing authority-level data into the
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Figure 5: Average WUE across different locations.
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Figure 6: Change of WUE in any 24-hour period.

eGrid subregion to determine electricity generation from different

energy sources for a particular subregion.

4 PRELIMINARY ANALYSIS OF THE DATASET

Time series visualization. Fig. 4 shows the time series daily aver-

age direct and indirect WUE for several U.S. cities. For the indirect

WUE, we use the fixed approach model presented in Eqn. (2). We

see a seasonal impact on the time series data where winter months

show a larger day-to-day variation than summer months for direct

WUE. The indirect WUE, on the other hand, does not reveal such

seasonal impact prominently.

Spatial variation in WUE. Fig. 5 shows the direct and indirect

WUE for several U.S. cities in 2023. This box plot extends from

the first quartile (Q1) to the third quartile (Q3) of the data, with a

black line at the median and the mean represented using a diamond

marker. The whiskers extend from the box by 1.5x the inter-quartile

range (IQR) We see differences in both direct and indirect WUE due

to differences in weather and the local mix of energy sources. We

see particularly larger variations in indirect WUE across different

locations.

Daily variations. In Fig. 6, we show the maximum daily varia-

tions (difference between the maximum and minimum WUE over

a single day) of WUEs in different locations. We see that, on aver-

age, the direct WUE varies as much as 20% in places like Cheyenne.

Meanwhile, the indirectWUE routinely varies more than 25% across

most locations shown in Fig. 6.
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5 EXAMPLE APPLICATIONS

We provide three example applications that may benefit from our

dataset: EV charging, building load management, and geographical

load balancing in data centers.

EV charging. EV charging can benefit from integrating water

footprint into their operation sustainability. EV charging mainly

involves indirect water consumption due to its electricity consump-

tion. EV charging activities also typically offer greater scheduling

flexibilities [10]. Given the scheduling flexibility inherent in EV

charging activities, implementing a water-aware charging schedule

can optimize EV charging during periods of low indirect WUE,

resulting in significant indirect water consumption savings.

Building load management. Commercial buildings commonly

feature sizable centralized cooling systems employing cooling tow-

ers, resulting in both direct and indirect water consumption. Con-

sequently, managing such buildings’ cooling load and energy con-

sumption can integrate the building’s varying water efficiencies to

reduce its overall water consumption.

Geographical load balancing in data centersWater-aware

scheduling and geographical load balancing offer substantial ben-

efits to data centers and cloud applications [11, 12]. Data center

workloads and cloud applications can exploit both temporal and

spatial variation in the direct and indirect WUE. Unlike building

load or EV charging, data center workloads can be moved around to

more water-efficient locations. Many data center workloads, such

as machine learning training, also offer great temporal scheduling

flexibility and can be executed during water-efficient hours.

6 CONCLUDING REMARKS

In this paper, we introduced an hourly operational water efficiency

dataset that captures the direct water consumption in the cooling

system and indirect water embedded in the electricity generation.

Additionally, we presented cooling system models capturing the

impact of the weather conditions. We presented a preliminary anal-

ysis of our dataset highlighting the inherent temporal and spatial

variation in direct and indirect WUEs. Furthermore, we discussed

three potential applications that can benefit from utilizing our water

efficiency dataset.
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