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ABSTRACT

The growing adoption of residential distributed energy resources
(DERs) introduces more uncertain variability in power grid opera-
tion. More importantly, the residential DERs operate behind cus-
tomers’ energy meters, and therefore, the utility cannot “directly”
monitor them. Prior approaches to enable visibility into behind-
the-meter (BTM) DERs either depend on estimations or require
intrusive instrumentation on the customer side. To address the
critical need for direct real-time monitoring of BTM DERs, in this
paper, we propose a novel approach for utility-side direct real-time
monitoring of residential BTM DERs. We utilize high-frequency
(> 10kHz) conducted electromagnetic interference (EMI) from resi-
dential DERs’ grid-tied inverters to monitor their power generation.
We discuss the working principle of our approach and present
supporting results using three of-the-shelf grid-tied inverters.
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1 INTRODUCTION

1.1 Motivation

Modern power grids have been subject to greater integration of
distributed energy resources (DERs) at various levels. While these
DERs can have various configurations, residential DERs almost
entirely consist of solar power (i.e., PV systems with or without
batteries) due to their size and economic viability. Solar energy was
accounted for 3% of the total U.S. electricity generation in 2020
and projected to grow to 20% by 2050 [1]. Residential solar (i.e.,
residential DERs) was responsible for nearly 20% of the net U.S.
solar generation in 2020 [2], and therefore, plays a crucial role in
the nation’s efforts toward energy sustainability.

Meanwhile, the U.S. power grid has been evolving over the years
with the growing electrification of buildings and vehicles [3] and
an increasing number of grid-connected storage devices altering
the load types and profiles [4]. Studies show that modern power
grids are being operated ever closer to their thermal and stability
limits [5], making them more vulnerable to uncertainties. Towards
that, the growing adoption of residential DERs with intermittent
generation is having a detrimental impact [6, 7]. More importantly,
the residential DERs operate behind customers’ energy meters, and
the utility cannot “directly” monitor them.

The lack of situational awareness of these behind-the-meter
(BTM) DERSs has introduced new challenges in existing applications
such as net-load forecasting, volt-var control and optimization, and
protection planning. For instance, due to the lack of a monitoring
system, operators could not predict how much BTM generation
would disconnect during the 2018 Angeles Forest event [8]. There
was an unexpectedly sharp increase in the net load in this event
when 130 MW of BTM PV went offline following a disturbance
that also tripped an 860 MW utility-scale PV system. There is a
general lack of understanding of how the dynamic behavior of
the DERs affects the bulk power grid and its protective systems
[9, 10]. Hence, more observability of BTM PV systems is required to
develop robust power grid control strategies. Moreover, monitoring
the variable DERs will improve the electricity market participation,
where accurate forecasting is critical for determining the reserve
and ramping requirements in the day-ahead and real-time market
operations [11].

On the other hand, the residential DERs are installed on utility
distribution feeders, which adds to the challenges of managing the
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Figure 1: Overview of our proposed approach: We use utility-
side voltage probing to capture conducted EMI from grid-tied
inverters to monitor the status of DERs.

distribution system. The distributed generation makes the behav-
ior of the distribution system more volatile and worsens existing
issues, such as phase imbalance and high-impedance faults [12-
14]. The residential DERs can inject power locally, causing reverse
power flows and raised voltages [15]. Active monitoring of these
DERs helps estimate the current and forecasted distribution system
states quickly and accurately, which is vital for many power sys-
tems support tools such as market dispatch, transmission energy
management, and distribution management system. The state esti-
mation also assists in controlling the power system and protective
equipment such as voltage regulators, capacitor banks, breakers,
switches, and reclosers.

1.2 Limitations of Existing Approaches

Estimation-based approaches. Prior efforts to enable utility-side
visibility into BTM DER, i.e., residential solar generation, have been
predominantly based on estimations. For instance, satellite and
aerial imagery have been used to identify rooftop PV systems and
their characteristics, e.g., size, orientation, and tilt [16-21]. These
approaches mainly help estimate the peak solar generation and
cannot provide real-time status. Others propose data-driven ap-
proaches that extract hidden patterns in the data from feeders and
transformers integrated with other information such as solar ir-
radiation and weather condition to disaggregate DER generation
[22-24]. Smart energy meter data has also been utilized to gain fine
granular customer-level estimations [25-27]. However, separating
solar generation and other residential loads from the energy me-
ter’s net-load data is challenging as, unlike household appliances
with a finite number of active states (e.g., ON, OFF, standby), solar
generation changes continuously (depending on the time of the
day) and abruptly (due to cloud overcast) [28]. Also, a common
downside shared by estimation-based approaches is their reliance
on historical data and repeating/predictable load characteristics,
making them less effective during irregular grid behavior (e.g., An-
geles Forest event [8]) when the accuracy of estimation is critical.
Meanwhile, there has been a growing trend of integrating batter-
ies with residential PV systems [29-33]. Batteries inject additional
unpredictable variations on the net load due to their charging (i.e.,
net-load increases) and discharging (i.e., net-load decreases) activi-
ties, further diminishing the efficacy of these estimation approaches
[34]. To summarize, while useful in some cases, the quality of the
data from existing estimation-based approaches is not sufficient for
making real-time operational and control decisions.
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Table 1: The proposed conducted EMI-based approach vs.
existing approaches of BTM DER monitoring,.

Monitoring Direct Monitoring PV | Homogenous | Non-Intrusive
Data Source Measurement | with Batteries Source Access
| Conducted EMI | v \ v \ v \ v \
‘ Solar Irradiation ‘ X ‘ X ‘ v ‘ v ‘
Feeder and
Transformer ‘ x ‘ x ‘ v ‘ v ‘
‘ Smart Meter ‘ X ‘ X ‘ v ‘ v ‘
Mon.itoring ‘ v ‘ v ‘ < ‘ % ‘
Device
‘ Smart Inverter ‘ v ‘ v ‘ X ‘ X ‘

Intrusive sensing. On the other hand, there are commercially
available devices for monitoring BTM residential solar generation
[35-37]. However, these systems require intrusive instrumentation,
for instance, current sensors placed on PV power cables inside the
customer’s breaker box [35]. An alternative approach is to collect
PV generation data directly from smart inverters’ monitoring sys-
tems [38, 39]. However, the smart inverters report to their respective
manufacturers’ central data management systems, and the utili-
ties do not have access to these third-party inverter manufacturer
data. Moreover, these data sources are challenging to integrate with
power utility operations as they come from heterogeneous sources
(i.e., different inverter manufacturer’s systems) with varying sam-
pling intervals, data integrity, and reliability. Hence, while these
monitoring approaches can potentially achieve real-time monitor-
ing, they require intrusive access and are challenging to integrate
with the utility’s grid operation.

1.3 Our Contribution

To overcome the limitations of existing systems, we propose a novel
approach for monitoring residential BTM DERSs. In our approach, we
utilize the conducted electromagnetic interference (EMI) generated
by residential DERs’ grid-tied inverters to monitor their power
generation. We extract the inverter EMI from residential power line
voltage for real-time monitoring from the utility side without any
intrusive access to the customer equipment. Fig. 1 illustrates our
proposed approach where a voltage probe collects high-frequency
measurements (10kHz~150kHz) from the utility-side power lines
to monitor the BTM DER generation.

Our approach overcomes the aforementioned limitations in ex-
isting BTM DER monitoring systems - (@) we offer real-time moni-
toring of BTM DER generation, (@) we do not rely on any historical
patterns/characteristics and directly monitor the DER inverter’s
power generation, (@) we can accurately estimate a customer’s “real
load” by factoring in the DER generation to the energy meter’s net-
load, and (@) we enable utility-side and fully utility-managed BTM
DER monitoring system. Table 1 compares our proposed approach
with existing techniques.

In what follows, we first provide background on grid-tied inverter
operation and residential DER architecture. We then discuss the
operating principle of our approach, followed by preliminary results.
We then discuss the technical challenges and future work.
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Figure 2: (a) Illustration of PWM-based sinusoidal synthesis
in inverters. (b) The output voltage from the SMA inverter
shows the voltage ripples due to PWM.

2 BACKGROUND

Grid-Tied inverters. THD-compliant grid-tied inverters are re-
quired to supply sinusoidal outputs at a stable voltage. These invert-
ers use the pulse width modulation (PWM) method for generating
the sinusoidal output [40, 41]. PWM inverters use solid-state elec-
tronic switches for rapid switching to generate rectangular PWM
pulses. As shown in the illustration in Fig. 2(a), by controlling the
duty cycle of the PWM pulses, these inverters synthesize sinusoidal
outputs using LC filters that extracts the moving average of the in-
put PWM pattern. The rapid switching also creates high-frequency
ripples in the inverter output voltage (Fig. 2(a)). Moreover, the high-
frequency ripples change with the loading level of the inverter - a
higher load creates taller ripples and vice versa. The frequency of
these ripples depends on the inverter’s PWM switching rate and
appears as high-frequency EMIs in the frequency domain [42-44].
Note that the voltage ripples from the inverter are in the millivolts
range and therefore contribute very little (if at all) towards the
harmonic distortion (and hence do not affect THD compliance), yet
still contain information about the inverter operation, and thereby
enable our behind-the-meter monitoring scheme.

DER architecture. There are two main types of inverter ar-
chitectures used in residential solar - string inverters and microin-
verters [45, 46]. In string inverters (Fig. 3(a)), all solar panels are
connected to a single inverter with enough capacity (e.g., 3 ~ 10kW)
to handle the aggregated peak generation from the solar panels. The
inverter supplies power to the residential load or the power grid
through the residential breaker box. In some inverters, the solar
panels are also equipped with DC optimizer that help to provide a
stable voltage to the inverter [45]. In a microinverter setup (Fig. 3(b)),
each solar panel is equipped with a smaller (e.g., 300 ~ 500W) dedi-
cated inverter. The microinverters work in parallel. The inverter
outputs are typically combined in a separate breaker box and then
connected to the main breaker box.

DERs with batteries. In addition to the PV panel-inverter
connectivity architecture, another important aspect of BTM so-
lar system architecture to consider is the presence of energy stor-
age/batteries. There are two main ways BTM solar systems are
integrated with batteries - AC-coupled and DC-coupled systems.
In AC-coupled systems, the battery is integrated into the AC side
of the residential power network. Since batteries are DC sources,
AC-coupled batteries require a dedicated inverter-charger for the
battery bank. The advantage of an AC-coupled system is that it can
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Figure 3: Residential DER (PV/solar) architectures.

independently operate with or without a solar system in place. In
DC-coupled systems, on the other hand, the battery is connected
to the DC side of the solar system, hence behind the inverter, in
parallel with the PV panels. For typical solar inverters, the DC-
coupled battery bank is charged only with solar power from the
PV panel. Here, DC power from the solar panels is stored in the
batteries, and it does not require charging capability (i.e., rectifier)
on the inverter. However, a hybrid charger-inverter can charge a
DC-coupled battery using power from the grid instead of the PV
panel.

3 RESIDNETIAL DER MONITORING

Working principle. Our proposed BTM DER monitoring system is
based on the following observations. First, we identify that the rapid
electronic switching in the inverters of DERs generates conducted
EMIs at a high-frequency range (e.g., >10kHz). Second, the EMIs
from these grid-tied inverters are conducted through the residential
power network and can be extracted from utility-side line voltage
measurements (e.g., at the energy meter) [47, 48]. Third, the con-
ducted EMI changes with changes in inverter loading (e.g., solar
generation). Therefore, by analyzing the line voltage probed at a
high frequency, we can extract the operating status of a BTM DER.

Advantages of our approach. As the conducted EMI changes
instantaneously with a change in inverter load, our approach offers
real-time status monitoring of the DER generation. Also, in contrast
to estimation-based approaches, ours can be considered “direct”
monitoring as we do not need to rely on additional information
to determine the DER generation. Moreover, as we use power line
voltage measurements on the utility side, we do not need intrusive
access to customers’ equipment or private data.

How to extract inverter EMIs from line voltage? The volt-
age probe measuring the line voltage captures the inverter’s con-
ducted EMIs as well as EMIs from various household appliances
and electronic loads [49, 50]. Hence, it begs the question - how do
we extract/separate the inverter’s EMI?
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Figure 5: Photo of our residential power testbed.

We identified that the characteristics of the EMIs generated by
the inverters allow us to isolate them from other EMIs using fre-
quency domain analysis. More specifically, as shown in Fig. 6, the
inverter EMIs create clearly identifiable spikes in the frequency
analysis of the line voltage. These frequency spikes are generated
because the electronic switching in inverters is done at a fixed
frequency to simplify the design/choice of an inverter’s frequency-
sensitive components such as inductors and capacitors [51, 52]. In
the frequency analysis, inverter EMI occupies a small frequency
band because of the fixed frequency switching. Also, typical in-
verters’ switching frequencies are set in the range of a few tens of
kilo-hertz as a higher switching frequency creates better sinusoidal
output voltage and, at the same time, allows the use of smaller
and cheaper electrical components (e.g., transformers). The inverter
EMIs’ narrow bandwidth helps them to avoid interference from other
sources, while their high frequency places them away from power
grid harmonics - making the inverter EMIs extractable from the line
voltage measurement.

431

Pranjol Sen Gupta, S M Shafiul Alam, Yichen Zhang, and Mohammad A. Islam

Frequency Amplitude
of Inverter Output (V)

Frequency Amplitude
of Inverter Output (V)

[
&

divl
100 10*
Frequency (Hz)

Frequency (Hz)

(a) SMA Sunny Boy (b) Enphase 1Q7

Frequency Amplitude
of Inverter Output (V)

Frequency (Hz)

(c) Schneider Xantrax

Figure 6: Frequency domain analysis of the output voltage of
three different inverters showing their high-frequency EMIs.

g g

< 1500( 4 gstimation A1 26 Bstimation ,6

g —-Perfect Prediction ,o’o g 200] —-Perfect Prediction gz’

o 1000 - e

= & & 150 gx

2 s00 g 2100 -

s 8 ] /'é

E 0 o8 § 50(§~

@ 0 500 1000 1500 @ 50 100 150 200
Actual Power (W) Actual Power (W)

(a) SMA (3KW), RMSE = 31W  (b) Enphase (400W), RMSE = 5W

< Estimation ’,O

000| - perfect Prediction /,,0'
<

-

-

K

&0

(=3
(=3
=]

/'0/’
ol

0 1000 2000 3000
Actual Power (W)

Estimated Power (W)
- N w
(=3
(=}
(=]
RS

(c) Schneider (3.5KW), RMSE =
43W

Figure 7: Estimating inverter power from EMI using neural
network regression on frequency data.

4 PRELIMINARY RESULTS

Experimental setup. In our preliminary study, we run experi-
ments with three different grid-tied inverters - an SMA Sunny Boy
3kW string inverter, an Enphase IQ7 400W microinverter, and a
Schneider Electric Xantex XW 4kW hybrid inverter. Our experi-
ment setup consists of a 10KW Ametek Solar Array Simulator, a
10K VA split-phase distribution transformer, a power distribution
box, and several AC programmable loads. The solar array simulator
powers the inverter under test. The inverter connects to the 240V
terminals of the distribution box. We take voltage measurements
at the distribution box using an oscilloscope at a sampling rate of
200K samples per second. Fig, 4 illustrates our experiment setup,
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while Fig. 5 shows a photo of our testbed (without any inverter
connected).

Results. Fig. 6 shows the frequency domain analysis (FFT) of
the three inverters’ output voltage. In each case, we see inverter-
generated EMIs in the voltage measurement. These EMIs are created
due to the rapid electronic switching of the inverters. We identify
these inverter-created frequency spikes by comparing the voltage
without any inverter connected.

Next, in Fig. 7, we show the estimation accuracy of inverter
power from EMI using Matlab Regression Learner [53]. In this
regression, we use the frequency data (Fig. 6) as the input after
applying principal component analysis (PCA) to keep only the rele-
vant frequency components. The PCA keeps only one component
for SMA, 240 components for Enphase, and two frequency com-
ponents for Xantrax. Note that the frequency analysis in Fig. 6
has 100,000 frequency components, highlighting that our approach
only needs a tiny fraction of the frequency data and, therefore, is
unlikely to have significant interference from other EMI sources.

The regression shows that we can determine the inverter power
from the inverter EMI with high accuracy. We see that across all the
inverter models, the root mean squared error (RMSE) is less than
1.5% of their respective capacity, demonstrating the great potential
of conducted EMI-based monitoring.

Note that our experiment results also reveal that EMIs vary with
inverter models and require different regression models to extract
their power information from their EMIs.

5 CONCLUDING REMARKS

In this paper, we proposed a new approach for monitoring resi-
dential BTM DERs from the utility side. We discussed the working
principle of our approach and presented preliminary results sup-
porting our novel idea.

Technical challenges. Although our preliminary results reveal
the untapped potential of utilizing conducted EMI for BTM DER
monitoring, the novelty of our approach invites various research
challenges toward developing a practical end-to-end solution. (1)
The behavior of conducted EMI from DERs has not been studied
before in the context of real-time monitoring applications. (2) We
need to develop new data processing pipelines and algorithms for
extracting and interpreting DER status from conducted EMIs. (3)
Our monitoring approach enables new insight into the distribution
system that needs careful consideration for integrating with the
grid operation. (4) For widespread deployment of our approach,
we need to develop a low-cost and retrofittable EMI sensor. (5) We
also need to develop new low-power and low-cost communication
protocols. (6) We need to ensure the security of the sensor device
and the communication channel.
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