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Figure 1: We created FabHacks, a design system for “home hacks” built from repurposed everyday objects. The system is 
built on FabHaL, our domain-specific language for representing rigid fixture hacks. This solver-aided DSL is equipped with 
verification and solving functionality to help the user finalize their designs. Here we show two hacks, each with the set of 
everyday items to build it, the solved configuration from our system, and the design fabricated in the real world. Left: the 
birdfeeder hanging hack made of S-hooks, eyehooks, sticky hooks and a hanger. Right: the reading nook hack made of obstacle 
rings, toy ring links, S-hooks, turnbuckles and a hula hoop; the environment for the reading nook hack was scanned and 
calibrated with the PolyCam mobile application. 

ABSTRACT 
Storage, organizing, and decorating are important aspects of home 
design. Buying commercial items for many of these tasks, this 
can be costly, and reuse is more sustainable. An alternative is a 
“home hack,” i.e., a functional assembly constructed from existing 
household items. However, coming up with such hacks requires 

combining objects to make a physically valid design, which might 
be difficult to test if they are large, require nailing or screwing to 
the wall, or if the designer has mobility limitations. 

We present a design and visualization system, FabHacks, for cre-
ating workable functional assemblies. The system is based on a new 
solver-aided domain-specific language (S-DSL) called FabHaL. By 
analyzing existing home hacks shared online, we create a design 
abstraction for connecting household items using predefined con-
nection types. We also provide a UI for designing hack assemblies 
that fulfill a given specification. FabHacks leverages a physics-based 
solver that finds the expected physical configuration of an assembly 
design. Our validation includes a user study with our UI, which 
shows that users can easily create assemblies and explore a range 
of designs. 
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1 INTRODUCTION 
In nature nothing is lost, nothing is created, everything is 
transformed. —Antoine Laurent de Lavoisier 

Everyday life presents many challenges regarding our physical 
environment that we are constantly trying to solve, from common 
wear and tear (such as stovetop stains) to cluttered spaces (such 
as a messy desk). It is tempting to purchase the latest cleaning or 
organizational tools in a world of next-day delivery that bombards 
us with advertisements. However, buying still more products is 
wasteful, costly, unsustainable, and often unnecessary. 

Instead, a thriving subculture is growing on the Internet of shar-
ing “home hacks” that repurpose common household items into 
cost-effective and environment-friendly solutions. We analyzed the 
space of home hacks (full analysis in Appendix A) and found that we 
can divide them into two categories based on their functionalities. 
One category, like a blinds-cleaning tool made from binding tissues 
on tongs with rubber bands, makes creative reuse of a single item 
to change the shape or feel of an existing object, enabling better 
grasping or easier interaction. The other, like hangers linked with 
soda can tabs to make effective use of closet space, involves assem-
bling multiple items into a structure that holds objects at a specific 
location and orientation relative to the environment. We term the 
latter “fixture hacks” because their goal is to build an assembly that 
holds a target object in a fixed environment. Our analysis found that 
rigid undeformed fixtures (i.e., composed of rigid parts combined 
but not deformed or modified destructively) are typically used in 
fixture hacks. Thus, our work focuses on this well-scoped subset. 

Replicating existing fixture hacks at home might be straightfor-
ward, but inventing new hacks requires knowledge, insight, creativ-
ity, experimentation, and access to all parts. Furthermore, fixture 
hacks often involve multiple objects that interact mechanically, and 
gravity can affect a design’s stability, making physical prototyping 
necessary to design a hack. However, physical prototyping is not 
always possible, not only for people with limited mobility, but also 
in situations where not all parts are available or prototyping would 
be costly or permanently alter one’s home. 

Our main insight is that despite the variety of objects used in 
rigid fixture hacks, these objects attach via eight common types 
of connector primitives (Figure 2). For example, the handle on a 
mug, the top hook on a hanger, and the handle on a basket can all 
be represented using a “hook” primitive (Figure 4). The connector 
primitive is thus a key concept in our system: these primitives 

abstract away the complex low-level geometry that is irrelevant to 
how users combine objects or to the overall assembly functionality. 

This insight informed the design of FabHaL (FabHacks Lan-
guage), the key contribution of our work. FabHaL is a solver-aided 
domain-specific language (S-DSL) for representing fixture hacks. By 
embedding the connection behavior and compatibility constraints 
for each pair of connectors into the solver (Section 4), we help users 
more easily explore hack designs within the domain’s constraints. 

On top of FabHaL, we build a novel design system and UI, Fab-
Hacks, for designing home hacks. The system lets users experiment 
virtually and simulate their designs under gravity. We validate our 
system through a user study, with results showing that users find 
FabHacks intuitive to use and is useful for exploring hack designs. 

2 RELATED WORK 
This work proposes FabHacks based on the FabHaL DSL that ad-
dresses the specific challenges posed by the domain of fixture hack 
design. We survey tools and recent work related to our approach. 

CAD Tools for Assembly Design. Assembly design is important 
in manufacturing industries. Various tools have been developed for 
this task, including computer-aided design tools [Onshape 2023; 
SOLIDWORKS 2023]. We can use CAD tools to construct assemblies 
of parts using mate constraints, which define the relative orientation 
of two entities (part or surface) and the constraints on their degrees 
of freedom. However, modeling complex assemblies with existing 
CAD software requires a high degree of expertise. 

First, mates are tricky to work with despite recent research [Jones 
et al. 2021] on providing mating suggestions. Multiple different mate 
types between two parts could appear to encode the same kinemat-
ics, only to be shown different later in the design process when 
another part is added that further constrains the existing degrees 
of freedom. Mate constraints are also not made for representing 
fixture home hacks. The everyday hacks that inspired our system 
(Figure 14) consist of many loose connections, such as a hook dan-
gling over a rod, or a ring with a much greater radius than the hook 
it is attached to. Mates, usually single-origin coordinate systems 
with limited degrees of freedom, are more suitable for representing 
a mechanical assembly where parts fit snugly together, leaving only 
a few degrees of freedom for the overall assembly motion. 

Second, if the object geometry comes in other formats (such as 
point clouds from scans, voxels, or inaccurate STLs), CAD users 
must create B-rep models from these inputs before they can spec-
ify mate connectors. FabHacks can accept any format and simply 
requires the geometry to be tagged with connector primitives. For 
example, for the reading nook hack in Figure 1, right, we scanned 
the room and used it as the geometry for the environment. We 
created an OnShape plugin (Figure 4, top) for tagging the connector 
primitives on geometry that comes in various formats. 

Finally, performance analysis is also important during assembly 
design. Existing CAD tools are primarily concerned with analyzing 
the kinematics of mechanical assemblies and evaluating whether 
they achieve the desired concerted motion. In contrast, evaluating 
the performance of rigid fixture hacks that we focus on means 
measuring their stability as a hanging assembly under gravity. This 
type of simulation-based analysis is either completely separate from 
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Figure 2: We analyzed 24 rigid undeformed fixture hacks and extracted eight connector primitive types found on objects in 
those hacks; Table 4 in Appendix A documents the shape parameters we use to parametrize a primitive’s geometry. We show 
each connector next to an example hack where it appears. The eight example hacks (left to right, top to bottom) are cup hanger 
(No.24), scarf organizer (No.22), toothbrush holder (No.7), charger holder (No.18), bathroom organizer (No.11), nonslip hanger 
(No.3), pants hanger (No.8), and soap bottle bag (No.1) as numbered in Table 2 in Appendix A. 

current CAD design tools or exists with the CAD tool as part of a 
software suite that requires additional expertise to use. 

Solver-Aided DSLs. DSLs have proven effective at abstracting
expert knowledge and allowing non-experts to create valid designs, 
but they are, by definition, designed for a specific domain of appli-
cations. Several works [Jones et al. 2020; Zhao et al. 2020] have used 
DSLs for geometric modeling in specific domains, like simulated 
terrestrial robots and cuboid-based 3D shapes; they define a DSL 
and try to synthesize programs in it given specific objectives. DSLs 
can also be used to specify designs and fabrication plans for carpen-
try [Wu et al. 2019; Zhao et al. 2022], where we can use program 
synthesis techniques for design generation and optimization. 

In this work, we propose a DSL (FabHaL) specifically for fix-
ture hacks. FabHaL imitates the paradigm of solver-aided languages,
where a user can partially specify a program (vastly reducing the 
search space) while leaving certain sections abstract (such as expres-
sions or parameters) [Torlak and Bodik 2013]. An external solver is 
then invoked to concretize the partially specified program into a 
complete one, which can then be executed to verify the result. A 
FabHaL program is essentially a partial specification of a home hack 
design: a sequence of instructions to attach a specific connector 
primitive on one part to a specific connector primitive on another. 

This paradigm has proven useful in domains in the programming 
languages community, such as program deobfuscation [Jha et al. 
2010], synthesizing GPU kernels [Phothilimthana et al. 2019], and 
validating and planning biology experiments [Fisher et al. 2014]. 
Other applications include user interface designs [Hottelier et al. 
2014] for resolving conflicts in the constraints of a layout design 
and mathematical diagrams [Ye et al. 2020] for automatically plac-
ing visual elements given user specifications. In our case, users 
can specify the skeleton of connections between primitives while 
leaving the precise placements of parts for a solver to fill in, and 
the solver could also provide feedback to users, such as informing 
them of whether a connection is valid. 

Generative Design of Connectors. Existing works on modeling or
creating connections involve generating new connection geometry. 
Koyama et al. [2015] propose a tool for automatically generating 3D 
printed structures given a user specification to hold or connect two 
objects. Hofmann et al. [2018] also generate connections between 

objects and support the specification of assembly information and 
constraints affecting the assembly, but they do not automate solving 
for those constraints. In addition, both works focus on manufac-
turing new parts, in contrast to our focus on exclusively reusing 
existing objects. 

Sustainability in Design and Fabrication. Sustainability consider-
ations have become increasingly prevalent in our everyday lives 
and in fabrication research [Yan et al. 2023]. Our work explores the 
general question of how to fabricate more sustainably. In this space, 
prior work explored how fabrication can reduce waste by using 3D 
printing to fix broken objects [Lamb et al. 2019; Teibrich et al. 2015] 
and reusing materials, such as plastic bags [Choi and Ishii 2021] and 
yarns [Wu and Devendorf 2020]. Other work augments existing 
objects with fabrication for repurposing [Davidoff et al. 2011; Guo 
et al. 2017; Ramakers et al. 2016], such as by generating structures 
for re-interfacing with robot arms, legacy physical interfaces, or 
appliances. Chen et al. [2018; 2015; 2016] use 3D printing to aug-
ment existing objects with additional functionality (some involving 
mechanisms), while Arabi et al. [2022; 2022] and Li et al. [2020; 2019; 
2022] focus more on augmenting robots using everyday objects or 
mechanisms to help them manipulate objects. 

Our research examines how to use rigid everyday objects of any 
shape without modifications to build a hanging fixture. Our work is 
distinctive in that we consider how multiple objects fit together into
an assembly; the preceding work instead augments one specific 
object to allow robotic manipulation or to create a mechanism. (For 
example, none of the preceding work could be used to design the 
hanging birdfeeder in Figure 1, which uses several different parts.) 

3 SYSTEM OVERVIEW 
Consider as an example a novice user designing a birdfeeder to 
hang between two hooks using FabHacks (Figure 3). 

Annotated Object Library. First, the user selects the parts they
would like to repurpose into their home hack from the Annotated
Object Library. The Library contains 3D models of a variety of rigid
everyday objects, each annotated with the eight types of connector 
primitives we currently support. We call these annotated Library 
objects “parts.” In addition to labeling regions of a part with a 
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Figure 3: Overview of the FabHacks system. The user can either directly code in FabHaL or use the UI to create programs. 
FabHaL programs build on top of an annotated object library. The programs are connectivity-only specifications of a hack 
design, and the 3D configurations of the parts are completed by the automatic solver. Users can then get visual feedback from 
the program viewer and use the feedback to iterate on the design. When satisfied with the design, they can fabricate the hack 
in the real world. 

thickness 

arc angle 

arc radius 

Figure 4: Top: the OnShape plugin for tagging 3D models with 
the eight connector primitives. Bottom: (left) an example 
showing how we defined the hook shape parametrically with 
its arc angle, arc radius, and thickness, and (right) three parts 
tagged with a hook primitive, each with different parameters. 

connector primitive type (such as “hook”), the annotations include 
type-specific parameters needed to define the geometry of that 
primitive. For example, we show in Figure 4, bottom right, three 
example parts that have been annotated with a hook primitive, each 
parametrized to match the exact radius and thickness of the hook 
geometry in that part (bottom left). 

We stress that the user does not typically need to do any 3D mod-
eling or annotation themselves but rather can select parts from the 
predefined library. All examples in this work use a proof-of-concept 
library of 47 parts: 22 parts for to modeling the fixed environment 
or the target object to be held fixed in place by the hack, and 25 ev-
eryday objects rich in connector primitives for use as components 
of a home hack. To build this database, we extended the OnShape 
CAD modeling system’s API to support part annotation. Our plugin 

(see Figure 4, top) lets users import a 3D model of a part and add 
connector primitives. When a primitive is added to a part, parame-
ters are set interactively to ensure the connector aligns with the 
part. The Annotated Object Library can be extended to include 
custom parts that users want to include in their hack design, and 
we envision this to be part of a future community effort. 

FabHaL. Next, the user assembles parts into a hack design using 
FabHaL, our solver-aided DSL. Users have two ways to interact with 
FabHaL to create hack designs: either directly writing programs in 
the FabHaL language, or using the FabHacks graphical interface 
to click on two connectors of two parts to connect them. When 
programming in FabHaL, users can also parameterize the programs; 
for example, they can specify that a hack should include a chain 
with an unknown number 𝑁 of links and search over 𝑁 for valid 
hack designs with the help of the solver (Section 6.2). In either case, 
note that the user need not write any kinematic constraints: these 
are inferred automatically by FabHacks from the part annotations. 
See Section 4 for more information on the FabHaL language. 

Solver-aided Evaluation. Finally, the user asks FabHacks to realize 
the hack design in 3D space using a constrained optimization solver 
(Section 4.3). Our solver checks whether the part connections are 
feasible and, if so, relaxes the 3D positions of the parts under gravity 
and presents the final, solved configuration visually to the user. The 
solver also reports problems with the design to the user (such as 
infeasible connections or parts that would fall off the assembly if 
relaxed under gravity). Given this feedback, the user can iteratively 
improve the FabHaL program and solve again. 

4 AN S-DSL FOR FABHACKS 
We now introduce the S-DSL FabHaL for representing rigid fixture 
hacks. Figure 5 shows six example designs represented in the DSL. 

The design of FabHaL was motivated by two factors. First, our 
analysis of home hacks (see Appendix A) influenced the language 
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(a) Toothbrush Holder (b) Charger Holder 

(c) Soap Bottle Holder (d) Mug Hanger 

(e) Paper Towel Holder (f) Diaper Caddy 

Figure 5: Six hacks created by directly programming in Fab-
HaL, with photos of fabricated designs and renderings of the 
corresponding programs in our viewer (see Appendix B). 

design. We found that objects in home “fixture hacks” are typically 
connected via eight common shapes, which we term connector 
primitives, and define in Section 4.1. 

Second, the language design is guided by our goal of using the 
DSL as a vessel for domain knowledge. We intend for this DSL to 
help users without prior experience in modeling or simulation to 
design fixture hacks. Therefore, being straightforward and succinct 
is an important desideratum. To achieve this, we choose to introduce 
a solver to complete a connectivity-only partial specification of the 
hack design, so the user need only specify (1) the configuration 
for a target object and its environment, and (2) which connector 
primitives to connect. We introduce the simple syntax and example 
usage in Section 4.2 and the solver in Section 4.3. 

4.1 Connector Primitives 
FabHaL includes eight primitive types: hook, rod, ring, tube, hemi-
sphere, clip, edge, and surface, which can be assigned to a wide 
variety of objects (Section 3). We summarize the connectivity be-
tween these primitives in Table 1. Next, we explain how we model 
the connection behavior between pairs of connector primitives and 
the information associated with each primitive that the solver uses 
to verify and finalize the configuration of a hack design. 

Figure 6: Three examples of rod-
hook connections. Image on the 
right © Matt Kingston. 

Connector Frames. Our 
analysis of home hacks 
(Appendix A) found that 
the connection behavior 
between parts is local to 
the pair of primitives that 
form the connection. Take 
as an example the rod-hook 
connection (see inset): a 

Table 1: Pairs of primitives that can be connected. A check-
mark means that connection is currently allowed by the DSL, 
and a light grey cell means it is not. We ignore the lower-
triangular region (dark grey) since it is redundant with the 
upper-triangular one. 

hook ring hemi. edge rod tube clip surf. 
hook ✓ ✓ ✓ ✓ 
ring ✓ ✓ 
hemi. ✓ 
edge ✓ 
rod ✓ ✓ 
tube ✓ ✓ 
clip 
surf. ✓ 

hook can slide along a rod and flex around it regardless of whether 
this rod is in a closet, a shower, or an ironing board. To represent 
such behavior mathematically so that we can formulate it as part 
of the solver’s constrained optimization, we must first establish the 
concept of a Frame. 

In FabHaL, Frame consists of a position vector (𝑥 , 𝑦, 𝑧) and yaw-
pitch-roll intrinsic Euler angles. Frames can represent a single-
origin coordinate system (similar to mates in CAD) or the 3D 
configuration of a primitive or a part. When frames are used to 
represent the connection points on primitives, we call them con-
nector frames. The connector frames of a primitive can be com-
puted from its base frame and shape parameters (obtained from the 
part annotations) and additional degrees of freedom specific to its 

type. For example, a hook primitive has 
two additional DoFs, 𝜃 and 𝜙 , parameter-
izing the location and orientation of the 
point of contact (see inset). In FabHaL, 

the DoFs and the information on how to use them to compute 
the parametric connector frames are associated directly with each 
connector primitive. 

Alignment Offsets. When two primitives are connected, their 
connector frames need to be coincident in position, but the orienta-
tion may have some offset. Based on our analysis, this orientation 
offset is common to a pair of connectable primitives. For example, 

as shown in the inset figure, when a rod and a hook 
connect, their connector frames are offset by a rotation 
of [180◦ , 0◦ , 90◦] in yaw-pitch-roll intrinsic Euler angles. 
(Here the frames are intentionally placed to be not co-
incident at their origins to better display the orientation 

offset.) We call the offset rotation between two primitives’ connec-
tor frames an alignment offset. 

With the connector frames and alignment offsets defined for 
each pair of connector primitives, we can represent the connection 
behavior precisely with respect to the degrees of freedom associ-
ated with each primitive. Even with a small number of categories of 
connector primitives, we can capture a wide range of possible con-
nections that appear in hacks. This set of primitives and associated 
alignment offsets is also easily extensible. 

In addition to the theoretically allowed connectivity between 
primitives (Table 1), two primitives must be physically compatible 
before they can be connected. We encode two pieces of additional 
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information in connector primitives so that users need not reason 
about this lower-level detail. 

Closed Primitives. Two primitives with no openings cannot con-
nect because there is no valid motion path to create the connection. 
Among the eight connector primitives, the ring primitive is always 
closed. In addition, primitives that are not generally closed could be 
inaccessible in the context of the geometry of the part containing it. 
For example, the handle of the basket in Figure 4 (bottom-right) is 
tagged as a hook, which can connect to a ring according to Table 1. 
But as an integral part of the basket, it is part of closed geometry; 
thus, a ring primitive without an opening cannot connect to this 
hook. We allow tagging of individual primitives as closed primitives 
(e.g., the basket handle) when annotating parts for the Annotated 
Object Library, and our solver checks that designs do not attempt 
to connect two closed primitives. 

Critical Dimensions. Primitives might not have sufficient physi-
cal space for a connection. For example, a one-to-one connection 
between a rod and a hook is possible only if the hook’s hoop radius 
exceeds the rod’s radius. For a multi-to-one connection between 
several hooks and tubes and a single rod, the hooks and tubes might 
fully occupy the length of the rod. In this case, no new connection 
could be made with the rod because there is insufficient space. 

To track available physical space on primitives, we specify a 
critical dimension for connector primitives that can have multiple 
connections (i.e., the eight primitives except hemisphere and clip). 
The available critical dimension refers to the dimension of a primi-
tive that gets occupied when a new connection is made between 
itself and another primitive. For example, the critical dimension 
of a rod is its length; when a hook connects to this rod, we re-
duce its available length by the hook’s width. The hook’s critical 
dimension—the hoop radius—is also reduced by the rod’s radius. 

4.2 Language Constructs and Hack 
Construction 

To represent a hack, we must connect parts (annotated objects from 
the Annotated Object Library) using their connector primitives. 
These connected parts form a graph (Figure 7) that we call an 
assembly (i.e., a hack). 

Figure 7: An assembly with a cycle: a basket is connected to 
a rod via two eyehooks, forming a cycle (in the red circle) 
between the basket and the environment. Yellow rectangles 
represent parts, and green ones represent primitives. 

Two special parts in an Assembly are assumed to be fixed in 
place: the part representing the environment the assembly is at-
tached to, and the target part, a part meant to be fixed relative to 
the environment and whose configuration is used as a target for 
the solver. For example, the clip in Figure 5a is rests on a table, 
supporting a toothbrush. The table is the environment, represented 
as a surface primitive with a fixed position and orientation. The 
toothbrush is the target part to be fixed above the table. 

Our DSL exposes three operations needed to create an Assembly: 

• start_with(part, frame) 
• end_with(part, frame) 
• connect(part1.primitive, part2.primitive) 

start_with is used to specify the environment part with a fixed 
configuration (frame), and end_with specifies the target part’s con-
figuration (frame). connect takes two primitives as arguments re-
gardless of order and determines whether each Part is already 
part of the Assembly or is newly introduced. It has two optional 

parameters: (1) alignment (either “flip” or “default”) 
to indicate an orientation flip, e.g., a hook can hang 
on a rod coming from both sides of the rod, as shown 
in the inset; (2) is_fixed, a boolean value that indi-
cates that the connection is formed by static friction 

and thus the degrees of freedom involved should be held constant 
during solver-aided evaluation (e.g., the design requires taping con-
nectors together). 

If both connected parts are already part of the assembly, this con-
nection creates a cycle in the graph representation of the connected 
parts (see Figure 7). Not all connect operations will be physically 
realizable, and we discuss how the solver verifies whether a con-
nection can be made in Section 4.3. 

Figure 8 shows an example program in our DSL. This fixture 
hack hangs a basket with a round handle between two rods. In this 
program, we first initialize an Assembly and then the environment. 
Next, we use connect to add two eyehooks to the two rods by 
connecting the eyehook’s eye to the rod. Finally, we initialize the 
target part and connect the hook part of the eyehooks to the handle 
of the basket. 

4.3 Solver-aided Evaluation 
The core advantage of FabHaL is its ability to simplify the repre-
sentation of an Assembly to a graph of connected Parts, leaving 
to the solver the work of calculating the placement of parts. 

In our solver, we model an Assembly using a reduced represen-
tation of a kinematic rigid body chain, a common approach in fields 
like rigid body mechanics and robotics [Featherstone 1983]. Except 
for the environment part configuration, which takes 6 DoFs (de-
grees of freedom), the remaining parts are represented with only 
the connection parameters (usually 1 ∼ 3D). 

The solver handles both the simulation (4.3.3) and the pre-checks 
(4.3.1, 4.3.2) that check whether the connect() operations can be 
physically realized. We describe the pre-checks before we discussing 
the simulation of the assembly under gravity. 

4.3.1 Verify Connect(). Two potential issues can arise when a con-
nection is being made between two parts. First, a connection cannot 
be made between two primitives that cannot be joined according 
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Figure 8: An example program in FabHaL (top), with the cor-
responding assembly solved for and physically reproduced 
(bottom left) and rendered by our system (bottom right). 

to the connectivity table (Table 1), such as a rod to another rod, or 
when they are two closed primitives.

Second, the solver must check whether the available critical
dimension of a primitive is sufficient for what is needed for a new
connection. Based on the primitives’ critical dimensions, we add 
constraints to the parameters of the connector primitive that has 
multiple connections. For example, when two hooks connect to 
the same rod, two sets of parameters that decide where along the 
rod the hooks connect are created. Suppose that the hooks each 
have widths 𝑤 1, 𝑤2, the rod has length 𝑙 , and the two connection
parameters indicating the position of the hooks along the length of 
the rod are 𝑡1, 𝑡2 ∈ [0, 1]. Then, this “multi-connection” constraint
|𝑡1 − 𝑡2 | · 𝑙 ≥ 𝑤1+𝑤2 

2 is created and included in the solving process.
We represent this constraint as a soft penalty, as follows: 

𝐶 𝑚,𝑓 = 0 if 𝑓 ≥ 0, 𝐶 𝑚,𝑓 = 𝑓 2 if 𝑓 < 0,

where 𝑓 = |𝑡1 − 𝑡2 | · 𝑙 − 𝑤1+𝑤2 
2 . We use the symbol 𝐶𝑚 to represent

the sum of all multi-connection constraint penalties. 

4.3.2 Additionally Verify Connect() that Creates Cycles. A connect 
operation creates at least one cycle in the graph representation 
of the assembly if it is between two parts that are already part of 
the assembly (Figure 7). Such cycles require explicitly modeling 
constraints over the configurations of the parts being connected. 
Thus, we must also check whether we can find a set of values for 
the degrees of freedom that satisfy these constraints. 

For a cycle, we model six constraints measuring the failure of the 
connector frames on the two connected primitives to match each 

other. An assembly with 𝑛 cycles is feasible if valid values of the 
connection parameters exist along the cycles that satisfy 6𝑛 equality 
constraints of the form 𝑓𝑖 (x) = 0, 𝑖 ∈ [1..𝑛], where x is a vector of
all the DoFs in the assembly and 𝑓𝑖 (x) ∈ R 6 measures the failure
of the 𝑖 th cycle to close up. We minimize the sum of constraint 
residuals 𝐶 (x) = 

 𝑛 
𝑖=1 ∥ 𝑓𝑖 (x)∥ 2 subject to bound constraints on

the DoFs, xmin ≤ x ≤ xmax. We use the Powell method [2020]
to minimize 𝐶 and, if the solver succeeds in finding parameters 
with 𝐶 (x) ≤ 10−6 , the assembly is considered feasible (and thus
the connect successful). Since the success of the minimization 
depends on parameter initializations and can get stuck in local 
minima, we repeat the optimization 𝑇 times starting from different 
random initial guesses. We terminate early if a solution is found. 
We observed that 𝑇 = 16 works well in practice. 

Geometric Quick Reject. Before we run a full optimization to find
a system configuration that satisfies the connection constraints, 
we also utilize some precomputed information about the parts and 
primitives to perform a quick geometric check. 

Our geometric check uses the triangle inequality: 𝑘 line segments 
of length 

To apply this principle to our problem,
ℓ1 ≥ ℓ2 ≥ · · · ≥ ℓ𝑘 cannot be arranged into a closed loop

in 3D unless ℓ1 ≤ 𝑘
𝑖=2 ℓ𝑖 . 

 

we note that since each part 𝑖 in a part cy-
cle is rigid, we can bound the Euclidean 
distance 𝑒𝑖 ∈ [𝑒 − 

𝑖 , 𝑒 
+ 
𝑖 ] between the point

where part 𝑖 connects to parts 𝑖 −1 and 𝑖 +1. 
Because [𝑒 − 

𝑖 , 𝑒
+ 
𝑖 ] depend only on the ge-

ometry of the part and its two connectors 
involved in the cycle, not on the connec-
tion parameters, we can precompute these 

bounds for all the parts defined in our Annotated Object Library. 
Consider the inset figure representing a design that has a cycle 

of 4 parts. To close the cycle, the following linear program over the 
distances 𝑒𝑖 between connectors must be feasible:

min 
𝑒𝑖 

1 s.t. 

 
1 −1 −1 −1 
−1 1 −1 −1 
−1 −1 1 −1 
−1 −1 −1 1


 
𝑒1 
𝑒2 
𝑒3 
𝑒4 

 ≥ 0 

𝑒 − 
𝑖 ≤ 𝑒𝑖 ≤ 𝑒+ 

𝑖 , 𝑖 ∈ [1..4] .

(1) 

Checking the existence of a set of distances 𝑒𝑖 satisfying the bound
constraints and triangle inequality then amounts to checking the 
feasibility of a set of linear inequality constraints. This can be solved 
in milliseconds by standard Python libraries, quickly rejecting im-
possible connect operations. 

Stall Prevention. When we run the optimization, we put in mea-
sures for stall prevention. To halt optimization of 𝐶 when the solver 
stalls, we pass a custom callback function to scipy.optimize that 
performs linear regression on 𝐶 (x𝑖 ) for a sliding window of the
last ten DoF iterates x𝑖 . We abort the optimization in failure if the
slope of the fit line is less than 0.1 (i.e., the optimizer is not making 
much progress). This strategy gained us an additional 1.4x speedup 
on average for examples with cycles in Figure 5. 

4.3.3 Solving the Assembly. After a valid assembly is constructed 
in FabHaL, the user can invoke the solver to find the values for 
the degrees of freedom in the system that bring the target part 
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as close as possible to its specified configuration while being in 
static equilibrium under gravity and respecting all cycle-closure 
and critical-dimension constraints. 

This is a constrained optimization: we want to minimize the user 
objective subject to the balance of forces and torques on each non-
environment part. Early experiments revealed that black-box non-
linear optimization was prohibitively slow at solving this problem 
and often failed to converge to a feasible local minimum. Therefore, 
we propose instead a two-step solver that first minimizes the user 
objective subject to all constraints being satisfied and then uses the 
optimized configuration as an initial guess for a simulation that 
relaxes the assembly to static equilibrium. 

Step 1: Minimizing the User Objective. We use the Powell [2020] 
method to find a feasible configuration of the assembly that mini-
mizes the user objective: 

xfeas = arg min 
x 

𝑓obj (x)+𝜎 (𝐶𝑚 (x)+𝐶 (x)) s.t. xmin ≤ x ≤ xmax, 

where 𝐶𝑚 (x) are the multi-connection constraints described in 
Section 4.3.1, 𝐶 (x) are the cycle-closure constraints in Section 4.3.2, 
and 𝜎 is a penalty parameter starting from 𝜎 = 100. If after opti-
mization the constraint residual is not below 10−6 , we double 𝜎 and 
repeat the optimization, using xfeas as the initial guess. We repeat 
this process up to 5 times, which is usually sufficient to find xfeas. 
If the constraint residual is still not below 10−6 after 5 times, we 
pass the best configuration found to the second step. 

Step 2: Relaxing under Gravity. We use a physics solver to relax 
the assembly to an equilibrium state under its self-load, starting 
from the guess xfeas . Let 𝑞𝑖 ∈ 𝑆 𝐸 (3) represent the configuration of 
the 𝑖th part and q = {𝑞𝑖 }𝑛𝑖=1 represent the configuration vector of 
the entire assembly. For an assembly with 𝑐 total pairs of primitives 
connected, let 𝑔 𝑗 (q, x) ∈ R6 for 𝑗 = 1, . . . , 𝑐 be constraint functions 
encoding that each pair of primitives are connected with connection 
parameters x. 

To relax the assembly under gravity, we solve 

arg min 
q,x 

𝐸 (q, x) s.t. xmin ≤ x ≤ xmax (2) 

𝐸 (q, x) = 
∑︁ 

𝑖 
𝑃𝑖 (q) + 𝜎 

𝑐∑︁ 

𝑗 =1 
∥𝑔 𝑗 (q, x)∥ 2 , 

where 𝑃𝑖 (q) measures part 𝑖 ’s gravitational potential energy and 𝜎 
is a penalty parameter enforcing that connectors stay attached: we 
use 𝜎 = 100. We optimize Equation (2) using an active-set Newton’s 
method [Nocedal and Wright 2006]. 

To demonstrate the two-step process, we take the hack design 
from Figure 7 as an example, which hangs a soap bottle from a rod 
using eyehooks and a basket. Both programs visualized in Figure 9 
use the same target configuration specification for the soap bottle; 
thus, after the first step, the soap bottle is in a configuration that is 
closest to the target configuration. However, after the second step of 
relaxing under gravity, without a second eyehook to balance, the top 
row’s design falls under gravity into a less desirable configuration 
compared to the bottom row’s design. 

During the physics relaxation, we also predict whether the as-
sembly will fall apart due to connectors slipping off each other. To 

Figure 9: The top row shows the hack design without a second 
eyehook to balance the basket, and the bottom row shows 
the hack design with the second eyehook. The first column 
shows the intermediate results after first running the user 
objective minimization, and the second column shows the 
resulting configuration after the second step is run. 

perform this analysis, we annotate each connection parameter for 
each primitive in our library with one of three tags: 

• UNBOUNDED parameters are periodic and should be allowed 
to “wrap around” from 𝑥max to 𝑥min during optimization. 
For example, for a ring that can rotate 360 degrees, the angle 
parameter specifying the rotation of the ring about its central 
axis is UNBOUNDED. 

• BOUNDED_AND_CLAMPED parameters are used if the geometry 
of the primitive prevents the parameter from ever leaving 
the interval [𝑥min, 𝑥max]. The position parameter of a rod 
along the bottom of a clothes hanger is an example of this 
parameter. 

• BOUNDED_AND_OPEN parameters are used if exceeding the 
bounds of the parameter would cause the assembly to fall 
apart. The position parameter of a dowel rod, for example, 
is BOUNDED_AND_OPEN: hooks or rings that slide past the end 
of the dowel rod fall off the assembly. 

At the end of optimization, for each BOUNDED_AND_OPEN param-
eter 𝑖 , we check whether 𝑥𝑖 is in the inequality constraint active set, 
i.e., whether 𝑥𝑖 is equal to its maximum or minimum allowed value, 
and if so, whether ∇𝑥𝑖 𝐸 points away from 𝑥𝑖 ’s feasible interval. If 
so, we report to the user that the assembly falls apart. 

A hack assembly might have many different equilibrium states 
under gravity; our method above 
finds just one of them. For in-
stance in the “Demo” assembly 
(inset Figure 10), the S-hook and 
ring could slide to either end of 
the hanger’s rod depending on 

which end xfeas encodes they are closer to. 
Figure 10: “Demo”. 
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5 THE FABHACKS INTERFACE AND USER 
WORKFLOW 

This section describes how users create FabHaL programs with 
the FabHacks UI. As introduced in Section 4.2, to construct a hack 
design, users first specify a starting environment with start_with 
and a target part’s configuration relative to the environment with 
end_with, and then connect connector primitives on two parts 
with connect. Then, they can use solve to check design validity 
and solve for the configuration of their design under gravity. Based 
on feedback about whether a connection is valid and the visual 
feedback shown in the UI, users can choose to iterate on their 
design, as needed. 

(a) The user interface. 

(b) Step 1: the UI in the process of 
setting up the target part (a diaper 
caddy) relative to the environment 
(car seats). 

(c) Step 3: The user clicks on 
“Run Optimization” and the in-
set shows the solved configura-
tion. 

Figure 11: Top: a screenshot of the user interface. Bottom: 
example interactions for Steps 1 (left) and 3 (right). 

The UI consists of the workspace region and three menus (see 
Figure 11a). The left menu helps users during environment setup 
and for selecting parts to use in assembly design; the parts shown 
here are all from the “Annotated Object Library.” The bottom menu 
helps users choose connector primitives of the selected part, and 
this is where the buttons for constructing the assembly appear. The 
right menu helps users solve for the assembly’s final configuration. 

We design the UI interactions to roughly correspond to the pro-
gram construction process. 

Step 1: Environment Setup. Users start by setting up the environ-
ments where this hack will be situated. Taking the diaper caddy 
hanging hack (Figure 5f) as an example, in Figure 11b, we (as users) 

have already added the car seats as the starting environment and 
are in the process of specifying the configuration of the target part 
(diaper caddy) relative to the environment. The desired configura-
tions (position and orientation) of the environment and target part 
can be changed with sliders. This completes the environment setup, 
which corresponds to start_with and end_with in the program. 

Step 2: Assembly Design. Next, users construct the assembly by 
specifying which connections to make. They can either select a 
part from the left menu to connect it to the assembly or select 
two connector primitives already in the assembly and specify that 
they should be connected. As defined in our DSL, connect might 
introduce unsatisfiable constraints and thus need to be verified. We 
provide two-way filtering based on the connectivity table (Table 1) 
to skip some pre-checks. For example, if a hook is selected in the 
menu, then only hook, ring, rod, and tube primitives will be enabled 
for selection in the workspace, and vice versa for a hook clicked 
on in the workspace. If a connection cannot be made because of 
failed pre-checks or because the solver cannot find a valid set of 
parameters that satisfy the constraints, specific feedback is provided 
to users. For example, if the connection to be made introduces a 
cycle but the cycle cannot be formed according to the geometric 
quick reject, the feedback will remind users that the two primitives 
might be too far away to be connected. 

Step 3: Solving. After the environment and the target part are 
fully connected, the assembly is considered “valid.” Users can then 
invoke solve with the button “Run Optimization,” and the solver 
positions the parts such that changes in the configuration of the 
target part are minimized and the assembly is stable under gravity 
subject to any constraints in the design (Figure 11c). We note that 
this is not an interactive-rate step because the full physics-based 
solving can take up to a few minutes for complicated assemblies. 
More details on the runtime can be found in Table 5 in Appendix C. 

After users see the visual or textual feedback on their design, they 
can choose to continue modifying it either with some backtracking 
via undo and redo buttons or by simply adding more parts. They 
then re-run the solve to view the updated design. For example, in 
the case of an unstable design, the solver would return feedback 
that one connection will fall apart under gravity, and the user might 
choose to modify that specific connection. In case the solver fails to 
solve (which happens rarely, as shown in Appendix C), the number 
of random initial guesses to try could be increased in the UI. 

6 EVALUATION OF FABHACKS 
We now discuss implementation details and how we evaluated our 
system on both direct programming with examples and program-
ming via an interface with a user study. 

6.1 Implementation 
We implemented FabHaL as a shallowly embedded DSL with Python, 
i.e., it is embedded in the host language Python without its own 
abstract syntax tree. This allows the DSL to be used as a Python 
library and have access to common control structures from the 
host language for straightforward programmatic design genera-
tion. Python as the host language also facilitates easy integration 
with existing optimization and geometry processing libraries in 
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Figure 12: The parametrized assembly design and its four variations that most closely match the desired target part configuration 
given different ring sizes, with the photo (left) and simulated result (right). The parameter combination is indicated below the 
simulated result. 

our solver implementation [Jacobson et al. 2018; Sharp et al. 2019; 
Virtanen et al. 2020]. The UI is also implemented in Python using 
polyscope [2019] with extended features from imgui. 

6.2 Examples from Direct Programming and 
Programmatic Generation 

When the user has an overall idea of the hack they want to create, 
they can directly code their design and virtually test it. Figures 1 
and 5 show some example hacks created via direct programming. 

As a DSL, FabHaL also lends itself well to programmatic genera-
tion of families of programs. This is helpful when the user knows 
roughly what parts to use but is not sure of how many. They can 
generate parametrized designs using the host language features, 
such as conditionals and loops, and use the solver to find the set of 
parameters from hundreds of variations that let the program best 
satisfy the given target part configuration. 

As an example, suppose we are preparing for a trip to a summer 
camp with bunk beds. We would like to hang a clippable reading 
light at a certain distance from a hook on the top bunk bed so that 
it is sufficiently far away to not affect others in the same space and 
we can also reach the light’s switch easily. We have a rough idea 
to use a hanger, extendable M4 turnbuckles, and rings of different 
sizes and chain them together into a fixture hack for this scenario. 
The parametrized design consists of a chain of 𝑛 turnbuckle-ring 
pairs, with each turnbuckle extended by 𝑙 millimeters and each ring 
of radius 𝑋 (see Figure 12, leftmost). With this parametrization, 
we can programmatically generate a family of programs. If we 
already know the desired length and the size of rings that we have, 
we can use the solver to find the best parameters of 𝑛 and 𝑙 for 
a given ring size. Figure 12 shows four designs that match the 
target configuration, each corresponding to the four ring sizes 
(𝑋 ∈ {𝑋 𝑆, 𝑆, 𝑀, 𝐿}) and selected from the 80 program variations 
with 𝑛 ∈ [1..4], 𝑙 ∈ [0, 45.7] (discretized into 20 values). 

6.3 User Study with FabHacks Interface 
Users with minimal coding experience can create designs more 
interactively with our UI. We evaluate how useful our system is for 
hack designs through a user study with ten participants. Participant 
ages ranged from 18 to 34, with CAD experience ranging from none 
to greater than 5 years. Participants reported their gender as Male 
(5), Female (3), Non-Binary (1) and N/A (1). We conducted the study 
in our lab with a laptop we provided, and each session took about 
an hour. Audio and screen capture were recorded during the study. 

6.3.1 Method. After obtaining informed consent, we showed par-
ticipants a tutorial on how to construct the “Demo” assembly (inset 
Figure 10) in FabHacks, and participants repeated the same steps. 

Participants completed an open-ended design task using Fab-
Hacks where they were asked to hang a bird feeder from two 
hooks and think aloud during the process. The wall hooks 
(environment) and the bird feeder (target) were given. They had 
up to 30 minutes to create a design and were asked to come up 
with additional designs if time remained. We coded all designs as 
feasible or infeasible and then grouped them into categories based 
on similarity. 

After the study, we asked participants to answer three ques-
tions: (1) “Can you tell us up to three things you would like to see 
us keep in the FabHacks tool?” (2) “Can you tell us up to three 
things you would like to change in the FabHacks tool?” (3) “Can 
you think of a real-world change you would like to make to 
your space in the office or at home that the FabHacks tool could 
help you with?” We grouped the responses into categories and 
discussed them until we reached a consensus. 

6.3.2 Results and Discussion. Overall, our study shows that Fab-
Hacks is an efficient and intuitive way to construct hacks. 

The 10 participants created 25 feasible designs, each unique 
though many used similar strategies. Twenty-three of these be-
long to one of four common strategies: (A) constructing symmetric 
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(A) (B) (C) (D) 

Figure 13: Examples of each of the 4 common design strategies (A-D) found by participants. 

chains of small objects to anchor the birdfeeder between the two 
hooks (7 instances), (B) constructing two short chains, hanging a 
coat hanger upside-down between them, and dangling the bird-
feeder from the hook of the coat hanger (6 instances), (C) hanging 
a coat hanger from each wall hook and anchoring the bird feeder 
where they meet (8 instances), and (D) chaining two coat hangers 
from each wall hook and connecting the birdfeeder in the middle 
of them (2 instances). While several participants discovered each 
pattern, no two were identical; they chose different types or num-
bers of parts to achieve similar construction or connected the same 
parts in different ways. 

Looking at participants’ answers to our three questions, we saw 
several important themes arise. 

Question 1: FabHacks Keepers. First, multiple participants liked 
how “intuitive” the FabHacks interface was and praised its physics 
solver. One participant praised the “real-time realistic feedback” 
on connections, and another praised the “simplicity” of making 
connections in FabHacks. 

Question 2: FabHacks Changes. At the same time, participants 
noted areas for improvement. For example, multiple users men-
tioned that “not knowing the reason a [connection] is failing [when 
validation is run] can be frustrating” and asked for a wider variety 
of undo and delete operations (a simple feature to add). Participants 
also made suggestions such as: having a constraint on the number 
of available pieces; better support for orienting, panning, and zoom-
ing; a tree diagram showing the connections; and better feedback 
about what is selected. 

These critiques generally represent opportunities for improved 
user experience design rather than fundamental flaws with the 
mental model required to use our tool. For example, it would be 
possible to tell the user more specifically which part had a geometric 
flaw (e.g., being not long enough) and caused a connection to fail, 
or to visualize the configuration found by the solver with the failed 
connections highlighted. 

Question 3: Real-world Use Scenarios. We also found that 6/10 
participants had concrete ideas for how they would use FabHacks 
in their everyday lives, from a tree swing to outdoor lights to wall 
hangers to hang decorations or photos. Of four participants who 
did not see a use for FabHacks, one felt that the library needed to 
be expanded and account for things like weight because otherwise 
they would prefer testing the design directly; one felt they could 
more easily make a plan in their head; and two did not have an idea 
for how to use it. 

Although participant comments suggest that there is room for 
improvement, the preceding feedback mostly focuses on things 
that can be solved with a larger library and iteration on the user 
experience. Future work could explore adding physical properties 

like weight and center of mass to our physics solver or letting users 
choose other materials for their parts. 

7 LIMITATIONS AND FUTURE WORK 
A limitation of our system is that it only considers rigid unmodified 
parts and makes simplifying assumptions on the part interactions. 
An important future direction is to extend the proposed abstrac-
tions to handle any hacks using soft parts, more complicated parts 
(e.g., with shifting centers of mass), or examples where the part 
shapes can be altered during assembly, such as a piece of wood 
that can be cut to size. For example, our parametric connections 
can be expanded to accommodate additional degrees of freedom, 
allowing for the representation of deformable objects or items that 
can change dimensions when cut. 

More physical solvers could also be incorporated to handle de-
formable shapes and more complex part-part interactions. For ex-
ample, more advanced methods could be employed to determine the 
physical compatibility of parts instead of relying on approximations 
through closed primitives and critical dimensions. 

Our user study was designed to verify the usability of our system 
for creating valid hack designs without physical prototyping. Al-
though we did not ask participants to build the hacks they designed, 
we retrospectively built five designs for which we had enough parts 
and verified their physical stability. In fact, it is evident from one 
participant’s response on preferring testing directly that physi-
cal assembly and experimentation remains important despite our 
system’s goal. In the future, understanding how users physically 
prototype—as well as how hacks get assembled, disassembled, and 
actually used—would greatly inform how the current system could 
evolve to become more usable in real life. 

Our system also presents opportunities for automating how parts 
that make up the library are created. For example, it would be inter-
esting to explore automated recognition and fitting of connection 
primitives given a 3D model of a part. A step further would be to 
automatically add a part to the library from LIDAR data or multiple 
images of an object, which would enrich the modeling power of 
the system and help bridge the reality gap. 

Another promising opportunity is the complete automation of 
assembly design. By abstracting out eight common connector primi-
tives and rules on their connection behaviors, our proposed DSL not 
only supports interactive design but has the potential to facilitate 
the generation of optimal designs under various objectives because 
it fundamentally reduces the search space. Automating the design 
of home hacks is a challenging task because it involves searching 
through discrete combinations of parts and finding suitable con-
tinuous parameters that meet the specifications. Our abstractions 
enable us to decouple this problem into a program synthesis task 
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nested with continuous optimization, which is performed by our 
solver. How to make program synthesis techniques usable in this 
context poses an interesting research problem. 

FabHaL as a DSL could also benefit from the recent advances 
in large language models. Recent experiments that use LLMs for 
generating [Jain et al. 2023; Skreta et al. 2023] or completing pro-
grams [Piereder et al. 2024] in various DSLs show promising results. 
In preliminary experiments, we prompted GPT-4 [OpenAI 2024] to 
design a hack for hanging the birdfeeder with eyehooks, S-hooks, 
and hangers. While most attempts did not lead to a desirable de-
sign, GPT-4 was able to propose valid and near-valid designs (see 

inset). The inset-left shows a design cre-
ated by GPT-4 that is very close to our de-
sign (Figure 1), and the inset-right shows 
a design that is not physically valid when 
evaluated with our solver (the S-hook 

will disconnect and fall off) but resembles the participant-created 
designs using strategy C (Figure 13). Exploring how to enable LLMs 
to create physically valid hack designs with FabHaL is an exciting 
research direction: the underlying solver could become useful in 
generating feedback based on the solve results to prompt LLMs to 
fix issues in invalid or undesired designs. 

8 CONCLUSION 
This work introduces a design system that helps users create fixture 
hacks built out of household items. Our solution features a new 
solver-aided DSL, FabHaL, which was inspired by our analysis of 
a collection of hacks. Using the solver-aided paradigm, FabHaL 
lets users create connectivity-only partial specifications of a hack, 
which simplifies the design of hacks to connecting primitives be-
tween parts. Our study showed that FabHacks can support end-user 
construction of hack assemblies and is intuitive to use. Participants 
identified potential opportunities for using FabHacks in everyday 
life, suggesting that the ideas presented in this work could inspire 
a new age of sustainable DIY design. 
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A ANALYSIS OF THE DESIGN SPACE OF HOME 
HACKS 

The concept of “home hacking” covers a variety of topics. To better 
understand this design space, we first analyzed a collection of hacks 
and defined our problem domain, which informed our DSL design. 
Next, we go over research work relevant to home hacks design and 
existing tools that can be used to model home hacks. 

We first gathered over 400 examples of hacks across 17 sources 
(including DIY blogs, videos, and individual designs from colleagues). 
After eliminating hacks that are repeated, or essentially the same 
but used under different scenarios, we selected 48 distinct hacks 
for further analysis. 

Our analysis started with identifying each hack’s functionality. 
This gives us two main categories: hacks that hold or fix some 
objects in a specific location and orientation – or fixtures (27 out 
of 48), and hacks which typically make creative reuse of a single 
item to change the shape or feel (material property) of an existing 
object to allow for better grasping or easier interaction, e.g., a 
pool noodle used to organize wires and hide them, cover sharp 
saw edges, or create padding on furniture corners for a baby-proof 
environment. In contrast to the latter category, fixture hacks usually 
involve multiple parts, e.g., several wire baskets chained together 
with S-hooks to organize items above a kitchen sink. And since 
their goal is to hold a part at a specific location and orientation 
relative to its environment, gravity will affect the design’s stability. 
Thus, fixture design can be hard to reason with intuition and is 
well-suited as a computational design problem. Since deformable 
objects are difficult to model and simulate efficiently compared to 
rigid bodies, and it is unclear how end users can accurately specify 
manual modifications, we further limit the domain to rigid fixtures 
with only undeformed constituting objects because they are the 
majority of fixtures and present a well-scoped subset (24 out of 
27). We show the complete set of 24 rigid (or can be seen as rigid) 
fixture hacks in Figure 14. 

We then analyzed how the individual objects, which we call 
“parts”, were connected in the subset of rigid undeformed fixtures. 
Although many different parts are involved in the hack examples, 
connections typically form between common types of connector 
primitives. These connector primitives connect in ways that are 
independent of the objects that they are part of. From our anal-
ysis, we extract the following categories of connector primitives 
(Figure 2): rod, hook, ring, tube, clip, edge, surface, and hemisphere. 



SCF ’24, July 7–10, 2024, Aarhus, Denmark Mei et al. 

Figure 14: As ordered in the image, the hacks or hack groups in black boxes are from [Crafts 2022; Stanley 2021; Sullivan and 
Heumann 2019], one of the colleagues, [Caylor 2019; Fiyaa 2013], another one of the colleagues, [Karo 2019; Piro 2015]. We 
provide a short description for each hack and its source in Table 2. 

Table 2: Hacks and their sources. 
No. Hack Source Short Description 
1 [Sullivan and soap bottle bag 

Heumann 2019] 
2 [Stanley 2021] bottle holder on mower 
3 nonslip hanger 
4 hangers chained with rings 
5 magazine on a hanger 
6 glass light holder 
7 [Crafts 2022] toothbrush holder 
8 pants hanger with clothes clips 
9 phone holder from clothes clips 
10 binder clips stoppers in fridge 
11 bathroom organizer 
12 tissue box towel hanger 
13 Colleague A dish sponge hanger 
14 pen over pins on a board 
15 shower essentials holder 
16 hang clothes parallel to wall 
17 [Caylor 2019] hangers chained with soda can tabs 
18 [Fiyaa 2013] charger holder 
19 Colleague B kitchen tools rack 
20 oven mitten holder 
21 wire baskets chained with S-hooks 
22 [Piro 2015] scarf organizer 
23 [Karo 2019] bed slat as rack 
24 cup hanger 

Further analyzing the hack designs by looking at the parts and 
the connecting shapes of the parts, we determined the relationship 
between these connector primitives on whether they connect and 
how they align with each other when they connect. We summarized 

Table 3: Number of appearances in the 24 rigid undeformed 
fixture hacks (Figure 14) of each connection type. * means 
this connection type didn’t appear but we deduced that it 
is compatible based on similar connection types. # means 
this connection type didn’t appear in rigid fixture hacks but 
appeared in a non-rigid fixture hack. Light grey means this 
connection type did not appear or cannot be deduced. We 
ignore the lower-triangular region (dark grey) as it is redun-
dant with the upper-triangular one. 

hook ring hemi. edge rod tube clip surf. 
hook 1 5 12 1 
ring 4 * 
hemi. 2 
edge 3 
rod 2 5 
tube # * 
clip 
surf. 7 

the common design patterns of how objects can be connected in 
Table 3. The eight connector primitives and their pairwise interac-
tions become the basis for the design of the DSL and the underlying 
logic for assembly building in our system (see Section 4). 

B PROGRAMS FOR GALLERY EXAMPLES 
B.1 Toothbrush Holder 
ASSEMBLY_toothbrush_holder = Assembly() 

surface = Surface({"width": 400, "length": 400}) 
ENV_start = Environment({"surface": surface}) 
ENV_end = Environment({"toothbrush": Toothbrush()}) 

start_frame = Frame() 
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Table 4: We parametrize each primitive with its correspond-
ing shape parameters, and show an example of the primitive. 

Primitive Shape Parameters Example 

hook arc angle, arc radius, thickness 

ring arc radius, thickness 

hemisphere radius 

edge width, length, height 

rod radius, length 

tube inner radius, thickness, length 

clip width, height, base distance, 
open gap, thickness 

surface width, length 

ASSEMBLY_toothbrush_holder.start_with(ENV_start, start_frame) 

PART_clip = PlasticClip() 
ASSEMBLY_toothbrush_holder.connect(PART_clip.hemisphere1, ENV_start.surface) 
ASSEMBLY_toothbrush_holder.connect(PART_clip.hemisphere2, ENV_start.surface) 
ASSEMBLY_toothbrush_holder.connect(ENV_end.rod, PART_clip.clip) 
ASSEMBLY_toothbrush_holder.connect(ENV_end.hemisphere, ENV_start.surface) 

end_frame = Frame([-10, -62.5, 50], [-65,0,0]) 
ASSEMBLY_toothbrush_holder.end_with(ENV_end, end_frame) 

B.2 Charger Holder 
ASSEMBLY_cable_holder = Assembly() 

edge = Edge({"width": 100, "length": 200, "height": 1.5}) 
ENV_start = Environment({"edge": edge}) 
ENV_end = Environment({"cable": Cable()}) 

start_frame = Frame([0,0,150],[0,0,0]) 
ASSEMBLY_cable_holder.start_with(ENV_start.edge, start_frame) 

PART_binderclip = BinderClip() 
ASSEMBLY_cable_holder.connect(PART_binderclip.clip, ENV_start.edge, is_fixed=True) 
ASSEMBLY_cable_holder.connect(ENV_end.rod1, PART_binderclip.ring1) 
ASSEMBLY_cable_holder.connect(ENV_end.rod1, PART_binderclip.ring2) 

end_frame = Frame([0,57.5,163], [0,0,0]) 
ASSEMBLY_cable_holder.end_with(ENV_end.rod2, end_frame) 

B.3 Soap Bottle Holder 
ASSEMBLY_soapbottle_holder = Assembly() 

rod = Rod({"length": 500, "radius": 5}) 
ENV_start = Environment({"door": rod}) 
ENV_end = Environment({"soapbottle": SoapBottle()}) 

start_frame = Frame([0,0,500], [90,0,90]) 
ASSEMBLY_soapbottle_holder.start_with(ENV_start.door, start_frame) 

PART_hookeye1 = HookEyeLeftS() 
ASSEMBLY_soapbottle_holder.connect(PART_hookeye1.ring, ENV_start.door) 
PART_basket = Basket() 
ASSEMBLY_soapbottle_holder.connect(PART_basket.rod1, PART_hookeye1.hook) 
PART_hookeye2 = HookEyeLeftS() 
ASSEMBLY_soapbottle_holder.connect(PART_hookeye2.ring, ENV_start.door, alignment="flip") 
ASSEMBLY_soapbottle_holder.connect(PART_hookeye2.hook, PART_basket.rod2) 

ASSEMBLY_soapbottle_holder.connect(ENV_end.surface, PART_basket.surface) 

end_frame = Frame([0,0,253], [0,0,180]) 
ASSEMBLY_soapbottle_holder.end_with(ENV_end, end_frame) 

B.4 Mug Hanger 
ASSEMBLY_mug_hanger = Assembly() 

rod = Rod({"length": 500, "radius": 2}) 
ENV_start = Environment({"rod": rod}) 
surface = Surface({"length": 800, "width": 600}) 
ENV_wall = Environment({"wall": surface}) 
ENV_end = Environment({"mug": Mug()}) 

start_frame = Frame([0,0,200], [90,0,90]) 
ASSEMBLY_mug_hanger.start_with(ENV_start.rod, start_frame) 
wall_frame = Frame([0,50,0], [90,0,0]) 
ASSEMBLY_mug_hanger.start_with(ENV_wall.wall, wall_frame) 

PART_doublehook1 = DoubleHook() 
PART_doublehook2 = DoubleHook() 
PART_doublehook3 = DoubleHook() 
ASSEMBLY_mug_hanger.connect(PART_doublehook1.hook2, ENV_start.rod) 
ASSEMBLY_mug_hanger.connect(PART_doublehook2.hook2, PART_doublehook1.hook1) 
ASSEMBLY_mug_hanger.connect(PART_doublehook3.hook1, PART_doublehook2.hook1) 
ASSEMBLY_mug_hanger.connect(ENV_end.hook, PART_doublehook3.hook2) 

end_frame = Frame([0,0,50], [-35,0,-90]) 
ASSEMBLY_mug_hanger.end_with(ENV_end.hook, end_frame) 

B.5 Paper Towel Holder 
ASSEMBLY_paper_towel_holder = Assembly() 

ENV_start = Environment({"env": TowelHangingEnv()}) 
ENV_end = Environment({"paper_towel_roll": PaperTowelRoll()}) 

wall_frame = Frame([0,0,300], [0,0,0]) 
ASSEMBLY_paper_towel_holder.start_with(ENV_start, wall_frame) 

PART_hookeye1 = HookEyeLeft() 
PART_hookeye2 = HookEyeLeft() 
PART_broomrod = BroomRod() 
ASSEMBLY_paper_towel_holder.connect(PART_hookeye1.ring, ENV_start.hook1) 
ASSEMBLY_paper_towel_holder.connect(PART_hookeye2.ring, ENV_start.hook2) 
ASSEMBLY_paper_towel_holder.connect(PART_broomrod.tube, PART_hookeye1.hook, is_fixed=True) 
ASSEMBLY_paper_towel_holder.connect(ENV_end.tube, PART_broomrod.tube) 
ASSEMBLY_paper_towel_holder.connect(PART_hookeye2.hook, PART_broomrod.tube, is_fixed=True) 

end_frame = Frame([53,0,160], [-90,-60,0]) 
ASSEMBLY_paper_towel_holder.end_with(ENV_end.tube, end_frame) 

B.6 Diaper Caddy 
ASSEMBLY_diaper_caddy = Assembly() 

ENV_start = Environment({"backseat": BackSeats()}) 
ENV_end = Environment({"diaper_caddy": DiaperCaddy()}) 

start_frame = Frame([0,0,0], [0,0,0]) 
ASSEMBLY_diaper_caddy.start_with(ENV_start, start_frame) 

PART_doublehook1 = DoubleHook() 
PART_doublehook2 = DoubleHook() 
PART_doublehook3 = DoubleHook() 
PART_doublehook4 = DoubleHook() 
ASSEMBLY_diaper_caddy.connect(PART_doublehook1.hook1, ENV_start.rod1) 
ASSEMBLY_diaper_caddy.connect(PART_doublehook2.hook2, ENV_start.rod2) 
ASSEMBLY_diaper_caddy.connect(PART_doublehook3.hook1, PART_doublehook1.hook2) 
ASSEMBLY_diaper_caddy.connect(PART_doublehook4.hook1, PART_doublehook2.hook1) 
ASSEMBLY_diaper_caddy.connect(ENV_end.hook2, PART_doublehook3.hook2) 
ASSEMBLY_diaper_caddy.connect(ENV_end.hook1, PART_doublehook4.hook2) 

end_frame = Frame([124.3,580,717.1], [-135.5,-40,20.5]) 
ASSEMBLY_diaper_caddy.end_with(ENV_end.hook2, end_frame) 

C SOLVER RUNTIME 
We used the example hacks as test cases and collected runtimes 
of various solver operations into Table 5 below. The same laptop 
used for the user study sessions, a MacBook Pro (2020) with M1 
Chip and 8GB memory, was used for collecting these data. In the 
context of UI interactions, step 3’s “Run Optimization” corresponds 
to Avg. Full Solve Time, and step 2’s pre-checks correspond to 
Avg. Quick reject Time and Avg. Constraints Checking Time. 

Based on the table, the runtime increases as the complexity (# 
Parts, # Cycles, # Params) of the example increases. 
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Table 5: This table shows the runtime averages of solver operations. The first two columns are the example’s name and the 
corresponding figure. The next three columns records the number of parts, the number of cycles, and the number of parameters 
(i.e., the degrees of freedom of the connections) in the hack design. The runtimes in the next four columns are collected as 
averages over 10 runs: (1) Avg. Full Solve Time: the average time taken for a full solve of the example; (2) Avg. Quick Reject 
Time: the average time taken for the geometric quick reject pre-check; (3) Avg. # Initial Guesses: the average number of initial 
guesses needed for checking constraints satisfaction of the example; (4) Avg. Constraints Checking Time: the average time 
taken for checking constraints satisfaction. The ★ next to the reading nook example means that due to its complexity, instead 
of using randomly generated initial guesses, the initial guesses are computed from optimizing individual chains in the design, 
which takes around 2-3 minutes. 

Avg. Full 
Solve 

Time (sec) 

Avg. Quick
Reject 

Time (sec)

Avg. # 
Initial 
Guesses 

 Avg. Constraints 
Checking 
Time (sec) 

Example Figure # Parts # Cycles # Params 
 

demo Fig. 10 4 0 10 9.997 - - -
toothbrush holder Fig. 5a 3 2 20 15.551 0.003 1.0 2.027 
charger holder Fig. 5b 3 1 8 2.014 0.001 1.4 0.743 
soap bottle holder Fig. 5c 5 1 17 26.937 0.003 1.0 1.536 
mug hanger Fig. 5d 6 0 11 5.188 - - -
bird feeder Fig. 1 left 10 1 16 45.734 - - -
paper towel holder Fig. 5e 5 1 15 20.479 0.002 2.3 8.251 
diaper caddy Fig. 5f 6 1 18 50.839 0.002 1.3 8.227 
bathroom basket Fig. 8 4 1 14 28.151 - - -
clip lights 1 Fig. 12 11 0 25 30.820 - - -
clip lights 2 (from 11 0 25 28.293 - - -
clip lights 3 left to 9 0 20 19.182 - - -
clip lights 4 right) 9 0 20 18.685 - - -

 reading nook★ Fig. 1 right 19 2 65 742.279 0.0146 3.1 336.741 
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