FabHacks: Transform Everyday Objects into Home Hacks
Leveraging a Solver-aided DSL

Yuxuan Mei Benjamin Jones

Dan Cascaval Jennifer Mankoff

ym2552@cs.washington.edu benjones@cs.washington.edu cascaval@cs.washington.edu jmankoff@cs.washington.edu

University of Washington
Seattle, USA

University of Washington
Seattle, USA

Etienne Vouga
evouga@cs.utexas.edu
The University of Texas at
Austin
Austin, USA

University of Washington
Seattle, USA

Adriana Schulz
adriana@cs.washington.edu
University of Washington
Seattle, USA

University of Washington
Seattle, USA

Figure 1: We created FabHacks, a design system for “home hacks” built from repurposed everyday objects. The system is
built on FabHaL, our domain-specific language for representing rigid fixture hacks. This solver-aided DSL is equipped with
verification and solving functionality to help the user finalize their designs. Here we show two hacks, each with the set of
everyday items to build it, the solved configuration from our system, and the design fabricated in the real world. Left: the
birdfeeder hanging hack made of S-hooks, eyehooks, sticky hooks and a hanger. Right: the reading nook hack made of obstacle
rings, toy ring links, S-hooks, turnbuckles and a hula hoop; the environment for the reading nook hack was scanned and

calibrated with the PolyCam mobile application.
ABSTRACT

Storage, organizing, and decorating are important aspects of home
design. Buying commercial items for many of these tasks, this
can be costly, and reuse is more sustainable. An alternative is a
“home hack,” i.e., a functional assembly constructed from existing
household items. However, coming up with such hacks requires

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SCF °24, July 7-10, 2024, Aarhus, Denmark

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0496-3/24/07.

https://doi.org/10.1145/3639473.3665788

combining objects to make a physically valid design, which might
be difficult to test if they are large, require nailing or screwing to
the wall, or if the designer has mobility limitations.

We present a design and visualization system, FabHacks, for cre-
ating workable functional assemblies. The system is based on a new
solver-aided domain-specific language (S-DSL) called FabHaL. By
analyzing existing home hacks shared online, we create a design
abstraction for connecting household items using predefined con-
nection types. We also provide a UI for designing hack assemblies
that fulfill a given specification. FabHacks leverages a physics-based
solver that finds the expected physical configuration of an assembly
design. Our validation includes a user study with our UL, which
shows that users can easily create assemblies and explore a range
of designs.

SCF °24, July 7-10, 2024, Aarhus, Denmark

CCS CONCEPTS

+ Computing methodologies — Graphics systems and inter-
faces; - Human-centered computing — Interaction design.

KEYWORDS

domain-specific languages, fabrication, sustainability

ACM Reference Format:

Yuxuan Mei, Benjamin Jones, Dan Cascaval, Jennifer Mankoff, Etienne
Vouga, and Adriana Schulz. 2024. FabHacks: Transform Everyday Objects
into Home Hacks Leveraging a Solver-aided DSL. In ACM Symposium on
Computational Fabrication (SCF °24), July 7-10, 2024, Aarhus, Denmark. ACM,
New York, NY, USA, 16 pages. https://doi.org/10.1145/3639473.3665788

1 INTRODUCTION

In nature nothing is lost, nothing is created, everything is
transformed. —Antoine Laurent de Lavoisier

Everyday life presents many challenges regarding our physical
environment that we are constantly trying to solve, from common
wear and tear (such as stovetop stains) to cluttered spaces (such
as a messy desk). It is tempting to purchase the latest cleaning or
organizational tools in a world of next-day delivery that bombards
us with advertisements. However, buying still more products is
wasteful, costly, unsustainable, and often unnecessary.

Instead, a thriving subculture is growing on the Internet of shar-
ing “home hacks” that repurpose common household items into
cost-effective and environment-friendly solutions. We analyzed the
space of home hacks (full analysis in Appendix A) and found that we
can divide them into two categories based on their functionalities.
One category, like a blinds-cleaning tool made from binding tissues
on tongs with rubber bands, makes creative reuse of a single item
to change the shape or feel of an existing object, enabling better
grasping or easier interaction. The other, like hangers linked with
soda can tabs to make effective use of closet space, involves assem-
bling multiple items into a structure that holds objects at a specific
location and orientation relative to the environment. We term the
latter “fixture hacks” because their goal is to build an assembly that
holds a target object in a fixed environment. Our analysis found that
rigid undeformed fixtures (i.e., composed of rigid parts combined
but not deformed or modified destructively) are typically used in
fixture hacks. Thus, our work focuses on this well-scoped subset.

Replicating existing fixture hacks at home might be straightfor-
ward, but inventing new hacks requires knowledge, insight, creativ-
ity, experimentation, and access to all parts. Furthermore, fixture
hacks often involve multiple objects that interact mechanically, and
gravity can affect a design’s stability, making physical prototyping
necessary to design a hack. However, physical prototyping is not
always possible, not only for people with limited mobility, but also
in situations where not all parts are available or prototyping would
be costly or permanently alter one’s home.

Our main insight is that despite the variety of objects used in
rigid fixture hacks, these objects attach via eight common types
of connector primitives (Figure 2). For example, the handle on a
mug, the top hook on a hanger, and the handle on a basket can all
be represented using a “hook” primitive (Figure 4). The connector
primitive is thus a key concept in our system: these primitives

Mei et al.

abstract away the complex low-level geometry that is irrelevant to
how users combine objects or to the overall assembly functionality.
This insight informed the design of FabHaL (FabHacks Lan-
guage), the key contribution of our work. FabHalL is a solver-aided
domain-specific language (S-DSL) for representing fixture hacks. By
embedding the connection behavior and compatibility constraints
for each pair of connectors into the solver (Section 4), we help users
more easily explore hack designs within the domain’s constraints.
On top of FabHaL, we build a novel design system and UI, Fab-
Hacks, for designing home hacks. The system lets users experiment
virtually and simulate their designs under gravity. We validate our
system through a user study, with results showing that users find
FabHacks intuitive to use and is useful for exploring hack designs.

2 RELATED WORK

This work proposes FabHacks based on the FabHaL DSL that ad-
dresses the specific challenges posed by the domain of fixture hack
design. We survey tools and recent work related to our approach.

CAD Tools for Assembly Design. Assembly design is important
in manufacturing industries. Various tools have been developed for
this task, including computer-aided design tools [Onshape 2023;
SOLIDWORKS 2023]. We can use CAD tools to construct assemblies
of parts using mate constraints, which define the relative orientation
of two entities (part or surface) and the constraints on their degrees
of freedom. However, modeling complex assemblies with existing
CAD software requires a high degree of expertise.

First, mates are tricky to work with despite recent research [Jones
etal. 2021] on providing mating suggestions. Multiple different mate
types between two parts could appear to encode the same kinemat-
ics, only to be shown different later in the design process when
another part is added that further constrains the existing degrees
of freedom. Mate constraints are also not made for representing
fixture home hacks. The everyday hacks that inspired our system
(Figure 14) consist of many loose connections, such as a hook dan-
gling over a rod, or a ring with a much greater radius than the hook
it is attached to. Mates, usually single-origin coordinate systems
with limited degrees of freedom, are more suitable for representing
a mechanical assembly where parts fit snugly together, leaving only
a few degrees of freedom for the overall assembly motion.

Second, if the object geometry comes in other formats (such as
point clouds from scans, voxels, or inaccurate STLs), CAD users
must create B-rep models from these inputs before they can spec-
ify mate connectors. FabHacks can accept any format and simply
requires the geometry to be tagged with connector primitives. For
example, for the reading nook hack in Figure 1, right, we scanned
the room and used it as the geometry for the environment. We
created an OnShape plugin (Figure 4, top) for tagging the connector
primitives on geometry that comes in various formats.

Finally, performance analysis is also important during assembly
design. Existing CAD tools are primarily concerned with analyzing
the kinematics of mechanical assemblies and evaluating whether
they achieve the desired concerted motion. In contrast, evaluating
the performance of rigid fixture hacks that we focus on means
measuring their stability as a hanging assembly under gravity. This
type of simulation-based analysis is either completely separate from

FabHacks

SCF ’24, July 7-10, 2024, Aarhus, Denmark

Figure 2: We analyzed 24 rigid undeformed fixture hacks and extracted eight connector primitive types found on objects in
those hacks; Table 4 in Appendix A documents the shape parameters we use to parametrize a primitive’s geometry. We show
each connector next to an example hack where it appears. The eight example hacks (left to right, top to bottom) are cup hanger
(No.24), scarf organizer (No.22), toothbrush holder (No.7), charger holder (No.18), bathroom organizer (No.11), nonslip hanger
(No.3), pants hanger (No.8), and soap bottle bag (No.1) as numbered in Table 2 in Appendix A.

current CAD design tools or exists with the CAD tool as part of a
software suite that requires additional expertise to use.

Solver-Aided DSLs. DSLs have proven effective at abstracting
expert knowledge and allowing non-experts to create valid designs,
but they are, by definition, designed for a specific domain of appli-
cations. Several works [Jones et al. 2020; Zhao et al. 2020] have used
DSLs for geometric modeling in specific domains, like simulated
terrestrial robots and cuboid-based 3D shapes; they define a DSL
and try to synthesize programs in it given specific objectives. DSLs
can also be used to specify designs and fabrication plans for carpen-
try [Wu et al. 2019; Zhao et al. 2022], where we can use program
synthesis techniques for design generation and optimization.

In this work, we propose a DSL (FabHaL) specifically for fix-
ture hacks. FabHaL imitates the paradigm of solver-aided languages,
where a user can partially specify a program (vastly reducing the
search space) while leaving certain sections abstract (such as expres-
sions or parameters) [Torlak and Bodik 2013]. An external solver is
then invoked to concretize the partially specified program into a
complete one, which can then be executed to verify the result. A
FabHaL program is essentially a partial specification of a home hack
design: a sequence of instructions to attach a specific connector
primitive on one part to a specific connector primitive on another.

This paradigm has proven useful in domains in the programming
languages community, such as program deobfuscation [Jha et al.
2010], synthesizing GPU kernels [Phothilimthana et al. 2019], and
validating and planning biology experiments [Fisher et al. 2014].
Other applications include user interface designs [Hottelier et al.
2014] for resolving conflicts in the constraints of a layout design
and mathematical diagrams [Ye et al. 2020] for automatically plac-
ing visual elements given user specifications. In our case, users
can specify the skeleton of connections between primitives while
leaving the precise placements of parts for a solver to fill in, and
the solver could also provide feedback to users, such as informing
them of whether a connection is valid.

Generative Design of Connectors. Existing works on modeling or
creating connections involve generating new connection geometry.
Koyama et al. [2015] propose a tool for automatically generating 3D
printed structures given a user specification to hold or connect two
objects. Hofmann et al. [2018] also generate connections between

objects and support the specification of assembly information and
constraints affecting the assembly, but they do not automate solving
for those constraints. In addition, both works focus on manufac-
turing new parts, in contrast to our focus on exclusively reusing
existing objects.

Sustainability in Design and Fabrication. Sustainability consider-
ations have become increasingly prevalent in our everyday lives
and in fabrication research [Yan et al. 2023]. Our work explores the
general question of how to fabricate more sustainably. In this space,
prior work explored how fabrication can reduce waste by using 3D
printing to fix broken objects [Lamb et al. 2019; Teibrich et al. 2015]
and reusing materials, such as plastic bags [Choi and Ishii 2021] and
yarns [Wu and Devendorf 2020]. Other work augments existing
objects with fabrication for repurposing [Davidoff et al. 2011; Guo
et al. 2017; Ramakers et al. 2016], such as by generating structures
for re-interfacing with robot arms, legacy physical interfaces, or
appliances. Chen et al. [2018; 2015; 2016] use 3D printing to aug-
ment existing objects with additional functionality (some involving
mechanisms), while Arabi et al. [2022; 2022] and Li et al. [2020; 2019;
2022] focus more on augmenting robots using everyday objects or
mechanisms to help them manipulate objects.

Our research examines how to use rigid everyday objects of any
shape without modifications to build a hanging fixture. Our work is
distinctive in that we consider how multiple objects fit together into
an assembly; the preceding work instead augments one specific
object to allow robotic manipulation or to create a mechanism. (For
example, none of the preceding work could be used to design the
hanging birdfeeder in Figure 1, which uses several different parts.)

3 SYSTEM OVERVIEW

Consider as an example a novice user designing a birdfeeder to
hang between two hooks using FabHacks (Figure 3).

Annotated Object Library. First, the user selects the parts they
would like to repurpose into their home hack from the Annotated
Object Library. The Library contains 3D models of a variety of rigid
everyday objects, each annotated with the eight types of connector
primitives we currently support. We call these annotated Library
objects “parts.” In addition to labeling regions of a part with a

SCF °24, July 7-10, 2024, Aarhus, Denmark

Mei et al.

Figure 3: Overview of the FabHacks system. The user can either directly code in FabHaL or use the UI to create programs.
FabHaL programs build on top of an annotated object library. The programs are connectivity-only specifications of a hack
design, and the 3D configurations of the parts are completed by the automatic solver. Users can then get visual feedback from
the program viewer and use the feedback to iterate on the design. When satisfied with the design, they can fabricate the hack

in the real world.

thickness

arc radius

Figure 4: Top: the OnShape plugin for tagging 3D models with
the eight connector primitives. Bottom: (left) an example
showing how we defined the hook shape parametrically with
its arc angle, arc radius, and thickness, and (right) three parts
tagged with a hook primitive, each with different parameters.

connector primitive type (such as “hook”), the annotations include
type-specific parameters needed to define the geometry of that
primitive. For example, we show in Figure 4, bottom right, three
example parts that have been annotated with a hook primitive, each
parametrized to match the exact radius and thickness of the hook
geometry in that part (bottom left).

We stress that the user does not typically need to do any 3D mod-
eling or annotation themselves but rather can select parts from the
predefined library. All examples in this work use a proof-of-concept
library of 47 parts: 22 parts for to modeling the fixed environment
or the target object to be held fixed in place by the hack, and 25 ev-
eryday objects rich in connector primitives for use as components
of a home hack. To build this database, we extended the OnShape
CAD modeling system’s API to support part annotation. Our plugin

(see Figure 4, top) lets users import a 3D model of a part and add
connector primitives. When a primitive is added to a part, parame-
ters are set interactively to ensure the connector aligns with the
part. The Annotated Object Library can be extended to include
custom parts that users want to include in their hack design, and
we envision this to be part of a future community effort.

FabHaL. Next, the user assembles parts into a hack design using
FabHalL, our solver-aided DSL. Users have two ways to interact with
FabHalL to create hack designs: either directly writing programs in
the FabHaL language, or using the FabHacks graphical interface
to click on two connectors of two parts to connect them. When
programming in FabHaL, users can also parameterize the programs;
for example, they can specify that a hack should include a chain
with an unknown number N of links and search over N for valid
hack designs with the help of the solver (Section 6.2). In either case,
note that the user need not write any kinematic constraints: these
are inferred automatically by FabHacks from the part annotations.
See Section 4 for more information on the FabHaL language.

Solver-aided Evaluation. Finally, the user asks FabHacks to realize
the hack design in 3D space using a constrained optimization solver
(Section 4.3). Our solver checks whether the part connections are
feasible and, if so, relaxes the 3D positions of the parts under gravity
and presents the final, solved configuration visually to the user. The
solver also reports problems with the design to the user (such as
infeasible connections or parts that would fall off the assembly if
relaxed under gravity). Given this feedback, the user can iteratively
improve the FabHaL program and solve again.

4 AN S-DSL FOR FABHACKS

We now introduce the S-DSL FabHaL for representing rigid fixture
hacks. Figure 5 shows six example designs represented in the DSL.

The design of FabHaL was motivated by two factors. First, our
analysis of home hacks (see Appendix A) influenced the language

FabHacks

(a) Toothbrush Holder (b) Charger Holder
(c) Soap Bottle Holder (d) Mug Hanger
(e) Paper Towel Holder (f) Diaper Caddy

Figure 5: Six hacks created by directly programming in Fab-
HalL, with photos of fabricated designs and renderings of the
corresponding programs in our viewer (see Appendix B).

design. We found that objects in home “fixture hacks” are typically
connected via eight common shapes, which we term connector
primitives, and define in Section 4.1.

Second, the language design is guided by our goal of using the
DSL as a vessel for domain knowledge. We intend for this DSL to
help users without prior experience in modeling or simulation to
design fixture hacks. Therefore, being straightforward and succinct
is an important desideratum. To achieve this, we choose to introduce
a solver to complete a connectivity-only partial specification of the
hack design, so the user need only specify (1) the configuration
for a target object and its environment, and (2) which connector
primitives to connect. We introduce the simple syntax and example
usage in Section 4.2 and the solver in Section 4.3.

4.1 Connector Primitives

FabHaL includes eight primitive types: hook, rod, ring, tube, hemi-
sphere, clip, edge, and surface, which can be assigned to a wide
variety of objects (Section 3). We summarize the connectivity be-
tween these primitives in Table 1. Next, we explain how we model
the connection behavior between pairs of connector primitives and
the information associated with each primitive that the solver uses
to verify and finalize the configuration of a hack design.

Connector Frames. Our
analysis of home hacks
(Appendix A) found that
the connection behavior
between parts is local to
the pair of primitives that
form the connection. Take
as an example the rod-hook
connection (see inset): a

Figure 6: Three examples of rod-
hook connections. Image on the
right © Matt Kingston.

SCF ’24, July 7-10, 2024, Aarhus, Denmark

Table 1: Pairs of primitives that can be connected. A check-
mark means that connection is currently allowed by the DSL,
and a light grey cell means it is not. We ignore the lower-
triangular region (dark grey) since it is redundant with the
upper-triangular one.
‘ hook ring hemi. edge rod tube clip surf.
hook v v v v
ring v v
hemi.
edge
rod
tube
clip
surf.

&
SNENEN

v

hook can slide along a rod and flex around it regardless of whether
this rod is in a closet, a shower, or an ironing board. To represent
such behavior mathematically so that we can formulate it as part
of the solver’s constrained optimization, we must first establish the
concept of a Frame.

In FabHaL, Frame consists of a position vector (x,y, z) and yaw-
pitch-roll intrinsic Euler angles. Frames can represent a single-
origin coordinate system (similar to mates in CAD) or the 3D
configuration of a primitive or a part. When frames are used to
represent the connection points on primitives, we call them con-
nector frames. The connector frames of a primitive can be com-
puted from its base frame and shape parameters (obtained from the
part annotations) and additional degrees of freedom specific to its

type. For example, a hook primitive has

two additional DoFs, 6 and ¢, parameter-

izing the location and orientation of the

point of contact (see inset). In FabHaL,
the DoFs and the information on how to use them to compute
the parametric connector frames are associated directly with each
connector primitive.

Alignment Offsets. When two primitives are connected, their
connector frames need to be coincident in position, but the orienta-
tion may have some offset. Based on our analysis, this orientation
offset is common to a pair of connectable primitives. For example,

as shown in the inset figure, when a rod and a hook

connect, their connector frames are offset by a rotation

of [180°,0°,90°] in yaw-pitch-roll intrinsic Euler angles.

(Here the frames are intentionally placed to be not co-

incident at their origins to better display the orientation
offset.) We call the offset rotation between two primitives’ connec-
tor frames an alignment offset.

With the connector frames and alignment offsets defined for
each pair of connector primitives, we can represent the connection
behavior precisely with respect to the degrees of freedom associ-
ated with each primitive. Even with a small number of categories of
connector primitives, we can capture a wide range of possible con-
nections that appear in hacks. This set of primitives and associated
alignment offsets is also easily extensible.

In addition to the theoretically allowed connectivity between
primitives (Table 1), two primitives must be physically compatible
before they can be connected. We encode two pieces of additional

SCF °24, July 7-10, 2024, Aarhus, Denmark

information in connector primitives so that users need not reason
about this lower-level detail.

Closed Primitives. Two primitives with no openings cannot con-
nect because there is no valid motion path to create the connection.
Among the eight connector primitives, the ring primitive is always
closed. In addition, primitives that are not generally closed could be
inaccessible in the context of the geometry of the part containing it.
For example, the handle of the basket in Figure 4 (bottom-right) is
tagged as a hook, which can connect to a ring according to Table 1.
But as an integral part of the basket, it is part of closed geometry;
thus, a ring primitive without an opening cannot connect to this
hook. We allow tagging of individual primitives as closed primitives
(e.g., the basket handle) when annotating parts for the Annotated
Object Library, and our solver checks that designs do not attempt
to connect two closed primitives.

Critical Dimensions. Primitives might not have sufficient physi-
cal space for a connection. For example, a one-to-one connection
between a rod and a hook is possible only if the hook’s hoop radius
exceeds the rod’s radius. For a multi-to-one connection between
several hooks and tubes and a single rod, the hooks and tubes might
fully occupy the length of the rod. In this case, no new connection
could be made with the rod because there is insufficient space.

To track available physical space on primitives, we specify a
critical dimension for connector primitives that can have multiple
connections (i.e., the eight primitives except hemisphere and clip).
The available critical dimension refers to the dimension of a primi-
tive that gets occupied when a new connection is made between
itself and another primitive. For example, the critical dimension
of a rod is its length; when a hook connects to this rod, we re-
duce its available length by the hook’s width. The hook’s critical
dimension—the hoop radius—is also reduced by the rod’s radius.

4.2 Language Constructs and Hack
Construction

To represent a hack, we must connect parts (annotated objects from
the Annotated Object Library) using their connector primitives.
These connected parts form a graph (Figure 7) that we call an
assembly (i.e., a hack).

Figure 7: An assembly with a cycle: a basket is connected to
a rod via two eyehooks, forming a cycle (in the red circle)
between the basket and the environment. Yellow rectangles
represent parts, and green ones represent primitives.

Mei et al.

Two special parts in an Assembly are assumed to be fixed in
place: the part representing the environment the assembly is at-
tached to, and the target part, a part meant to be fixed relative to
the environment and whose configuration is used as a target for
the solver. For example, the clip in Figure 5a is rests on a table,
supporting a toothbrush. The table is the environment, represented
as a surface primitive with a fixed position and orientation. The
toothbrush is the target part to be fixed above the table.

Our DSL exposes three operations needed to create an Assembly:

e start_with(part, frame)
e end_with(part, frame)
e connect(partl.primitive, part2.primitive)

start_with is used to specify the environment part with a fixed
configuration (frame), and end_wi th specifies the target part’s con-
figuration (frame). connect takes two primitives as arguments re-
gardless of order and determines whether each Part is already
part of the Assembly or is newly introduced. It has two optional

parameters: (1) alignment (either “flip” or “default”)

to indicate an orientation flip, e.g., a hook can hang

on a rod coming from both sides of the rod, as shown

in the inset; (2) is_fixed, a boolean value that indi-

cates that the connection is formed by static friction
and thus the degrees of freedom involved should be held constant
during solver-aided evaluation (e.g., the design requires taping con-
nectors together).

If both connected parts are already part of the assembly, this con-
nection creates a cycle in the graph representation of the connected
parts (see Figure 7). Not all connect operations will be physically
realizable, and we discuss how the solver verifies whether a con-
nection can be made in Section 4.3.

Figure 8 shows an example program in our DSL. This fixture
hack hangs a basket with a round handle between two rods. In this
program, we first initialize an Assembly and then the environment.
Next, we use connect to add two eyehooks to the two rods by
connecting the eyehook’s eye to the rod. Finally, we initialize the
target part and connect the hook part of the eyehooks to the handle
of the basket.

4.3 Solver-aided Evaluation

The core advantage of FabHaL is its ability to simplify the repre-
sentation of an Assembly to a graph of connected Parts, leaving
to the solver the work of calculating the placement of parts.

In our solver, we model an Assembly using a reduced represen-
tation of a kinematic rigid body chain, a common approach in fields
like rigid body mechanics and robotics [Featherstone 1983]. Except
for the environment part configuration, which takes 6 DoFs (de-
grees of freedom), the remaining parts are represented with only
the connection parameters (usually 1 ~ 3D).

The solver handles both the simulation (4.3.3) and the pre-checks
(4.3.1, 4.3.2) that check whether the connect () operations can be
physically realized. We describe the pre-checks before we discussing
the simulation of the assembly under gravity.

4.3.1 Verify Connect(). Two potential issues can arise when a con-
nection is being made between two parts. First, a connection cannot
be made between two primitives that cannot be joined according

FabHacks

Figure 8: An example program in FabHaL (top), with the cor-
responding assembly solved for and physically reproduced
(bottom left) and rendered by our system (bottom right).

to the connectivity table (Table 1), such as a rod to another rod, or
when they are two closed primitives.

Second, the solver must check whether the available critical
dimension of a primitive is sufficient for what is needed for a new
connection. Based on the primitives’ critical dimensions, we add
constraints to the parameters of the connector primitive that has
multiple connections. For example, when two hooks connect to
the same rod, two sets of parameters that decide where along the
rod the hooks connect are created. Suppose that the hooks each
have widths wy, wy, the rod has length [, and the two connection
parameters indicating the position of the hooks along the length of
the rod are t1, t; € [0, 1]. Then, this “multi-connection” constraint
[ty — to] - 1 > Y132 s created and included in the solving process.
We represent this constraint as a soft penalty, as follows:

Cop =0if f 20, Cpp = f2if f <0,

where f = |t; —t2] - | - WlerWZ . We use the symbol Cpy, to represent
the sum of all multi-connection constraint penalties.

4.3.2 Additionally Verify Connect() that Creates Cycles. A connect
operation creates at least one cycle in the graph representation
of the assembly if it is between two parts that are already part of
the assembly (Figure 7). Such cycles require explicitly modeling
constraints over the configurations of the parts being connected.
Thus, we must also check whether we can find a set of values for
the degrees of freedom that satisfy these constraints.

For a cycle, we model six constraints measuring the failure of the
connector frames on the two connected primitives to match each

SCF ’24, July 7-10, 2024, Aarhus, Denmark

other. An assembly with n cycles is feasible if valid values of the
connection parameters exist along the cycles that satisfy 6n equality
constraints of the form f;(x) = 0,i € [1..n], where x is a vector of
all the DoFs in the assembly and f; (x) € R® measures the failure
of the ith cycle to close up. We minimize the sum of constraint
residuals C(x) = X7, lfi(x)]|? subject to bound constraints on
the DOFs, Xpin < X < Xmax. We use the Powell method [2020]
to minimize C and, if the solver succeeds in finding parameters
with C(x) < 1079, the assembly is considered feasible (and thus
the connect successful). Since the success of the minimization
depends on parameter initializations and can get stuck in local
minima, we repeat the optimization T times starting from different
random initial guesses. We terminate early if a solution is found.
We observed that T = 16 works well in practice.

Geometric Quick Reject. Before we run a full optimization to find
a system configuration that satisfies the connection constraints,
we also utilize some precomputed information about the parts and
primitives to perform a quick geometric check.

Our geometric check uses the triangle inequality: k line segments
of length #; > £» > - -- > £ cannot be arranged into a closed loop
in 3D unless #; < Zi'(:z £;. To apply this principle to our problem,

we note that since each part i in a part cy-
cle is rigid, we can bound the Euclidean
distance e; € [e;, e/ | between the point
where part i connects to parts i—1 and i+1.
Because [e;, €]] depend only on the ge-
ometry of the part and its two connectors
involved in the cycle, not on the connec-
tion parameters, we can precompute these
bounds for all the parts defined in our Annotated Object Library.

Consider the inset figure representing a design that has a cycle
of 4 parts. To close the cycle, the following linear program over the
distances e; between connectors must be feasible:

1 -1 -1 -1][e

minl s.t. I L
e -1 -1 1 =1 |es
-1 -1 -1 1]|]es

ef <ej<ef, iec[l.d].

\%

ol
—

=
=

Checking the existence of a set of distances e; satisfying the bound
constraints and triangle inequality then amounts to checking the
feasibility of a set of linear inequality constraints. This can be solved
in milliseconds by standard Python libraries, quickly rejecting im-
possible connect operations.

Stall Prevention. When we run the optimization, we put in mea-
sures for stall prevention. To halt optimization of C when the solver
stalls, we pass a custom callback function to scipy.optimize that
performs linear regression on C(x;) for a sliding window of the
last ten DoF iterates x;. We abort the optimization in failure if the
slope of the fit line is less than 0.1 (i.e., the optimizer is not making
much progress). This strategy gained us an additional 1.4x speedup
on average for examples with cycles in Figure 5.

4.3.3 Solving the Assembly. After a valid assembly is constructed
in FabHaL, the user can invoke the solver to find the values for
the degrees of freedom in the system that bring the target part

SCF °24, July 7-10, 2024, Aarhus, Denmark

as close as possible to its specified configuration while being in
static equilibrium under gravity and respecting all cycle-closure
and critical-dimension constraints.

This is a constrained optimization: we want to minimize the user
objective subject to the balance of forces and torques on each non-
environment part. Early experiments revealed that black-box non-
linear optimization was prohibitively slow at solving this problem
and often failed to converge to a feasible local minimum. Therefore,
we propose instead a two-step solver that first minimizes the user
objective subject to all constraints being satisfied and then uses the
optimized configuration as an initial guess for a simulation that
relaxes the assembly to static equilibrium.

Step 1: Minimizing the User Objective. We use the Powell [2020]
method to find a feasible configuration of the assembly that mini-
mizes the user objective:

Xfeas = AIE minﬁ)bj(x)"'o'(cm(x)“'c(x)) S.t. Xmin < X < Xmax,
x

where Cp,(x) are the multi-connection constraints described in
Section 4.3.1, C(x) are the cycle-closure constraints in Section 4.3.2,
and o is a penalty parameter starting from o = 100. If after opti-
mization the constraint residual is not below 10~%, we double o and
repeat the optimization, using Xfe,s as the initial guess. We repeat
this process up to 5 times, which is usually sufficient to find Xfe,q.
If the constraint residual is still not below 10~° after 5 times, we
pass the best configuration found to the second step.

Step 2: Relaxing under Gravity. We use a physics solver to relax
the assembly to an equilibrium state under its self-load, starting
from the guess Xfeys. Let q; € SE(3) represent the configuration of
the ith part and q = {g;}}_, represent the configuration vector of
the entire assembly. For an assembly with c total pairs of primitives
connected, let gj(q,x) € R® for j = 1,...,c be constraint functions
encoding that each pair of primitives are connected with connection
parameters Xx.

To relax the assembly under gravity, we solve

argminE(q,x) S.t. Xmin < X < Xmax 2)

qx

E(gx) =) Pi(@+0) llgj(g®)l
i j=1

where P;(q) measures part i’s gravitational potential energy and o
is a penalty parameter enforcing that connectors stay attached: we
use o = 100. We optimize Equation (2) using an active-set Newton’s
method [Nocedal and Wright 2006].

To demonstrate the two-step process, we take the hack design
from Figure 7 as an example, which hangs a soap bottle from a rod
using eyehooks and a basket. Both programs visualized in Figure 9
use the same target configuration specification for the soap bottle;
thus, after the first step, the soap bottle is in a configuration that is
closest to the target configuration. However, after the second step of
relaxing under gravity, without a second eyehook to balance, the top
row’s design falls under gravity into a less desirable configuration
compared to the bottom row’s design.

During the physics relaxation, we also predict whether the as-
sembly will fall apart due to connectors slipping off each other. To

Mei et al.

Figure 9: The top row shows the hack design without a second
eyehook to balance the basket, and the bottom row shows
the hack design with the second eyehook. The first column
shows the intermediate results after first running the user
objective minimization, and the second column shows the
resulting configuration after the second step is run.

perform this analysis, we annotate each connection parameter for
each primitive in our library with one of three tags:

o UNBOUNDED parameters are periodic and should be allowed
to “wrap around” from xmax t0 Xmin during optimization.
For example, for a ring that can rotate 360 degrees, the angle
parameter specifying the rotation of the ring about its central
axis is UNBOUNDED.

o BOUNDED_AND_CLAMPED parameters are used if the geometry
of the primitive prevents the parameter from ever leaving
the interval [Xpin, Xmax]- The position parameter of a rod
along the bottom of a clothes hanger is an example of this
parameter.

e BOUNDED_AND_OPEN parameters are used if exceeding the
bounds of the parameter would cause the assembly to fall
apart. The position parameter of a dowel rod, for example,
is BOUNDED_AND_OPEN: hooks or rings that slide past the end
of the dowel rod fall off the assembly.

At the end of optimization, for each BOUNDED_AND_OPEN param-
eter i, we check whether x; is in the inequality constraint active set,
i.e., whether x; is equal to its maximum or minimum allowed value,
and if so, whether V., E points away from x;’s feasible interval. If
so, we report to the user that the assembly falls apart.

A hack assembly might have many different equilibrium states
under gravity; our method above
finds just one of them. For in-
stance in the “Demo” assembly
(inset Figure 10), the S-hook and
ring could slide to either end of
the hanger’s rod depending on
which end xg,s encodes they are closer to.

Figure 10: “Demo”.

FabHacks

5 THE FABHACKS INTERFACE AND USER
WORKFLOW

This section describes how users create FabHaL programs with
the FabHacks UL As introduced in Section 4.2, to construct a hack
design, users first specify a starting environment with start_with
and a target part’s configuration relative to the environment with
end_with, and then connect connector primitives on two parts
with connect. Then, they can use solve to check design validity
and solve for the configuration of their design under gravity. Based
on feedback about whether a connection is valid and the visual
feedback shown in the Ul, users can choose to iterate on their
design, as needed.

(a) The user interface.

(b) Step 1: the Ul in the process of (c) Step 3: The user clicks on

setting up the target part (a diaper “Run Optimization” and the in-
caddy) relative to the environment set shows the solved configura-
(car seats). tion.

Figure 11: Top: a screenshot of the user interface. Bottom:
example interactions for Steps 1 (left) and 3 (right).

The UI consists of the workspace region and three menus (see
Figure 11a). The left menu helps users during environment setup
and for selecting parts to use in assembly design; the parts shown
here are all from the “Annotated Object Library.” The bottom menu
helps users choose connector primitives of the selected part, and
this is where the buttons for constructing the assembly appear. The
right menu helps users solve for the assembly’s final configuration.

We design the Ul interactions to roughly correspond to the pro-
gram construction process.

Step 1: Environment Setup. Users start by setting up the environ-
ments where this hack will be situated. Taking the diaper caddy
hanging hack (Figure 5f) as an example, in Figure 11b, we (as users)

SCF ’24, July 7-10, 2024, Aarhus, Denmark

have already added the car seats as the starting environment and
are in the process of specifying the configuration of the target part
(diaper caddy) relative to the environment. The desired configura-
tions (position and orientation) of the environment and target part
can be changed with sliders. This completes the environment setup,
which corresponds to start_with and end_with in the program.

Step 2: Assembly Design. Next, users construct the assembly by
specifying which connections to make. They can either select a
part from the left menu to connect it to the assembly or select
two connector primitives already in the assembly and specify that
they should be connected. As defined in our DSL, connect might
introduce unsatisfiable constraints and thus need to be verified. We
provide two-way filtering based on the connectivity table (Table 1)
to skip some pre-checks. For example, if a hook is selected in the
menu, then only hook, ring, rod, and tube primitives will be enabled
for selection in the workspace, and vice versa for a hook clicked
on in the workspace. If a connection cannot be made because of
failed pre-checks or because the solver cannot find a valid set of
parameters that satisfy the constraints, specific feedback is provided
to users. For example, if the connection to be made introduces a
cycle but the cycle cannot be formed according to the geometric
quick reject, the feedback will remind users that the two primitives
might be too far away to be connected.

Step 3: Solving. After the environment and the target part are
fully connected, the assembly is considered “valid” Users can then
invoke solve with the button “Run Optimization,” and the solver
positions the parts such that changes in the configuration of the
target part are minimized and the assembly is stable under gravity
subject to any constraints in the design (Figure 11c). We note that
this is not an interactive-rate step because the full physics-based
solving can take up to a few minutes for complicated assemblies.
More details on the runtime can be found in Table 5 in Appendix C.

After users see the visual or textual feedback on their design, they
can choose to continue modifying it either with some backtracking
via undo and redo buttons or by simply adding more parts. They
then re-run the solve to view the updated design. For example, in
the case of an unstable design, the solver would return feedback
that one connection will fall apart under gravity, and the user might
choose to modify that specific connection. In case the solver fails to
solve (which happens rarely, as shown in Appendix C), the number
of random initial guesses to try could be increased in the UL

6 EVALUATION OF FABHACKS

We now discuss implementation details and how we evaluated our
system on both direct programming with examples and program-
ming via an interface with a user study.

6.1 Implementation

We implemented FabHaL as a shallowly embedded DSL with Python,
i.e., it is embedded in the host language Python without its own
abstract syntax tree. This allows the DSL to be used as a Python
library and have access to common control structures from the
host language for straightforward programmatic design genera-
tion. Python as the host language also facilitates easy integration
with existing optimization and geometry processing libraries in

SCF °24, July 7-10, 2024, Aarhus, Denmark

Mei et al.

Figure 12: The parametrized assembly design and its four variations that most closely match the desired target part configuration
given different ring sizes, with the photo (left) and simulated result (right). The parameter combination is indicated below the

simulated result.

our solver implementation [Jacobson et al. 2018; Sharp et al. 2019;
Virtanen et al. 2020]. The Ul is also implemented in Python using
polyscope [2019] with extended features from imgui.

6.2 Examples from Direct Programming and
Programmatic Generation

When the user has an overall idea of the hack they want to create,
they can directly code their design and virtually test it. Figures 1
and 5 show some example hacks created via direct programming.

As a DSL, FabHaL also lends itself well to programmatic genera-
tion of families of programs. This is helpful when the user knows
roughly what parts to use but is not sure of how many. They can
generate parametrized designs using the host language features,
such as conditionals and loops, and use the solver to find the set of
parameters from hundreds of variations that let the program best
satisfy the given target part configuration.

As an example, suppose we are preparing for a trip to a summer
camp with bunk beds. We would like to hang a clippable reading
light at a certain distance from a hook on the top bunk bed so that
it is sufficiently far away to not affect others in the same space and
we can also reach the light’s switch easily. We have a rough idea
to use a hanger, extendable M4 turnbuckles, and rings of different
sizes and chain them together into a fixture hack for this scenario.
The parametrized design consists of a chain of n turnbuckle-ring
pairs, with each turnbuckle extended by [millimeters and each ring
of radius X (see Figure 12, leftmost). With this parametrization,
we can programmatically generate a family of programs. If we
already know the desired length and the size of rings that we have,
we can use the solver to find the best parameters of n and [for
a given ring size. Figure 12 shows four designs that match the
target configuration, each corresponding to the four ring sizes
(X € {XS,S,M, L}) and selected from the 80 program variations
with n € [1..4],] € [0,45.7] (discretized into 20 values).

6.3 User Study with FabHacks Interface

Users with minimal coding experience can create designs more
interactively with our UL We evaluate how useful our system is for
hack designs through a user study with ten participants. Participant
ages ranged from 18 to 34, with CAD experience ranging from none
to greater than 5 years. Participants reported their gender as Male
(5), Female (3), Non-Binary (1) and N/A (1). We conducted the study
in our lab with a laptop we provided, and each session took about
an hour. Audio and screen capture were recorded during the study.

6.3.1 Method. After obtaining informed consent, we showed par-
ticipants a tutorial on how to construct the “Demo” assembly (inset
Figure 10) in FabHacks, and participants repeated the same steps.

Participants completed an open-ended design task using Fab-
Hacks where they were asked to hang a bird feeder from two
hooks and think aloud during the process. The wall hooks
(environment) and the bird feeder (target) were given. They had
up to 30 minutes to create a design and were asked to come up
with additional designs if time remained. We coded all designs as
feasible or infeasible and then grouped them into categories based
on similarity.

After the study, we asked participants to answer three ques-
tions: (1) “Can you tell us up to three things you would like to see
us keep in the FabHacks tool?” (2) “Can you tell us up to three
things you would like to change in the FabHacks tool?” (3) “Can
you think of a real-world change you would like to make to
your space in the office or at home that the FabHacks tool could
help you with?” We grouped the responses into categories and
discussed them until we reached a consensus.

6.3.2 Results and Discussion. Overall, our study shows that Fab-
Hacks is an efficient and intuitive way to construct hacks.

The 10 participants created 25 feasible designs, each unique
though many used similar strategies. Twenty-three of these be-
long to one of four common strategies: (A) constructing symmetric

FabHacks

(A (B)

SCF ’24, July 7-10, 2024, Aarhus, Denmark

(D)

Figure 13: Examples of each of the 4 common design strategies (A-D) found by participants.

chains of small objects to anchor the birdfeeder between the two
hooks (7 instances), (B) constructing two short chains, hanging a
coat hanger upside-down between them, and dangling the bird-
feeder from the hook of the coat hanger (6 instances), (C) hanging
a coat hanger from each wall hook and anchoring the bird feeder
where they meet (8 instances), and (D) chaining two coat hangers
from each wall hook and connecting the birdfeeder in the middle
of them (2 instances). While several participants discovered each
pattern, no two were identical; they chose different types or num-
bers of parts to achieve similar construction or connected the same
parts in different ways.

Looking at participants’ answers to our three questions, we saw
several important themes arise.

Question 1: FabHacks Keepers. First, multiple participants liked
how “intuitive” the FabHacks interface was and praised its physics
solver. One participant praised the “real-time realistic feedback”
on connections, and another praised the “simplicity” of making
connections in FabHacks.

Question 2: FabHacks Changes. At the same time, participants
noted areas for improvement. For example, multiple users men-
tioned that “not knowing the reason a [connection] is failing [when
validation is run] can be frustrating” and asked for a wider variety
of undo and delete operations (a simple feature to add). Participants
also made suggestions such as: having a constraint on the number
of available pieces; better support for orienting, panning, and zoom-
ing; a tree diagram showing the connections; and better feedback
about what is selected.

These critiques generally represent opportunities for improved
user experience design rather than fundamental flaws with the
mental model required to use our tool. For example, it would be
possible to tell the user more specifically which part had a geometric
flaw (e.g., being not long enough) and caused a connection to fail,
or to visualize the configuration found by the solver with the failed
connections highlighted.

Question 3: Real-world Use Scenarios. We also found that 6/10
participants had concrete ideas for how they would use FabHacks
in their everyday lives, from a tree swing to outdoor lights to wall
hangers to hang decorations or photos. Of four participants who
did not see a use for FabHacks, one felt that the library needed to
be expanded and account for things like weight because otherwise
they would prefer testing the design directly; one felt they could
more easily make a plan in their head; and two did not have an idea
for how to use it.

Although participant comments suggest that there is room for
improvement, the preceding feedback mostly focuses on things
that can be solved with a larger library and iteration on the user
experience. Future work could explore adding physical properties

like weight and center of mass to our physics solver or letting users
choose other materials for their parts.

7 LIMITATIONS AND FUTURE WORK

A limitation of our system is that it only considers rigid unmodified
parts and makes simplifying assumptions on the part interactions.
An important future direction is to extend the proposed abstrac-
tions to handle any hacks using soft parts, more complicated parts
(e.g., with shifting centers of mass), or examples where the part
shapes can be altered during assembly, such as a piece of wood
that can be cut to size. For example, our parametric connections
can be expanded to accommodate additional degrees of freedom,
allowing for the representation of deformable objects or items that
can change dimensions when cut.

More physical solvers could also be incorporated to handle de-
formable shapes and more complex part-part interactions. For ex-
ample, more advanced methods could be employed to determine the
physical compatibility of parts instead of relying on approximations
through closed primitives and critical dimensions.

Our user study was designed to verify the usability of our system
for creating valid hack designs without physical prototyping. Al-
though we did not ask participants to build the hacks they designed,
we retrospectively built five designs for which we had enough parts
and verified their physical stability. In fact, it is evident from one
participant’s response on preferring testing directly that physi-
cal assembly and experimentation remains important despite our
system’s goal. In the future, understanding how users physically
prototype—as well as how hacks get assembled, disassembled, and
actually used—would greatly inform how the current system could
evolve to become more usable in real life.

Our system also presents opportunities for automating how parts
that make up the library are created. For example, it would be inter-
esting to explore automated recognition and fitting of connection
primitives given a 3D model of a part. A step further would be to
automatically add a part to the library from LIDAR data or multiple
images of an object, which would enrich the modeling power of
the system and help bridge the reality gap.

Another promising opportunity is the complete automation of
assembly design. By abstracting out eight common connector primi-
tives and rules on their connection behaviors, our proposed DSL not
only supports interactive design but has the potential to facilitate
the generation of optimal designs under various objectives because
it fundamentally reduces the search space. Automating the design
of home hacks is a challenging task because it involves searching
through discrete combinations of parts and finding suitable con-
tinuous parameters that meet the specifications. Our abstractions
enable us to decouple this problem into a program synthesis task

SCF °24, July 7-10, 2024, Aarhus, Denmark

nested with continuous optimization, which is performed by our
solver. How to make program synthesis techniques usable in this
context poses an interesting research problem.

FabHaL as a DSL could also benefit from the recent advances
in large language models. Recent experiments that use LLMs for
generating [Jain et al. 2023; Skreta et al. 2023] or completing pro-
grams [Piereder et al. 2024] in various DSLs show promising results.
In preliminary experiments, we prompted GPT-4 [OpenAlI 2024] to
design a hack for hanging the birdfeeder with eyehooks, S-hooks,
and hangers. While most attempts did not lead to a desirable de-
sign, GPT-4 was able to propose valid and near-valid designs (see

inset). The inset-left shows a design cre-

ated by GPT-4 that is very close to our de-

sign (Figure 1), and the inset-right shows

a design that is not physically valid when

evaluated with our solver (the S-hook
will disconnect and fall off) but resembles the participant-created
designs using strategy C (Figure 13). Exploring how to enable LLMs
to create physically valid hack designs with FabHalL is an exciting
research direction: the underlying solver could become useful in
generating feedback based on the solve results to prompt LLMs to
fix issues in invalid or undesired designs.

8 CONCLUSION

This work introduces a design system that helps users create fixture
hacks built out of household items. Our solution features a new
solver-aided DSL, FabHaL, which was inspired by our analysis of
a collection of hacks. Using the solver-aided paradigm, FabHaL
lets users create connectivity-only partial specifications of a hack,
which simplifies the design of hacks to connecting primitives be-
tween parts. Our study showed that FabHacks can support end-user
construction of hack assemblies and is intuitive to use. Participants
identified potential opportunities for using FabHacks in everyday
life, suggesting that the ideas presented in this work could inspire
a new age of sustainable DIY design.

ACKNOWLEDGMENTS

We would like to thank our colleagues who pilot tested early ver-
sions of the tool. We also thank Sitong Zhou for helping with as-
sembling the reading nook hack. Finally, we thank the anonymous
reviewers for their thoughtful feedback that has greatly improved
the work and Sandy Kaplan for her writing support. This work was
funded by NSF 2017927, 2212049, and 2327136.

REFERENCES

Abul Al Arabi and Jeeeun Kim. 2022. Augmenting Everyday Objects into Personal
Robotic Devices. In SIGGRAPH Asia 2022 Emerging Technologies. ACM, Daegu
Republic of Korea, 1-2. https://doi.org/10.1145/3550471.3564763

Abul Al Arabi, Jiahao Li, Xiang ’Anthony Chen, and Jeeeun Kim. 2022. Mobiot: Aug-
menting Everyday Objects into Moving IoT Devices Using 3D Printed Attachments
Generated by Demonstration. In CHI Conference on Human Factors in Computing Sys-
tems. ACM, New Orleans LA USA, 1-14. https://doi.org/10.1145/3491102.3517645

Marilyn Caylor. 2019. 75 super easy ways to organize your entire home. https:
//homehacks.co/easy-home- organizational-tips/

Xiang ’Anthony’ Chen, Stelian Coros, and Scott E. Hudson. 2018. Medley: A Library
of Embeddables to Explore Rich Material Properties for 3D Printed Objects. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
ACM, Montreal QC Canada, 1-12. https://doi.org/10.1145/3173574.3173736

Xiang ’Anthony’ Chen, Stelian Coros, Jennifer Mankoff, and Scott E. Hudson. 2015.
Encore: 3D Printed Augmentation of Everyday Objects with Printed-Over, Affixed

Mei et al.

and Interlocked Attachments. In Proceedings of the 28th Annual ACM Symposium on
User Interface Software & Technology (UIST ’15). ACM, New York, NY, USA, 73-82.
https://doi.org/10.1145/2807442.2807498 event-place: Charlotte, NC, USA.

Xiang ’Anthony’ Chen, Jeeeun Kim, Jennifer Mankoff, Tovi Grossman, Stelian Coros,
and Scott E. Hudson. 2016. Reprise: A Design Tool for Specifying, Generating, and
Customizing 3D Printable Adaptations on Everyday Objects. In Proceedings of the
29th Annual Symposium on User Interface Software and Technology (UIST ’16). ACM,
New York, NY, USA, 29-39. https://doi.org/10.1145/2984511.2984512 event-place:
Tokyo, Japan.

Kyung Yun Choi and Hiroshi Ishii. 2021. Therms-Up!: DIY Inflatables and Interactive
Materials by Upcycling Wasted Thermoplastic Bags. In Proceedings of the Fifteenth
International Conference on Tangible, Embedded, and Embodied Interaction. ACM,
Salzburg Austria, 1-8. https://doi.org/10.1145/3430524.3442457

5-Minute Crafts. 2022. 5-Minute Crafts — Learn. Create. Improve. https://5minutecrafts.
site/

Scott Davidoff, Nicolas Villar, Alex S. Taylor, and Shahram Izadi. 2011. Mechanical
hijacking: how robots can accelerate UbiComp deployments. In Proceedings of the
13th international conference on Ubiquitous computing. ACM, Beijing China, 267-270.
https://doi.org/10.1145/2030112.2030148

R. Featherstone. 1983. The Calculation of Robot Dynamics Using Articulated-Body
Inertias. The International Journal of Robotics Research 2, 1 (March 1983), 13-30.
https://doi.org/10.1177/027836498300200102

Jasmin Fisher, Nir Piterman, and Rastislav Bodik. 2014. Toward Synthesizing Executable
Models in Biology. Frontiers in Bioengineering and Biotechnology 2 (2014), 1-8.
https://doi.org/10.3389/fbioe.2014.00075

Fiyaa. 2013. 15 Cord Management Life Hacks for No More Tangled
Wires. https://www.amazinginteriordesign.com/15-cord-management-life-hacks-
for-no-more-tangled-wires/

Anhong Guo, Jeeeun Kim, Xiang ’Anthony’ Chen, Tom Yeh, Scott E. Hudson, Jennifer
Mankoff, and Jeffrey P. Bigham. 2017. Facade: Auto-generating Tactile Interfaces
to Appliances. In Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems. ACM, Denver Colorado USA, 5826-5838. https://doi.org/10.
1145/3025453.3025845

Megan Hofmann, Gabriella Hann, Scott E. Hudson, and Jennifer Mankoff. 2018. Greater
than the Sum of its PARTs: Expressing and Reusing Design Intent in 3D Models.
In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
ACM, Montreal QC Canada, 1-12. https://doi.org/10.1145/3173574.3173875

Thibaud Hottelier, Ras Bodik, and Kimiko Ryokai. 2014. Programming by manipulation
for layout. In Proceedings of the 27th annual ACM symposium on User interface
software and technology. ACM, Honolulu Hawaii USA, 231-241. https://doi.org/10.
1145/2642918.2647378

Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing
library. https://libigl.github.io/.

Rijul Jain, Wode Ni, and Joshua Sunshine. 2023. Generating Domain-Specific Programs
for Diagram Authoring with Large Language Models. In Companion Proceedings of
the 2023 ACM SIGPLAN International Conference on Systems, Programming, Lan-
guages, and Applications: Software for Humanity (SPLASH 2023). Association for
Computing Machinery, New York, NY, USA, 70-71. https://doi.org/10.1145/3618305.
3623612

Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010. Oracle-guided
component-based program synthesis. In Proceedings of the 32nd ACM/IEEE Inter-
national Conference on Software Engineering - Volume 1. ACM, Cape Town South
Africa, 215-224. https://doi.org/10.1145/1806799.1806833

Benjamin Jones, Dalton Hildreth, Duowen Chen, Ilya Baran, Vladimir G. Kim, and
Adriana Schulz. 2021. AutoMate: a dataset and learning approach for automatic
mating of CAD assemblies. ACM Transactions on Graphics 40, 6 (Dec. 2021), 1-18.
https://doi.org/10.1145/3478513.3480562

R. Kenny Jones, Theresa Barton, Xianghao Xu, Kai Wang, Ellen Jiang, Paul Guerrero,
Niloy J. Mitra, and Daniel Ritchie. 2020. ShapeAssembly: learning to generate
programs for 3D shape structure synthesis. ACM Transactions on Graphics 39, 6
(Dec. 2020), 1-20. https://doi.org/10.1145/3414685.3417812

Karo. 2019. 25 IKEA Hacks to Keep Things Organized. https://craftsyhacks.com/ikea-
organizing/

Yuki Koyama, Shinjiro Sueda, Emma Steinhardt, Takeo Igarashi, Ariel Shamir, and
Wojciech Matusik. 2015. AutoConnect: computational design of 3D-printable
connectors. ACM Transactions on Graphics 34, 6 (Nov. 2015), 1-11. https://doi.org/
10.1145/2816795.2818060

Nikolas Lamb, Sean Banerjee, and Natasha Kholgade Banerjee. 2019. Automated
Reconstruction of Smoothly Joining 3D Printed Restorations to Fix Broken Objects.
In Proceedings of the ACM Symposium on Computational Fabrication (SCF '19). ACM,
New York, NY, USA, 3:1-3:12. https://doi.org/10.1145/3328939.3329005 event-place:
Pittsburgh, Pennsylvania.

Jiahao Li, Meilin Cui, Jeeeun Kim, and Xiang ’Anthony’ Chen. 2020. Romeo: A Design
Tool for Embedding Transformable Parts in 3D Models to Robotically Augment
Default Functionalities. In Proceedings of the 33rd Annual ACM Symposium on
User Interface Software and Technology. ACM, Virtual Event USA, 897-911. https:
//doi.org/10.1145/3379337.3415826

FabHacks

Jiahao Li, Jeeeun Kim, and Xiang ’Anthony’ Chen. 2019. Robiot: A Design Tool for Ac-
tuating Everyday Objects with Automatically Generated 3D Printable Mechanisms.
In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and
Technology (UIST °19). Association for Computing Machinery, New York, NY, USA,
673-685. https://doi.org/10.1145/3332165.3347894

Jiahao Li, Alexis Samoylov, Jeeeun Kim, and Xiang ’Anthony’ Chen. 2022. Roman:
Making Everyday Objects Robotically Manipulable with 3D-Printable Add-on Mech-
anisms. In Proceedings of the 2022 CHI Conference on Human Factors in Computing
Systems (New Orleans, LA, USA) (CHI 22). Association for Computing Machinery,
New York, NY, USA, Article 272, 17 pages. https://doi.org/10.1145/3491102.3501818

Jorge Nocedal and Stephen J. Wright. 2006. Numerical Optimization (2e ed.). Springer,
New York, NY, USA.

Onshape. 2023. Onshape | Product Development Platform. https://www.onshape.
com/en/

OpenAl 2024. ChatGPT. https://chat.openai.com

Phitchaya Mangpo Phothilimthana, Archibald Samuel Elliott, An Wang, Abhinav
Jangda, Bastian Hagedorn, Henrik Barthels, Samuel J. Kaufman, Vinod Grover, Em-
ina Torlak, and Rastislav Bodik. 2019. Swizzle Inventor: Data Movement Synthesis
for GPU Kernels. In Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems. ACM,
Providence RI USA, 65-78. https://doi.org/10.1145/3297858.3304059

Christina Piereder, Glinter Fleck, Verena Geist, Michael Moser, and Josef Pichler. 2024.
Using Al-Based Code Completion for Domain-Specific Languages. In Product-
Focused Software Process Improvement (Lecture Notes in Computer Science), Regine
Kadgien, Andreas Jedlitschka, Andrea Janes, Valentina Lenarduzzi, and Xiaozhou Li
(Eds.). Springer Nature Switzerland, Cham, 227-242. https://doi.org/10.1007/978-
3-031-49266-2_16

Lauren Piro. 2015. 8 Clutter Problems Solved by Shower Rings. https:
//www.goodhousekeeping.com/home/decorating-ideas/shower- curtain-rings-
organizing

Raf Ramakers, Fraser Anderson, Tovi Grossman, and George Fitzmaurice. 2016.
RetroFab: A Design Tool for Retrofitting Physical Interfaces using Actuators,
Sensors and 3D Printing. In Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems. ACM, San Jose California USA, 409-419. https:
//doi.org/10.1145/2858036.2858485

Nicholas Sharp et al. 2019. Polyscope. www.polyscope.run.

Marta Skreta, Naruki Yoshikawa, Sebastian Arellano-Rubach, Zhi Ji, Lasse Bjorn Kris-
tensen, Kourosh Darvish, Alan Aspuru-Guzik, Florian Shkurti, and Animesh Garg.
2023. Errors are Useful Prompts: Instruction Guided Task Programming with
Verifier-Assisted Iterative Prompting. https://doi.org/10.48550/arXiv.2303.14100
arXiv:2303.14100 [cs].

SOLIDWORKS. 2023. 3D CAD Design Software | SOLIDWORKS. https://www.
solidworks.com/

Jenny Stanley. 2021. 33 Brilliant Home Hacks Using Our 3 Favorite
Items. https://www.familyhandyman.com/list/20-home-hacks-hangers-rubber-
bands-and-cardboard-tubes/

Karen Sullivan and Jim Heumann. 2019. Karen and Jim’s Excellent Adventure:
Fiddly Bits: Making life on a small boat safer and more comfortable. http:
//karenandjimsexcellentadventure.blogspot.com/p/fiddly-bits.html

Alexander Teibrich, Stefanie Mueller, FranA§ois GuimbretiAsre, Robert Kovacs, Stefan
Neubert, and Patrick Baudisch. 2015. Patching Physical Objects. In Proceedings of
the 28th Annual ACM Symposium on User Interface Software & Technology (UIST
’15). ACM, New York, NY, USA, 83-91. https://doi.org/10.1145/2807442.2807467
event-place: Charlotte, NC, USA.

Emina Torlak and Rastislav Bodik. 2013. Growing Solver-Aided Languages with
Rosette. In Proceedings of the 2013 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming & Software (Indianapolis, Indiana,
USA) (Onward! 2013). Association for Computing Machinery, New York, NY, USA,
135-152. https://doi.org/10.1145/2509578.2509586

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright,
Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay
Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey,
ilhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perk-
told, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M.
Archibald, Anténio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. 2020. SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python. Nature Methods 17 (2020), 261-272. https://doi.org/10.1038/541592-019-
0686-2

Chenming Wu, Haisen Zhao, Chandrakana Nandi, Jeffrey I. Lipton, Zachary Tatlock,
and Adriana Schulz. 2019. Carpentry compiler. ACM Transactions on Graphics 38, 6
(Dec. 2019), 1-14. https://doi.org/10.1145/3355089.3356518

Shanel Wu and Laura Devendorf. 2020. Unfabricate: Designing Smart Textiles for
Disassembly. In Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems. Association for Computing Machinery, New York, NY, USA,
1-14. https://doi.org/10.1145/3313831.3376227

SCF ’24, July 7-10, 2024, Aarhus, Denmark

Zeyu Yan, Tingyu Cheng, Jasmine Lu, Pedro Lopes, and Huaishu Peng. 2023. Future
Paradigms for Sustainable Making. In Adjunct Proceedings of the 36th Annual ACM
Symposium on User Interface Software and Technology (UIST °23 Adjunct). Association
for Computing Machinery, New York, NY, USA, 1-3. https://doi.org/10.1145/
3586182.3617433

Katherine Ye, Wode Ni, Max Krieger, Dor Ma’ayan, Jenna Wise, Jonathan Aldrich,
Joshua Sunshine, and Keenan Crane. 2020. Penrose: from mathematical notation
to beautiful diagrams. ACM Transactions on Graphics 39, 4 (Aug. 2020), 144:144:1-
144:144:16. https://doi.org/10.1145/3386569.3392375

Allan Zhao, Jie Xu, Mina Konakovi¢-Lukovi¢, Josephine Hughes, Andrew Spielberg,
Daniela Rus, and Wojciech Matusik. 2020. RoboGrammar: graph grammar for
terrain-optimized robot design. ACM Transactions on Graphics 39, 6 (Dec. 2020),
1-16. https://doi.org/10.1145/3414685.3417831

Haisen Zhao, Max Willsey, Amy Zhu, Chandrakana Nandi, Zachary Tatlock, Justin
Solomon, and Adriana Schulz. 2022. Co-Optimization of Design and Fabrication
Plans for Carpentry. ACM Transactions on Graphics 41, 3 (March 2022), 32:1-32:13.
https://doi.org/10.1145/3508499

A ANALYSIS OF THE DESIGN SPACE OF HOME
HACKS

The concept of “home hacking” covers a variety of topics. To better
understand this design space, we first analyzed a collection of hacks
and defined our problem domain, which informed our DSL design.
Next, we go over research work relevant to home hacks design and
existing tools that can be used to model home hacks.

We first gathered over 400 examples of hacks across 17 sources
(including DIY blogs, videos, and individual designs from colleagues).
After eliminating hacks that are repeated, or essentially the same
but used under different scenarios, we selected 48 distinct hacks
for further analysis.

Our analysis started with identifying each hack’s functionality.
This gives us two main categories: hacks that hold or fix some
objects in a specific location and orientation — or fixtures (27 out
of 48), and hacks which typically make creative reuse of a single
item to change the shape or feel (material property) of an existing
object to allow for better grasping or easier interaction, e.g., a
pool noodle used to organize wires and hide them, cover sharp
saw edges, or create padding on furniture corners for a baby-proof
environment. In contrast to the latter category, fixture hacks usually
involve multiple parts, e.g., several wire baskets chained together
with S-hooks to organize items above a kitchen sink. And since
their goal is to hold a part at a specific location and orientation
relative to its environment, gravity will affect the design’s stability.
Thus, fixture design can be hard to reason with intuition and is
well-suited as a computational design problem. Since deformable
objects are difficult to model and simulate efficiently compared to
rigid bodies, and it is unclear how end users can accurately specify
manual modifications, we further limit the domain to rigid fixtures
with only undeformed constituting objects because they are the
majority of fixtures and present a well-scoped subset (24 out of
27). We show the complete set of 24 rigid (or can be seen as rigid)
fixture hacks in Figure 14.

We then analyzed how the individual objects, which we call
“parts”, were connected in the subset of rigid undeformed fixtures.
Although many different parts are involved in the hack examples,
connections typically form between common types of connector
primitives. These connector primitives connect in ways that are
independent of the objects that they are part of. From our anal-
ysis, we extract the following categories of connector primitives
(Figure 2): rod, hook, ring, tube, clip, edge, surface, and hemisphere.

SCF °24, July 7-10, 2024, Aarhus, Denmark

Mei et al.

Figure 14: As ordered in the image, the hacks or hack groups in black boxes are from [Crafts 2022; Stanley 2021; Sullivan and
Heumann 2019], one of the colleagues, [Caylor 2019; Fiyaa 2013], another one of the colleagues, [Karo 2019; Piro 2015]. We
provide a short description for each hack and its source in Table 2.

Table 2: Hacks and their sources.

No. [Hack Source [Short Description

1 [Sullivan and | soap bottle bag
Heumann 2019]
2 [Stanley 2021] bottle holder on mower
3 nonslip hanger
4 hangers chained with rings
5 magazine on a hanger
6 glass light holder
7 [Crafts 2022] toothbrush holder
8 pants hanger with clothes clips
9 phone holder from clothes clips
10 binder clips stoppers in fridge
11 bathroom organizer
12 tissue box towel hanger
13 | Colleague A dish sponge hanger
14 pen over pins on a board
15 shower essentials holder
16 hang clothes parallel to wall
17 | [Caylor 2019] hangers chained with soda can tabs
18 | [Fiyaa 2013] charger holder
19 | Colleague B kitchen tools rack
20 oven mitten holder
21 wire baskets chained with S-hooks
22 | [Piro 2015] scarf organizer
23 | [Karo 2019] bed slat as rack
24 cup hanger

Further analyzing the hack designs by looking at the parts and
the connecting shapes of the parts, we determined the relationship
between these connector primitives on whether they connect and
how they align with each other when they connect. We summarized

Table 3: Number of appearances in the 24 rigid undeformed
fixture hacks (Figure 14) of each connection type. * means
this connection type didn’t appear but we deduced that it
is compatible based on similar connection types. # means
this connection type didn’t appear in rigid fixture hacks but
appeared in a non-rigid fixture hack. Light grey means this
connection type did not appear or cannot be deduced. We
ignore the lower-triangular region (dark grey) as it is redun-
dant with the upper-triangular one.

‘hook ring hemi. edge rod tube clip surf
hook 1 5 12 1
ring 4 *
hemi.
edge
rod
tube
clip
surf.

7

the common design patterns of how objects can be connected in
Table 3. The eight connector primitives and their pairwise interac-
tions become the basis for the design of the DSL and the underlying
logic for assembly building in our system (see Section 4).

B PROGRAMS FOR GALLERY EXAMPLES
B.1 Toothbrush Holder

ASSEMBLY_toothbrush_holder = Assembly()
surface = Surface({"width": 400, "length": 400})
ENV_start = Environment({"surface": surface})

ENV_end = Environment({"toothbrush": Toothbrush()})

start_frame = Frame()

FabHacks

Table 4: We parametrize each primitive with its correspond-
ing shape parameters, and show an example of the primitive.

Primitive | Shape Parameters Example
hook arc angle, arc radius, thickness
ring arc radius, thickness

hemisphere | radius

edge width, length, height

rod radius, length
tube inner radius, thickness, length
clip width, height, base distance,

open gap, thickness

surface width, length

ASSEMBLY_toothbrush_holder.start_with(ENV_start, start_frame)

PART_clip = PlasticClip()

ASSEMBLY_toothbrush_holder.connect (PART_clip.hemispherel, ENV_start.surface)
ASSEMBLY_toothbrush_holder.connect (PART_clip.hemisphere2, ENV_start.surface)
ASSEMBLY_toothbrush_holder.connect (ENV_end.rod, PART_clip.clip)
ASSEMBLY_toothbrush_holder.connect (ENV_end.hemisphere, ENV_start.surface)

end_frame = Frame([-10, -62.5, 50], [-65,0,0])
ASSEMBLY_toothbrush_holder.end_with(ENV_end, end_frame)

B.2 Charger Holder

ASSEMBLY_cable_holder = Assembly()

edge = Edge({"width": 100, "length": 200, "height": 1.5})
ENV_start = Environment({"edge": edge})
ENV_end = Environment({"cable": Cable()})

start_frame = Frame([0,0,150],[0,0,01)
ASSEMBLY_cable_holder.start_with(ENV_start.edge, start_frame)

PART_binderclip = BinderClip()

ASSEMBLY_cable_holder.connect (PART_binderclip.clip, ENV_start.edge, is_fixed=True)
ASSEMBLY_cable_holder.connect(ENV_end.rod1, PART_binderclip.ringl)
ASSEMBLY_cable_holder.connect(ENV_end.rod1, PART_binderclip.ring2)

end_frame = Frame([0,57.5,163], [0,0,0])
ASSEMBLY_cable_holder.end_with(ENV_end.rod2, end_frame)

B.3 Soap Bottle Holder

ASSEMBLY_soapbottle_holder = Assembly()

rod = Rod({"length": 500, "radius": 5})
ENV_start = Environment({"door": rod})
ENV_end = Environment({"soapbottle": SoapBottle()})

start_frame = Frame([0,0,500], [90,0,90])
ASSEMBLY_soapbottle_holder.start_with(ENV_start.door, start_frame)

PART_hookeyel = HookEyeLeftS()
ASSEMBLY_soapbottle_holder.connect (PART _hookeyel.ring, ENV_start.door)
PART_basket = Basket()

ASSEMBLY_soapbottle_holder.connect (PART_basket.rod1, PART_hookeyel.hook)
PART_hookeye2 = HookEyelLeftS()

ASSEMBLY_soapbottle_holder.connect (PART_hookeye2.ring, ENV_start.door, alignment="flip")

ASSEMBLY_soapbottle_holder.connect(PART _hookeye2.hook, PART_basket.rod2)

SCF ’24, July 7-10, 2024, Aarhus, Denmark

ASSEMBLY_soapbottle_holder.connect (ENV_end.surface, PART_basket.surface)

end_frame = Frame([@,0,253], [0,0,180])
ASSEMBLY_soapbottle_holder.end_with(ENV_end, end_frame)

B.4 Mug Hanger

ASSEMBLY_mug_hanger = Assembly()

rod = Rod({"length": 500, "radius": 2})
ENV_start = Environment({"rod": rod})

surface = Surface({"length": 800, "width": 600})
ENV_wall = Environment({"wall": surface})
ENV_end = Environment({"mug": Mug()})

start_frame = Frame([0,0,200], [90,0,90]1)
ASSEMBLY_mug_hanger . start_with(ENV_start.rod, start_frame)
wall_frame = Frame([©,50,0], [90,0,0])
ASSEMBLY_mug_hanger.start_with(ENV_wall.wall, wall_frame)

PART_doublehook1 = DoubleHook()

PART_doublehook2 = DoubleHook()

PART_doublehook3 = DoubleHook()
ASSEMBLY_mug_hanger . connect (PART_doublehook1.hook2, ENV_start.rod)
ASSEMBLY_mug_hanger . connect (PART_doublehook2. hook2, PART_doublehook1.hook1)
ASSEMBLY_mug_hanger . connect (PART_doublehook3.hook1, PART_doublehook2.hook1)
ASSEMBLY_mug_hanger . connect (ENV_end. hook, PART_doublehook3.hook2)

end_frame = Frame([0,0,50], [-35,0,-901)
ASSEMBLY_mug_hanger.end_with(ENV_end.hook, end_frame)

B.5 Paper Towel Holder

ASSEMBLY_paper_towel_holder = Assembly()

ENV_start = Environment({"env": TowelHangingEnv()})
ENV_end = Environment({"paper_towel_roll": PaperTowelRoll()})

wall_frame = Frame([0,0,300], [0,0,0])
ASSEMBLY_paper_towel_holder.start_with(ENV_start, wall_frame)

PART_hookeyel = HookEyelLeft()

PART_hookeye2 = HookEyelLeft()

PART_broomrod = BroomRod ()

ASSEMBLY _paper_towel_holder.connect (PART_hookeyel.ring, ENV_start.hook1)

ASSEMBLY _paper_towel_holder.connect (PART_hookeye2.ring, ENV_start.hook2)

ASSEMBLY _paper_towel_holder.connect (PART_broomrod. tube, PART_hookeyel.hook, is_fixed=True)
ASSEMBLY_paper_towel_holder.connect(ENV_end. tube, PART_broomrod.tube)
ASSEMBLY_paper_towel_holder.connect (PART _hookeye2.hook, PART_broomrod.tube, is_fixed=True)

end_frame = Frame([53,0,160], [-90,-60,01)
ASSEMBLY_paper_towel_holder.end_with(ENV_end. tube, end_frame)

B.6 Diaper Caddy

ASSEMBLY_diaper_caddy = Assembly()

ENV_start = Environment({"backseat": BackSeats()})
ENV_end = Environment({"diaper_caddy": DiaperCaddy()})

start_frame = Frame([0,0,0], [0,0,0])
ASSEMBLY_diaper_caddy.start_with(ENV_start, start_frame)

PART_doublehook1 = DoubleHook()

PART_doublehook2 = DoubleHook()

PART_doublehook3 = DoubleHook ()

PART_doublehook4 = DoubleHook()
ASSEMBLY_diaper_caddy . connect (PART_doublehook1.hook1, ENV_start.rod1)
ASSEMBLY_diaper_caddy . connect (PART_doublehook2.hook2, ENV_start.rod2)
ASSEMBLY_diaper_caddy. connect (PART_doublehook3.hook1, PART_doublehookl.hook2)
ASSEMBLY _diaper_caddy. connect (PART_doublehook4.hook1, PART_doublehook2.hook1)
ASSEMBLY _diaper_caddy. connect (ENV_end. hook2, PART_doublehook3.hook2)
ASSEMBLY _diaper_caddy. connect (ENV_end.hook1, PART_doublehook4.hook?2)

end_frame = Frame([124.3,580,717.1], [-135.5,-40,20.5])
ASSEMBLY_diaper_caddy.end_with(ENV_end.hook2, end_frame)

C SOLVER RUNTIME

We used the example hacks as test cases and collected runtimes
of various solver operations into Table 5 below. The same laptop
used for the user study sessions, a MacBook Pro (2020) with M1
Chip and 8GB memory, was used for collecting these data. In the
context of Ul interactions, step 3’s “Run Optimization” corresponds
to Avg. Full Solve Time, and step 2’s pre-checks correspond to
Avg. Quick reject Time and Avg. Constraints Checking Time.

Based on the table, the runtime increases as the complexity (#
Parts, # Cycles, # Params) of the example increases.

SCF °24, July 7-10, 2024, Aarhus, Denmark Mei et al.

Table 5: This table shows the runtime averages of solver operations. The first two columns are the example’s name and the
corresponding figure. The next three columns records the number of parts, the number of cycles, and the number of parameters
(i.e., the degrees of freedom of the connections) in the hack design. The runtimes in the next four columns are collected as
averages over 10 runs: (1) Avg. Full Solve Time: the average time taken for a full solve of the example; (2) Avg. Quick Reject
Time: the average time taken for the geometric quick reject pre-check; (3) Avg. # Initial Guesses: the average number of initial
guesses needed for checking constraints satisfaction of the example; (4) Avg. Constraints Checking Time: the average time
taken for checking constraints satisfaction. The * next to the reading nook example means that due to its complexity, instead
of using randomly generated initial guesses, the initial guesses are computed from optimizing individual chains in the design,
which takes around 2-3 minutes.

Avg.Full Avg.Quick Avg.# Avg. Constraints
Example Figure # Parts # Cycles # Params Solve Reject Initial Checking
Time (sec) Time (sec) Guesses Time (sec)
demo Fig. 10 4 0 10 9.997 - - -
toothbrush holder Fig. 5a 3 2 20 15.551 0.003 1.0 2.027
charger holder Fig. 5b 3 1 8 2.014 0.001 1.4 0.743
soap bottle holder Fig. 5¢ 5 1 17 26.937 0.003 1.0 1.536
mug hanger Fig. 5d 6 0 11 5.188 - - -
bird feeder Fig. 1 left 10 1 16 45.734 - - -
paper towel holder Fig. 5e 5 1 15 20.479 0.002 2.3 8.251
diaper caddy Fig. 5f 6 1 18 50.839 0.002 1.3 8.227
bathroom basket Fig. 8 4 1 14 28.151 - - -
clip lights 1 Fig. 12 11 0 25 30.820 - - -
clip lights 2 (from 11 0 25 28.293 - - -
clip lights 3 left to 9 0 20 19.182 - - -
clip lights 4 right) 9 0 20 18.685 - - -
reading nook™ Fig. 1 right 19 2 65 742.279 0.0146 3.1 336.741

	Abstract
	1 Introduction
	2 Related Work
	3 System Overview
	4 An S-DSL for FabHacks
	4.1 Connector Primitives
	4.2 Language Constructs and Hack Construction
	4.3 Solver-aided Evaluation

	5 The FabHacks Interface and User Workflow
	6 Evaluation of FabHacks
	6.1 Implementation
	6.2 Examples from Direct Programming and Programmatic Generation
	6.3 User Study with FabHacks Interface

	7 Limitations and Future Work
	8 Conclusion
	Acknowledgments
	References
	A Analysis of the Design Space of Home Hacks
	B Programs for Gallery Examples
	B.1 Toothbrush Holder
	B.2 Charger Holder
	B.3 Soap Bottle Holder
	B.4 Mug Hanger
	B.5 Paper Towel Holder
	B.6 Diaper Caddy

	C Solver Runtime

