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Learning-based Sparse Sensing with Performance Guarantees
Reza Vafaee, and Milad Siami

Abstract—In this study, we address the challenge
of sensor scheduling in discrete-time linear dynamical
networks. We propose a novel learning-based rounding
method aimed at converting a provided weighted sensor
schedule into a sparse, unweighted schedule while pre-
serving a comparable level of observability performance
to the original weighted schedule. We introduce the
notion of L-systemic performance measures, which en-
joy characteristics such as homogeneity, monotonicity,
convexity, and Lipschitz continuity, covering a range of
well-known measures. We integrate the initialization
of the weighted sensor schedule, achieved via a con-
vex relaxation of a combinatorial optimization problem
based on an L-systemic measure, into our rounding
approach. We show that this produces an unweighted
sensor schedule that achieves a (1 + ϵ) near-optimal
approximation solution while ensuring system observ-
ability. Our polynomial-time deterministic framework
provides a performance guarantee compared to the
optimal solution for all types of L-systemic performance
measures, including a class of non-submodular metrics.
The effectiveness of the theoretical findings is evaluated
for a benchmark numerical example in distributed fre-
quency control.

I. Introduction
In closed-loop control systems, each subsequent control

decision relies on estimations obtained for various system
variables. Typically, these estimations are derived from
monitoring different aspects of the system using a set of
strategically placed sensors. While attributes like measure-
ment quality, temporal resolution, and latency are dictated
by the sensor types, the spatial characteristics pertinent to
the system are primarily defined by the sensor locations.
In practical scenarios, limitations such as cost-intensive
individual measurements or computational restrictions of
the hardware often compel us to consider only a subset of
the available sensors. However, finding an optimal sparse
set of sensors is an unsolved challenge [1].

The challenge of optimal sensor selection is often cast as
a combinatorial optimization problem:

minimize ρ (A)
subject to A ⊂ U, card(A) ≤ α, (1)
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where ρ(·) represents the objective, or cost, function that
typically measures the observability performance of the sys-
tem, U denotes the set of available sensors, card(·) indicates
the cardinality of a set, and α represents the allocated
budget.

In a simple scenario where a well-defined cost function is
in place, discovering the optimal solution for the optimiza-
tion problem (1) translates into an infeasible brute-force
exploration of the combinatorial options. Notably, there
exist

(card(U)
α

)
potential combinations of α sensor selections

from the pool of card(U) available sensors. This exponential
growth in complexity renders the problem intractable and
NP-hard. Consequently, a majority of proposed strategies
have aimed to approximate the optimal solution using
heuristics and intuitive techniques.

Initial attempts, exemplified by [2], applied non-linear
integer programming for approximate solutions. However,
these methods might face scalability issues in real-world
scenarios, such as in smart power grids and robotics. Sub-
sequent research has explored various greedy algorithms
to approximate the optimal solution, often with confidence
bounds. These algorithms often address one or two specific
performance measures and have limitations when dealing
with non-submodular metrics [3]–[5].

When the cost function in (1) is convex, a common ap-
proach involves solving its corresponding convex relaxation.
This suggests to obtaining a combinatorial solution through
a (polynomial-time) algorithm that rounds the relaxation
solution. For submodular costs, established methods like
pipage and randomized rounding applied to the fractional
solution from the semidefinite programming (SDP) relax-
ation yield fast approximation algorithms [6]. However,
these techniques fall short for non-submodular costs.

The Hadamard decomposition of the observability
Gramian matrix is utilized in [7] to derive optimal sets
for single-input linear time-invariant (LTI) networks, cov-
ering A- and D-optimality performance measures. The ap-
proach extends to multi-input systems with a focus on T-
optimality. Additionally, related work by [8] addresses plac-
ing time-varying actuators, noting that when the system
matrix B has no zero columns, the optimal integer solution
coincides with the continuously relaxed solution for T-
optimality. In contrast, our introduced learning framework
achieves near-optimal sets for both single and multi-input
systems, including various performance measures within a
significant family that includes A-, D-, and T-optimality.

In [9] and [10], the authors address a different challenge:
identifying sparse actuator/sensor sets for LTI dynamics
that mimic the performance of a full set in terms of control-
lability/observability. For example, [9] introduces determin-
istic and randomized algorithms that strategically sample
actuators in space and time, approximating the controlla-
bility Gramian matrix for fully actuated systems. Similarly,
[10] proposes a framework for simultaneous actuator and
sensor sampling, approximating Hankel singular values of
LTI dynamics. In contrast to our introduced framework,
both of these approaches provide approximation guarantees
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exclusively in comparison to dynamics featuring complete
actuator/sensor sets.

In [11], a probabilistic approach establishes a high prob-
ability bound on the observability Gramian for a resulting
sparse system, relative to full sensing. However, this analysis
addresses only E- and A-optimality performance measures
and applies to a scaled version of the original LTI system.
Another closely related concern, distinct from the primary
focus of this paper, involves identifying the minimal sensor
set required to achieve observability in a system [12].

Our Contributions: Our work innovates by exploit-
ing connections between sensor sparsification and positive
semidefinite matrix-based regret minimization. Our paper’s
key contributions are:

- We establish a polynomial-time framework via a two-
player online regret minimization game. This frame-
work transforms weighted sensor schedules into un-
weighted, sparse configurations with limited active
sensors, while preserving a comparable level of observ-
ability performance to the original weighted schedule.

- We introduce L-systemic observability metrics for
linear systems, characterized by properties like homo-
geneity, monotonicity, convexity, and Lipschitz conti-
nuity w.r.t. the observability Gramian. We show that
this family includes various well-known measures.

- We initialize weighted sensor schedules via convex
relaxation with an L-systemic objective. We demon-
strate that integrating this into our learning-based
rounding yields unweighted schedules approximating
(1 + ϵ) optimality.

- We verify our contributions with a benchmark numer-
ical example focused on distributed frequency control.

This paper extends the preliminary results presented in
[13]. The manuscript contains several new results (Theo-
rems 1 & 2, Propositions 1, 3 & 4, and Lemmas 1, 2 &
3), a numerical example section (Section V), algorithms
(Algorithms 1 & 2), a new definition (Definition 1), and
new figures (Figs. 1 & 2). To ensure a concise and focused
narrative, specific aspects of the theoretical background,
such as proofs and lemmas, have been relocated to the
appendix.

II. Mathematical Terms and Definitions
A. Mathematical Notations

Sets. We denote the sets of integers and real numbers as
Z and R, respectively. The set of integers (real numbers)
greater than or equal to a ∈ R is denoted as Z≥a (R≥a).
We use uppercase sans-serif letters to represent finite sets
(e.g., A). For any integer n ≥ 1, we define [n] = {1, . . . , n}.
Notation card(A) returns the cardinality or number of
elements in set A.

Matrices. We use uppercase letters to represent real-
valued matrices (e.g., A). I and 000 denote the identity and
zero matrices, respectively, with dimensions inferred from
context. For a square matrix X, we denote its determinant
and trace as detX and TraceX, respectively. The transpose
of matrix A is represented by A⊤, and its Moore-Penrose
pseudoinverse is denoted as A†, with A−1/2 = (A†)1/2.

Vectors. Lowercase bold letters represent vectors (e.g.,
bbb). The i-th basis vector is denoted as eeei with dimensions
inferred from context, where eeei(j) = 0 for j ̸= i and eeei(i) =
1. The notation 1 is used to denote a vector of all ones.

Positive Semidefinite Ordering. For symmetric ma-
trices A,B ∈ Rn×n, we use A ⪯ B to indicate that
xxx⊤Axxx ≤ xxx⊤Bxxx holds for all xxx. Similarly, we define ⪰,
≺, and ≻. We refer to a symmetric matrix A ∈ Rn×n as
positive (semi)definite, denoted as PD (PSD), when A ≻ 000
(A ⪰ 000). The sets Sn

+ and Sn
++ represent the PSD and PD

cones of n-by-n matrices, respectively.
Operator Norms. Vector norms ∥ · ∥0, ∥ · ∥1, and ∥ · ∥

count the number of nonzero elements, sum the absolute
values, and compute the Euclidean norm of the input vector,
respectively. For matrix norms, ∥·∥1, ∥·∥, and ∥·∥F find the
maximum absolute column sum, maximum singular value,
and Frobenius norm of the input matrix, respectively.

Diagonals. For xxx ∈ Rn, we use diag(xxx) ∈ Rn×n to
represent the diagonal matrix with diag(xxx)(i, i) = xxx(i). For
A ∈ Rn×n, we denote diag(A) ∈ Rn as the vector corre-
sponding to the diagonal of A, where diag(A)(i) = A(i, i).

Misc. Lowercase non-bold letters are used for scalars,
indices (e.g., j), and functions (e.g., f(·)), except for T ,
which denotes the total number of iterations in the regret
game. The inner product of matrices A and B is defined as
⟨A,B⟩ := TraceA⊤B. For a matrix Z ∈ Rn×m, we define
vec(Z) as the vectorized form, where

vec(Z) = [z1,1, . . . , zn,1, z1,2, . . . , zn,2, . . . , z1,m, . . . , zn,m]⊤,

and vec−1 performs the inverse operation. The function
max{a, b} returns the larger value between the scalars a
and b. Big O notation, denoted by O, is used to express
the asymptotic behavior of functions. It is employed to
denote that a function f(n) is O(g(n)) when there exist
positive constants c and n0 such that for all n ≥ n0,
f(n) ≤ c · g(n). In this context, f(n) represents a function
of n whose behavior is being analyzed in terms of its growth
rate. Additionally, tilde big O notation, represented by Õ, is
utilized to describe functions while hiding constant factors
and logarithmic factors, focusing solely on the dominant
growth rate. Big Omega notation is represented by Ω. It
signifies that f(n) is Ω(g(n)) when there exist positive
constants c and n0 such that for all n ≥ n0, f(n) ≥ c · g(n).
Big Theta notation is shown as Θ. It implies that f(n) is
Θ(g(n)) if both f(n) is O(g(n)) and f(n) is Ω(g(n)).

B. Linear System, Estimation, and Observability
A canonical discrete-time, LTI dynamic system is de-

scribed by
xxx(k + 1) = Axxx(k) +Buuu(k) and yyy(k) = C xxx(k), (2)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and k ∈ Z≥0. The
state matrix A characterizes the system’s internal structure
and agent interactions, the input matrix B specifies the
controlled nodes by external controllers, and the output
matrix C depicts the relationship between the output vector
yyy and the state vector.

With t > 0 as the estimation horizon (referred to as
the time-to-estimate) and given sequences uuu(k) and yyy(k)
spanning this horizon, (2) can be expanded as

yyy˜(t) =


C
CA
...

CAt−1

xxx0 + T˜(t)


uuu(0)
uuu(1)
...

uuu(t− 1)

 , (3)
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where yyy˜(t) represents the collected vector of measurements
over the estimation horizon, xxx0 = xxx(0) is the initial state,
and T˜(t) is a known block matrix with elements determined
by combinations of system matrices A, B, and C. The sec-
ond term on the right-hand side of (3) is readily identified;
thus, we can subtract it from the vector of measurements
on the left-hand side, yielding

yyy(t) = O(t)xxx0, (4)

where we define yyy(t) as the resultant vector,
and introduce the t-step observability matrix
O(t) :=

[
C⊤, (CA)⊤, . . . , (CAt−1)⊤]⊤.

The LTI system (2) is called “observable” over t steps if it
allows us to uniquely determine the initial state xxx0 based on
the system of equations (4). We know that this is the case
if and only if the t-step observability matrix is full column
rank.

Assumption 1: We assume the observability of system (2)
throughout this paper.
Let F be any left inverse of O(t), i.e., F O(t) = I, then
we have the observer xxx0 = F · yyy(t), which determines xxx0
(exactly) from inputs and outputs over estimation horizon.

A more realistic scenario is to assume that the mea-
surements are corrupted by noise, represented as yyy(k) =
C xxx(k)+vvv(k), where vvv is the sensor noise or error. Equation
(4) with sensor noises is given by

yyy(t) = O(t)xxx0 + vvv˜(t), (5)

where vvv˜(t) := [vvv⊤(0), vvv⊤(1), . . . , vvv⊤(t − 1) ]⊤. The Least-
Squares Observer can be utilized to obtain an estimate
for xxx0 in the presence of noise. This observer uses the
pseudo-inverse O†(t) as the left inverse matrix F , i.e., F =
(O⊤(t)O(t))−1O⊤(t). When applied to (5), the observer
yields x̂xx0 = xxx0 + O†(t)vvv˜(t), where x̂xx0 is the least-squares
estimate of the initial state.

Assuming sensor noises follow independent and identi-
cally distributed (i.i.d.) normal distributions N (000, σI), with
σ representing the variance of each measurement, we have
the covariance of the estimated initial state x̂xx0 as

Cov( x̂xx0 ) = σ · O†(t)O†⊤(t) = σ · (O⊤(t)O(t))−1,

where Cov(·) returns the covariance of a vector. This implies
that the covariance matrix is proportional to the inverse of
the matrix X (t) := O⊤(t)O(t). In the study of observability
analysis, the matrix X (t) plays a pivotal role and is re-
ferred to as the t-step observability Gramian matrix for the
dynamics described by (2). For the purpose of analysis in
this paper, we may express the t-step observability Gramian
matrix as

X (t) =
∑

k+1∈[t]

∑
j∈[p]

(ccc⊤
j A

k)⊤(ccc⊤
j A

k) =
∑

i∈[tp]

oooiooo
⊤
i , (6)

where ccc⊤
j represents the rows of the matrix C ∈ Rp×n, ooo⊤

i

denotes the i-th row of the t-step observability matrix (4),
with i = kp+ j, and p denotes the number of sensors.

The least-squares estimator is known to be efficient, i.e.,
the Cramér-Rao lower bound is achieved [14]. This connects
the Fisher information matrix (FIM) to the inverse of the
covariance matrix. As for the case of i.i.d. measurements,
we saw that the t-step observability Gramian is inversely

proportional to the estimation covariance, so it is directly
proportional to the FIM. Hence, manipulation or specifica-
tion of the eigenvalues of the t-step observability Gramian
directly influences the corresponding FIM.

The spectral spectrum of X (t) also determines the rela-
tive observability of individual system modes. For instance,
the minimum eigenvalue, λmin(X (t)), signifies the maxi-
mum estimation uncertainty and the Euclidean distance
to the set of singular matrices, indicating the distance to
the unobservable subspace [15]. Networks with observable
dynamics featuring small Gramian eigenvalues often result
in uncertain estimations. To mitigate this uncertainty, our
paper assumes not only the observability of dynamics (2),
i.e., a non-singular t-step observability Gramian matrix
X (t), but also X (t) ⪰ δI for some small δ.

C. L-systemic Observability Measure
We define L-systemic observability measures as real-

valued operators applied to the space of linear dynamical
systems (2). These measures assess the degree of uncer-
tainty in estimation. Specifically, we characterize them as
operators acting on the observability Gramian matrices
of all n-dimensional observable systems with a minimum
eigenvalue bounded by a small constant δ > 0, denoted as
X (t) ⪰ δI ≻ 000.

Definition 1 (L-systemic Performance Measure): A
Gramian-based metric ρ : D→ R>0, where

D := {P ∈ Sn
++ : P ⪰ δI}, (7)

for some small δ > 0, is L-systemic if and only if for all
A,B ∈ D it satisfies:

– Homogeneity: ρ(βA) = β−1ρ(A), ∀ β > 01;
– Monotonicity: if B ⪯ A, then ρ(B) ≥ ρ(A);
– Convexity:

ρ
(
αA+(1−α)B

)
≤ αρ(A)+(1−α) ρ(B), ∀α ∈ [0, 1];

– Lipschitz Continuity: |ρ(A)−ρ(B)| ≤ L·∥A−B∥, with
respect to ℓ1 norm where L is the so-called Lipschitz
constant.

In the next proposition, we establish that the properties
listed in Definition 1 hold for several well-known choices of
ρ, such as A(verage), D(eterminant), T(race), and E(igen)-
optimality (refer to Table I).

Proposition 1: For the dynamics given by (2), with the
t-step observability Gramian matrix X (t) ⪰ δ · I ≻ 000, the
performance measures listed in Table I exhibit L-systemic
properties.

In the upcoming section, we provide the formulation of
the central problem addressed in this paper.

III. Scheduling Problem
We tackle the challenge of binary conversion of weighted

sensor scheduling. Specifically, for a given time-to-estimate
t ≥ n and a weighted sensor schedule Π = [πj,k+1]2, where

1Function ρ(·) is said to be homogeneous if it satisfies the condition
ρ(βA) = β−γ · ρ(A), where γ represents the degree of homogeneity.
However, for the purposes of this paper, when we refer to a metric
being homogeneous, we will consider it to be homogeneous of degree
1.

2This weighted schedule can be obtained from solving a convex
relaxation of a combinatorial optimization problem or from the
operational schedule of an existing physical system.
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TABLE I: Important examples of L-systemic measures

Measure Significance Optimality-criteria

Trace X −1(t) Average estimation uncertainty A-optimality
λ−1

min(X (t)) Maximum estimation uncertainty E-optimality
1/Trace X (t) Lower bound on the average estimation uncertainty T-optimality

det−1 X (t) Volume of the estimation uncertainty ellipsoid D-optimality

the bounded scalars πj,k+1 ∈ [0, 1] denote the strength of
the j-th sensor (j ∈ [p]) at time k (k + 1 ∈ [t]), and
∥vec(Π)∥1 ≤ q, for the dynamics in (2), our objective is to
devise an unweighted sensor schedule that approximates the
provided weighted sensor schedule in a specific observability
context.

In precise terms, for a given weighted sensor schedule Π,
our goal is to determine a sparse and rounded sensor sched-
ule S = [sj,k+1] consisting of binary scalars sj,k+1 ∈ {0, 1}
and possessing a sparsity of ∥vec(S)∥0 = q ≪ tp. For this
schedule

ρ(Xs(t))− ρ(Xπ(t))
ρ(Xs(t)) ≤ ϵ, (8)

where
Xs(t) =

∑
i∈[tp] vec(S)(i)oooiooo

⊤
i , andXπ(t) =

∑
i∈[tp] vec(Π)(i)oooiooo

⊤
i ,

(9)
the operator ρ(·) corresponds to an L-systemic observability
performance measure as defined in Definition 1, while ϵ ∈
(0, 1) represents the approximation factor. Indeed, in this
problem, we seek to find an unweighted sensor schedule that
preserves a certain level of observability compared to the
given weighted schedule, subject to a sparsity constraint.

Assumption 2: We assume that the weighted t-step ob-
servability Gramian matrix (9), associated with the pro-
vided weighted sensor schedule, is of full rank.

This assumption is not overly restrictive. This is because
when the weighted sensor schedule Π is derived through the
solution of the convex relaxation of a combinatorial opti-
mization problem based on an L-systemic observability mea-
sure listed in Table I, excluding T-optimality, the outcome
will yield a weighted t-step observability Gramian matrix
that is of full rank. This is due to the fact that all A-, E-, and
D-optimality performance measures require the invertibility
of their input arguments. Additionally, weighted sensor
schedules not obtained via convex relaxation, such as those
reflecting the operational schedule of a physical system,
should inherently avoid generating a Gramian matrix with
deficient rank, as such a scenario would lead to a loss of
observability.

Based on Assumption 2, the existence of X−1/2
π (t) =

UΛ−1/2U⊤ is guaranteed, where UΛU⊤ represents the
eigen decomposition of Xπ(t). In the upcoming lemma, we
demonstrate that the explicit knowledge of the L-systemic
performance measure ρ(·) is not a prerequisite for finding
the desired rounded sparse sensor schedule S.

Claim 1: To obtain an unweighted sparse sensor schedule
S satisfying (8), it is necessary and sufficient to establish a
schedule S that fulfills the condition:

Xs(t) ⪰ (1− ϵ) · Xπ(t). (10)
Proof: Without loss of generality, we assume that the

positive constant δ in the definition of the L-systemic per-
formance measure (Definition 1) is consistently less than or
equal to (1−ϵ)·λmin(Xπ(t)). Then, the proof of the backward
direction can be derived by applying the monotonicity
and homogeneity properties of the L-systemic performance
measure to (10), leading to

ρ(Xs(t))
Monotonicity
≤ ρ

(
(1− ϵ) · Xπ(t)

)
Homogeneity= (1− ϵ)−1 · ρ(Xπ(t)).

(11)
It is not difficult to show that (11) and (10) are equivalent.
Furthermore, reversing the steps yields the proof for the
other direction.

The following results suggest further simplifications to the
problem.

Proposition 2: Let

X̂s(t) :=
∑

k+1∈[t]

∑
j∈[p]

sj,k+1(ĉcc⊤
j Â

k)⊤(ĉcc⊤
j Â

k), (12)

where Â and ĉcc⊤
j , representing rows of the matrix Ĉ, are de-

fined by the transformed realization (30) with the whitening
transformation T = X−1/2

π (t), and sj,k+1 denote the entries
of schedule S. Then, λmin(X̂s(t)) ≥ 1−ϵ, if and only if (10).

Combining the reductions proposed by Claim 1 and
Proposition 2, we provide a precise definition of our main
rounding problem:

Problem 1 (From Weighted to Unweighted): Given
the approximation factor ϵ ∈ (0, 1), a time horizon
for estimation t ≥ n, and a weighted sensor schedule
Π = [πj,k+1] characterized by bounded scalars
πj,k+1 ∈ [0, 1] and ∥vec(Π)∥1 ≤ q for dynamics (2),
our goal is to determine an unweighted sparse sensor
schedule S = [sj,k+1] consisting of binary scalars
sj,k+1 ∈ {0, 1} and with sparsity ∥vec(S)∥0 ≤ q, such
that

λmin(X̂s(t)) ≥ 1− ϵ, (13)

where X̂s(t) is defined in (12).

Remark 1: Since the weighted t-step observability
Gramian matrix in (9) is full rank, in accordance with
Assumption 2, it follows that the unweighted t-step
Gramian matrix in (9), where the sensor schedule S is the
solution to Problem 1, is also full rank (as implied by (10)).
As a result, the solution maintains observability.

In the subsequent sections of this paper, we illustrate how
a two-player regret minimization problem centered around
density matrices can be utilized to effectively address Prob-
lem 1.
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IV. Proposed Solutions
In the problem of sequential decision making within an

online environment, the decision maker (the player) must
select actions, receiving costs (rewards) based on both their
actions and those of the environment. The evolution law
for the environment’s actions is assumed unknown a priori
and depends on the player’s actions and an unobservable
environmental state. This scenario resembles a two-player
repeated game, with the environment as the adversary. The
player aims to minimize cost accumulation, but the lack of
assumptions about the adversary complicates objectives like
minimizing expected cost. One prevalent criterion in online
learning is regret minimization, where regret signifies the
difference between the potential cost by always choosing a
best fixed action against the adversary’s choices and the
actual obtained cost.

In this paper, we employ a framework of regret minimiza-
tion using density matrices. We provide a concise overview
of this method, originally introduced in [16] for spectral
graph sparsification, in Section A2 of the appendix. In
the subsequent sections, we adapt the game components
to our scheduling scenario in order to tackle Problem 1.
We recommend that readers who are not familiar with
the concepts of regret minimization over density matrices
first consult the general definition provided in the appendix
before proceeding to our proposed game setup.

A. Toward a Solution
We define the elements of the regret game as follows

to tackle the sensor scheduling problem. We introduce the
action space

Yn×n = {Σ ∈ Sn
+ : Trace Σ = 1}, (14)

as the set of covariance matrices of the zero-mean Gaussian
initial state xxx0 ∈ Rn with E ∥xxx0∥2 = 1. We start the game
with schedule S(0) = [s(0)

j,k+1], where all binary scalars are
set to zero, i.e., s(0)

j,k+1 = 0 for all j and k. Then, we proceed
with the following iterative process. At each iteration ℓ =
1, . . . , T ,
• The player picks an initial state xxx0

(ℓ) ∼ N (0,Σ(ℓ)),
where the covariance matrix is chosen from the set
of action space (14), for the transformed realization
(30). The player selects xxx0

(ℓ) in order to minimize a
cost.

• The adversary independently adjusts the sensor
schedule S(ℓ−1) by adding a sensor to build the sched-
ule S(ℓ) in an attempt to supposedly maximize the
cost.

• The cost is evaluated by monitoring the change in the
transient energy (see Section A3) of the dynamics (2),
defined as
Exxx0

[
∂

∂S(ℓ)

{
Lo(xxx0

(ℓ), S(ℓ), t)
}]

= ⟨X̂ (ℓ)
s (t)− X̂ (ℓ−1)

s (t),Σ(ℓ)⟩,
(15)

where Lo(xxx0, S, t) := yyy˜⊤(t) diag(vec(S))yyy˜(t) for the
measurement vector yyy˜(t) defined in (3) with the sys-
tem being initialized by xxx0 and uuu(k) = 000 for k =
0, . . . , t − 1. Additionally, X̂ (β)

s (t) denotes the t-step
transformed observability Gramian matrix, given by
X̂ (β)

s (t) =
∑

i∈[tp] vec(S(β))(i)ôooiôoo
⊤
i , with ôoo⊤

i indicat-
ing the i-th row of the transformed t-step observability

matrix Ô(t) := O(t)X−1/2
π (t). Lastly, ∂

∂x(k) {f} =
f(x(k)) − f(x(k−1)) represents the partial backward
difference for the function f(·).

The adversary adds a new sensor in time and place to the
sensor schedule at each iteration. This action is equivalent
to defining F (ℓ) = ôooi(ℓ)ôooi(ℓ)

⊤ as the rank-1 feedback matrix
reflected by the adversary, where i(ℓ) represents the index
for the added sensor at iteration ℓ. The feedback matrix
F (ℓ) meets the condition outlined in Lemma 1 due to the
fact that α·⟨A(ℓ)1/2

, F (ℓ)⟩ = α·ôooi(ℓ)
⊤Σ(ℓ)1/2

ôooi(ℓ) ≥ 0, as Σ(ℓ)

is PSD. Hence, the regret bound can be acquired using (35)
within the framework of the regret game setup elucidated
in this section.

One can leverage this regret bound along with (33) to
obtain the following for our game

λmin

( T∑
ℓ=1

F (ℓ)
)
≥

T∑
ℓ=1

⟨Σ(ℓ), F (ℓ)⟩
1 + α · ⟨Σ(ℓ)1/2

, F (ℓ)⟩
− 2
√
n

α
. (16)

The fraction under the summation on the right-hand side
of (16) is paid at each iteration, and we call it the width
term. The second term on the right-hand side, however, is
a fixed start-up cost that we refer to as the diameter term.
One can show that

∑ℓ
r=1 F

(r) = X̂ (ℓ)
s (t) because S(0) is set

to be a zero matrix; therefore, (16) gives the lower bound
for the minimum eigenvalue of X̂ (T )

s (t).
Our objective is to optimize the selection of sensor i(ℓ)

at each iteration ℓ to ensure a minimum eigenvalue of
X̂ (T )

s (t) greater than or equal to 1 − ϵ for some ϵ ∈ (0, 1),
a requirement crucial for solving Problem 1. The following
result demonstrates that maximizing the width term among
all available sensors at each iteration ℓ provides the optimal
approach for determining the sensor to be added.

Theorem 1: Assume the approximation factor ϵ ∈ (0, 1),
and a weighted sensor schedule Π = [πj,k+1] with scalars
πj,k+1 ∈ [0, 1] and ∥vec(Π)∥1 ≤ q for the dynamics (2).
When q ∈ [8n/ϵ2,+∞), T = q iterations of the regret
minimization game, as described below, result in a sensor
schedule S with sparsity ∥vec(S)∥0 ≤ q. This schedule
satisfies, for X̂s(t) as defined in (12),

λmin(X̂s(t)) ≥ 1− ϵ. (17)

Two-player regret game: Set S(0) = 0. At each
iteration ℓ ∈ [T ],
• The player picks action Σ(ℓ) based on the Follow-

The-Regularized-Leader (FTRL) strategy defined
in (34) for α = 4

√
n/ϵ to minimize the cost (15).

• The adversary independently finds the index

i(ℓ) = arg max
i∈[tp]

⟨Σ(ℓ), ôooiôoo
⊤
i ⟩

1 + α · ⟨Σ(ℓ)1/2
, ôooiôoo⊤

i ⟩
, (18)

and then reflects the rank-1 feedback matrix
F (ℓ) = ôooi(ℓ)ôooi(ℓ)

⊤ to maximize the cost (15).

Although the desired bound is achieved in Theorem 1,
we cannot immediately conclude that the resulting sparse
sensor schedule S is the solution to Problem 1. This is
because S is a multi-set, meaning vec(S) ∈ Ztp

≥0. The
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multi-set issue arises due to accepting replacements in
(18). A simple solution is to avoid replacements during
sensor selection. This concept is explored by the authors
in [17], where they demonstrate that the multi-set issue
can be resolved by selecting sensors without replacement.
However, their approach introduces a new challenge—an
oversampling issue. In other words, to simultaneously satisfy
the desired bound (17) and resolve the multi-set issue, we
need to sample O(q) active sensors.

A commonly employed heuristic for tackling combinato-
rial problems is the local search, often referred to as the
Fedorov’s exchange heuristic [18]. This approach starts with
a schedule of q sensors selected from the available set of tp
sensors and aims to enhance the objective by iteratively
exchanging one sensor in the schedule. In the subsequent
section, we leverage the concept of Fedorov’s exchange
heuristic to carefully address both the oversampling and
multi-set issues.

B. Regret Solution
We commence this section by exploring certain mod-

ifications to the iterative procedure outlined in Section
IV-A. Subsequently, we discuss the analysis of the adjusted
process. The proposed modifications are as follows:
• We initiate the regret game with an arbitrary un-

weighted sensor schedule S(0) = [s(0)
j,k+1] consist-

ing of binary scalars s
(0)
j,k+1 ∈ {0, 1} and sparsity

∥vec(S(0))∥0 ≤ q, in contrast to a zero schedule.
• Drawing inspiration from the Fedorov’s exchange

heuristic, at each iteration ℓ, the adversary au-
tonomously updates the sensor schedule by swapping
an active sensor with an inactive one. This swap is
aimed at purportedly maximizing the cost (15).

Let M(ℓ) := {i : vec(S(ℓ))(i) = 1} ⊆ [tp] denote the set of
selected sensors at the conclusion of the ℓ-th iteration of the
game. Based on the introduced modifications, we initiate
with an arbitrary initial set M(0) with a cardinality of q,
where the minimum eigenvalue of X̂ (0)

s (t) =
∑

i∈M(0) ôooiôoo
⊤
i

may or may not meet the condition in bound (13). Assuming
that the player employs actions derived from the ℓ1/2-
strategy (34) to minimize the cost (15), our flexibility
as algorithm designers lies in determining the adversary’s
actions.

During each iteration ℓ ∈ [T ], we require the adversary to
choose a pair of indices: i(ℓ) ∈ M(ℓ−1) and j(ℓ) ∈ [tp]\M(ℓ−1),
and execute the exchange M(ℓ) = M(ℓ−1)∪{j(ℓ)}\{i(ℓ)}. Cor-
respondingly, this implies that at iteration ℓ, the adversary
reflects the rank-2 feedback matrix as F (ℓ) = ôooj(ℓ)ôooj(ℓ)

⊤ −
ôooi(ℓ)ôooi(ℓ)

⊤.
To comprehend the impact of sensor exchanges on the

minimum eigenvalue, we establish the initial state as H0 =
X̂ (0)

s (t) and employ the regret bound specified in (36) to
elucidate the relationship

λmin(X̂ (T )
s (t)) ≥

T∑
ℓ=1

( ⟨Σ(ℓ), ôooj(ℓ) ôooj(ℓ)
⊤⟩

1 + 2α ⟨Σ(ℓ)1/2
, ôooj(ℓ) ôooj(ℓ)

⊤⟩

−
⟨Σ(ℓ), ôooi(ℓ) ôooi(ℓ)

⊤⟩

1 − 2α ⟨Σ(ℓ)1/2
, ôooi(ℓ) ôooi(ℓ)

⊤⟩

)
−

2
√

n

α
, (19)

where {Σ(ℓ)}T
ℓ=1 represent FTRL solutions

Σ(ℓ) =
(
c(ℓ)I + α · X̂ (ℓ−1)

s (t)
)−2

,

and the action U is taken to be the optimal fixed action U∗

(see Section A2 for more details). This time, the width term
in (19) consists of two fractions. In the subsequent outcome,
we illustrate that it is feasible to select the pair of indices for
swapping as the indices associated with the extreme points
of the fractions within the width term during each iteration.
This selection procedure allows us to acquire a solution to
Problem 1 by the end of the game.

Theorem 2 (Regret Solution to Problem 1): Assume the
approximation factor ϵ ∈ (0, 1) and a weighted sensor sched-
ule Π = [πj,k+1] with scalars πj,k+1 ∈ [0, 1] and ∥vec(Π)∥1 ≤
q for the dynamics (2). When q ∈ [45n/ϵ2,+∞), executing
T = 3q/ϵ iterations of the two-player regret game, as de-
scribed below, deterministically yields an unweighted sensor
schedule S with sparsity ∥vec(S)∥0 ≤ q. This schedule
ensures, for X̂s(t) as defined in (12),

λmin(X̂s(t)) ≥ 1− ϵ. (20)

Two-player regret game: Initialize S(0) with an arbi-
trary unweighted sensor schedule of sparsity q. During
each iteration ℓ ∈ [T ],
• The player selects action Σ(ℓ) using the ℓ1/2-

strategy (34) and learning rate α = 3
√
n/ϵ to

minimize the cost (15).
• The adversary independently identifies indices

i(ℓ) = arg min
i∈N(ℓ−1)

⟨Σ(ℓ), ôooiôooi
⊤⟩

1− 2α ⟨Σ(ℓ)1/2
, ôooiôooi

⊤⟩
, (21)

where

N(ℓ−1) :=
{

i ∈ M(ℓ−1) : α · ⟨Σ(ℓ)1/2
, ôooiôooi

⊤⟩ < 1/2
}

,

(22)
and

j(ℓ) = arg max
i∈[tp]\M(ℓ−1)

⟨Σ(ℓ), ôooiôooi
⊤⟩

1 + 2α ⟨Σ(ℓ)1/2
, ôooiôooi

⊤⟩
,

(23)
and then reflects the rank-2 feedback matrix
F (ℓ) = ôooj(ℓ)ôooj(ℓ)

⊤ − ôooi(ℓ)ôooi(ℓ)
⊤ to maximize the

cost (15).

The proof is long and deferred to the appendix. To keep
the proofs simple, we have not attempted to optimize the
constants in the above statement.

Remark 2: The matrix F (ℓ) has a rank of at most 2. This
can be understood by noting that when subtracting one
rank-1 matrix from another, the result may have a rank of
0 if they are equal; 1 if one is a scalar multiple of the other;
or 2 if they are linearly independent. Thus, when referring
to the feedback matrix as a rank-2 matrix, it is implied that
its rank does not exceed 2.

Remark 3: Theorem 2 necessitates q ≥ Ω(n/ϵ2) to yield
a solution for Problem 1. If the aim is to incorporate, on
average, d sensors at each time step k + 1 ∈ [t] within the
unweighted sparse sensor schedule, then t ≥ Ω(n/dϵ2). This
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introduces a trade-off between the approximation factor
ϵ and the time horizon t, signifying that any reduction
in the level of approximation factor comes at the cost of
extending the time horizon t to maintain the same average
count of active sensors d. Furthermore, the precision of the
approximation enhances with an increase in d. Evidently,
augmenting t necessitates a broader estimation time win-
dow, while elevating d requires the inclusion of a greater
number of active sensors in the schedule.

Remark 4: Note that the total count of active sensors,
q, within the resulting unweighted sensor schedule must
always be greater than or equal to n. This requirement
arises from the fact that if q < n, the unweighted t-step
Gramian matrix (9) associated with any unweighted sensor
schedule S having a sparsity of ∥vec(S)∥0 ≤ q becomes rank-
deficient. However, the invertibility of the input Gramian
matrix is essential for the utilization of certain L-systemic
performance metrics, such as A-, D-, and E-optimality.

Finding Constant c: In the player action Σ(ℓ) = (c(ℓ)I+
α · X̂ (ℓ−1)

s (t))−2, the constant c(ℓ) is a unique real number
that ensures c(ℓ)I + α · X̂ (ℓ−1)

s (t) ≻ 0 and Trace Σ(ℓ) = 1.
It can be demonstrated that for any symmetric matrix

X ∈ Rn×n, the function defined as g(c) := Trace (cI +
αX)−2 is a continuous, strictly monotone decreasing func-
tion of c on the open interval (−α · λmin(X),+∞). Based
on the intermediate value theorem, there must exist a
unique constant c within this interval such that Trace (cI+
αX)−2 = 1, since limc→(−α λmin(X))+ g(c) = +∞, and
limc→+∞ g(c) = 0. The range of feasible c values also implies
that cI + αX ≻ 0.

Furthermore, when c =
√
n, it can be shown that

Trace(
√
nI + αX)−2 ≤ Trace(

√
nI)−2 = 1, which im-

plies that finding c only necessitates searching the interval
(−α · λmin(X),

√
n]. To accomplish this, we design a binary

search routine in Algorithm 2 to identify a unique constant
c(ℓ) within the interval (−α · λmin(X̂ (ℓ−1)

s (t)),
√
n] at each

iteration such that Trace Σ(ℓ) is closely approximated to 1.
In the Weighted To Unweighted algorithm, we present

a pseudocode that outlines the steps of Theorem 2 and
incorporates the binary search routine from Algorithm
2 to derive an unweighted sensor schedule that solves
Problem 1. Theoretical analysis demonstrates that if the
constant c(ℓ) is approximated up to an additive error of
γ = Θ(1/poly(ϵ−1, q)) (where poly stands for polynomial),
both sides of the inequality (19) are altered by, at most, an
additive approximation factor of ϵ. For a stability analysis
of the ℓ1/2-strategy, refer to the Appendix of [16].

The BinarySearch algorithm for computing c(ℓ) termi-
nates in O(log((fu − fl)/γ)) = Õ(1) iterations, where the
notation Õ(·) hides logarithmic factors. Additionally, each
iteration of the algorithm requires a maximum of O(n3)
operations to perform matrix inversion for a matrix of size
n. Consequently, the total computational complexity of each
run of the algorithm is Õ(n3) operations.

In Algorithm 1, the initialization step on line 3 takes
O(n3) time due to the matrix square root computation.
The process of finding the swap indices i(ℓ) and j(ℓ), carried
out during each iteration of the “while loop”, takes O(tpn2)
time, when Σ(ℓ) and Σ(ℓ)1/2 are computed. Taking all these
factors into account, it can be demonstrated that Algorithm
1 requires Õ(tpqn2/ϵ) time for each execution.

Algorithm 1 Weighted To Unweighted(Π,ϵ,q)
Input: The weighted sensor schedule Π, approximation

factor ϵ ∈ (0, 1), and desired number of active sensors
in the unweighted sensor schedule q ∈ [45n/ϵ2,+∞).

Output: Unweighted sparse sensor schedule S = [sj,k+1]
with scalars sj,k+1 ∈ {0, 1} and sparsity ∥vec(S)∥0 = q
such that for X̂s(t) as defined in (12) inequality (20)
holds.
Initialization:

1: α = 3
√
n/ϵ, T = 3q/ϵ, ℓ = 1;

2: [ôoo1 · · · ôootp]⊤ = O(t)X−1/2
π (t);

3: Set S to an arbitrary unweighted sensor schedule with
q active sensors;

4: X̂s(t) =
∑

i∈[tp] vec(S)(i)ôooiôoo
⊤
i ;

5: while ℓ ≤ T and λmin(X̂s(t)) ≤ 1− ϵ do
6: c← BinarySearch(X̂s(t), α);
7: Σ← (c I + α X̂s(t))−2;
8: Update (i, j) according to (21) and (23);
9: vec(S)← vec(S) + eeej − eeei;

10: X̂s(t)← X̂s(t) + ôoojôooj
⊤ − ôooiôooi

⊤;
11: ℓ← ℓ+ 1;
12: end while
13: return S.

In the following section, we demonstrate the efficient
solution of the convex relaxation for a combinatorial opti-
mization problem that features an L-systemic performance
measure as its cost function. Subsequently, we leverage
our rounding algorithm to acquire what is known as a
(1 + ϵ) near-optimal approximation solution for the given
combinatorial optimization problem.

Algorithm 2 BinarySearch(X,α)
Initialization:

1: fl = −α · λmin(X), fu =
√
n;

2: γ = 10−12; ▷ γ is the desired error/accuracy.
3: while |fl − fu| > γ do
4: f̄ ← (fl + fu)/2;
5: if Trace (f̄ I + αX)−2 > 1 then
6: fl ← f̄ ;
7: else
8: fu ← f̄ ;
9: end if

10: end while
11: return c = (fl + fu)/2.

C. (1 + ϵ) Approximation

Given the LTI dynamics (2), a time horizon for estimation
t ≥ n, the L-systemic observability performance measure
ρ(·), and a desired sparsity level for active sensors q ≪ tp,
the unweighted sparse sensor schedule S with sparsity q can
be found by solving the following combinatorial optimiza-
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Fig. 1: This plot displays the optimality gaps for a minimization
problem. The (1 − ϵ)−1 in the figure represents the gap generated by
the rounding process using Algorithm 1.

tion problem [19]:

minimize
S

ρ
( ∑

i∈[tp]

vec(S)(i)oooiooo
⊤
i

)
subject to vec(S) ∈ {0, 1}tp ∧ ∥vec(S)∥0 ≤ q,

(24)

where ooo⊤
i is the i-th row of the observability matrix (4).

The combinatorial optimization problem (24) is known to
be intractable and NP-hard. Convex relaxations are among
the most powerful techniques for devising polynomial-time
approximation algorithms for NP-hard optimization prob-
lems. In these approaches, the integer program is relaxed to
a convex program as follows:

minimize
Π

ρ
( ∑

i∈[tp]

vec(Π)(i)oooiooo
⊤
i

)
subject to vec(Π) ∈ [0, 1]tp ∧ ∥vec(Π)∥1 ≤ q.

(25)

This convex program can be solved in polynomial-time, such
as through a linear program (LP) or semidefinite program
(SDP). A solution to the combinatorial problem can then
be obtained by designing a polynomial-time algorithm to
round the solution of this convex relaxation to an integer
solution.

While combining convex relaxations and classical round-
ing methods has yielded approximation solutions for vari-
ous submodular measures [6], these approaches have faced
limited success when dealing with non-submodular perfor-
mance measures [17]. However, in the following, we present
a polynomial-time approximation algorithm capable of ob-
taining the so-called (1 + ϵ) near-optimal integer solution
for all L-systemic performance measures, including a class
of non-submodular measures.

Let OPT represent the true combinatorial optimum of
the minimization problem (24). The convex relaxation has
an optimum value OPT FRAC, which is at most as large as
OPT (as the integer solution is also a feasible solution to the
convex program). The rounding algorithm utilizes the solu-
tion to the convex relaxation (25) with an objective value of
FRAC to produce an integer solution valued at ROUND. In
approximation approaches, the ratio ROUND/OPT is im-
portant. However, most approximation algorithms require
providing an upper bound on ROUND/OPT FRAC, which
in turn bounds ROUND/OPT since OPT remains unknown
for the majority of instances of the combinatorial problem.
Previously, we discussed a rounding procedure (Algorithm
1) that leverages a regret minimization framework over
density matrices. This procedure provides a rounded sparse
sensor schedule that achieves a (1 − ϵ)−1 approximation
of a given weighted sensor schedule (see (11)). In other
words, for respective objective values ROUND and FRAC
for unweighted and weighted sensor schedules, the ratio
ROUND/FRAC is upper-bounded by (1−ϵ)−1 in our round-
ing result. Fig. 1 displays the optimality gaps for a mini-
mization combinatorial problem.

Let us we turn our attention to the gap between FRAC

and OPT FRAC. We will demonstrate that if the objective
ρ(·) in (25) is L-systemic, a fractional solution denoted as
Π′ with an objective value of FRAC can be obtained such
that FRAC/OPT FRAC is upper-bounded by (1+µ) for any
arbitrary µ ∈ (0, 1). We succinctly refer to this fractional
solution as the (1 + µ) approximation.

Given any arbitrary µ ∈ (0, 1), the authors of [20] inves-
tigate a polynomial-time algorithm aimed at computing a
(1+µ) approximation solution to the convex relaxation (25)
under the condition that the objective function is convex
and adheres to specific properties 3:
(a) For any ϱ > 0, there exists a parameter Lϱ such that

the smoothed objective

ρϱ : Π 7→ ρ
( ∑

i∈[tp]

(vec(Π)(i) + ϱ

tp
)oooiooo

⊤
i

)
,

is Lϱ-Lipschitz continuous with respect to the ℓ1
norm. That is, for all Π, Π̂ in
C := {Z = [zi,j ] ∈ Rp×t : zi,j ∈ [0, 1] ∧ ∥vec(Z)∥1 ≤ q},

we have |ρϱ(Π)− ρϱ(Π̂)| ≤ Lϱ∥vec(Π)− vec(Π̂)∥1.
(b) There exists ζ0 > 0 such that infΠ∈C ρ(Π) ≥ ζ0.

The following results show that if the objective is L-
systemic, we can employ the relaxed approximation algo-
rithm from [20] to compute the (1 + µ) approximation
solution to (25).

Proposition 3: Any L-systemic observability performance
measure satisfies both properties (a) and (b).

Proof: To demonstrate that any L-systemic measure
satisfies property (a), let A =

∑
i∈[tp](vec(Π)(i) + ϱ

tp )oooiooo
⊤
i

and B =
∑

i∈[tp](vec(Π̂)(i)+ ϱ
tp )oooiooo

⊤
i represent the symmet-

ric matrices for any two schedules Π, Π̂ ∈ C. Note that A
and B belong to the set D defined in (7). Therefore, since the
L-systemic measure ρ is Lipschitz continuous with respect
to the ℓ1 norm, there exists a Lipschitz constant L such that

|ρ(A)− ρ(B)| ≤ L · ∥A − B∥1. (26)
Substituting the expressions for A and B, we can rewrite
(26) as follows:

|ρϱ(Π)− ρϱ(Π̂)| ≤ L ·
∥∥∥ ∑

i∈[tp]

(vec(Π)(i)− vec(Π̂)(i))oooiooo
⊤
i

∥∥∥
1

(c)
≤
√
n · L ·

∥∥∥ ∑
i∈[tp]

(vec(Π)(i)− vec(Π̂)(i))oooiooo
⊤
i

∥∥∥
F

(d)
≤
√
n · L ·

∑
i∈[tp]

∥∥∥(vec(Π)(i)− vec(Π̂)(i))oooiooo
⊤
i

∥∥∥
F

(e)
≤
√
n · L · ∥ooomax∥2 · ∥vec(Π)− vec(Π̂)∥1, (27)

which completes the proof of property (a). In (27), in-
equality (c) holds due to (40) and the fact that for any
square matrix X ∈ Rn×n with rank r ≤ n, ∥X∥ =
σmax ≤

√
σ2

1 + · · ·+ σ2
r = ∥X∥F , where σ1, . . . , σr are the

singular values and σmax is the maximum singular value

3While the algorithm is founded on entropic mirror descent, it is
noted that other approaches, including projected gradient descent
and conic programming, can also be employed [20, Section 3].
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Fig. 2: Venn diagram that illustrates the relationship among the
set of general observability performance measures Ω, the family of L-
systemic performance measures Ωℓ, and the set of observability per-
formance measures that satisfy properties (a) and (b) of Proposition
3, Ωϱ. We note that Ωℓ is a subset of Ωϱ.

of X. Inequality (d) holds because the Frobenius norm is
sub-additive, and (e) holds because ∥oooiooo

⊤
i ∥F = ∥oooi∥2, and

∥ooomax∥2 is defined as the maximum value of ∥oooi∥2 over the
set {oooi}tp

i=1.
Since the scalars πj,k+1 are positive real numbers less

than or equal to 1, we can show that∑
i∈[tp]

vec(Π)(i)oooiooo
⊤
i ⪯ X (t) =

∑
i∈[tp]

oooiooo
⊤
i ⪯ λmax(X (t)) · I,

for any weighted schedule Π ∈ C. The Gershgorin Circle
Theorem establishes that the largest eigenvalue of a real
square matrix is constrained by the largest absolute row
sum. Consequently, given that the entries of the t-step ob-
servability Gramian matrix are finite, it follows that all of its
eigenvalues are also finite, i.e., λmax(X (t)) <∞. Therefore,
one can show that property (b) holds for A-, E-, T-, and
D-optimality for ζ0 equal to n/λmax(X (t)), 1/λmax(X (t)),
1/(n · λmax(X (t))), and 1/λn

max(X (t)), respectively.
General observability performance measures can be cat-

egorized based on their functional properties, as defined in
Definition 1 and Proposition 3. We define Ωϱ as the set
of performance metrics satisfying properties (a) and (b) in
Proposition 3, and Ωℓ as the L-systemic observability per-
formance measures from Definition 1. In Proposition 3, we
show that L-systemic measures adhere to both Definition 1
and Proposition 3’s properties (a) and (b). Fig. 2 illustrates
the relationship among Ωϱ, Ωℓ, and general observability
performance measures.

In the following corollary, we combine results from Sec-
tion IV-B and this section to achieve an unweighted sparse
sensor schedule for optimization problem (24). This ensures
that the ratio ROUND/OPT FRAC is upper-bounded by
(1 + ϵ), providing a (1 + ϵ) near-optimal solution to (24).

Corollary 1: Given ϵ ∈ (0, 1/2], a time horizon t ≥ n,
an L-systemic observability performance measure ρ(·), and
a desired sparsity level q ≪ tp for LTI dynamics (2),
if q ∈ [45n/ϵ2,+∞), there exists a polynomial-time ap-
proximation algorithm that computes an unweighted sparse
sensor schedule Ŝ containing at most q active sensors,
satisfying ρ(Ŝ) ≤ (1 + 3ϵ) · OPT, where OPT represents
the true combinatorial optimum of problem (24).

Proof: By Proposition 3, for an L-systemic objective in
combinatorial problem (24), for any arbitrary µ ∈ (0, 1),
a polynomial-time approximation algorithm computes an
approximate weighted sparse sensor schedule Π′ = [π′

j,k+1]
with objective value FRAC and ∥vec(Π′)∥1 ≤ q that satisfies
FRAC/FRAC OPT ≤ (1 + µ), where FRAC OPT is the
optimum value of the convex relaxation (25).

Furthermore, according to Theorem 2, for any ϵ ∈ (0, 1)
and q ≥ 45n/ϵ2, Algorithm 1 can be applied to the fractional

solution Π′. It yields an unweighted sparse sensor schedule
Ŝ with sparsity at most q such that FRAC/ROUND is
lower bounded by (1 − ϵ). This implies ROUND/FRAC ≤
1/(1− ϵ) ≤ 1 + 2ϵ, if we narrow the interval for ϵ to
ϵ ∈

(
0, 1

2
]
.

Therefore, for the ratio ROUND/FRAC OPT, we have
ROUND

FRAC OPT ≤ (1 + 2ϵ) · (1 + µ) ≤ (1 + 3ϵ), (28)

where the last inequality follows by setting µ = ϵ
2 and

noting that we narrow down the interval for ϵ to (0, 1
2 ].

Since FRAC OPT ≤ OPT for any minimization problem,
(28) concludes the proof.

Remark 5: Corollary 1 establishes the requirement that
a minimum of Ω(n/ϵ2) active sensors is necessary to achieve
a (1 + ϵ) near optimal approximation. Without any condi-
tion on q, it has been proven that obtaining any (1 + ϵ)
approximation is NP-hard, especially in the context of D-
and E-optimality [21], [22]. Additionally, as pointed out in
Remark 4, the number of active sensors q must be at least
equal to the dimension of the system n. This is because the
nonsingularity condition of the t-step Gramian observability
matrix is required for some optimality criteria within the L-
systemic family.

Remark 6: All L-systemic observability performance
measures listed in Table I necessitate non-singularity in
their input arguments, except for T-optimality. Hence, any
polynomial-time relaxed approximation algorithm produces
a weighted sparse sensor schedule for (25), ensuring that
its corresponding weighted t-step observability Gramian
matrix, denoted as Xπ′(t), maintains full rank. Moreover,
the polynomial-time rounding procedure of Algorithm 1
effectively maintains observability. This is evident as, for
the unweighted t-step observability Gramian matrix Xŝ(t)
associated with the resultant rounded sensor schedule Ŝ,
as specified in (10), we can establish that λmin(Xŝ(t)) ≥
(1− ϵ) · λmin(Xπ′(t)). Consequently, Corollary 1 establishes
an unweighted sparse sensor schedule for A-, E-, and D-
optimality that ensures system observability.

1) Discussion on the Tightness of the Results in Corollary
1: In the following, we utilize results from graph theory to
demonstrate that the derived lower bound on the number
of active sensors q in Corollary 1 for the general case of
an L-systemic objective is within a constant factor of the
optimal. In this discussion, we assume t = n+1, meaning the
time-to-estimate is n+ 1 steps. We provide a class of linear
systems with state matrices A and C where no unweighted
sparse sensor schedule with sparsity q can achieve a (1 + ϵ)
approximation unless q = Ω(n/ϵ2). This shows that our
bound on the number of active sensors cannot be improved.

There is a close connection between sparse sensor schedul-
ing and graph sparsification. The contribution of each link
in the Laplacian matrix is a rank-1 matrix, just as the con-
tribution of each sensor at each timestep is in the Gramian
matrix. Therefore, to sparsify a graph (i.e., reducing the
number of links), we need to sparsify the summation of
rank-1 matrices. In this paper, we utilize a similar strategy
to sparsify sensors in both time and space.

To define a class of linear systems with state matrices
A and C where no unweighted sparse sensor schedule with
sparsity q can achieve a (1+ ϵ) approximation unless q is at
least Ω(n/ϵ2), we start by considering the dynamics in (2)
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with system matrices Ã = [eee2 eee3 . . . eeen+1 eee1], and

C̃ =


−1 1 0 · · · 0
−1 0 1 · · · 0
...

...
...

. . .
...

−1 0 0 · · · 1

 ,
where eeei’s are the standard basis for Rn+1. For this system,
the t-step observability matrix Õ(t), as defined in (4), has
a unique structure: the rows of this matrix, õoo⊤

i ’s, are the
columns of the vertex-edge incidence matrix of a complete
digraph of size n+1. The t-step observability Gramian ma-
trix X̃ (t) = 2(n+1)In+1−2Jn+1 is twice the (unnormalized)
Laplacian of the undirected complete graph Kn+1. Here, In
denotes the n×n identity matrix, and Jn denotes the n×n
all-ones matrix.

All the õooi are orthogonal to the all-ones vector 1, which
makes the observability Gramian rank deficient and thus
unobservable. We define the observable instance of the
system by expressing it in an orthogonal basis of this
subspace: select any orthonormal basis zzz1, . . . , zzzn of the
subspace of Rn+1 orthogonal to 1, and we now define our
system matrices of the observable system as A := Z⊤ÃZ
and C := C̃Z for Z = [zzz1, . . . , zzzn] ∈ R(n+1)×n. Remember
that t = n+ 1, so we can determine the t-step observability
Gramian matrix X (t) for the projected system using the
equation O⊤(t)O(t) =

∑
i oooiooo

⊤
i = Z⊤X̃ (t)Z = 2(n+ 1) · In,

where ooo⊤
i = õoo

⊤
i Z denotes the i-th row of the observability

matrix for the projected system.
For the observable system, we consider the weighted sen-

sor schedule vec(Π)(i) = q
P (n+1,2) , where notation P (n, r)

signifies the permutation of r elements from a set of n
elements. Then the weighted t-step observability Gramian
matrix is given by

∑
i vec(Π)(i)oooiooo

⊤
i = 2q

n In. It is evident
that ∥vec(Π)∥1 = q.

Consider now any unweighted sensor scheduling solution
S ∈ P ([n+1], 2) 4 of the optimization problem (24) with L-
systemic design. We can consider the set S as the edges
of an unweighted graph G with a vertex set of [n + 1].
The Laplacian matrix LG for this graph is defined as
LG =

∑
{i,j}∈S õooijõoo

⊤
ij , where each õooij represents a vector

associated with the edge {i, j} ∈ S. This vector takes the
value 1 in the i-th coordinate, -1 in the j-th coordinate,
and 0 in all other coordinates. If the objective value of
S is within an ϵ constant of the objective value of Π (as
required by (8)), then according to Claim 1, the smallest
eigenvalue of the unweighted sparse t-step observability
Gramian matrix, i.e.,

∑
{i,j}∈S oooijooo

⊤
ij , where ooo⊤

ij = õoo
⊤
ijZ, is

at least (1 − ϵ) 2q
n . Since

∑
{i,j}∈S oooijooo

⊤
ij = Z⊤LGZ, this

means that the second smallest eigenvalue of LG is at least
(1− ϵ) 2q

n . The average degree ∆ of G is 2q
n+1 . Therefore, we

have a graph G on n+ 1 vertices with average degree ∆ for
which the second smallest eigenvalue of its Laplacian is at
least (1− ϵ)

(
n+1

n

)
∆ ≥ (1− ϵ)∆.

The authors of [23] have recently extended the Alon-
Boppana bound to not necessarily regular graphs, but with
worse constants (refer to Theorem C.2). Note that the proof
of Theorem C.2 does not require the graph G to be simple,

4P ([n+1], 2) is the set containing all ordered pairs that result from
selecting 2 distinct elements from a set of {1, . . . , n + 1}.

i.e., parallel edges are allowed. According to their findings,
the second smallest eigenvalue of the Laplacian of graph G
is bounded by ∆ − c

√
∆, where c is an absolute positive

constant, for sufficiently large n relative to ∆. Recall that
the existence of rounded solutions that perform closely to
our weighted instance sensor schedule Π requires that, for
all sufficiently large n, graph G with an average degree
∆ = 2q

n+1 satisfies λ2(LG) ≥ (1 − ϵ)∆, where λ2(·) returns
the second smallest eigenvalue. Combining this with the
results of [23], we have ∆ ≥ c2

ϵ2 or q ≥ c2

2
n
ϵ2 . These results

show that for this class of observable linear systems, the
number of active sensors has to be at least Ω(n/ϵ2) to
guarantee a (1 + ϵ) approximation. Therefore, our results
in Corollary 1 are within a constant factor of optimal and
cannot be improved.

V. Numerical Example
In this section, we assess the practical implications of our

theoretical findings through a benchmark example in dis-
tributed frequency control. We then proceed to compare the
obtained results with those achieved by several competing
algorithms.

A. Power Network
For this example, we use the IEEE 39-bus test system

(also known as the 10-machine New England power system)
[9], [24]. Our goal is to select sensors for wide-area damping
control in the power system, aimed at suppressing generator
fluctuations and ensuring synchronization.

The continuous-time swing dynamics for the power sys-
tem are given by miθ̈i+diθ̇i = −

∑
j∼i kij(θi−θj)+ui, where

θi represents the voltage (or rotor) angle of the generator at
bus i (in rad), mi is the inertia coefficient of the generator
at bus i (in pu-sec2/rad), di is the damping coefficient of the
generator at bus i (in pu-sec/rad), and the notation j ∼ i
indicates that bus j and i are adjacent (connected).

We introduce the notation ωi := θ̇i, representing the
frequency of the generator at bus i. We assume that the
power grid comprises n̂ = 10 generators. The state-space
representation of the swing equation used for frequency
control in power networks is described by:[

θ̇θθ(t)
ω̇ωω(t)

]
=

[
000 I

−M−1L −M−1D

] [
θθθ(t)
ωωω(t)

]
+

[
000

M−1

]
uuu(t)

yyy(t) = Cc

[
θθθ(t)
ωωω(t)

]
. (29)

In this representation, M = diag(m1, . . . ,mn̂), D =
diag(d1, . . . , dn̂), and L is the Laplacian matrix (see [25] for
detailed calculations). The vectors θθθ(t) = [θ1, . . . , θn̂]⊤(t)
and ωωω(t) = [ω1, . . . , ωn̂]⊤(t) represent the rotor angle and
frequency vectors, respectively. The vector uuu(t) represents
the mechanical power input, and the output matrix is
denoted by Cc.

In numerical implementations, we assume that only the
rotor frequency is available for measurement at each gen-
erator, i.e., Cc = [ 000 I ]. The system is then discretized
into a discrete-time LTI system with system matrices A, B,
and C and a sampling time of 0.2 seconds. These matrices
have been obtained from [25].

In the next, we apply our sparsification framework to the
IEEE 39-bus test system. We solve the convex relaxation
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(25) using CVX, a package designed for specifying and
solving convex programs [26]. To obtain the relaxed solution
for A- and E-optimality, we utilize the SDP solver included
in the CVX package. However, for D-optimality, we employ
an experimental successive approximation algorithm due
to the involvement of the log function in the model. We
formulate each instance of the convex relaxation problem
as an SDP and then apply the solver. For this purpose, we
leverage the SDP formulations discussed in [27, Section 7.5].

B. Results and Discussions
Since it is only assumed that frequencies of the generators

are available to measure, the number of available sensors p
is 10. Recall that the performance loss ϵ is some number in
the interval (0, 1/2] according to Corollary 1. If we assume ϵ
and q take their maximum allowed values, i.e., ϵ = 1/2 and
q = 10t, then, one can show that based on the theoretical
limit q ≥ 45n/ϵ2 of this corollary, t must be greater than
or equal to 18n. However, to obtain sparse schedule, q
should be less than 10t, and we prefer to choose as small
as possible number for ϵ. If we deviate from the maximum
values for ϵ and q, the estimation time horizon t must take a
considerably larger value than 18n. To illustrate this, let us
consider a scenario where q = 5t and ϵ = 1/100. In this case,
t needs to be on the order of magnitude of 105 × n, which
can be challenging to achieve in practical applications.

To address this issue, we have chosen to bypass the
theoretical constraint on the parameter q and set t equal to
n during simulation. However, during a specific iteration of
Algorithm 1, it may become difficult to determine an index
i(ℓ) using (21) due to the modification we have made. This
situation has motivated us to devise an alternative termi-
nation criterion for Algorithm 1. In practical applications,
we terminate the algorithm when there are no values of
i(ℓ) ∈ M(ℓ−1) that result in a positive denominator in (21).
We have observed that this new stopping rule speeds up
the algorithm by preventing it from running to completion.
However, this acceleration comes at the expense of reduced
algorithm performance.

In Fig. 3, the top row illustrates three weighted sparse
sensor schedules computed for three distinct L-systemic
measures (D-, A-, and E-optimality) applied to the IEEE
39-bus dynamics (29). Corresponding unweighted sparse
sensor schedules, derived using Algorithm 1, are displayed in
the second row of this figure. The performance of Algorithm
1 is also compared with four competing algorithms in Fig.
4. The plot displays the D-optimality performance measure
of the t-step observability Gramian matrix of the sparse
system against the average number of active sensors q/t.
Smaller values of D-optimality, obtained by (detXŝ(t))−1,
indicate better performance.

Each data point on the uniform sampling curve is ob-
tained by randomly sampling q sensors from the pool of tp
available sensors uniformly. Conversely, the weighted sam-
pling curve’s data points are generated through sampling
based on the weighted distribution vec(Π′)/q, where Π′

represents the fractional solution of (25). For both of these
curves, the sampling process is repeated 10 times at each
data point, and the result with the lower D-optimality value
is reported. In the case of the greedy static and greedy
time-varying curves, we implement Algorithms 8 and 9 as
outlined in [9]. In the greedy static approach, the same
set of sensors is selected at each time step throughout the

time horizon. In contrast, the greedy time-varying method
optimizes both sensor selection and activation times to
maximize the reduction in the L-systemic metric of the t-
step observability Gramian matrix.

As expected, all the algorithms outperform the greedy
static algorithm. It appears that our algorithm slightly
underperforms compared to both the greedy time-varying
and weighted sampling algorithms. However, drawing a
fair conclusion from this observation is complicated for
the following reasons. Firstly, the introduction of the new
alternative stopping rule prevents our rounding algorithm
from reaching its full potential, making the plot unable to
showcase the best possible result for Algorithm 1. Secondly,
in practical scenarios, we have observed that the choice of
ϵ significantly impacts the algorithm’s output performance.
Nevertheless, to prevent premature termination of the al-
gorithm due to the new stopping rule, we are constrained
to run the algorithm with ϵ values greater than or equal to
1/1000.

With an average of seven active sensors, the respective
running times for the greedy time-varying, our algorithm,
and the greedy static methods are 0.30, 0.17, and 0.02
seconds. Additionally, both sampling algorithms exhibit
a running time of approximately 0.01 seconds5. For this
comparison, we run MATLAB on a laptop with Intel
Core i7-8750H CPU @ 2.20GHz 2.21GHz and 16.00 GB of
RAM. The proposed rounding algorithm is computationally
efficient as its time complexity is linear in the number
of available sensors, tp (when both q and n are small).
However, the time complexity of the greedy algorithm scales
quadratically or even cubically with the number of available
sensors and rapidly becomes intractable as the time horizon
to estimate, t, increases [20].

We demonstrate that the resulting sparse sensor con-
figuration obtained by the proposed algorithm renders an
observable sparse system, but there is no guarantee that
the other competitors (excluding the weighted sampling)
provide an observable sensor configuration. Furthermore,
Algorithm 1 does not require always initiating with a frac-
tional solution obtained from a convex relaxation; however,
it can be initialized by any weighted sensor schedule (e.g.,
the operating schedule of a real plant) and yields an un-
weighted sparse sensor schedule with a performance guaran-
tee. Finally, Algorithm 1 provides a performance guarantee
for all L-systemic performance measures, including a class
of non-submodular metrics.

VI. Concluding Remarks
This paper addresses the problem of time-varying sensor

selection for discrete-time LTI systems. We leverage recent
advancements in theoretical computer science and online
learning to establish a polynomial-time framework. This
framework transforms a provided weighted sensor schedule
into an unweighted sparse sensor schedule with a limited
number of active sensors, approximating the performance
of the weighted schedule in terms of observability.

Additionally, we illustrate that when we supply the pro-
posed rounding algorithm with an approximate fractional
solution obtained from a convex relaxation of a combinato-
rial optimization problem with an L-systemic objective, we

5The running times do not account for the time required for
continuous optimization.
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Fig. 3: These subplots, from left to right, illustrate three weighted sparse sensor schedules for D-, A- and E-optimality in the top row and
their corresponding unweighted sparse sensor schedules in the bottom row for the 10-machine New England power system. Weighted sensor
schedules are computed using the CVX package, while their unweighted counterparts are derived using Algorithm 1. Experimental settings
include q = 30, ϵ = 1/6, and a time horizon of t = 20. Color-coding in each subplot represents the corresponding scalar values of the schedule,
with the brightest copper denoting a value of one. (Indices: i ∈ [10], k + 1 ∈ [20]).

Fig. 4: This figure compares our swapping algorithm (Algorithm 1)
with four competitor algorithms for creating an unweighted sparse
sensor schedule in the 10-machine New England power system (29).
It shows the D-optimality values of the sparse t-step observability
Gramian matrix versus the average number of active sensors per time,
q/t.

can attain a (1 + ϵ) near-optimal approximation solution,
guaranteeing the observability of the linear system. This
algorithm exhibits computational efficiency, applicability to
various non-submodular performance measures, and pro-
vides a performance bound relative to the optimal solution.
Furthermore, it works for any weighted sensor schedule, not
necessarily obtained from a convex relaxation. A potential
future direction is to explore the extension of these results
to nonlinear systems.

Appendix
A. Definition of Terms

This section aims to collect and elucidate the definitions
of key concepts that are fundamental to comprehending the
paper.

1) Similarity Transformation (Whitening): Given a non-
singular coordinate transformation T ∈ Rn×n, the new
system realization of the state-space

[
A B
C 000

]
is given by[

Â B̂

Ĉ 000

]
=

[
T −1A T T −1 B
C T 000

]
. (30)

Furthermore, the t-step observability Gramian matrix of the
transformed realization (30) is given by X̂ (t) = T ⊤X (t)T ,
where X (t) is the t-step observability Gramian matrix of
the original dynamics.

Definition 2 (Whitening): We define the whitening trans-
formation as T := X−1/2(t). This change of coordinates
converts the t-step observability Gramian matrix of the
transformed realization, X̂ (t), to the identity matrix, I.

2) Regret Minimization over Density Matrices: In this
regret game, at each round ℓ ∈ [T ], the player is tasked
with selecting an action A(ℓ) from a set of density matrices
Yn×n (also referred to as the action space), which consists of
PSD matrices with a trace of one. Subsequently, the player
incurs a loss ⟨A(ℓ), F (ℓ)⟩ which depends on their chosen
action as well as the adversary’s symmetric matrix action
F (ℓ) ∈ Rn×n. The regret is defined as the difference between
the total loss suffered by the player and the loss suffered by a
posteriori best fixed action U∗ := arg min

U∈Yn×n

∑T
ℓ=1⟨U , F (ℓ)⟩,

i.e.,

RegretU∗(T ) :=
T∑

ℓ=1

⟨A(ℓ), F (ℓ)⟩ −
T∑

ℓ=1

⟨U∗, F (ℓ)⟩. (31)

For a PSD matrix A (the proof is omitted due to space
limitations),

λmin(A) = min
U∈Yn×n

⟨A,U⟩. (32)
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Given (32), one can reformulate the regret as

RegretU∗(T ) =
T∑

ℓ=1

⟨A(ℓ), F (ℓ)⟩ − λmin

( T∑
ℓ=1

F (ℓ)
)
, (33)

which implies that, in hindsight, the optimal choice of U can
be interpreted as the rank-1 projection onto the eigenvector
corresponding to the minimum eigenvalue of

∑T
ℓ=1 F

(ℓ).
The objective of the player is to minimize the regret

(33). To achieve this objective in this paper, we employ
the Follow-The-Regularized-Leader strategy with the ℓ1/2-
regularizer defined as w(X) = −2 Trace(X1/2). This strat-
egy guides the player’s actions according to the choice of
action [16]:

A(ℓ) =
(
c(ℓ)I + αH0 + α ·

ℓ−1∑
i=1

F (i)
)−2

, (34)

where α > 0 is the learning rate, H0 is a PSD matrix such
that for certain real constants c(0), c(0)I + αH0 ≻ 0, and
c(ℓ) ∈ R is a unique constant that ensures c(ℓ)I +αH0 +α ·∑ℓ−1

i=0 F
(i) ≻ 0, and TraceA(ℓ) = 1.

The regret upper bound for ℓ1/2-strategy (34) according
to different choices for feedback matrices F (ℓ) are previously
obtained in [16] and [20]. In the following lemma, we
summarize these results.

Lemma 1 (Theorem 3.2 of [16] and Lemma 2.5 of [20]):
Assume the regret game (31), where the player’s actions
{A(ℓ)}ℓ∈[T ] are defined according to the ℓ1/2-strategy
(34) for some positive learning rate α, and the feedback
F (ℓ) = uuu(ℓ)uuu(ℓ)⊤ for uuu(ℓ) ∈ Rn are rank-1 matrices that
satisfy α · ⟨A(ℓ)1/2

, F (ℓ)⟩ > −1 for all ℓ. Then, for every
U ∈ Yn×n:

RegretU (T ) ≤ α

T∑
ℓ=1

⟨A(ℓ), F (ℓ)⟩ · ⟨A(ℓ)1/2
, F (ℓ)⟩

1 + α · ⟨A(ℓ)1/2
, F (ℓ)⟩

+ 2
√
n

α
. (35)

If instead F (ℓ) = uuu(ℓ)uuu(ℓ)⊤−vvv(ℓ)vvv(ℓ)⊤ for uuu(ℓ), vvv(ℓ) ∈ Rn are
rank-2 feedback matrices, as long as α·⟨A(ℓ)1/2

, vvv(ℓ)vvv(ℓ)⊤⟩ <
1/2 for all ℓ, the following inequality holds for every U ∈
Yn×n:

RegretU (T ) ≤ 2α
T∑

ℓ=1

[
−⟨A(ℓ),uuu(ℓ)uuu(ℓ)⊤⟩ · ⟨A(ℓ)1/2

,uuu(ℓ)uuu(ℓ)⊤⟩
1 + 2α · ⟨A(ℓ)1/2

,uuu(ℓ)uuu(ℓ)⊤⟩

+ ⟨A(ℓ), vvv(ℓ)vvv(ℓ)⊤⟩ · ⟨A(ℓ)1/2
, vvv(ℓ)vvv(ℓ)⊤⟩

1 − 2α · ⟨A(ℓ)1/2
, vvv(ℓ)vvv(ℓ)⊤⟩

]
+ψA(0) (U)

α
,

(36)

where ψX(Y ) := ⟨X−1/2, Y ⟩+ TraceX1/2 − 2 TraceY 1/2 is
the so-called Bregman divergence for the ℓ1/2-regularizer,
and ψA(0)(U) ≤ 2

√
n+ α · ⟨H0,U⟩.

Note that Lemma 1 provides regret upper bounds for all
actions, including the optimal fixed action U∗.

3) Transient Observability Function: We define the tran-
sient observability function for dynamics (2) as Lo(xxx0, t) =
yyy˜⊤(t)yyy˜(t), where t is the time horizon for estimation, xxx0
denotes the initial state, and yyy˜(t) is the vector of collected
measurements defined in (3) when uuu(k) = 000 for all k+1 ∈ [t].

If we assume that the initial state xxx0 is non-deterministic,
following a normal distribution with zero mean and co-
variance matrix Σ, i.e., xxx0 ∼ N (000,Σ), according to [28,
Theorem 2], the expected value of the transient function is
Exxx0Lo(xxx0, t) = ⟨X (t),Σ⟩, where X (t) represents the t-step
observability Gramian matrix (6), and Σ = E[xxx0xxx

⊤
0 ].

B. Essential Results
In this section, we present key mathematical results

necessary for comprehending the content of the paper.
The following lemma repeats the classical result of [29,
paragraph 48, page 104].

Lemma 2 (Hoffman and Wielandt, 1953): Let C = A +
B, where A, B, and C are symmetric n × n matrices with
eigenvalues αi, βi, and γi, respectively. Then, we have∑n

i=1(γi − αi)2 ≤ ∥B∥2.
Let λk(·) denote the k-th largest eigenvalue, and A and

B be PD matrices. Utilizing Lemma 2, for all k ∈ [n], we
obtain

|λk(A)− λk(B)|2 ≤
n∑

i=1
|λi(A)− λi(B)|2 ≤ ∥A−B∥2. (37)

Proposition 4: For any PSD matrix X ∈ Rn×n,

TraceX1/2 ≤
√
n · TraceX. (38)

Proof: Let σ(·) denote the function that outputs the
vector of all eigenvalues of its input PSD matrix. Thus,
TraceX1/2 =

∥∥σ(X1/2)
∥∥

1 ≤
√
n ·

∥∥σ(X1/2)
∥∥

2 =
√
n ·√

∥σ(X)∥1, where the inequality holds due to (40).
Lemma 3 (Claim 2.14 of [20]): For any X ∈ {M ∈ Sn

+ :
λmin(M) ≤ 1}, let A = (cI + αX)−2 for some positive
number α, where a unique number c ∈ R ensures the
positive semidefiniteness of matrix A and TraceA = 1.
Then, the following statements hold: ⟨A1/2, X⟩ ≤ n

α +
√
n;

and ⟨A, X⟩ ≤ λmin(X) +
√
n/α.

C. Missing Proofs
The purpose of this section is to present the proofs that

complement the theoretical findings discussed in the main
text of the paper.
Proof of Proposition 1. It can be shown that:
• Convexity is valid for all metrics except D-optimality.

For this specific metric, it is a well-established practice
to utilize the negative log-determinant, denoted as
− log detX (t), which is convex [30].

• The properties of homogeneity and monotonicity de-
fined in Definition 1 apply to all the measures (refer
to [9, Section III]).

However, establishing the Lipschitz property for these
measures necessitates careful consideration. We demon-
strate this property for each measure in the table indi-
vidually in the following. We begin by demonstrating the
Lipschitz continuity of the A-optimal objective with respect
to the ℓ1 norm. Since trace is a linear operation, our
focus shifts to proving the Lipschitz continuity of matrix
inversion. More precisely, we aim to establish that for the
mapping ρ : X 7→ X−1, there exists a constant L > 0
such that ∥A−1 − B−1∥1 ≤ L · ∥A − B∥1, for all matrices
A,B ⪰ δ · I ≻ 000. To this end,
∥A−1 − B−1∥1 = ∥A−1(B −A)B−1∥1 ≤ ∥A−1∥1∥B−1∥1∥B − A∥1,
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where the inequality holds because all induced matrix norms
are submultiplicative. Furthermore,

∥A−1∥1∥B−1∥1∥B − A∥1 ≤
n

λmin(A) · λmin(B) · ∥B − A∥1

≤ n

δ2 · ∥B − A∥1, (39)

which establishes the Lipschitz property with L = n/δ2.
In (39), the first inequality holds because for any matrix
M ∈ Rm×n, it is known that

1√
m
∥M∥1 ≤ ∥M∥2 ≤

√
n∥M∥1. (40)

To demonstrate the Lipschitz continuity of E-optimality,
we can say∣∣∣ 1

λmin(A)
−

1
λmin(B)

∣∣∣ =
1

|λmin(A) · λmin(B)|
|λmin(A) − λmin(B)|

≤
1
δ2 · |λmin(A) − λmin(B)|, (41)

but from (37) and (40), we know that

|λmin(A)− λmin(B)| ≤ ∥A − B∥ ≤
√
n · ∥A − B∥1, (42)

establishing the Lipschitz property with L =
√
n/δ2.

T-optimality exhibits Lipschitz continuity because∣∣∣ 1
Trace A

−
1

Trace B

∣∣∣ =
1

| Trace A · Trace B|
| Trace A − Trace B|

≤
1

(nδ)2 · |Trace A − Trace B| ,

and given that trace is a linear function. For D-optimality,
we need to establish that the mapping ρ : X 7→ log detX
is Lipschitz continuous. We know that the gradient of this
mapping, i.e., ∂(log detX)/∂X = X−1, is upper-bounded in
a positive semidefinite sense by 1/δ · I. Therefore, the proof
is concluded by ∥∂(log detX)/∂X∥1 = ∥X−1∥1 ≤ 1/δ.
Proof of Theorem 1. We present the proof in two steps:
• First step: We prove the following inequality hold:

max
i∈[tp]

⟨Σ(ℓ), ôooiôoo
⊤
i ⟩

1 + α · ⟨Σ(ℓ)1/2
, ôooiôoo⊤

i ⟩
≥ 1
q + α

√
n
. (43)

• Second step: Using (43), we demonstrate the main
result.

First step: We know X̂π(t) =
∑

i∈[tp] vec(Π)(i)ôooiôoo
⊤
i =

I, and Trace Σ(ℓ) = 1 since Σ(ℓ) ∈ Yn×n. There-
fore, it is not difficult to show that the weighted sum∑

i∈[tp] vec(Π)(i)⟨Σ(ℓ), ôooiôoo
⊤
i ⟩ is equal to one. Furthermore,∑

i∈[tp] vec(Π)(i)(1 + α · ⟨Σ(ℓ)1/2
, ôooiôoo

⊤
i ⟩) ≤ q + α · Trace Σ(ℓ)1/2

,

but Trace Σ(ℓ)1/2 ≤
√
nTrace Σ(ℓ) =

√
n due to Proposition

4. This, according to averaging arguments, completes the
proof for (43).

Second step: Given the result from (43), we can derive
the regret bound according to (16) as follows

λmin(X̂ (T )
s (t)) ≥ T

q + α ·
√
n
− 2
√
n

α
. (44)

To obtain the desired bound (17), we only need to set
α = 4

√
n/ϵ and T = q ≥ 8n/ϵ2 in (44). Finally, let

M(T ) = {i(1), . . . , i(T )} be the set of sensor indices that
have been selected during the iterations of the game. Then,
S = vec−1(

∑
k∈M(T ) eeek) yields the sparse sensor schedule.

Proof of Theorem 2. Some parts of this proof are adopted
from [20]. The proof of this theorem is quite extensive. To
improve clarity and comprehension, we will break it down
into the following main steps:

- Step 1: We demonstrate that as long as
λmin(X̂ (ℓ−1)

s (t)) < 1− ϵ, it is possible to select indices
i(ℓ) and j(ℓ) based on (21) and (23), respectively.

- Step 2: We establish that τ satisfies the inequality
τ ≤ (3− ϵ)/3q, where τ is defined as:

τ := min
i∈N(ℓ−1)

⟨Σ(ℓ), ôooiôooi
⊤⟩

1− 2α ⟨Σ(ℓ)1/2
, ôooiôooi

⊤⟩
. (45)

- Step 3: For κ := τ + ϵ/3q, we show the inequality:

max
i∈[tp]\M(ℓ−1)

⟨Σ(ℓ), ôooiôooi
⊤⟩

1 + 2α ⟨Σ(ℓ)1/2
, ôooiôooi

⊤⟩
≥ κ (46)

- Step 4: We prove the main result.
Step 1: Let M(ℓ−1) denote the set of selected sensors at
or before iteration ℓ of the regret game explained in the
theorem. Now, consider X̂ (ℓ−1)

s (t) =
∑

i∈M(ℓ−1) ôooiôoo
⊤
i . If

λmin(X̂ (ℓ−1)
s (t)) ≥ 1 − ϵ, our goal is achieved, and we can

set S(ℓ−1) = vec−1(
∑

k∈M(ℓ−1) eeek), providing the solution to
Problem 1. If the condition is not met, i.e.,

λmin(X̂ (ℓ−1)
s (t)) < 1− ϵ, (47)

then, as the first step of the proof, we aim to establish that
N(ℓ−1) is not empty. In other words, there must be at least
one sensor i in M(ℓ−1) such that 2α · ⟨Σ(ℓ)1/2

, ôooiôooi
⊤⟩ < 1.

By contradiction, we assume that there does not exist a
sensor i satisfying the condition, i.e., 2α · ⟨Σ(ℓ)1/2

, ôooiôoo
⊤
i ⟩ ≥ 1

for all i in M(ℓ−1). Therefore,∑
i∈M(ℓ−1)

2α ·⟨Σ(ℓ)1/2
, ôooiôoo

⊤
i ⟩ = 2α ·⟨Σ(ℓ)1/2

, X̂ (ℓ−1)
s (t)⟩ ≥ q. (48)

On the other hand, according to Lemma 3,

2α · ⟨Σ(ℓ)1/2
, X̂ (ℓ−1)

s (t)⟩ ≤ 2n+ 2α
√
n, (49)

because X̂ (ℓ−1)
s (t) ⪰ 0, and λmin(X̂ (ℓ−1)

s (t)) < 1 due to (47).
However, (49), for the choices of α = 3

√
n/ϵ, ϵ ∈ (0, 1), and

q ≥ 45n/ϵ2 > 8n/ϵ, contradicts (48). Thus, N(ℓ−1) is not an
empty set, and we also can conclude that∑

i∈M(ℓ−1)

1− 2α ⟨Σ(ℓ)1/2
, ôooiôooi

⊤⟩ > 0. (50)

Step 2: Given (45), the following inequality holds for all
i ∈ M(ℓ−1):(

1− 2α · ⟨Σ(ℓ)1/2
, ôooiôoo

⊤
i ⟩

)
· τ ≤ ⟨Σ(ℓ), ôooiôoo

⊤
i ⟩, (51)

because when i /∈ N(ℓ−1), the left-hand side is non-positive,
while the right-hand side ⟨Σ(ℓ), ôooiôoo

⊤
i ⟩ is always non-negative

since the matrix Σ(ℓ) is, by definition, PSD. This implies
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(q − 2α · ⟨Σ(ℓ)1/2
, X̂ (ℓ−1)

s (t)⟩) · τ ≤ ⟨Σ(ℓ), X̂ (ℓ−1)
s (t)⟩, and so

τ
(a)
≤ ⟨Σ(ℓ), X̂ (ℓ−1)

s (t)⟩
q − 2α · ⟨Σ(ℓ)1/2

, X̂ (ℓ−1)
s (t)⟩

(b)
≤

√
n/α+ λmin(X̂ (ℓ−1)

s (t))
q − 2n− 2α

√
n

(c)
≤ 1− 2ϵ/3
q(1− 8ϵ/45)

(d)
≤ 3− ϵ

3q , (52)

which finishes the proof for Step 2. In (52), (a) holds because
the denominator is strictly positive due to (50), (b) holds
due to Lemma 3, inequality (c) holds by applying the choices
α = 3

√
n/ϵ, q ≥ 45n/ϵ2, ϵ < 1, and (47), and finally, the

last inequality holds because ϵ > 0.
Step 3: Based on averaging arguments, demonstrating
inequality (46) is equivalent to proving∑

i∈[tp]\M(ℓ−1)

vec(Π)(i)⟨Σ(ℓ), ôooiôooi
⊤⟩ − κ ·

∑
i∈[tp]\M(ℓ−1)

vec(Π)(i)

×
(

1 + 2α⟨Σ(ℓ)1/2
, ôooiôooi

⊤⟩
)

≥ 0
(53)

where πj,k+1 ≥ 0 for all j ∈ [p] and k + 1 ∈ [t]. In (53),∑
i∈[tp]\M(ℓ−1)

vec(Π)(i)
(

1 + 2α⟨Σ(ℓ)1/2
, ôooiôooi

⊤⟩
)

≤
(

q −
∑

i∈M(ℓ−1)

vec(Π)(i)
)

+ 2α
∑

i∈[tp]

vec(Π)(i)⟨Σ(ℓ)1/2
, ôooiôooi

⊤⟩

= q −
∑

i∈M(ℓ−1)

vec(Π)(i) + 2αTrace Σ(ℓ)1/2
, (54)

and∑
i∈[tp]\M(ℓ−1) vec(Π)(i)⟨Σ(ℓ), ôooiôooi

⊤⟩ =
〈

Σ(ℓ), I −
∑

i∈M(ℓ−1) vec(Π)(i)

ôooiôooi
⊤

〉
= 1 −

∑
i∈M(ℓ−1)

vec(Π)(i)⟨Σ(ℓ), ôooiôooi
⊤⟩. (55)

In the above simplifications, we utilize the facts that
∥vec(Π)∥1 ≤ q, X̂π(t) =

∑
i∈[tp] vec(Π)(i)ôooiôoo

⊤
i = I, and

Σ(ℓ) ∈ Yn×n. Substituting (55) and (54) in (53), one can
show the left-hand side of (53) is greater than or equal to

1 − κq − 2ακ
√
n−

∑
i∈M(ℓ−1)

vec(Π)(i)(⟨Σ(ℓ), ôooiôooi
⊤⟩ − κ), (56)

where we also use the result of Proposition 4. Since scalars
πj,k+1 ≤ 1 for all j ∈ [p] and k + 1 ∈ [t], we can show that
(56) is greater than or equal to

1 − κq− 2ακ
√
n−

∑
i∈M(ℓ−1)

max
{

(⟨Σ(ℓ), ôooiôooi
⊤⟩ − κ), 0

}
, (57)

or equivalently

1− κq − 2ακ
√
n−

∑
i∈M(ℓ−1)

(⟨Σ(ℓ), ôooiôooi
⊤⟩ − κ)

−
∑

i∈M(ℓ−1)

max
{

(κ − ⟨Σ(ℓ), ôooiôooi
⊤⟩), 0

}
. (58)

Furthermore, due to Lemma (3), (58) is greater than or

equal to

1− 2ακ
√
n−
√
n/α− λmin(X̂ ℓ−1

s (t))

−
∑

i∈M(ℓ−1)

max
{

(κ − ⟨Σ(ℓ), ôooiôooi
⊤⟩), 0

}
. (59)

Now, let us take care of the last term in (59). To this end,
we have∑
i∈M(ℓ−1)

max
{

(κ − ⟨Σ(ℓ), ôooiôooi
⊤⟩), 0

}
=

∑
i∈M(ℓ−1)

(κ − ⟨Σ(ℓ), ôooiôooi
⊤⟩),

where M(ℓ−1) :=
{
i ∈ M(ℓ−1) : κ − ⟨Σ(ℓ), ôooiôooi

⊤⟩ ≥ 0
}

. Then,∑
i∈M(ℓ−1)

(κ − ⟨Σ(ℓ), ôooiôooi
⊤⟩) = (κ − τ) card(M(ℓ−1))+

∑
i∈M(ℓ−1)

(τ − ⟨Σ(ℓ), ôooiôooi
⊤⟩), (60)

and
∑

i∈M(ℓ−1)

(τ − ⟨Σ(ℓ), ôooiôooi
⊤⟩)

(e)
≤ 2ατ

∑
i∈M(ℓ−1)

⟨Σ(ℓ)1/2
, ôooiôooi

⊤⟩

(f)
≤ 2τ(n+ α

√
n), (61)

where inequality (e) holds due to (51), and for (f), we use
the result of Lemma 3 and the fact that M(ℓ−1) ⊆ M(ℓ−1).
One can put (61) back to (60) to obtain∑
i∈M(ℓ−1)

max
{

(κ − ⟨Σ(ℓ), ôooiôooi
⊤⟩), 0

}
≤ (κ − τ)q + 2τ(n+ α

√
n)

≤ ϵ

3 + 8n
ϵq
, (62)

where the inequalities hold because M(ℓ−1) ⊆ M(ℓ−1), by
definition κ − τ = ϵ/3q, α = 3

√
n/ϵ, ϵ < 1, and τ ≤ (3 −

ϵ)/3q < 1/q according to (52). Finally, one can leverage
α = 3

√
n/ϵ, κ < 1/q and (47) together with (62) to show

that (59) is lower bounded by ϵ/3 − 14n/ϵq. Because q is
chosen to be greater than or equal to 45n/ϵ2, this lower
bound is always non-negative which finishes the proof for
the third step.
Step 4: In the first step, we show that as long as
λmin(X̂ (ℓ−1)

s (t)) < 1−ϵ, we have the option to choose indices
i(ℓ) and j(ℓ) according to (21) and (23), respectively. The
Second and the third steps of the proof imply that for the
pair (i(ℓ), j(ℓ))

⟨Σ(ℓ), ôooj(ℓ)ôooj(ℓ)
⊤⟩

1 + 2α⟨Σ(ℓ)1/2
, ôooj(ℓ)ôooj(ℓ)

⊤⟩
−

⟨Σ(ℓ), ôooi(ℓ)ôooi(ℓ)
⊤⟩

1 − 2α⟨Σ(ℓ)1/2
, ôooi(ℓ)ôooi(ℓ)

⊤⟩
≥ ϵ

3q .

(63)
All in all, at the end of some iteration ℓ ≤ T , if

λmin(X̂ (ℓ)
s (t)) ≥ 1 − ϵ, then we are done. Otherwise, for

all ℓ ∈ [T ], there exist indices i(ℓ) and j(ℓ) such that
equation (63) holds. Referring to (19) and (63) for the
regret bound of the game, we can write λmin(X̂ (T )

s (t)) ≥( ∑T
i=1

ϵ
3q

)
− 2

√
n

α = T ϵ
3q −

2
3 ϵ, which gives the result because

T is chosen to be 3q/ϵ.
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