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ABSTRACT: Trandating nature’s successful design prinCiple of Dye Monomer: C8S3 Double-Walled Nanotubes  Bundled Nanotubes
solution-based supramolecular self-assembling to broad applica- g —
tions—ranging from renewable energy and information technology ’ / ’
to nanomedicine—requires a fundamental understanding of supra- \ - §, - /
molecular hierarchical assembly. Though the forces behind self- , . .
assembly (e.g, hydrophobicity) are known, the specific mechanism

by which monomers form the hierarchical assembly still remains an Monomers Self-assembly Hierarchical Self-assembly
9 g o into Supramolecular .

open question. A crucial step toward formulating a complete Nohcctnichine ‘l

mechanism is understanding not only how the monomer’s specific p

molecular structure but also how manifold environmental conditions cas3 “ERaRcHICAL sELF ASSEMBLY

. . q Monomer Temperature

impact the self-assembling process. Here, we elucidate the complex Solution  Gold chloride Sodium borohydride

correlation between the environmental self-assembling conditions and

the resulting structural properties by utilizing a well-characterized model system: well-defined supramolecular Frenkel excitonic
nanotubes (NTs), self-assembled from cyanine dye molecules in aqueous solution, which further self-assemble into bundled
nanotubes (b-NTs). The NTs and b-NTs inhabit distinct spectroscopic signatures, which allows the use of steady-state absorption
spectroscopy to monitor the transition from NTs to b-NTs directly. Specifically, we investigate the impact of temperature (ranging
from 23 °C, S5 °C, 70 °C, 85 °C, up to 100 °C) during in situ formation of gold nanoparticles to determine their role in the
formation of b-NTs. The considered time regime for the self-assembling process ranges from 1 min to 8 days. With our work, we
contribute to a basic understanding of how environmental conditions impact solution-based hierarchical supramolecular self-
assembly in both the thermodynamic and the kinetic regime.

1. INTRODUCTION While the main forces that drive the supramolecular self-
assembling process are known—for example, hydrophobicity
for amphiphilic monomers”®~**—studying the intimate
correlation between the specific self-assembling conditions

Hierarchical assembly—resulting in materials with order at
multiple length scales—is nature’s most successful design
principle to form functional systems.'”* Examples for

hierarchical self-assembly in biological systems range from and the resulting structural properties is known to be
DNA, keratin, collagen, cell membranes, tiny photosynthetic experimentally challenging and therefore remains an open
bacteria, dendron virus, algae, and silk fibers to bones, and in question.

nature range from nacre, eggshells, carrots, or navy beans to For solution-based supramolecular self-assembly processes,
even large trees.””'” One of the most well-known examples of not only the makeup of the specific molecule—such as
supramolecular hierarchical self-assembly is the formation of chemical structure and its concentration—but also the overall
collagen, the primary component of connective tissue in environmental conditions of the solution are critical
mammals: three polypeptide strands first twist into a right- factors.””~** For example, the solubility of the solute, solvent

handed triple helix, which subsequently self-assemble into so-
called microfibrils, with these microfibrils then further
assembling into larger collagen fibers.'® In nature, each level
of hierarchy—from molecule, to supramolecular building
block, to close-packed building blocks—plays an important
role in the system’s intimate structure—function relation-
ship.'”*° Gaining a detailed understanding of the fundamental
self-assembly process is the pivotal next step for any future
applications of hierarchical assembly.

polarity, solute—solvent interaction, or solvent concentration
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Figure 1. Supramolecular Frenkel excitonic nanotubes and experimental setup. (a) C8S3 dye monomer. (b) Schematic of double-walled nanotube
(NT). (c) Schematic of bundled nanotube (b-NT) with surrounding outer envelope layer (not shown). (d) Absorption spectra of C8S3 dye
monomer, NTs and b-NTs in solution. (e) Cartoon depicting experimental design to study formation of self-assembled nanostructures. Schematics

of NT and b-NT in panels b and ¢ are adapted from ref 69.

can impact the self-assembly process and resulting nanostruc-
tures.”*™" Depending on relatively weak, noncovalent
interactions, most supramolecular assemblies are under
thermodynamic control, and research on, for example,
supramolecular polymers has focused predominantly on
equilibrium conditions.** "> However, there is an increasing
interest in self-assembly processes that are governed by
kinetics, where the outcome of the assembly process is
dictated by the assembly pathway rather than the free energy of
the final assembled state.”>*~°

Here, considering both thermodynamic and kinetic regime,
we investigate the complex correlation between the environ-
mental self-assembling conditions and the resulting structural
properties by utilizing a well-characterized, well-defined
artificial supramolecular model system: synthetic molecular
chromophores of the amphiphilic cyanine dye 3,3'-bis(2-
sulfopropyl)-$,5’,6,6’-tetrachloro-1,1'-dioctylbenzimidacarbo-
cyanine (dye monomer commonly abbreviated as C8S3, Figure
la) self-assemble in aqueous solution into highly uniform
bilayered (double-walled) supramolecular nanotubes (NTs)
with an inner cylinder and an outer cylinder as depicted in
Figure 1b.***°7°® The NT’s formation is thought to be mainly
driven by a superposition of the dispersion force of the pi—pi
stacking of the dye monomer’s aromatic rings and the
hydrophobic forces governed by the monomer’s amphiphilic
side chains. These NTs are known to form well-characterized
hierarchical structures, that is, bundles of single-walled
nanotubes (b-NTs, Figure 1¢).” Similar to the structure of
the double-walled NTs, it is reasonable to expect that the b-
NTs are surrounded by an outer envelope layer of self-
assembled dye molecules that expose their hydrophilic heads
to the aqueous solution.*”

Overall, even though this NT system has been intensively
studied,””’? the details of its self-assembling process are not
understood yet. For example, experimental studies requiring b-
NTs still rely on a rather uncertain sample preparation such as
incubating NTs at room temperature in the dark, where the
formation of b-NTs can take from days up to several months.*”
The mechanism as well as specific driving forces behind the
hierarchical self-assembly process—leading to the formation of
b-NTs—is still unknown.
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In this study, we take advantage of the circumstance that the
two distinct, well-defined supramolecular morphologies—that
is, double-walled NTs (Figure 1b) and bundles of single-walled
NTs (Figure lc)—show two distinct, well-defined spectro-
scopic signatures (Figure 1d) as described elsewhere.”**~"” In
short, upon initiation of the self-assembly process, the broad
absorption spectrum of the C8S3 monomers undergoes a large
shift toward lower energy (red-shift) accompanied by a
substantial narrowing of the absorption bands (Figure 1d)—
both characteristic features of so-called J-aggregates™’"”* or
Scheibe aggregates.”> The close-packing arrangement of the
C8S3 monomers within the NTs causes excitation transfer
interactions between the monomers’ transition dipole mo-
ments that results into new electronic states, delocalized
Frenkel excitons.”*™”" As these delocalized excited states
intimately depend on the details of the supramolecular
assemblies’ molecular packing, the optical properties of the
NTs are highly sensitive to the details of the supramolecular
structure.”~** Figure 1d (red solid line) shows the well-
defined spectroscopic signature of double-walled NTs in
aqueous solution: the narrow exciton band at 599 nm and
broad exciton band at 589 nm are originated by parallel
polarized exciton transitions of the NT’s inner-wall and outer-
wall cylinder, respectively. The shoulder around 580 nm and
features at higher energies result from perpendicular polarized
exciton transitions from both the NT’s inner-wall and outer-
wall cylinders.”*** Figure 1d (blue solid line) shows the
spectroscopic signature of bundled NTs in aqueous solution:
the narrow exciton band at 603 nm and a broad absorption
feature around 580 nm mainly originated by parallel polarized
and perpendicular polarized exciton transitions of the bundled
inner-wall cylinders, respectively.”” Previous studies suggested
that the surrounding outer envelope layer of b-NT's contributes
to the absorption spectrum not with narrow exciton bands but
rather with a spectrally broad distribution of bands, consistent
with an inhomogeneous supramolecular structure.”” As the
three morphologies in solution—dye monomers, NTs, and b-
NTs—can be clearly distinguished by their well-defined
spectroscopic signatures, convenient steady state absorption
spectroscopy can be utilized as an elegant tool to correlate the
specific self-assembly conditions and the resulting structural
properties during the self-assembling process.

https://doi.org/10.1021/acs.jpcb.3c05681
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By employing absorption spectroscopy, this work focuses on
studying the impact of temperature (ranging from 23 °C, S
°C, 70 °C, 85 °C, up to 100 °C) during in situ formation of
gold nanoparticles (AuNPs) on the hierarchical assembly
formation of b-NTs from C8S3 monomers in aqueous
solution, considering a time regime ranging from 1 min up
to 8 days (Figure le). With this work, via a temperature-
dependent reaction in the presence of AuNPs formation, we
can control the hierarchical self-assembly process of NTs
resulting in b-NTs.

2. METHODS

2.1. Chemicals. The amphiphilic cyanine dye 3,3'-bis(2-
sulfopropyl)-5,5’,6,6'-tetrachloro-1,1’-dioctylbenzimidacarbo-
cyanine (commonly abbreviated as C8S3) is available as a
sodium salt (Na*) from FEW Chemicals (Dye S 0440,
molecular weight = 902.8 g mol™'; FEW Chemicals GmbH,
Germany) and was used as received. Both the gold(III)
chloride (99%, molecular weight = 303.33 g mol™') and the
sodium borohydride (>98.0%, molecular weight = 37.83 g
mol™"), as well as pure methanol, are available from Millipore-
Sigma. Ultrapure H,O (>18.2 MQ2 cm, Millipore) was used for
the synthesis of the supramolecular self-assembled nanostruc-
tures. All the chemicals were used as received without any
further purification.

2.2. Preparation of Stock Solutions. C853 Dye Stock
Solution (C853 Monomer Solution). A 3.00 mM C8S3
monomer solution was prepared by dissolving 57.6 mg of
C8S3 (MW= 902.8 g/mol) in 20 mL of pure methanol under
continuous stirring. The color of the obtained C8S3 monomer
solution was dark orange-red.

Gold Chloride Stock Solution (Metal Precursor Solution).
A 0.5 mM metal precursor solution was prepared by dissolving
1.5 mg of gold(IlI) chloride (AuCly) in 10 mL of ultrapure
H,O under continuous stirring.

Sodium Borohydride Solution (Reducing Agent Solution).
A 0.01 M reducing agent solution was prepared by dissolving
3.78 mg of sodium borohydride in 10 mL of ultrapure H,0)
under continuous stirring.

2.3. Preparation of Bundled Nanotubes (b-NTs). b-NT
Synthesis Step 1. In Step 1, a round-bottom flask (RBF) with
2.5 mL of ultrapure H,O was placed in the oil bath and heated
up to 70 °C by using a Fisher Scientific hot plate stirrer with a
digital temperature probe. The temperature of the aqueous
solution was measured by using an Etekcity infrared
thermometer. Then, to the ultrapure H,O at 70 °C, 250 uL
of the C8S3 monomer solution was added slowly (drop by
drop, over a time of about 2 min) by using a micropipette. This
aqueous C8S3 solution was stirred for 2 min. Next, 2.5 mL of
the metal precursor (0.5 mM gold chloride stock solution) was
added and stirred for an additional 2 min. Further, 0.3 mL of
the reducing agent (0.01 M sodium borohydride solution) was
added and kept stirring for 25 min.

b-NT Synthesis Step 2. In Step 2, an additional 200 uL of
C8S3 monomer solution was added into the solution, as
described in Step 1, and stirred for 20.

Temperature Dependence. The procedure (Step 1 and
Step 2) was performed for every single sample prepared at
different temperatures: at 23 °C (room temperature), 55 °C,
70 °C, 85 °C, and 100 °C. A summary table including reaction
conditions and results is given in Table S1 in Supporting
Information.
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Control Experiment. As a control experiment, we studied
the effect of increased temperature at 70 °C without the
formation of AuNPs. For the control experiment, all of the
experimental conditions were performed as described above
(Step 1 and Step 2) at 70 °C but without adding metal
precursor gold chloride stock solution and reducing agent
sodium borohydride solution. For details, please see Table S2
in Supporting Information.

2.4, Characterization Techniques. Optical Character-
ization (Room Temperature UV—visible Spectroscopy). We
performed UV—vis spectroscopic measurements to monitor
self-assembly of cyanine dye monomers to the b-NTs. For this
experiment, a single-beam UV—visible spectrometer purchased
from Agilent Technologies (Model Number: Cary 8454) with
a tungsten (G1315A, 8453) and a deuterium lamp (8453 UV—
vis) was used. The UV—visible spectra of samples (200 uL)
were obtained using a quartz cell of path length 0.1 cm at room
temperature in a time-dependent manner. Similarly, ultrapure
water was used as a blank.

Structural Characterization (Transmission Electron Mi-
croscopy, TEM). Transmission Electron Microscopy (TEM)
was used to visualize the morphology of b-NTs. The samples
were prepared on an ultrathin carbon grid, and high-resolution
transmission electron micrographs were captured using an FEI
Titan Themis 200 kV instrument. 2.5 pL of b-NTs were
deposited on glow-discharged lacey carbon grids with ultrathin
carbon film (Ted Pella; 01895-F) and imaged at TEM FEI
Titan Themis operating at 200 kV.

3. RESULTS AND DISCUSSION

In general, in solution-based self-assembly processes, higher
temperature can lead to higher molecule mobility—altering the
dispersion forces of the pi—pi stacking—and can therefore lead
to structural 9phase transitions by overcoming the kinetic
limitations.”* "' We investigate the impact of temperature on
the self-assembling process by adding C8S3 monomers to
aqueous solution preheated at different temperatures ranging
from room temperature (23 °C), 55 °C, 70 °C, 85 °C, up to
100 °C, respectively. Furthermore, for cyanine dye, it was
previously found that environmental conditions such as the
type of counterion accompanying the chromophores of dye
molecules may influence the morphology of the resulting
supramolecular assemblies’> Here, the C8S3 dye monomers
(used as received) are accompanied by Na* as counterions as
described in the Method Section. To probe the impact of
counterions on the formation of hierarchically assembled b-
NTs, we added Au* ions (AuCly) to the aqueous solution after
adding the dye monomer. To prevent oxidation of the C8S3
chromophore through reduction of Au* ions, we added sodium
borohydride (reducing agent), subsequently resulting in the
formation of Au nanoparticles (NPs).””*>” As the redox
reaction of AuCl; and sodium borohydride does not require
heat, it is described as a so-called “cold” redox reaction.”* "¢
To monitor the participation of C8S3 dye monomers in the
hierarchical self-assembling process in the presence of AuNPs,
we added additional C8S3 dye monomer (see the Methods
Section, Part 2.3, Step 2) to the ongoing reaction.

We hypothesize that both increased temperature and in situ
formation of AuNPs may drive the hierarchical self-assembly
process—that is, formation of b-NTs—via impacting the 7—x
stacking process due to increased molecule mobility and
capillary forces. Furthermore, we hypothesize that upon
addition of Au" ions, the increase of the solvent’s dielectric

https://doi.org/10.1021/acs.jpcb.3c05681
J. Phys. Chem. B 2024, 128, 329—339
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Figure 2. Supramolecular hierarchical assembly in the presence of Au* and reducing agent at 23 °C. Absorption spectra of supramolecular assembly
of cyanine dyes taken after 1 min (black line) of sample preparation as well as 2 h, 20 h, 24 h, 4 days, 4.5 days, S days, and 8 days (gray shade lines).
For comparison, reference spectra of monomer (light gray, dotted line), NTs (black, short dotted line), and b-NTs (gray, short dashed line)

solution from Figure 1d are shown.

constant and decrease of repulsive forces between the NTs
may result in direct formation of b-NTs.””?*

We support our two hypotheses as follows. In general, the
formation of NTs from C8S3 dye monomers occurs
immediately upon the addition of the dye monomers to the
aqueous solution. In this study, the Au salt was added to the
aqueous solution 2 minutes after the C8S3 dye monomer
addition, allowing Au" ions to interact with the occurred NTs
during the ongoing NT formation. Within the time window
before adding the reducing agent, in addition to their role as
counterions, the gold ions may also interact with the NT’s
negatively charged hydrophilic SO® . According to our
hypothesis, the negatively charged AuNPs may interact with
the negatively charged b-NTs, potentially stabilizing the b-
NTs. It is possible, even though both species are negatively
charged, that b-NTs prefer to be in close proximity to AuNPs
due to differences in their charge densities.”” Also, the
negatively charged AuNPs may increase the repulsive forces
between the negatively charged NTs.'”” Furthermore, in
addition to prevention of potential oxidation of the C8S3
chromophores, the added reducing agent sodium borohydride
may have a stabilizing effect on the formed b-NTs.

As a first step, we added Au salt and reducing agent,
respectively, to an aqueous solution at room temperature (23
+ 1 °C) followed by addition of C8S3 monomers as described
in the Methods Section. The absorption spectra were taken 1
min after sample preparation (black line) as well as after
incubation for 2 h, 20 h, 24 h, 4 days, 4.5 days, S days, and 8
days (gray shade lines) are depicted in Figure 2. In reference to
the broad C8S3 monomer spectrum shown in Figure 1d, the
absorption spectrum taken 1 min directly after sample
preparation reveals a strong red-shift with complex spectral
features, including a narrow band at 601 nm and an excitonic
band at 587 nm. Both features, the red-shift and line
narrowing, indicate the formation of a molecular assembly
via pi—pi-stacking with Frenkel excitonic (J-aggregate)
character. However, overall, the absorption spectrum resem-
bles the spectroscopic characteristic for neither double-walled
NPs nor b-NTs. Utilizing sophisticated cryogenic electron
microscopy (cryo EM), previous studies correlated supra-
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molecular assemblies formed from amphiphilic cyanine dye
derivatives with their morphology suggested that absorption
spectra such as observed in Figure 2 can be correlated to rather
ill-defined so-called ribbon-like aggregate structures.”®'"!

Another interesting feature in Figure 2 is that it is located in
the UV region. In addition to the exciton bands (J-bands) in
the visible region, UV absorbance bands appear around 300
nm, which indicates formation of C8S3 dimers due to
oxidation of the C8S3 chromophores.'”> Previous spectro-
electrochemistry studies of NTs revealed that upon electro-
chemical oxidation, the decrease of the exciton bands in the
visible region is also simultaneously accompanied by an
increase of two additional UV absorbance bands at 210 and
300 nm."*>7'%* However, even though the exciton bands in the
visible region substantially decrease within 24 h after sample
preparation, the absorbance bands around 300 nm (oxidation)
do not significantly increase. This observation suggests that the
ongoing loss in exciton band absorption over the time window
of 8 days may not be caused by oxidation of the CB8S3
chromophores but potentially by partial precipitation, which
might be caused by the interaction of the AuNPs with the
supramolecular assembly of ill-defined morphology. This
partial participation can be explained by the aggregation
behavior of nanoparticles. Nanoparticles can easily aggregate
through a thermodynamically driven process to reduce their
high surface energies.105 The Frenkel excitonic assemblies,
which are in close interaction with the AuNPs, can be triggered
by AuNPs and precipitated together during the incubation.
The weak capillary forces in the aqueous solution can cause
precipitation in the presence of AuNP.*>'®7'% This
precipitation can also be explained with the addition of
additional monomer in the middle of the reaction after
formation of AuNPs in aqueous solution. It is possible that the
additional monomers adsorb on the surface area of nano-
particles very easily, reducing the stability of the suspended
AuNPs in aqueous solution and causing partial precipitation
together with the Frenkel excitonic assemblies within 24 h.'"®
In the following, we study the impact of temperature on the
hierarchical self-assembling process in the presence of Au* ions
and reducing agent.
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Figure 3. Supramolecular hierarchical assembly in the presence of Au* and reducing agent at 55 °C. Absorption spectra of supramolecular assembly
of cyanine dye taken after 1 min (black line) of sample preparation as well as 2 h, 20 h, 24 h, 4 days, 4.5 days, S days, and 8 days (gray shade lines).
The spectra reveal the formation of the bundled nanotubes with a loss in excitonic character over time. For comparison, reference spectra of
monomer (light gray, dot line), NTs (black, short dot line), and b-NTs (gray, short dash line) solution from Figure 1d are included.
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Figure 4. Supramolecular hierarchical assembly in the presence of Au* and reducing agent at 70 °C. Absorption spectra of supramolecular assembly
of cyanine dye taken after 1 min (black line) of sample preparation as well as 2 h, 20 h, 24 h, 4 days, 4.5 days, S days, and 8 days (gray shade lines).
The spectra reveal the formation of the bundled nanotubes, which retained their excitonic character during incubation. For comparison, reference
spectra of monomer (light gray, dot line), NTs (black, short dot line), and b-NTs (gray, short dash line) solution from Figure 1d are displayed.

Figure 3 depicts the absorption spectra taken 1 min after
sample preparation (black line) as well as after incubation for 2
h, 20 h, 24 h, 4 days, 4.5 days, S days, and 8 days (gray shade
lines), respectively, at SS + 1 °C. The absorption spectrum
taken 1 min directly after sample preparation reveals a strong
red-shift including a narrow band at 604 nm-—significantly
visible after 2 h incubation—and a broad band around 580 nm.
These red-shifted absorption spectra indicate formation of b-
NTs after 2 h of incubation in reference to Figure 1d. As the
incubation period increased, b-NTs lost their excitonic
character due to the partial precipitation of the Frenkel
excitonic assemblies in the presence of AuNP.*>'*~'% In the
following, we study the impact of the 70 °C temperature on
the hierarchical self-assembling process in the presence of Au*
ions and reducing agent.

Figure 4 shows the absorption spectra of NTs taken 1 min
after sample preparation (black line) as well as after incubation
for 2 h, 20 h, 24 h, 4 days, 4.5 days, S days, and 8 days (gray
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shade lines) at a temperature of 70 + 1 °C. A narrow excitonic
band at 604 nm attributed to the inner cylinder and the broad
exciton band at 580 nm belonging to the outer cylinder of b-
NTs are observed, as seen in Figure 4. In a higher energy
region, a broad absorbance band at 535 nm is attributed to the
absorbance of AuNPs. Although the excitonic bands in the
visible region decreased with the increase incubation time due
to the partial precipitation in the presence of AuNPs,*>'%>~!!
the bundle structure of the NTs remained intact. This result
supports our hypothesis; the high temperature increased the
molecular mobility and promoted the bundling process of the
cyanine dye monomers through the contribution of the gold
ions.

Monomer and dimer ion pairs between dyes and metal ions
are considered to serve as reactants for the J-aggregated
hierarchical arrangement. It is reasonable to assume that metal
ions produce ion pairs with the dye, where the inherent
counterion (Na*) is replaced by the metal ion at an
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appropriate salt concentration.”” In the following, we study the
morphology of prepared b-NT's and also the impact of higher
temperature on the hierarchical self-assembling process in the
presence of Au® jons and a reducing agent.

Figure Sa, Sb, and Sc displays transmission electron
micrographs (TEM) at different magnification scales of the

Figure S. TEM images of supramolecular hierarchical assembly in the
presence of Au* at 70 °C. Bundled nanotubes (b-NTs) assembled
from the cyanine dye monomers (driven by the formation of AuNPs
at 70 °C). (A—C) Transmission electron micrographs at different
magnification. The black spherical dots represent the AuNPs.

hierarchical supramolecular self-assemblies and spherical
AuNPs prepared at 70 + 1 °C, demonstrating the b-NT
morphology with an average diameter of 45 + 1 nm. The tiny
gold nanoparticles (AuNPs) with an average diameter of 3.0 +
0.1 nm on the surfaces of nanotubes are observed. We can
explain this close interaction of the gold nanoparticles with
NTs based on their charge-density differences.”

Figure 6a and 6b show the absorption spectra taken 1 min
after sample preparation (black line) as well as after incubation
for 3, 3.5, 4, and 7 days (gray shade lines) at 85 + 1 °C and
100 + 1 °C. The absorption spectra taken 1 min directly after
sample preparation at 85 + 1 °C and 100 + 1 °C demonstrate
only the formation of AuNPs observed at 535 nm. Spectra
taken after 3 days reveal a strong red-shift with a narrow band
at the visible region around 580 nm. Red-shift, along with line
narrowing, indicate the formation of a molecular assembly via
pi—pi stacking J-aggregate character. However, overall, the
absorption spectra resembles the spectroscopic characteristic
for neither NTs nor b-NTs. They can be correlated to quasi-
one-dimensional-like aggregate structures.’”

The absorbance of the excitonic band at 580 nm slowly
increased during incubation, while the absorbances of bands
around 300 nm decreased. This shows that the cyanine
monomers could not self-assemble into J-aggregates during the
reaction due to the very high temperatures. The formation of J-
aggregates was observed after incubation of the suspension at
room temperature for 3 to 7 days. One of our previous studies
also showed the formation of quasi-one-dimensional-like
aggregleﬁtzels1 3after silica-scaffolded NTs were exposed to a heat-
stress.” ™

Figure 7 depicts the absorption spectrum taken 1 min after
sample preparation (black line) and after incubation for 2 h, 24
h, 2 days, and 4 days (gray shade lines) at (70 = 1) °C as a
control experiment as described in the Methods Section. In
reference to the broad C8S3 monomer spectrum shown in
Figure 1d, the absorption spectra reveal a strong red-shift with
spectral features including a narrow excitonic band at 604
nm—significant after 24 h incubation—and a broad excitonic
band at around 580 nm attributed to b-NTs. Thus, the result
suggests that the temperature of 70 + 1 °C is directly
impacting the hierarchical self-assembly of b-NTs. However,
the b-NTs lost their bundled structure after a 4-day incubation.
This finding proves our hypothesis about the stability effect of
AuNPs on the structure of the b-NTs due to differences
between their charge densities and increased repulsive forces in
aqueous solution,””"*’

4. CONCLUSIONS

We have demonstrated a systematic study elucidating
hierarchical supramolecular self-assembly at different temper-
atures (23 °C, 55 °C, 70 °C, 85 °C, up to 100 °C) and in the
presence of counterions and a reducing agent. We found that
both temperature and counterions (gold ions) play a role in
driving the direct formation of hierarchical supramolecular
assembly of b-NTs by pi—pi-interacted molecular self-
assembly, while the AuNPs have a significant impact on
stability of b-NTs. Specifically, we found that direct formation
of b-NTs occurs at 55 and 70 °C in the presence of AuNDPs.
However, the b-NTs are only stable when the reaction occurs
at 70 °C. Furthermore, we found that the increased
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Figure 6. Supramolecular hierarchical assembly in the presence of Au" and reducing agent at 85 and 100 °C. Absorption spectra of supramolecular
assembly of cyanine dye taken after 1 min (black line) of sample preparation as well as 3 days, 3.5 days, 4 days, and 7 days (gray shade lines). The
spectra reveal the formation of the C8S3 assembly with J-aggregate character after incubation for 3 to 7 days. For comparison, reference spectra of
monomer (light gray, dotted line), NTs (black, short dotted line), and b-NTs (gray, short dash line) solution from Figure 1d are shown.
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Figure 7. Supramolecular hierarchical assembly without Au® at 70 °C. Absorption spectra of supramolecular assembly of cyanine dye taken after 1
min (black line) of sample preparation as well as 2 h, 20 h, 24 h, 2 days, and 4 days (gray shade lines) to monitor spectral changes. For comparison,
reference spectra of monomer (light gray, dotted line), NTs (black, short dotted line), and b-NTs (gray, short dash line) solution from Figure 1d

are shown.

temperature of 70 °C directly impacts the b-NT's formation,
while the stability of b-NTs is supported in the presence of
AuNPs. Within this study, we obtained stable b-NTs with a
diameter of 45 & 1 nm in only 45 min, which eliminates the
need for long incubation periods (from days up to several
months) for the hierarchical self-assembly of NTs to b-NTs.
Overall, with our work, we contribute to a fundamental
understanding of hierarchical self-assembly through controlling
the process thermodynamically and kinetically.
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