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posed estimation under some regularity conditions. We compare the manifold learning; robust
performance of our method with existing SDR methods by simula- statistics
tion and real data analysis and show that our algorithm improves the
computational efficiency and effectiveness.

1. Introduction

In regression analysis, sufficient dimension reduction (SDR) provides a useful statistical
framework to analyse a high-dimensional dataset without losing any information. It finds
the fewest linear combinations of predictors that capture a full regression relationship. Let
Y be an univariate response and X = (x1,...,xp) bea p x 1 predictor vector, SDR aims
to find a p x d matrix § such that

Y ILX|BTX

which denotes the statistical independence.

Sufficient dimension reduction (SDR) based on the conditional distribution of the
response (Li 1991; Cook and Weisberg 1991; Xia et al. 2002; Yin and Li 2011) provides the
reduced predictors without loss of regression information. Recently, SDR methods using
distance covariance (dCov) have been developed (Sheng and Yin 2013, 2016), and such
methods do not need a constant covariance condition and distribution assumptions on X,
X | Y or Y | X. Therefore, it has broad applications for continuous and discrete variables
from various distributions. Several robust sufficient dimension reduction methods have
proposed for coefficient estimation such as the robust sufficient dimension reduction using
the ball covariance (Zhang and Chen 2019) and the expected likelihood based method that
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minimises the Kullback-Leibler distance (Yin and Cook 2005; Zhang and Yin 2015). In this
article, we propose a robust method of sufficient dimension reduction via the a-distance
covariance (¢-dCov) between the response and the predictors and develop a new algorithm
for estimating directions in general multiple-index models with a form

Y =g(B'X,e),

where g is an unknown link function (Yin et al. 2008; Xia 2008; Sheng and Yin 2013). The
rest of this article is organised as follows: Section 2 describes our robust a-dCov method
and a corresponding outlier detection method, including motivation, theoretical results,
the estimation algorithm and testing procedure. We introduce the consistency theorem in
Section 3. Section 4 contains simulation and real data studies. We summarise our work in
Section 5.

1.1. Generalised distance covariance

Distance covariance (Székely et al. 2007) is a popular dependence measure for two ran-
dom vectors of possibly different dimensions and types. In recent years, there have been
concentrated efforts in the literature to understand the distributional properties of the sam-
ple distance covariance in a high-dimensional setting, with an exclusive emphasis on the
null case that X and Y are independent. Distance covariance can be generalised to include
powers of the Euclidean distance. Define

v (X, Y;e) == E[IX - X'|* |Y — Y'||] + E[IX — X'I*] E[IY — Y||]
— 2E[IX - X'|1* Y = Y"1, 1)

where (X,Y), (X', Y’), (X”,Y”) are independent and identically distributed (i.i.d.) with
respect to the joint distribution of (X, Y) (Székely and Rizzo 2014). As discussed in Székely
et al. (2007), for every 0 < a < 2, X and Y are independent if and only if v?(X, Y; &) = 0.
When a = 1, it reduces to the classical distance covariance. When 0 < @ < 1, it can be
considered as a more robust version of distance covariance as it reduces the influence of
large values of || X — X'||, |Y — Y’||, and ||Y — Y”| that might be contributed to outliers.

1.2. Central space estimation via a-dCov

Let (X, Y) = {(X;, Y;) : i=1,...,n}benrandom samples from random variables (X, Y).
In addition, X denotes a p x n data matrix whose columns are Xj,...,X, and Y =
[Yi,...,Y,] denotes a 1 x n response data matrix. In this article, we consider univari-
ate responses. However, the method can naturally be extended to multivariate responses
without any issue due to the nature of @-dCov. The empirical solution of the SDR method
based on a-dCov for these n observations relies on solving the following objective function
(Székely et al. 2007; Sheng and Yin 2016):

max 1v2(BTX,Y,q). (2)
ﬁERPXd

with constraint 87Xy = I;and 1 < d < p, where v,, is the empirical version of v defined
in Equation (1).
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The empirical distance dependence statistics vy, is defined as follows. Fork,I = 1,...,n,
we compute the Euclidean distance matrices (ak) = (IXx — Xily) and (b)) = (|Yx — Y1|%)
for 0 < @ < 2 (Székely and Rizzo 2009). Define

Ay=ay—ay. —aj+a., kl=1,...,n,

where
f &5 1 I =
ax. = - Zak;, ap= m Z ay, a.= ) Z ag.
I=1 k=1 k=1

Similarly, we define By = by — by. — by + b..,fork,I = 1,.. ., n. The nonnegative sample
distance covariance v, (X, Y) and sample distance correlation R, (X, Y) are defined by

1 H
va(B"X, Y, ) = = > AuBy (3)
k=1
and
v2(X,Y,a) 55 o 2 .
Ri(x, Y,o:) — m, if UH(X, (I)UH(Y,(I) =05

0, if v2(X, )v2(Y,a) =0,

respectively, where the sample distance variance is defined by

1 n
VX, @) = 12X, X,a) = = > A
k=1

1
Following Wu and Chen (2021), we have the following equivalence. Let C = £%f and
sk
Z = Xy * X, the target function (2) can be rewritten as

1 n
20T —
mgx v,(C°Z,Y,q) = Ek;_lak;(C)Bﬂ, s.t. C € St(d, p), (4)

where ay(C) = [|CTZx — CTZj||*. We use the same notation St(d,p) = {C € RP*? |
CTC = I;} with d < p is referred to the Stiefel manifold and TSt(d,p) is the tangent
space to St(d, p) at a point C € St(d, p). We assume that Y = g(CTZ,€), where Cisap x d
matrix, ¢ is an unknown random error independent of Z, and g is an unknown link func-

tion. We propose a new method to estimate a basis of the central subspace Sy|z = Span(C)
and denote v2(CTZ,Y, @) as F(C).

2. Algorithm

We develop an iterative algorithm based on the gradient descent algorithm on the
Stiefel manifold. Here Pg is a projection on the Stiefel manifold (Dalmau-Cedeno and
Oviedo 2017). By Proposition 3.4 (the projection onto Stiefel manifolds) of Absil and
Malick (2012), we let C € St(d, p) for any C such that | X — X|| < o1(C), where o1(C)
is the largest singular value, then the projection of C onto St(d, p) exists uniquely, and
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Algorithm 1 rSDR: robust SDR
1: Input: The samples {(y;, Z;),i = 1,...,n}, initial C?.
2. Initialisation: C(?).
3: foriter =0,1,... do
4 Let Cliter+1) _ PS(C(iter) g a%iter) ac F(c(iter))) or cliter+1) _ PS(C(iter) oe
o:iiter) dcF(CUeny (1 — cliten Tcliteny) - where Pg(-) is the projection on the
Stiefel manifold and %F (C), and a{iter) is chosen by a line search.
5:  Repeat steps 4 until ||[F(Ct)) — F(Cter=D) ||z < ¢, where ¢, is a pre-specified
threshold, or the number of iterations exceeds the upper limit: iter > N3
end for
. Output: Estimated coefficients C.

Ll

can be expressed as Pg(C) = Z:-il uiv!, given by a singular value decomposition of C.
Alternatively, let the SVD of C € RP*4 be C = UXV, then Ps(C) = UVT.

Now we derive the explicit formula for dcF(C), where F(C) =v2(CTZ,Y) =
;15 > ki1 @ki(C)By. Recall that ag(C) = [|CTZx — CTZ;||*, the gradient is

= CTZ - Z)(Z - )T
>

o
O0cF(C) = =
MO =2 2 Tion - oz

By, (5)
=1

and one may perform the manifold gradient descent algorithm as follows:
cliter+1) _ PS(C(iter) + aiiter) Ac F(C(iter)) (1 — (iter) (o (iter) T))_

We remark that while there are various advanced Stiefel manifold optimisation algorithms
such as the ones based on the Cayley transform (Wen and Yin 2013; Zhu et al. 2019) or
geodesics (Absil et al. 2009), we applied the standard projected gradient descent algorithm
as it is simpler to implementation and has the same order of computational cost per
iteration of O(p?d).

Implementation issues When implementing our approach, practical challenges may
arise due to the potential for an extremely small denominator in Equation (5), dispro-
portionately amplifying the influence of the (k,I)th term. To preemptively address this
concern, we introduce a small positive regularisation parameter, denoted as 7. Subse-
quently, we employ a regularisation technique on the objective function F(C) such that
the (k, I)th term of the gradient in Equation (5) remains bounded. In particular, we apply
it to the regularised objective function denoted as F;(C):

1
Fi(C) = ?(ucl’zk — C"Z)1% + n)*/*By,

which leads to the regularised gradient formulation expressed as follows:

n i i
o . C (Zy — Z)(Zy — Zy)
B = kzl  (ICTZ — CTZ, 2 + )@@/ -
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3. Consistency theory

We consider a model with a general noise term

Y =g(BaX.€) =g(CiZ,e),

1
where B is a p x d orthogonal matrix, g(-) is an unknown link function, Co = X7 By,
1

and Z = ¥, °X, and € is independent of Z. This model includes the model from Xia
etal. (2002) that

Y =g(B3X) +¢

as a special example.

Following Sheng and Yin (2016), we have the asymptotic properties of the estimator C
that is consistent. The statement and the proof is similar to that of Sheng and Yin (2013). It
requires an additional assumption that depends on the decomposition of X into two inde-
pendent components, and some discussions on this condition are available in Sheng and
Yin (2013, Section 3.2). For example, it is satisfied when X is normal (Zhang and Yin 2015).
In addition, this assumption also holds asymptotically when p is large (Hall and Li 1993).

The following proposition establishes the asymptotic properties of our estimator C up
to some rotation matrix Q. This implies the asymptotic property of the estimated central
subspace as it is invariant to the rotation matrix.

Proposition 3.1: Let C € RY*P be a basis of the central subspace Sy|x with CTexC =1,
Suppose PE( zoX 4L QE(}:X \X and the support of X € R4*P, say S, is a compact set. In addi-

tion, assume that there exists C' € RO=D*P sych that [C,C']T=x[C,C'] = I, and clx
is independent of C'TX. Let C = arg mincr ExC=I, v2(CTX,Y), then there exists a rotation

matrix Q: QTQ = I, such that C £ CQ (convergence in probability) as n — 00.

Proof: Following Székely and Rizzo (2009, (4.1)), we have that for random variables X and
Y from RPt and RP2,

I,y (£:5) — fx (F)fy (1)1

2 _
AKXl t][P1 e ||s||P2He

dtds,

t,s

where fx, fy. fx v represent the characteristic functions of X, ¥, and (X, Y) respectively.

The rest follows from the proof of Proposition 1 in Zhang and Yin (2015). Forany 8 # C
that satisfies 7 £x 8 = I, let 8, be the projection of f to the subspace spanned by C with
an inner product induced by Xx (that is, £%° 8, being the projection of £%° B to the sub-
space spanned by £%°C under the Euclidean metric) and 8, = 8 — ;. Then since £%°8
and £%°C are both orthogonal subspaces, we have [|[CT8,|| = [(Z%°C)(Z¥°B)I <
(Z¥C)T(Z%°B)|l < 1, where T represents the pseudo inverse. Note that 8, and C have
the same column space, so for any z € R?, we have

1Bzl < lICz|l. (7)



6 (&) HSIN-HSIUNG HUANG ET AL.

Then we proved that C is the solution to argmin¢ry, ¢, v2(CTX, Y) asymptotically:
vV (BTX,Y,a)

. T : : F :
— [ |Eel{t,ﬁ X)+ils,Y) Eet(f,ﬂ X}Eet(s,l"}|2/("tud+0 "5[I 1+Of)dtds
- [ |Bel-B1X) 2| BTN HISY) _ BiltBIX)ilsT) 2 A1 5] 1) deds

< f |Eef(f,.8}~X}+f(S,Y}l - Eei(r,ﬁf)() Eef{S,Y}ll/(“t"d-f—ﬂ' ”s”].-f—ﬂ)dtds
=v2(B1X,Y,a) < v}(C'X,Y,a),

where the last step follows from Equation (7). It is easy to verify that the equality only holds
when 8 = CQ for some rotation matrix Q.

It remains to shows that v2(CTX, Y, @) is the empirical estimate of the random variable
v2(CTX, Y, ), which means that v2(CTX,Y, @) g (CTX,Y, ) (almost sure conver-
gence) as n — 00. The result holds following the proof of Lemma 2 in the supplementary
material of Zhang and Yin (2015). [ ]

3.1. Convergence analysis

We investigate the convergence property of the proposed algorithm in this section. In fact,
the proposed algorithm generates solutions that converge to a stationary point of F;;(C) as
t — 00. In addition, the algorithm converges to the solution when well-initialised.

Theorem 3.2: (a) Any accumulation point of the sequence {C}=o generated by the
proposed algorithm converges is a stationary point of Fy(C) over the Stiefel manifold.
(b) Ifin addition, the global maximiser C it is the unique stationary point in its neighbour-
hood N, and F,(C) — F,, (€) < —cIC— C|[%for any C in N and some c > 0. Then
when the initialisation CO is sufficiently close to C, the sequence {C®}=q converges

to C.

Proof: (a) Due to the line search strategy in Algorithm 1, the objective value of the objec-
tive function is monotonically nondecreasing and as a result, v2 (COTX,Y, ) converges.
Let C be any accumulation point of the sequence C®, then Vcv2(CTX, Y,0)lc_ew =0,
since otherwise the objective function will continue to increase.

(b) Since the gradient of F;(C) is continuous, maxc,c_¢jp<e IFn(C)ll converges to zero
as € — 0. As a result, we may choose ¢’ > 0 such that for

Ne =N N {F,y(C) — Fy(C) > —¢'},

and any C®¥ € N, |C® — C||r < \/e’/c and the gradient F;?(C(f]) is so small such that
the next iteration C*) remains in V. Since the functional value F, (C(") is nonincreasing,
CHD Jies in NV, as well. As C is the unique stationary point in N/, part (a) implies that
the algorithm converges to C. |
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4. Numerical studies

In this section, we perform a comparative analysis of several algorithms including the
proposed robust SDR (rSDR), the SQP algorithm (Sheng and Yin 2013), the MMRN
algorithm (Wu and Chen 2021) and the HSIC algorithm (Zhang and Yin 2015).

The problem in Equation (4) is nonlinear and the proposed algorithm, rSDR, needs
an good initialisation. The solutions of the sliced inverse regression (SIR, Li 1991) and the
directional regression (DR, Li and Wang 2007) are used in the initialisation of Algorithm 1.
Let 8, and 8, be two solutions of SDR obtained by SIR and DR, respectively. We select one
of B, and B, with larger dCov as our initial value of . Let £ be the sample covariance of
{x}L_,. The initial matrix C© = f;fz B is evaluated in Algorithm 1.

The proposed algorithm has an parameter @ which governs robustness to outliers. A
smaller « usually enhances the robustness of Algorithm 1. However, an excessively small
« often results in numerous local minimum values for the problem. Therefore, @ is tuned
through 5-fold cross-validation. The value of « is fine-tuned from {i/ 10}?=1 by 5-fold CV.
Specifically, we partition the datasets {(y;, x;)}[_; into training and validation sets. For each
« value, we apply Algorithm 1 to the training set, yielding a subspace B,. We then assess
the 0.5-dCov of the validation set. This process is repeated for all 5 folds, and the aver-
age 0.5-dCov is computed. We choose the o value associated with the highest average and
execute Algorithm 1 again to derive the estimated subspace. It is important to note that if
the dataset is contaminated with outliers, the validation set will also contain outliers. Tra-
ditional dCov or covariance calculations may be significantly impacted by these outliers.
Therefore, opting for a more robust variance statistic is crucial. In this context, we select
the 0.5-dCov as the measure for the test set.

The SQP algorithm utilises sequential quadratic programming to solve the dCov-based
SDR model (equivalent to Equation (4) with & = 1). While the SQP method performs well
when the dimension (p) and sample size (1) are relatively small, it becomes computationally
difficult for moderately high-dimensional settings (Wu and Chen 2021). MMRN was later
proposed as an efficient alternative to solve the same model using Riemannian Newton’s
method. Both SQP and MMRN correspond to rSDR with @ = 1, but none of them is robust
against outliers. The Hilbert-Schmidt Independence Criterion (HSIC) method (Zhang
and Yin 2015) addresses the single-index SDR model (d = 1) by maximising the HSIC
covariance between $7X and Y.

In the first simulation, we compare rSDR with SQP and MMRN in both robust and
non-robust settings. Our results demonstrate that rSDR with a smaller « can effectively
estimate the underlying subspace and efficiently solve the SDR model. Additionally, even
in the presence of outliers in the response, rSDR can still estimate the subspace accurately,
while SQP and MMRN fail to do so.

In the second simulation, we explore the application of rSDR in outlier detection. By
reducing the data dimension, we extend a dCor-based outlier detection method (Wang
and Li 2017) to high-dimensional cases. We compare rSDR with PCA in dimensional-
ity reduction and outlier detection to showcase the applicability of robust SDR in outlier
detection.

Furthermore, we present three real data examples: the New Zealand horse mussels, car-
diomyopathy microarray data and auto miles per gallon (MPG) data. In the New Zealand
horse mussels dataset, we reduce the data dimension to 1 and compare rSDR with HSIC.
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Table 1. The mean and standard deviation (in parentheses) of the principal angles and the running
times (seconds) over 100 repetitions of SQP. MMRN and rSDR in nonrobust settings.

SQP MMRN rSDR

(n,p) Model Angle Time(s) Angle Time(s) Angle Time(s)

(100,6) A(1) 0.27(0.09) 0.16(0.12) 0.27(0.09) 0.19(0.09) 0.27(0.09) 0.17(0.13)
A(2) 0.25(0.08) 0.13(0.13) 0.25(0.08) 0.15(0.12) 0.25(0.08) 0.18(0.13)
B(1) 0.28(0.09) 0.10(0.02) 0.28(0.09) 0.19(0.12) 0.28(0.09) 0.20(0.14)
B(2) 0.22(0.08) 0.11(0.04) 0.22(0.08) 0.32(0.59) 0.21(0.08) 0.23(0.18)
(1) 0.20(0.07) 0.24(0.32) 0.20(0.07) 0.25(0.11) 0.19(0.06) 0.08(0.05)
C(2) 0.32(0.12) 0.14(0.24) 0.31(0.12) 0.38(0.17) 0.32(0.12) 0.08(0.05)

(500,20) A(1) 0.24(0.04) 2.98(0.56) 0.24(0.04) 0.90(0.14) 0.24(0.04) 1.41(0.77)
A(2) 0.23(0.04) 3.33(3.11) 0.23(0.04) 0.90(1.36) 0.23(0.04) 1.65(0.80)
B(1) 0.24(0.04) 3.17(0.63) 0.24(0.04) 0.90(0.14) 0.24(0.04) 1.54(0.91)
B(2) 0.19(0.03) 4.55(1.29) 0.19(0.03) 0.81(0.13) 0.18(0.03) 1.56(0.79)
[€})] 0.16(0.03) 2.54(0.22) 0.16(0.03) 1.52(0.26) 0.17(0.03) 0.66(0.42)
C(2) 0.25(0.04) 3.27(0.71) 0.25(0.04) 4.04(1.23) 0.28(0.05) 0.72(0.49)

Notably, HSIC is only applicable when d = 1, so we do not include it in other simulations
or real data examples.

4.1. Simulation data

Let 81 = (1,0,0,...,0)T, B = (0,1,0,...,0)T, B3 = (1,0.5,1,...,0)T be three p-dimen
sional vectors. We further rotate the vectors B; by a random rotation matrix Rz € SO(p)
(the special orthogonal group of dimension p), i.e. Bi = R} Bi. We consider the following
three models

(A) Y = (BIX)? + (BIX) + 0.1¢,
(B) Y =sign(2B{X +€1) x log|28TX +4+ €,
(©) Y =exp(B X)e,

where X € R? follows from (1) AV/(0,I) and (2) U[—2,2]? and €, €1, €3 are standard
normal distributed. We analyse the principal angles between the true subspace f§ and the
estimated subspace 8 obtained using different SDR methods, namely rSDR, MMRN and
SQP. To further investigate the robustness of these methods, we introduce additional noise
by adding the response with a value of 50 x 17X with a probability of 0.1. We then calculate
the principal angles between the true subspace and the estimated subspaces in this robust
setting. Both simulation scenarios are conducted for two settings: (1, p) = (100, 6) and
(n,p) = (500, 20). We repeat the simulations 100 times and report the mean and standard
deviation of the principal angles for both the non-robust and robust cases in Tables 1 and 2,
respectively. It is worth noting that the underlying subspace for model (A) and (B) is rep-
resented by = [B1, B2], resulting in a value of d = 2. On the other hand, the underlying
subspace for model (C) is represented by 8 = B3, resulting in a value of d = 1.

From Table 1 we observe that rfSDR performs better than MMRN and SQP in model
(A) and (B) even without outliers. MMRN converges faster than SDR in model (A) and
(B). When (n, p) = (500,20), rfSDR and MMRN are faster than SQP. Table 2 reports the
principal angles and execution time of the three estimators in the scenario where the out-
liers present. Table 2 shows that the principal angles between the true subspace and the
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Table 2. The mean and standard deviation (in parentheses) of the principal angle, and the running time
(seconds) over 100 repetitions of SQP, MMRN and rSDR in robust settings.

SQpP MMRN rSDR

(n,p) Model Angle Time(s) Angle Time(s) Angle Time(s)

(100,6) A(1) 0.51(0.28) 0.20(0.21) 0.49(0.27) 0.28(0.20) 0.32(0.12) 0.19(D.13)
A(2) 0.45(0.28) 0.13(0.12) 0.44(0.27) 0.26(0.19) 0.27(0.11) 0.17(0.12)
B(1) 0.52(0.26) 0.13(0.08) 0.51(0.26) 0.32(0.26) 0.33(0.12) 0.18(0.13)
B(2) 0.42(0.22) 0.12(0.07) 0.42(0.22) 0.25(0.22) 0.24(0.08) 0.21(0.17)
am 0.39(0.24) 0.19(0.21) 0.38(0.23) 0.32(0.16) 0.26(0.10) 0.08(0.06)
C2) 0.47(0.23) 0.17(0.27) 0.46(0.22) 0.51(0.25) 0.40(0.16) 0.09(0.06)

(500,20) A(1) 0.82(0.30) 4.12(1.29) 0.82(0.30) 2.92(1.47) 0.25(0.04) 1.47(0.87)
A(2) 0.93(0.42) 16.26(42.21) 0.92(0.42) 6.85(13.70) 0.24(0.04) 1.43(0.85)
B(1) 0.91(0.35) 4.20(1.48) 0.90(0.35) 3.36(2.23) 0.26(0.04) 1.74(0.92)
B(2) 0.60(0.36) 5.32(2.26) 0.60(0.36) 2.84(3.54) 0.19(0.03) 1.64(0.99)
cmn 0.35(0.14) 3.02(0.34) 0.35(0.14) 4.41(2.15) 0.22(0.04) 0.63(0.46)
C2) 0.89(0.28) 4.53(1.01) 0.85(0.29) 13.39(6.27) 0.35(0.07) 0.88(0.61)

estimated subspace produced by rSDR are smaller than MMRN and SQP which implies
that rSDR is more robust. Moreover, rSDR converges faster than MMRN and SQP in most
settings; particularly in model (C).

4.2. Outlier detection simulation studies

Our proposed SDR method can be effectively utilised for outlier detection. Wang and
Li (2017) introduced a novel outlier detection measure based on the distance correlation
(dCor) given by

4
DY) = p% ¥ (dCor(Xk, Y) — dCor(X?, Y(ﬂ))
k=1

2

(®)

where dCor(Xy, Y) represents the dCor between the kth predictor and the response Y. The
dCor between X and Y is defined as

dCov?(X,Y)
JdCov (X, X)dCov2(Y, Y)

dCor?(X,Y) =

It is evident that if the ith data point (X}cﬂ, Y®) exhibits a high value of the measure D, it
is more likely to be an outlier observation. The method employs a bootstrap procedure to
determine the threshold F,. At a given significance level y, the ith observation is identi-

fied as an outlier if D; > F,, where F,, represents the upper yth quantile of the cumulative

distribution function of D; under the null hypothesis. Specifically, a bootstrap sample D,[b]
[b] [b]

= € 1)+ iny
mator DE Vs computed for each sample. The threshold F, is determined by calculating

is formed by drawing with replacement from 1, . . ., n, denoted as i and an esti-

the upper y th quantile of the cumulative distribution function of ﬁ}b].

The algorithm proposed by Wang and Li (2017), which is based on the outlier detection
measure defined in Equation (8), involves calculating the covariance distance between X
and Y in each dimension and with the removal of each sample. As a result, its computa-
tional complexity is O(pn®), where the computation of dCov requires calculating pairwise
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distances between the columns of X and Y. A natural approach to enhance their method
is to reduce the dimensionality of the dataset X. Their method can be naturally extended
to detect outlier locations by computing

4
= 1 . "
D&Y =2 > :(dCOr(Xk, Y) — dcm(X};’,Y(ﬂ))
k=1

2

©)

where X € R%*" is the d-dimensional data obtained by dimension reduction. Nevertheless,
the conventional approach to dimension reduction is unsuitable in the presence of outliers.
Therefore, we employ the robust SDR as a means to both reducing the data’s dimensionality
and identifying outlier positions. For the sake of comparison, we also implement principal
component analysis (PCA) (Wold et al. 1987) for dimension reduction.

We consider an autoregressive correlation structure with £ = (pjk)pxp = 0.5U—* and
generate the data as follows: X; follows a multivariate normal distribution A/ (0, X), and
the linear model is defined as Y; = X;B + €;, where 8 = (1,1,1,1,1,0,...,0)T and ¢; ~
N (0, 1). We have a total of n = 100 samples, and among them there are 10 outliers. The
outliers are generated using x; = Xjy, where ¥ = (0,0,0,0,0,1,1,...). We did four sets
of simulations for various values of p = 200, 400, 800, 1000. To test the hypothesis of
whether the ith observation is influential or not, we employ a bootstrap procedure and
utilise a threshold rule to determine whether an individual is an outlier. We evaluate the
performance of this outlier identification procedure by comparing the receiver operating
characteristic (ROC) curves.

The ROC curves are depicted in Figure 1. In the figure, the curve labelled as ‘PCA-2’
represents the ROC curve generated by X”“4 with a dimensionality of d = 2, while the
curve labelled as ‘rSDR-0.2-2 corresponds to the curve produced by XPR with @ = 0.2
and d = 2. Similarly, the remaining labels follow similar settings. It can be observed that
the curves generated by rSDR with d = 3 consistently surpass those produced by rSDR
with d = 2, and both outperform the curves generated by PCA. This suggests that the
proposed rSDR method effectively captures the underlying structure of the data, and the
resulting transformed data XPR can be utilised for outlier detection. Notably, despite the
true subspace being two-dimensional, XPR with d = 3 outperforms its two-dimensional
counterpart. We speculate that the higher dimensionality preserves more information due
to the presence of outliers.

4.3. Real data example: New Zealand horse mussels

A sample of 201 horse mussels (Modiolus modiolus) was collected at 5 sites in the Marlbor-
ough Sounds at the Northeast of New Zealand’s South Island and this dataset was discussed
by Cook (2009). The response variable is muscle mass M, the edible portion of the mus-
sel, in grams. The quantitative predictors are all related to the characteristics of the mussel
shells: shell width W (in mm), shell height H (in mm), shell length H (in mm) and shell
mass S (in grams).

To process the data, a nonlinear transformation of the predictors was recommended by

Cook (2009) as X = (L, W6, 8%11) Each column of the data X is further standardised by

- o 36~ LI1 -
X= (I;}_(ff, “ﬂé(wfgﬁf‘% 5 SD&(SO{‘;S‘:]]‘“ ) where fi. is the sample mean and 6 (-) is the sample
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Figure 1. ROC curves of outlier detection. The proposed robust SDR method with @ = 0.5 with pro-
jection dimension 3 has the highest ROC in these four simulation sample size settings. (a) p = 200, (b)
p = 400, (c) p = 800 and (d) p = 1000.

standard deviation, since L is on a larger scale than the other predictors. Consequently,
the predictors will have mean 0 and variance 1. The rSDR model with d = 1 would be
appropriate to model this dataset, as shown in Figure 2, where we fit two second-degree
polynomial regression models of the single index 87X by rSDR with @ = 0.2 and & = 1.
We compare our method rSDP with @ = 0.2 and @ = 1, SQP and the Hilbert-Schmidt
Independence Criterion (HSIC) method, proposed by Zhang and Yin (2015) for solving
the special case of the SDR model, namely d = 1. Table 3 provides the estimated bases
from these four methods. The estimates of SDR with & = 1 and SQP are similar, and this
result is expected since SQP and rSDR with a = 1 solve the same model with different
algorithms. The estimated B from all four methods indicate that the standardised shell
mass predictor, X3, is more significant than the other two predictors while the rSDR with
a = 0.2 produces a smaller value in the coefficient of X3. However, rSDR with o = 0.2
produces a model with a slightly larger R-squared value than the other methods, which
implies a better fit of the dataset.
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Figure 2. The second-degree polynomial fitting of the single-index model in the New Zealand Horse
Mussels data using rSDR (¢ = 0.2) (left) and rSDR (@ = 1) (right). (a) rSDR-0.2 and (b) rSDR-1.

Table 3. Estimated bases 8 = [£1, B2, B3]" € R3 of the central subspace in
the New Zealand Horse Mussels data from various methods and their adjusted
R-squared values.

Method rSDR (e = 0.2) rSDR (@ = 1) HSIC SQp

,@1 0.2871 0.1832 0.1897 0.1831
B2 0.0872 —0.0270 —0.0604 —0.0269
Jix] 0.6391 0.8510 0.9800 0.8509
Adjusted R-squared 0.7026 0.6979 0.6962 0.6979

4.4. Real data example: cardiomyopathy microarray data

The cardiomyopathy microarray dataset consists of 30 samples and 6319 predictors, orig-
inally used by Segal et al. (2003) to evaluate regression-based approaches for microarray
analysis. The focus of many researchers, Zou and Yuan (2008) and Li et al. (2012), has
been to investigate the relationship between the overexpression of a G protein-coupled
receptor (Rol) in mice and the 6319 associated genes. However, due to the high dimen-
sionality of the data compared to the limited number of samples, the sample covariance
matrix is not invertible. To address this issue, several methods have been proposed, includ-
ing SIS (Sure Independence Screening, Fan and Lv (2008)), DCSIS (Distance Correlation
SIS, Li et al. (2012)), BCSIS (Ball Correlation SIS, Pan et al. (2019)) and SDRLS (Sequen-
tial Dimension Reduction for Large p Small n problem, Yin and Hilafu (2015)). While
SIS, DCSIS and BCSIS are feature screening methods that rank predictors based on a
utility measure, they may not be robust against outliers. Specifically, a set of predictors
A={i|UX;Y) > t,i=1,...,n}is determined for some threshold t and pre-selected
utility measure U. SDRLS takes a different approach. SDRLS partitions the data setinto X =
[X1, X;] with dim(X;) < n and applies the SDR model on (Xj, [X;, Y]) to obtain R(X;).
The dimension of R(X;) is chosen some integer that is smaller than dim(X;) < nand thus
anew predictor [R(X;), R,] is obtained with a smaller dimension. SDRLS iteratively repeats
this process to achieve a dimension smaller than the number of samples.
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Table 4. Adjusted R-squared and F-value of models from SQP, rSDR in
Cardiomyopathy Microarray dataset.

Adjusted R-squared rSDR (o = 0.2) rSDR (o = 0.5) SDR (@ = 1)
Linear 0.826 0.817 0.804
Nonlinear 0.882 0.871 0.867
F-value rSDR (@ = 0.2) rSDR (@ = 0.5) rSDR (@ = 1)
Linear 70.1 65.8 60.6
Nonlinear 444 403 389

In this experiment, we utilised the SDRLS method to reduce the dimensionality of the
cardiomyopathy microarray data and assess the rSDR against heavy-tailed predictors. The
final dimension of the dataset was reduced to p = 19, while the dimension of the central
subspace was set to d = 2. The central subspace is denoted as § = [B1, B,]. Indexes derived
from this reduction were obtained by projecting the processed cardiomyopathy microarray
dataset X onto the subspaces: Z; = ,81T Xand Z, = ZT X. We performed linear and non-
linear regression to model the response variable ‘Rol’ using predictors Z; and Z,. In the
nonlinear model, we introduced squared terms (2% Z%) and an interaction term (Z; x Z,)
in addition to the linear model. The regression results are presented in Table 4. The find-
ings demonstrate that our proposed method, rSDR, with a smaller value of «, outperforms
the non-robust version (& = 1) in both linear and nonlinear models.

4.5. Real data example: auto MPG data

We also employ the fuel economy MPG data to illustrate the advantage of our rSDR
method. The dataset contains city-cycle fuel consumption in MPG and seven predictors:
cylinders, displacement, horsepower, weight, acceleration, model year and origin. As sug-
gested in Sheng and Yin (2016), we avoid using ‘origin’, because it correlates with ‘cylinders’
closely. Missing values are deleted, and 392 observations are left for study. In order to inves-
tigate the city-cycle fuel consumption in miles per gallon, we assume that this dataset fits a
sufficient dimension reduction model. As shown in Figure 3, there exist outliers in ‘horse-
power” and ‘acceleration’. ‘cylinders’ and ‘displacement’ that are not normally distributed.
Therefore, rSDR is appropriate for this data set.

Following the suggestion of Sheng and Yin (2016), we use the dimension d = 2 of the
central subspace. Let the subspace be g = [B1, B2] and the auto MPG data be denoted
as X where each column of X is centred and scaled to make the variance as 1. The fol-
lowing procedures are similar to those done in the cardiomyopathy microarray data. The
indexes are derived by rSDR, after the linear and nonlinear regression models are con-
structed to measure the goodness of fit of the two pair of indexes to ‘mpg’. In Table 5,
the adjusted R-squared and F-value of the linear model produced by rSDR with & = 0.2
are larger than other non-robust models however it does not show much superior in the
nonlinear regression model (Figure 4).

5. Discussion

In this article, the proposed rSDR using a-dCov is robust against outliers in both the
response and predictors. Further, the proposed manifold-learning estimation method is
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Figure 3. Boxplots of predictors in the auto mpg data set. Some predictors such as ‘horsepower’ and
‘acceleration’ have outlying observations.
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Figure 4. Scatter plots of ‘mpg’ versus the indexes produced by SQP and rSDR (e = 0.2). (a) SQP-index-
1, (b) SQP-index-2, (c) rSDR-index-1 and (d) rSDR-index-2.
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Table 5. Adjusted R-squared and F-value of models from SQP, rSDR in

MPG dataset.

Adjusted R-squared rSDR (o = 0.2) rSDR (o = 0.5) SDR (@ = 1)
Linear 0.807 0.806 0.804
Nonlinear 0.850 0.853 0.845
F-value rSDR (@ = 0.2) rSDR (@ = 0.5) rSDR (@ = 1)
Linear 817 816 807
Nonlinear 444 456 427

less sensitive to the choice of the initial estimators. Both simulation and real-world data
applications show that the proposed method outperforms the existing methods. The pro-
posed method does not suffer from multicollinearity which could impact the performance
of the traditional SDR methods in high-dimensional data analysis. Simulation and real-
world data studies show its advantages in terms of computational efficiency and robustness
against outliers.
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