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Abstract

We analyze four epochs of Hubble Space Telescope imaging over 18 yr for the Draco dwarf spheroidal galaxy. We
measure precise proper motions for hundreds of stars and combine these with existing line-of-sight (LOS)
velocities. This provides the first radially resolved 3D velocity dispersion profiles for any dwarf galaxy. These
constrain the intrinsic velocity anisotropy and resolve the mass–anisotropy degeneracy. We solve the Jeans
equations in oblate axisymmetric geometry to infer the mass profile. We find the velocity dispersion to be radially
anisotropic along the symmetry axis and tangentially anisotropic in the equatorial plane, with a globally averaged
value b̄ = - -

+0.20B 0.53
0.28, (where 1 – b º á ñ á ñB tan

2
rad
2v v in 3D). The logarithmic dark matter (DM) density slope

over the observed radial range, Γdark, is- -
+0.83 0.37

0.32, consistent with the inner cusp predicted in ΛCDM cosmology.
As expected given Draco’s low mass and ancient star formation history, it does not appear to have been dissolved
by baryonic processes. We rule out cores larger than 487, 717, and 942 pc at 1σ, 2σ, and 3σ confidence,
respectively, thus imposing important constraints on the self-interacting DM cross section. Spherical models yield
biased estimates for both the velocity anisotropy and the inferred slope. The circular velocity at our outermost data
point (900 pc) is -

+ -24.19 km s2.97
6.31 1. We infer a dynamical distance of -

+75.37 4.00
4.73 kpc and show that Draco has a

modest LOS rotation, with sá ñ = 0.22 0.09v . Our results provide a new stringent test of the so-called “cusp–
core” problem that can be readily extended to other dwarfs.

Unified Astronomy Thesaurus concepts: Dark matter (353); Dwarf spheroidal galaxies (420); Astronomy data
analysis (1858); Proper motions (1295); Stellar kinematics (1608); Stellar dynamics (1596); Galaxy dynamics
(591); Galaxy structure (622)

1. Introduction

Decades of astrophysical evidence support the notion that
most of the matter in the Universe is dark. However, the nature
of this dark matter (DM) remains a mystery. The most likely
candidate is some form of cold DM (CDM), consisting of
collisionless particles that cannot (yet) be detected directly but
that interact through gravity.

Some of the best systems to study DM are the “classical”
dwarf spheroidal galaxies (dSphs) in the Milky Way (MW).
They are strongly DM dominated (Pryor & Kormendy 1990)
and have a large number of bright stars that can be resolved,
due to their proximity. The stars’ motions contain information
about the gravitational potential in which they move, and thus a
large observational effort has been invested in obtaining their
line-of-sight (LOS) velocities (vLOS, e.g., Tolstoy et al. 2004;
Walker et al. 2007; Gilmore et al. 2022). Results from
analyzing these data have been inconclusive about some CDM

predictions. A conspicuous example of this is the so-called
“cusp–core problem”: the tension around the predicted and
observed DM mass density profiles of galaxies. CDM halos in
collisionless cosmological N-body simulations follow a nearly
universal mass density profile that increases and diverges
toward the center, forming a “cusp” (Navarro et al. 1997). In
contrast, observations of some dSphs favor shallower density
profile slopes, consistent with a constant-density “core” at the
center (e.g., Battaglia et al. 2008; Walker & Peñarrubia 2011;
Amorisco & Evans 2012; Brownsberger & Randall 2021).
Various solutions have been proposed to explain this and

other discrepancies. Some propose fundamental changes in the
nature of DM, such as warm DM (WDM), e.g., sterile neutrinos
and gravitinos, that predict lower central DM densities and cored
profiles (Dalcanton & Hogan 2001), or self-interacting DM
(SIDM), for which DM particles in the central region thermalize
via collisions and thereby form a cored profile (e.g., Sameie et al.
2020). Others include the impact of baryons, which may
transform cusps into cores by transferring energy and mass to the
outer parts of the halos, e.g., via supernova feedback (Read &
Gilmore 2005; Pontzen & Governato 2012; Brooks &
Zolotov 2014), or star formation events (Read et al. 2018).
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Recent studies have also found that the orientation of a galaxy
with respect to the viewer has a large impact on the derived
velocity dispersion, resulting in a range of density slopes fitting
the data (Genina et al. 2018).

Significant uncertainties are introduced by the fact that most
observational studies are based solely on vLOS measurements,
which constrain only one component of motion. Consequently,
interpretations rely on substantial assumptions, in particular
that vLOS is representative of the three-dimensional (3D)
velocities.10 These assumptions have been challenged by
alternatives implying that the inferred, excessive dynamical
mass-to-light ratios could be due to, e.g., modified gravity
(McGaugh & Wolf 2010) or out-of-equilibrium dynamics
caused by tidal interaction with the MW (Klessen & Kroupa
1998; Hammer et al. 2018), although the latter is hard to
explain for satellites on orbits having higher pericenter values
reported by Li et al. (2021), Battaglia et al. (2022), and Pace
et al. (2022) from Gaia-based systemic proper motions (PMs).

Multiple techniques have been used to model vLOS
dispersion (σLOS) profiles and, thus, constrain mass density
profiles of dSphs. Examples include Jeans models (Walker
et al. 2009; Zhu et al. 2016; Read & Steger 2017), distribution
function (DF) fitting (Wilkinson et al. 2002; Vasiliev 2019),
and Schwarzschild orbit superposition modeling (Breddels
et al. 2013; Kowalczyk et al. 2019), each with their own
strengths and weaknesses. However, all modeling techniques
face the same problem: when only vLOS are used, there is a
strong degeneracy between the mass density profile ρ(r) and
the velocity anisotropy profile β(r), which quantifies differ-
ences in velocity dispersions in orthogonal directions (Binney
& Mamon 1982; Binney & Tremaine 1987). Some models
mitigate this degeneracy by restricting parameter space or using
higher-order moments (Vasiliev 2019; Genina et al. 2020; Read
et al. 2021), but having only the LOS component of motion
fundamentally limits what can be achieved.

The key to progress is to measure the internal PM kinematics of
stars. The radial and tangential PM components directly measure
the projected velocity dispersion anisotropy, which, under
assumptions of inclination and intrinsic shape, uniquely deter-
mines β(r) without requiring any dynamical modeling (e.g., van
der Marel & Anderson 2010). This makes PMs crucial for
dynamical modeling of dSphs, with models making use of PMs
performing consistently better than those based solely on vLOS
(Read et al. 2021). Different techniques can be used to measure
internal PM kinematics, but all of them require combining two or
more epochs of observations to determine PMs of individual stars.
At typical distances of MW dSphs, the only feasible instruments
currently available for measuring individual PMs are Gaia, the
Hubble Space Telescope (HST), and JWST.

Gaia has been tremendously successful in revolutionizing our
view of the MW and its satellites, but the relatively shallow
limiting magnitude (G∼ 21mag) and its large PM uncertainties
for typical dSphs stars in the MW halo (e.g., Vitral 2021; Pace
et al. 2022) hinder its use for a direct measurement of internal PM
dispersions (Martínez-García et al. 2021). An alternative is to
combine Gaia astrometry with that from another instrument (e.g.,
HST) to achieve longer time baselines and thus lower PM
uncertainties. This procedure has been applied in Massari et al.
(2017, 2020) and del Pino et al. (2022). However, even with the

Gaia end-of-mission PM uncertainties reduced by a factor of 3,
the number of stars available to measure PM dispersion profiles
will always be confined to those near the tip of the red giant
branch, due to the limiting magnitude of Gaia. This is insufficient
to discriminate between cusp and core models (Strigari et al. 2018;
Guerra et al. 2023).
While the JWST time baseline is still too short (due to its

recent launch) for a robust JWST versus JWST PM computa-
tion, comparing positions of stars in images obtained with the
same detectors on board HST over time is the best means to
obtain precise PMs of thousands of individual stars. HST is
exquisitely well suited for astrometric and PM science, due
to its stability, high spatial resolution, and well-determined
point-spread functions (PSFs) and geometric distortions. By
combining two or more epochs of space-based imaging, it is
possible to measure precise internal PMs in nearby stellar
systems (e.g., Libralato et al. 2022).
In the current work, we combine 18 yr of HST data, mostly

obtained in the context of our High-Resolution Space
Telescope PROper MOtion (HSTPROMO) Collaboration,11

to measure PMs of hundreds of stars in the Draco dSph. With
this, we measure its internal PM dispersion profile for the first
time and thus provide unprecedented constraints on its DM
density slope. We describe the data sets we used in Section 2,
we explain the methods used to analyze the data in Section 3,
and we present our results in Section 4. We comment on the
robustness of our findings in Section 5, and we discuss
and conclude our work in Sections 6 and 7, respectively.
Throughout the paper, we use lowercase r to denote 3D
distances and uppercase R to denote 2D projected distances.

2. Draco Data and General Characteristics

The Draco dSph is an excellent candidate to test the
predictions of CDM scenarios. Its star formation shut down
long ago (∼10 Gyr; Aparicio et al. 2001), making it a prime
candidate for hosting a “pristine” DM cusp, unaffected by
baryonic processes (Read et al. 2018). Interestingly, the stellar
mass of Draco is clearly below the limit where stellar feedback,
as implemented in current cosmological simulations, should
still produce a core (Fitts et al. 2017).12 Furthermore, Draco is
one of the most DM-dominated satellites of the MW (Kleyna
et al. 2002) and is seemingly unaffected by Galactic tides that
might heat its velocity dispersion profile (Odenkirchen et al.
2001; Ségall et al. 2007).
Recent efforts to infer the DM density of Draco from Jeans

modeling of LOS velocities have yielded similar results: Read
et al. (2018) fit rotationless spherical Jeans models combined
with higher-order LOS moments and report a DM density slope
at 150 pc of - -

+0.95 0.46
0.50 (95% intervals); Hayashi et al. (2020)

applied rotationless axisymmetric models to LOS data and
report a cusp with “high probability” and a formal measure-
ment of the asymptotic DM slope of - -

+1.03 0.15
0.14 (68%

intervals). Meanwhile, when formulating dynamical mass
estimators based on PM dispersions, Lazar & Bullock (2020)
found the then-available data to be insufficient for the purpose
of constraining the asymptotic DM slope. Below, we describe
the main characteristics of the new data sets we employ and
how those are able to grasp the dynamical status of Draco in
more detail and with better accuracy.

10 By this statement, we mean that vLOS is sometimes used to infer mass and/
or anisotropy properties that are not uniquely constrained solely by the second-
order moments of this single dimension.

11 https://www.stsci.edu/~marel/hstpromo.html
12 Fitts et al. (2017) place this limit at Må = 2 × 106 Me.
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2.1. Projected Density

2.1.1. Center

The quoted center for Draco in the McConnachie (2012)
catalog is the one from Wilson (1955), when the dSph was
discovered. After that, more detailed sky surveys have allowed
further refinement of this measurement. In particular, Oden-
kirchen et al. (2001) and Martin et al. (2008) used Sloan Digital
Sky Survey (SDSS) data to estimate the values quoted in
Table 1, and Vitral (2021) computed its center from Gaia
EDR3 data assuming a Plummer (Plummer 1911) spherical
model. In this paper, we compute it again from Gaia EDR3, but
using a more refined version of the Vitral (2021) algorithm,
which allows for an elliptical Plummer distribution (see
Appendix A for analytical expressions of density profiles).
The overall parameterizations are thus similar to the ones
reported in Vitral (2021), with the exception of the elliptical
Plummer, which adds two extra free parameters to the fit: (i) a
projected angle θ in the sky, and (ii) the ellipticity implied by
the minor-axis scale length of the projected ellipse.

Our fit was performed by a Markov Chain Monte Carlo
(MCMC) routine that uses the software EMCEE (Foreman-mackey
et al. 2013). We selected the most probable values from the joint
MCMC posterior chain as the parameters and assigned
uncertainties based on its difference to the 16th–84th percentiles
of the respective posterior distribution. Our best-fit center,
projected angle, and projected ellipticity are listed in Table 1.
Overall, the fits agree very well with the estimates from Wilson
(1955), Odenkirchen et al. (2001), and Martin et al. (2008).

2.1.2. Surface Density Profile

Later on, we will set up not only axisymmetric Jeans models
but also spherical models to fit our data set (see Section 3). For
that purpose, it is of interest to know the best scale radius of the
observed data, assuming a spherical density profile, so that we
can set reasonable priors to our models. Following Hayashi
et al. (2020) and Massari et al. (2020), we assume a Plummer
model. We derive the Plummer scale radius of Draco using
Gaia EDR3 data, using the same formalism as in Vitral (2021),
and with the (α0, δ0) centers calculated in Section 2.1.1.

Figure 1 displays the goodness of fit of our spherical Plummer
profile to the Gaia EDR3 data. This satisfactory agreement yields a
3D half-number radius of ¢ ¢

¢-
+10. 4 0. 4

0. 3, which lies between the values
of ¢ ¢

¢-
+10. 0 0. 2

0. 3 and ¢ ¢
¢-

+12. 4 1. 2
1. 6, estimated by Martin et al. (2008) and

Odenkirchen et al. (2001) with SDSS data, respectively, for an
exponential model and a Sérsic model.

2.1.3. Inclination

Due to the elliptical projected shape of Draco, we choose to
model it as an oblate spheroid with a flattening parameter (i.e.,
intrinsic axial ratio) q. This relates to the projected axial ratio of
Draco, qp, through the equation (Binney & Tremaine 1987)

( )= +q i q icos sin , 1p
2 2 2 2

where i is the inclination of the spheroid (see Appendix B.2
below, where an edge-on model is defined to have i= 90°). We
derive qp from the ellipticity value in Table 1, which yields
qp= 0.745± 0.051. The intrinsic axial ratio q is not known,
but its probability distribution can be assumed to follow the
general flattening probability distribution of oblate elliptical
galaxies in the nearby Universe. This is given by Equation (4)
from Lambas et al. (1992),

( ) ( ) ( )y
p

= - + -q q q q
2

1 0.344 21.272 29.24 , 2obl
2 2 4

with q ä [0, 0.9]. This can be used to obtain a probability
density function (pdf) for the inclination of Draco, as follows:

1. We draw N values13 of flattening from the pdf in Lambas
et al. (1992), which we label qall.

2. We draw N inclination values according to =iall
( )Uarccos , where U is the uniform distribution within the

[0, 1] interval. This ensures that the inclinations are sampled

Table 1
Overview of Draco Parameters

Reference Data α0 δ0 θ ò rh μLOS sá ñvLOS LOS
(hh mm ss) (dd mm ss) (deg) (arcmin) ( )-km s 1

(1) (2) (3) (4) (5) (6) (7) (8) (9)

This work Gaia EDR3 -
+17 20 16.42 0.01

0.02 + -
+57 55 06.60 0.32

0.07
-
+89 6

10
-
+0.25 0.03

0.03
-
+10.4 0.4

0.3 - -
+291.73 0.48

0.48
-
+0.22 0.09

0.09

Martin et al. (2008) SDSS -
+17 20 14.4 0.6

0.6 + -
+57 57 54 8

8
-
+89 2

2
-
+0.31 0.02

0.02
-
+10.0 0.2

0.3 L L
Odenkirchen et al. (2001) SDSS -

+17 20 13.2 1.4
1.4 + -

+57 54 60 0.07
0.07

-
+89 3

3
-
+0.28 0.01

0.01
-
+12.4 1.2

1.6 L L
Wilson (1955) Palomar 17 20 12.4 +57 54 55 L L L L L

Note. Column (1): reference where the values are reported. Column (2): data source of respective estimates (columns (3)–(7)). Column (3): R.A. of Draco center.
Column (4): decl. of Draco center. Column (5): projected angle in the sky, from north to east. Column (6): projected ellipticity in the sky, defined as 1 − b/a, with a
and b the major and minor axes of the projected ellipse, respectively. Column (7): 3D half-number radius of a Plummer model fit for this work, of an exponential
model fit for Martin et al. (2008), and of a Sérsic model fit for Odenkirchen et al. (2001) (using the 3D deprojection method from Vitral & Mamon 2021). Column (8):
bulk LOS velocity. Column (9): mean rotation fraction in the LOS.

Figure 1. Surface density: goodness of fit of a Plummer (Plummer 1911)
spherical model to Gaia EDR3 data of Draco, with significant field-star
interlopers. The surface density fits follow the formalism detailed in Vitral
(2021), which assumes a constant contribution of field stars.

13 We use N = 107.
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uniformly on the surface of a unit sphere from face-on
(i= 0°) to edge-on (i= 90°) cases.

3. For each of those inclinations, we compute the respective
projected flattening from Equation (1), using the qall
values previously drawn, and we label these as qp,all.

4. From those (qp,all, iall) pairs, we keep the ones that satisfy
|qp,all− qp,Draco|< 0.01.

The remaining pairs from the last step above yield the
projection of the inclination pdf onto the observed projected
axial ratio of Draco, which is depicted in Figure 2. The
resulting [16th, 50th, 84th] percentiles of the inclination and
flattening final distributions are [46°.1, 56°.3, 73°.4] and [0.38,
0.60, 0.72], respectively.

2.2. Line-of-sight Velocities

Draco has been the subject of many observational campaigns
to obtain LOS velocities of samples of individual stars (e.g.,
Armandroff et al. 1995; Wilkinson et al. 2004; Walker et al.
2015). Recently, Walker et al. (2023) provided the most
complete catalog of dwarf galaxy LOS kinematics, including
also metallicities and stellar parameters. Here we make use of
this catalog to complement our PM data set. In this section, we
study some of the main aspects of this LOS data set, including
its interloper contribution, the implied galaxy rotation, and the
influence of binaries on the inferred kinematics.

2.2.1. Interloper Cleaning

To best interpret our results based on LOS data, we need to
remove interlopers (essentially, stars in the foreground and
background). Hence, we perform a multidimensional mixture
model to assign membership probabilities to each star in our
subset and then select it (or not) based on a threshold
probability.

We first narrow our study to catalog stars that satisfy good
_obs == 1, as suggested in Walker et al. (2023, Section 5). This
essentially removes stars having high vLOS uncertainties. Next, we
select the parameterizations that we use to model the joint pdf of
Draco stars (tracers) and interlopers, in each dimension of the data
(i.e., vLOS, Teff, glog ,14 [Fe/H], [Mg/Fe]). The tracer pdf's of
vLOS, glog , [Fe/H], and [Mg/Fe] were modeled as a Gaussian,
while the tracer pdf of Teff was modeled as a double Gaussian.
The interloper pdf's of glog , [Fe/H], and [Mg/Fe] were

modeled as a triple Gaussian, while the interloper pdf's of
vLOS and Teff were modeled as log-Gauss and double-Gaussian
distributions, respectively. These choices of pdf's were made so
as to maximize the goodness of fit.
We fitted this multidimensional distribution through an MCMC

routine on discrete data and considered the region between the
16th and 84th percentiles of each posterior distribution as the
uncertainty on our fits and the most probable values from the
joint MCMC posterior chain as the best parameters. Figure 3
showcases the goodness of our fit, projected on the vLOS−[Fe/H]
dimensions. From our fits, we assigned as Draco members the
stars having a membership probability higher than 99%, which
removes most of the stars beyond a little more than 3σLOS from
the bulk vLOS. This final subset was composed of 435 stars with
vLOS data and uncertainties smaller than the value of σLOS. Our
measured value for the bulk LOS motion, μLOS,

15 is presented in
Table 1. For this subset, we chose not to correct for perspective
effects caused by Draco’s bulk motion, since those have
negligible effects. Indeed, the rms correction for the sample
stars implied by Equation (13) of van der Marel et al. (2002) is
only 0.2 km s−1, while the rotation and velocity dispersion
profiles inferred further in this work change by at most
0.1 km s−1, which is well below their respective measurement
uncertainties.

2.2.2. Rotation

Like most galaxies (e.g., Martínez-García et al. 2023), it is
possible that Draco possesses detectable mean rotation. We

Figure 2. Inclinations: pdf of inclinations for Draco, computed according to the
methodology described in Section 2.1.3. The dashed red lines indicate the nth
percentiles of the distribution, with n spaced from 0 to 100, on intervals of 10.

Figure 3. Interloper cleaning: goodness of fit of our multidimensional mixture
model, projected on the vLOS and [Fe/H] dimensions. The central panel shows
the stars from the Walker et al. (2023) catalog on the sky region of Draco, in
the vLOS−[Fe/H] plane, color coded by their Draco membership probability.
The upper and right panels display the histogram of this plane projected on the
vLOS and [Fe/H] dimensions, respectively. In the corner of each side panel, we
represent the median uncertainty on the respective dimension by an error bar.
Stars with Pmemb > 0.99 were selected for inclusion in our analysis.

14 Throughout this work, we denote the base-10 logarithm as log and the
logarithm in the natural base as ln.

15 We label the bulk LOS motion of Draco as μLOS and the first-order moment
over the major axis, which relates to rotation, as á ñLOSv .
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estimate here the rotation fraction of Draco, sá ñv , from its
vLOS.

We partition the LOS data into six concentric annuli on the
sky, all of which have the nearly the same number (N∼ 50) of
stars. We then perform a sinusoidal fit with free amplitude for
each partition (i.e., to the respective vLOS vs. projected angle
quantities) and free mean velocity and phase. The mean and
phase16 are forced to be the same for all annuli (thus, in total,
eight free parameters). The measured amplitude and σLOS per
annulus allow us to construct the rotation profile displayed in
Figure 4, which has a mean sá ñ = 0.22 0.09LOS LOSv
averaged over all radii (listed in Table 1). For visualization,
the blue line in the figure displays the best fit using a
parameterization of the form

⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠ ( )
[ ( )]

( )
s s

=
+ z+

R R
R R1

, 3
rot 0

0

0
1

v v

which increases linearly at small projected radii and falls as a
power law at higher projected radii.

Our results lie between those found by Hargreaves et al.
(1996) and Kleyna et al. (2002), who used less complete data
sets than ours. They found a rotation amplitude of 0.7 km s−1

around Draco’s minor axis and of 6 km s−1 at 30′. Meanwhile,
our ( )s rotv fit predicts v/σ= 0.4 at 30′, which translates to a
rotation amplitude, vrot, of less than 4 km s−1 at this projected
radius. Our fit also agrees well with Martínez-García et al.
(2021), where internal rotation was confirmed using Gaia
EDR3 PMs. From those results, we conclude that although
Draco has some mean rotation, it is small when compared to
the overall velocity dispersion, especially at inner radii, where
most of the data are concentrated (see Figure 1 for comparison).

2.2.3. Binaries

Per construction, measurements of vLOS from spectral lines
are subject to Doppler shifts from unresolved binary motion.
As a consequence, single-epoch LOS measurements can carry
an overestimated σLOS and thus an overestimation of the
system’s total mass due to binary motion. Meanwhile, given
the multiepoch requirement of PM measurements, those end up
averaging the motion of unresolved binaries to zero, such that
the mentioned overestimation becomes negligible. For exam-
ple, while Bianchini et al. (2016) showed that globular star
clusters with unresolved binary fractions up to 50% should
introduce changes <6% on the PM velocity dispersion, Pianta
et al. (2022) recently performed simulations of dSphs to argue
that one could reach much higher changes when using only
LOS data.
Such an undesirable effect can be almost completely

corrected by obtaining multiepoch LOS observations, as
recently argued by Wang et al. (2023). Given Draco’s high
binary fraction of 50% (Spencer et al. 2018), we perform here a
multiepoch test to gauge the influence of unresolved binaries
on our cleaned Draco LOS data set. To do so, we plot the radial
profile of σLOS for groups of LOS data constructed from a
different number of epochs. If unresolved binaries are to affect
our LOS data as proposed by Pianta et al. (2022), then
one should expect multiepoch velocity dispersions to be
considerably smaller than the ones computed from single-
epoch exposures.
Figure 5 displays our multiepoch comparison, where

velocity dispersion profiles are computed according to van
der Marel & Anderson (2010, Appendix A) and Vitral et al.
(2023a, Section 3.2.1). The number of stars having multiepoch
observations is scarcer, and thus we have fewer radial bins for
those. In any case, all our multiepoch radial dispersion profiles
agree within 1σ with the single-epoch measurement. Hence,
Figure 5 reassures us that for the cleaned LOS subset of Walker
et al. (2023) the effects of unresolved binaries in the velocity
dispersion of Draco are within the statistical uncertainties.
Finally, we revisit this conclusion in Section 5.1, where we
compare our results for subsets with and without LOS data.

Figure 4. Rotation: rotation profile of Draco, as a function of its projected
radius, computed with LOS data. The black circles and error bars show the v/σ
ratio per bin, while the red and blue curves (and respective uncertainty regions)
show, respectively, the overall mean through the Draco field and the best fit of
Equation (3). We add a dashed gray line to represent the case of no rotation.
From this plot, we conclude that Draco has a modest amount of rotation.

Figure 5. Impact of unresolved binaries: multiepoch velocity dispersion
profiles (as a function of projected radii) for groups of LOS data constructed
from a different number of epochs. The number of stars having multiepoch
observations is scarcer, and thus we have fewer radial bins for those. The
excellent agreement within 1σ between all Nepoch and the fact that the σLOS
profiles associated with higher Nepoch are not considerably smaller than the
Nepoch = 1 subset give us good confidence that unresolved binaries do not
affect our mass estimates beyond the statistical uncertainties.

16 The phase is taken with respect to the position angle of the minor axis (see
column (5) of Table 1). We found that while the rotation curve was robustly
constrained by the data, the exact angle of the rotation axis was not. The fits
showed angle variations between annuli, and the best-fit angle also depended
on the exact choice of annuli, both in excess of the formal uncertainties. While
a kinematic axis intermediate between the major and minor photometric axes
appeared formally preferred by the fits, we concluded after experimentation
that an oblate model with rotation around the photometric minor axis was
acceptable. In any case, the data do show a preference for one spin sign (i.e.,
receding relative velocities on the western longitudes) rather than another.
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2.3. Proper Motions

2.3.1. Observations and Astrometric Catalogs

For our new PM measurements of Draco stars, we used
multiepoch HST ACS/WFC imaging data. Descriptions about
field locations and observations during earlier epochs for our
target fields F1 and F2 are provided in Sohn et al. (2017). The
field locations are also shown in Figure 6. In summary, the F1
field had three epochs of imaging data obtained in 2004, 2006,
and 2013, while F2 had two epochs of imaging data obtained in
2004 and 2012. All fields were observed once again on 2022
October–November through our HST program GO-16737
(Sohn et al. 2021) using the same filter (F606W), telescope
pointing, and orientation as in the previous epochs.17 In this
latest epoch, we obtained 15 individual exposures, with each
exposure lasting 430 s for each field.

The data analysis largely followed the procedures described in
Bellini et al. (2018) and Libralato et al. (2018). Here we provide
only a high-level outline of the PM derivation process and refer
the reader to those papers for more details about the methodology.
We downloaded the flat-fielded _flt.fits images of all target
fields for each epoch from the Mikulski Archive for Space
Telescopes and processed them using the hst1pass program
(Anderson 2022) to derive a position and a flux for each star in
each exposure. Instead of working on the _flc.fits images
that are corrected for charge transfer efficiency (CTE) losses, we
utilized the table-based CTE correction option in hst1pass,
which is an improved version of the ones used in previous works
(Anderson 2022; J. Anderson, in preparation). We applied
corrections to the positions using the ACS/WFC geometric
distortions based on Kozhurina-Platais et al. (2015); these were
further extended to include time-dependent distortion variations
beyond 2020 (V. Kozhurina-Platais, private communication).

For each field, we constructed a “master frame” using the
average positions of stars from the repeated first-epoch exposures.
The (X, Y) axes of these master frames were aligned with (α, δ) by

registering the stellar positions to the Gaia DR3 astrometric system.
We aligned the positions of stars from the other epochs to these
master frames using a six-parameter linear transformation and
determined average positions for each epoch. By construction, this
procedure aligns the star fields between different epochs, leading to
zero PM on average for the Draco dSph stars themselves. This
does not affect our results since we are mostly interested in
measuring the internal velocity dispersion on the plane of the sky
(POS; see Section 2.3.3 below for more discussion of this topic).
Uncertainties on the average positions were determined from the
repeated measurements as the rms divided by the square root of the
number of exposures. In the end, for each field per epoch, we
prepared a catalog that includes positions of stars measured as
described above and average instrumental18 F606W and F814W
magnitudes (from the data in the 2012–2013 epoch) output by
hst1pass.

2.3.2. Photometric Cleaning

Once our observations are reduced and we have the master
frame (X, Y) positions of sources at each epoch, for each field,
we first perform a photometric cleaning of the data. The goal of
this step is mainly (i) to remove interlopers, (ii) to remove
background galaxies, and (iii) to remove stars associated with
poor photometry that might bias our PM analysis. Points (i) and
(ii)–(iii) are performed independently, and we further select
stars that simultaneously survived both sets of cleaning cuts.
Point (i) is accomplished by performing a cleaning on the

color–magnitude diagram (CMD) of each field, at each epoch.
We use a friends-of-friends procedure, where we assign as an
interloper a star whose distances to other stars in the CMD19

are greater than typical distances in the subset. To do so, we
define, after inspection of the CMD–distance distribution at
each epoch, fiducial distance thresholds to use in this cleaning.
Since this step is likely to remove bright stars on the tip of the
red giant branch and the horizontal branch (this is because they
do not have a high number of neighbors), we reintroduce them
to the cleaned subset. They are likely dSph members and would
be filtered in further steps if they are not. As an example,
Figure 7 (top panels) displays the results of this CMD cleaning
for the three epochs of Field 2.
Next, to address point (ii), we remove sources likely to be

background galaxies, which lie on the upper side of the QFIT
—F606W diagram,20 departing from the bulk set of stars. This
step is performed with a similar friends-of-friends analysis to
that for point (i), with different distance thresholds per field and
per magnitude range. Finally, we proceed to point (iii) by
removing stars that satisfy QFIT � 0.2, as they are associated
with poor PSF fits. The final QFIT cleaning of our subset is
displayed in the bottom panels of Figure 7.

2.3.3. Local Corrections

After having a photometrically cleaned subset that is also
devoid, at least to a large extent, of interlopers, we proceed to
compute the PM of each star in our subset. Essentially, the raw

Figure 6. Observed fields: HST target fields (background image is from the
STScI Digitized Sky Survey; see acknowledgments), with a black ellipse
showing Dracoʼs half-number radius.

17 We also observed another field, F3, but found the resulting PMs of
insufficient accuracy for the present purpose, due to the use of different HST
filters per epoch.

18 The instrumental magnitude in a given filter is defined here as
= - cmag 2.5 log , where c is the number of photon counts per exposure for

a source.
19 The distance is defined in F606W vs. (F606W–F814W) space using
percentiles to normalize each dimension, similarly to what is explained in
Section 3.3 of Vitral et al. (2022, Equations (1)–(2)).
20 The QFIT parameter is a combined measure of goodness of fit and signal-
to-noise ratio (see Anderson et al. 2006; Libralato et al. 2014 for details).
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PMs are computed by a least-squares line fit of the master frame
(X, Y) positions as a function of the epoch time. We use the
NUMPY.POLYFIT routine from PYTHON, assuming the (X, Y)
uncertainties calculated in Section 2.3.1 and no χ2 rescaling.21

We store the χ2 of the fit for later data cleaning.
The raw PMs may contain low-level systematic effects

related to the CTE issues of HST’s degrading charge-coupled
devices, as well as from subtle variations in geometrical
distortion between epochs. As a result, some regions of the
observed fields may present systematically higher/lower PMs.
This problem has been previously reported, for instance, in
Bellini et al. (2014) and Libralato et al. (2022). We display this
for our Field 1 in the left panels of Figure 8. The best procedure
to correct for these effects is to perform a local PM correction
that shifts those regions back to the bulk PM of the field. In
practice, we follow the procedures laid out in previous works
(e.g., Bellini et al. 2014; Libralato et al. 2022) that have
constructed HST PMs by looping over each star and removing
the median PM of a local net of the 10 closest22 stars. This
process adds an extra layer of uncertainties (basically the
uncertainty on the median,23 which we add quadratically to the
original PM uncertainty) but successfully renders the PM data
set more homogeneous. The right panels of Figure 8 show that
this successfully removes most of the systematic effects.

This local correction step removes not only streaming artifacts
from the data but also any variations in mean streaming intrinsic
to the galaxy. However, it preserves the local velocity dispersion,
which is most critical to perform mass modeling. We verified with
axisymmetric rotating mock data sets that this step does not
significantly change the second-order velocity moment of the data
(changes remain smaller than ∼5% for all possible inclinations).
Moreover, our axisymmetric model fitting in Section 4.2.2 below
explicitly accounts for the fact that any mean streaming in the PM
directions is not observationally constrained.

2.3.4. Sky Coordinates

As explained in Section 2.3.1, our master frame (X, Y) positions
are already aligned, per construction, with sky coordinates, by
using Gaia reference frames. This means that our PMs computed
in (X, Y) directions are straightforwardly converted as μα,*=−μX
and μδ= μY, where we denote m m dºa a* cos, .
To convert (X, Y) positions to (α, δ), we first perform a naive

translation/rotation such that the coordinates approximately match
the true ones. Next, we select brighter sources and associate them
with Gaia EDR3 catalog sources. We perform a final translation/
rotation to minimize the logarithm of the sum of distances
between those matches, and we apply the respective conversion
parameters to our data set. We verified that our matches are
performed correctly by comparison to the Draco subset from del
Pino et al. (2022).

2.3.5. Outliers and Underestimated Errors

After the conversion to sky coordinates, our PM subset is
nearly ready for use. However, there might still be hidden
interlopers in the data with unusually high PMs, or stars with
underestimated errors that might bias our results.

Figure 7. Photometric cleaning. The top panels show the CMDs of our initial
interloper cleaning of Field 2 (using instrumental magnitudes), with the original
stars in the subset in black and the retained ones in orange. The bottom panels
show the QFIT-based cleaning of Field 2, with the original stars in the subset
in black and the retained ones in orange. The plots attest to the effectiveness of
our friends-of-friends photometric and interloper cleaning.

Figure 8. Local corrections: effect of local PM corrections on our data set
(shown here for Field 1). The panels show the master frame (X, Y) positions of
the sources, color coded according to the PM in each direction (for reference,
Draco’s typical PM dispersion peaks around 0.03 mas yr−1). The left panels
show clearly artificial PM shifts related to uncorrected residual CTE and
geometric distortion effects, especially around the detector edges and boundaries.
The right panels show our corrected sample, which has a generally homogeneous
PM distribution throughout the whole field, centered around null PMs.

21 Essentially, the χ2 quantity is defined as
( ( ))
( )c = å

-
-i

N y f x

N N
2 i i 2

free
, with Nfree = 2

(i.e., a line) and N being the number of epochs used in the fit.
22 Here “closest” refers to (X, Y) spatial positions. We verified that the
systematics observed in Figure 8 pertained mostly to geometrical distortions
(rather than CTE), where distances in magnitude space are not relevant and
could instead bring farther-away stars into the local net.
23 The uncertainty on the median for a Gaussian distribution is given by
 ( ) ( )= =p p s

- -
n

n
n

n nmedian 2 1 mean 2 1
(Kenney & Keeping 1963), where σ

and n are, respectively, the distribution standard deviation and number of
samples, which we fix to 10.
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A rapid test to probe the number of such stars is to fit the PM
distribution with a Gaussian (in both radial and tangential
directions) and to compare the fraction of stars beyond 3σ to
the fraction ∼0.27% predicted in this Gaussian. When
performing this exercise, we observe that the fraction of stars
in the wings of the distribution increases as we consider stars
with higher PM uncertainties. This not only shows that we
could be encompassing interlopers but also points to the
possibility of underestimated errors toward fainter stars.

When measuring the velocity dispersion of a subset (as
explained in Section 2.3.6), we are actually fitting the quadratic
sum of the intrinsic dispersion and the errors associated with
the tracers. If the errors are underestimated, the intrinsic
dispersion will be overestimated. Figure 9 shows the PM
velocity dispersion (i.e., σPOS) of stars with maximum PM
uncertainty lim. The curves show that the fitted σPOS starts to
increase as we include stars with errors beyond  lim

-0.024 mas yr 1, roughly equal to the intrinsic velocity disper-
sion of the galaxy. Those are fainter/high-magnitude stars that
likely have underestimated errors. Hence, for further analysis
we removed all stars whose PM uncertainties exceed the
threshold of  = -0.024 mas yrlim

1. In Section 5.3 we further
test the impact of this choice.

Given the possible issues related to stars with large PMs, we
decided to also impose a 3σ cut on our PM sample. This can
jointly remove unwanted interlopers and remaining stars with
underestimated errors. Comparison of the solid and opaque
lines in Figure 9 shows that this does not strongly change the
inferred σPOS. Nonetheless, the downside of any velocity cut is
that it yields a slight underestimate of the true velocity
dispersion (essentially, ∼99.73% of the true value for a 3σ cut
of a Gaussian). To assure that this does not bias our dynamical
modeling, which depends in part on comparison of LOS and
PM kinematics, we performed the same cut in our LOS data set
(on top of the previous membership probability cut). This did
not significantly change the LOS data set, which already had a
cut within a few σ owing to the larger fraction of interlopers.

Our final data set is the most complete and accurate PM catalog
of a dSph to date, comprising 364 well-measured stars.

Comparatively, Figure 10 shows that it comprises nearly 10
times more stars than in Massari et al. (2020; orange squares), it
comprises twice as many stars as in del Pino et al. (2022; blue
squares), and it reaches much deeper magnitudes than both data
sets could ever do given their necessity for Gaia measurements.
Moreover, the uncertainties in our PM measurements are all
below the local PM dispersion (see dashed gray line), compared to
no such stars in both previous studies. This improvement is
particularly important because it is difficult to accurately constrain
the PM dispersion of a galaxy based on individual PM
measurements with uncertainties that do not resolve this
dispersion (which is further compounded by known Gaia
systematics; e.g., Fardal et al. 2021; Vasiliev & Baumgardt 2021).

2.3.6. Proper-motion Dispersion Profiles

Having constructed the PM catalog, we proceed to construct
velocity dispersion profiles that will be used throughout the next
sections. As in Section 2.2.3, all our computations of the
dispersion σ of a given random variable follow the recipe
presented in van der Marel & Anderson (2010), also recently
employed in Vitral et al. (2023a). This consists of a maximum
likelihood fit of a Gaussian distribution to the data, aiming to
recover the respective standard deviation of the fit. The bias and
uncertainty of such an estimate (e.g., Kenney & Keeping 1951)
are corrected in a Monte Carlo sense, where we analyze numerous
pseudo–data sets in the same fashion as the real data (see
Appendix A from van der Marel & Anderson 2010 for details).
For spherically symmetric models of Draco, the velocity

dispersion profile can be written as a function of the projected
distance to the galaxy’s center, R. We thus create logarith-
mically separated data bins in R whenever we need to visualize
σ. In practice, our spherical modeling deals with discrete data
(see Section 3.1), such that the bin choices we use to visualize
our results do not actually matter for the fitting procedure. For
the axisymmetric case, however, σ will also depend on the
projected angle ξ of the data bin, defined as the angle between a
given point and the projected major axis of the galaxy. Besides,
our fitting approach in this case is frequentist (see Section 3.2),
such that the binning process requires more attention.
Our LOS kinematics are based on fits of all position angles

along an annulus, with the rotation amplitude in Figure 4
pertaining to the value on the kinematic major axis.24 Instead,
for the PMs we have measurements only for specific fields (see
Figure 6) that span a small range of position angles. Therefore,
whenever sampling velocity moments as explained in
Section 3.2, these moments are averaged over all sky angles
for the LOS, while we take the mean sky angle of each radial
bin for the POS directions (namely, POSr for the POS radial
direction and POSt for the POS tangential direction). We use
the major axis (i.e., ξ= 0°) for comparison to the rotation
amplitude.
The inferred velocity dispersion profiles in the three orthogonal

directions are shown in Figure 11, together with the LOS rotation
curve, all with similar x- and y-scales.25 This provides, for the

Figure 9. Underestimated errors: measured PM dispersion, σPOS, as a function
of the maximum PM uncertainty in the data set, lim. Blue curves relate to
Field 1, while the red ones relate to Field 2. Opaque curves relate to the PM
subsets without the 3σ cleaning explained in Section 2.3.5, while the solid
curves show results for the PM subsets with such a cut. For reference, we
display an x = y line in dashed green. This plot shows that it is important to
impose a cut in PM errors at  ~ -0.024 mas yrlim

1. Inclusion of stars with PM
uncertainties in excess of the intrinsic galaxy dispersion yields an over-
estimated value for the galaxy dispersion.

24 While our further modeling assumes an oblate dSph with maximum rotation
on the equatorial plane, the data points used in our fits pertain to the kinematic
major axis found in Section 2.2.2, which did not align exactly with Draco’s
major projected axis but was consistent within the uncertainties.
25 The adopted galaxy distance (used to transform mas yr−1 to km s−1) and the
model predictions in this figure will be discussed in Section 4.2.2. The distance

-
+74.98 3.21

3.95 kpc is from the model fit and is close to the RR Lyrae estimate from
Bonanos et al. (2004, namely D = 75.8 ± 5.4 kpc).
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first time, radially resolved 3D velocity dispersion profiles for
any dwarf galaxy. Focusing on the observations, we note that
the radial PM dispersion is considerably higher than the
tangential PM dispersion. Averaged over all radii probed,
s sá ñ á ñ = 0.80 0.08POSt POSr . The ratio of the LOS disper-
sion to the PM dispersion is somewhat closer to unity,
s sá ñ á ñ = 1.08 0.09LOS POS , where σPOS represents an aver-
age over both PM directions. The first ratio is independent of
galaxy distance, while the second is inversely proportional to it.

The tight observational constraints on ratios like these enable
dynamical models of the kinds discussed in Section 3 below to
strongly constrain the structure of Draco. To understand why,
consider first the ratio σPOSt/σPOSr, which is a measure of the
projected velocity dispersion anisotropy in the POS. In
spherical geometry, Leonard & Merritt (1989) and van der
Marel & Anderson (2010) both showed that there is a direct
relation between this projected anisotropy and the intrinsic 3D
velocity dispersion anisotropy. In Appendix B.3 we use scale-
free dynamical models of the type discussed in de Bruijne et al.
(1996) to show that the same is expected to hold in
axisymmetric geometry. The details of the relation depend on
quantities that are constrained by observational data, such as
the projected axial ratio of the system, the position angle of the
tracers on the sky, the radial profiles of the luminous and DM

densities, the viewing inclination of the galaxy, etc. But in
essence, σPOSt/σPOSr is a diluted measure (i.e., brought closer
to unity owing to projection effects) of the intrinsic 3D ratio
s srtan (see Figure 16 in Appendix B). Thus, the observed
s sá ñ á ñPOSt POSr implies the presence of radial velocity disper-
sion anisotropy in Draco. With suitable dynamical modeling,
quantitative constraints are obtained on the shape of the 3D
velocity dispersion tensor. This then breaks the mass–
anisotropy degeneracy that plagues modeling of LOS velocities
alone (Binney & Mamon 1982), so that the DM density profile
can be determined. And with the 3D anisotropy known, the
ratio σLOS/σPOS allows a kinematic determination of the galaxy
distance (as done previously for globular clusters; e.g., Watkins
et al. 2015b).

3. Methods

Various techniques have been used to model the velocity
dispersion profiles of dSphs and thus constrain their mass
density profiles (see Section 1). In this work, we employ
multiple techniques to exploit our data set. This helps us to
understand any modeling uncertainties and makes best use of
the different codes available in the literature. We summarize
them below.

Figure 10. Data overview. (a) Zoom-in of studied fields. Black circles indicate stars that have PM accuracies good enough to fulfill our scientific goals (i.e.,
òPOS  σPOS) and that were used in our dynamical modeling, while the gray circles indicate stars that do not, or that failed our multiple steps of data cleaning. The HST
+Gaia sample compiled with GAIAHUB (del Pino et al. 2022) is marked in blue, while the orange stars depict the data set used by Massari et al. (2020). (b) CMDs
based on HST data (using instrumental magnitudes), using the same symbols as in panel (a). (c) F606W magnitude as a function of the 1D PM error (calculated as in
Equation (B2) from Lindegren et al. 2018), using the same symbols as in panel (a), with a dashed line representing the òPOS threshold we use. Our data set comprises
hundreds of stars with òPOS  σPOS, compared to zero such stars in previous PM analyses of Draco.
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3.1. Spherical Jeans Modeling: MAMPOSST-PM

Although Draco, like many other dSphs, is a flattened system
(e.g., Table 1 and Figure 6), previous studies have, in general,
considered spherical models to fit its internal kinematics (e.g.,
Read et al. 2018; Massari et al. 2020). Hence, it is useful to
perform a similar kind of modeling if one wants to better
interpret and compare previous results that assumed sphericity.

We perform spherical mass modeling with the Bayesian code
MAMPOSST-PM (G. A. Mamon & E. Vitral, in preparation),
which is an extension of MAMPOSST (Mamon et al. 2013), to
handle PMs in addition to LOS velocities. MAMPOSST-PM is
briefly described in Section 2 of Vitral & Mamon (2021) and
was tested by Read et al. (2021), who showed that MAMPOSST-
PM reproduced well the radial profiles of mass density and
velocity anisotropy of mock dSphs. MAMPOSST-PM is also a
faster code than its mass-modeling counterparts (see Table 2
from Read et al. 2021), which allows us to probe a wide range
of dynamical models in less time, which is useful when
defining priors and fitting boundaries (see Section 3.2).

3.1.1. General Formalism of MAMPOSST-PM

MAMPOSST-PM fits models for the radial profiles of total
mass and the velocity anisotropy of the visible stars to the
distribution of these stars in projected phase space. The local
velocity ellipsoid is assumed to be an anisotropic Gaussian,
whose axes are aligned with the spherical coordinates. The
sizes of the axes are obtained by solving the spherical Jeans
equation (Binney 1980)

( ) ( ) ( ) ( ) ( ) ( ) ( )ns b
n s n+ = -
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dr
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r r r
G M r

r
2 , 4r

r

2
B 2

2

assuming a given mass profile M(r) and velocity anisotropy
profile βB(r), for a previously determined mass density profile ν
(r) for the kinematic tracers (here stars). The term n sr

2 is the
dynamical pressure that counteracts gravity.26 The Binney
(1980) velocity anisotropy (“anisotropy” for short) is defined as
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where the á ñi
2v are the second-order velocity moments in spherical

polar coordinates. In both spherical and axisymmetric geometry,
the first moments á ñ = á ñ =q 0rv v , so that the corresponding
velocity dispersions satisfys = á ñr r

2 2v and s = á ñq q
2 2v . In addition,

in spherical geometry á ñ = á ñq f
2 2v v . The first azimuthal moment

á ñfv need not generally be zero, so that in general á ñ =f
2v

s + á ñf f
2 2v . Our spherical models are constructed to have

á ñ =f 0v , but in the axisymmetric models that we present later
we do allow for the possibility of mean rotation.
In MAMPOSST-PM, the likelihood is written as

 ( ∣ ) ( )= vp R , 6
i

i i

Figure 11. Observations and model comparison. The quantities showcased are velocity dispersion in the LOS (top left), POS velocity dispersion in radial direction
(top right), LOS rotation amplitude (bottom left), and POS velocity dispersion in tangential direction (bottom right). The black circles and error bars represent the data,
computed from the catalog of Walker et al. (2023) in the left panels and from our HST program in the right panels. Model predictions and the adopted galaxy distance
(which we use to convert mas yr−1 to km s−1 in the right panel) are from our axisymmetric JAMPY MCMC fits for i = 57°. 1 as discussed in Section 4.2.2. Our best fit
(as defined in Section 3.2) is depicted as a black solid line, which we interpolate with respect to projected radius R from the actual data R values (this is done for
visualization purposes, since there is also a dependence with the projected angle ξ). The percentiles from our MCMC chains are color coded as in the color bar scheme,
on the right.

26 The Jeans equation (Equation (4)) is a consequence of the collisionless
Boltzmann equation, which considers the incompressibility in phase space of
the six-dimensional (6D) DF. Expressing the DF in terms of 6D number, mass,
or luminosity density implies that the term ν in the Jeans equation is the
number, mass, or luminosity density. For the present case of a dSph made of
stars, it makes more physical sense to reason with mass density. For such
systems, the mass density is proportional to the number density given the lack
of substantial mass segregation, so the mass density profile is obtained from
deprojecting the observed surface number density profile and multiplying it by
a constant factor.
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where the conditional probability of measuring a velocity vi at
projected radius Ri is the mean of the local velocity DF, h(v | R, r),
integrated along the LOS
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MAMPOSST-PM determines the marginal distributions of the
free parameters and their covariances by running the MCMC
routine COSMOMC27 (Lewis & Bridle 2002).

In practice, we use six MCMC chains run in parallel and stop
the exploration of parameter space after one of the chains
reaches a number of steps Nsteps= 10,000Nfree, where Nfree is
the number of free parameters of the model. We discard the
first 3000Nfree steps of each MCMC chain, which are
associated with a burn-in phase. From the resulting chain
values, we assign uncertainties to our best likelihood
parameters using the 16th and 84th percentiles of the respective
posterior distribution. If the fit lay below (above) those
boundaries, we extended the uncertainty down to (up to) the
minimum (maximum) chain value.

3.1.2. Parameterizations and Priors of MAMPOSST-PM

MAMPOSST-PM is a parametric code that fits discrete data.
The motivations for our choices of parameterization are
described further below. Our choice of priors, on the other
hand, is performed to maximize the entropy of the posterior
probability distribution. This can be done by assigning flat
priors whenever we assume no previous knowledge on a
specific parameter or Gaussian priors whenever we trust a
previous measurement, from a different data set, with reported
mean and uncertainty.

The anisotropic runs of MAMPOSST-PM use the generalization
(hereafter gOM) of the Osipkov–Merritt model (Osipkov 1979;
Merritt 1985; Equation (8a)) or the generalization (hereafter
gTiret) of the Tiret et al. (2007; Equation (8b)) model for the
velocity anisotropy profile:

( ) ( ) ( )b b b b= + -
+ b

¥r
r

r r
, 8aB,gOM 0 0

2

2 2

( ) ( ) ( )b b b b= + -
+ b

¥r
r

r r
, 8bB,gTiret 0 0

where rβ is the anisotropy radius. We fit β0 and β∞ using flat
priors from −1.99 to 1.99 to the symmetrized quantity28

βsym= β/(1− β/2), while fixing rβ to the scale radius of the
luminous tracers.29 Notice that a constant-anisotropy case is
obtained by fixing β∞= β0.

The mass density of the luminous tracers is chosen to be a
Plummer model, similarly to what was adopted in Massari et al.
(2020) and Hayashi et al. (2020), and also supported by our
previous fits of Gaia ERD3 data (see Figure 1 in Section 2.1.2).
We fit the Plummer r−2 radius

30 with Gaussian priors, using the
mean and uncertainty from our fits. The total luminous mass of
Draco, Må, was estimated by Martin et al. (2008) from its

CMD, by assuming either a Kroupa et al. (1993) or a Salpeter
(1955) initial mass function (IMF). We estimate the mean and
variance of Mlog from both of those values and use them as a
Gaussian prior, which encompasses both estimates within 1σ.
We test numerous parameterizations for the DM density

profile, including

1. a generalized Plummer model, which is a special case of
the αβγ model by Zhao (1996), with α= 2 and β= 5;

2. the Kazantzidis et al. (2004b) model, which is motivated
by N-body simulations of tidally stripped cuspy DM
halos;

3. the generalized Navarro–Frenk–White (NFW) profile,
motivated by cosmological simulations by Navarro et al.
(1997); and

4. the Einasto (1965) profile, which was used recently by
Jiao et al. (2023) to fit the MW DM halo.

These density models are all listed in Appendix A and
depend on three quantities: a scale radius,31 a total DM mass
(Mdark, or M−2 for the generalized NFW model), and an inner
slope γ (n index for the Einasto model). We assume flat priors
for all these variables:

1. γ ä [–2, 2], which encompasses both cuspy (γ=−1) and
cored (γ= 0) cases (respectively, n ä [0.1, 10]). We
allow for positive slopes so as to not rule out possible
physical mechanisms unforeseen by ΛCDM.

2. ( [ ]) [ ]ÎM Mlog 6, 12dark . Read et al. (2017) extrapo-
lated classical Må−M200 relations to lower-mass dSphs,
such that Draco, with a luminous mass ∼5× 105Me, is
predicted to have M200∼ 109Me. Hence, our priors
largely encompass that range.

3. ( [ ]) [ ]Î --rlog kpc 1, 12 . Given the expected M200 mass
from Read et al. (2017),32 the concentration relation from
Dutton & Macciò (2014) yields r−2,NFW∼ 1 kpc. Our
prior thus encompasses this range within an order of
magnitude.

Finally, we set Gaussian priors for the bulk vLOS of
Draco, using our estimate depicted in Table 1, and we also set
Gaussian priors for the distance modulus, defined as m =0

( [ ]) +D5 log kpc 10. The mean and uncertainty on the distance
modulus are derived by propagating the value and respective
uncertainty on the RR Lyrae estimate from Bonanos et al.
(2004), which yields μ0= 19.398± 0.156.

3.2. Axisymmetric Jeans Modeling: JAMPY

To model our data set under the assumption of an oblate
axisymmetric galaxy, we use the publicly available code
JAMPY (Cappellari 2008, 2020), tailored to the analysis of
axisymmetric systems. This software was shown to reproduce
well the dynamics of mock oblate dSphs with rotation (Sedain
& Kacharov 2023) and has been applied in Zhu et al. (2024) to
recover DM structural parameters of thousands of galaxies.

3.2.1. General Formalism of JAMPY

We use the version of JAMPY in which the velocity ellipsoid
is aligned with spherical coordinates, given that we assume a

27 https://cosmologist.info/cosmomc/
28

βsym runs from −2 for a model with only circular orbits to +2 for a model
with only radial orbits, given that β ranges between −∞ and +1, respectively,
for these cases.
29 This choice has been show to provide a better fitting convergence in Vitral
& Mamon (2021).
30 This is defined as the radius where = -r 2d

d r
log
log

.

31 While Appendix A and Table 2 display the usual scale radii for those
parameterizations, MAMPOSST-PM fits the r−2 quantity.
32 We kindly thank Justin Read for sharing his algorithm to compute the
precise M200 value expected for Draco.
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spherical global potential, which would be only minimally
altered by Draco’s luminous axisymmetric component. This
configuration of JAMPY considers the Jeans equations for
rotating oblate systems (e.g., Bacon et al. 1983)

( ) ( )
( )n

n

b¶ á ñ
¶

+
+ á ñ - á ñ

= -
¶F
¶

f

r r r

1
, 9ar r

2
J

2 2v v v

⎡⎣⎢ ⎤⎦⎥( ) ( ) ( )b
n

n
q

n
q q q

- ¶ á ñ
¶

+
á ñ

-
á ñ

= -
¶F
¶

f1
tan tan

, 9br rJ
2 2 2v v v

where Φ is the gravitational potential, the symbol á ñ. indicates
the DF-averaged quantity, and, finally, βJ is defined as

( )b
s
s

º -
á ñ
á ñ

= -q q1 1 , 10
r r

J

2

2

2

2

v
v

where the second equality assumes that á ñ = á ñ =q 0rv v , as in
MAMPOSST-PM. Because of symmetry and continuity, axisym-
metric models always have á ñ =f 0v and á ñ = á ñf q

2 2v v along the
symmetric axis. Hence, along the symmetry axis, β as defined
by Equation (5) equals βJ. Models with βJ= 0 yield the same
predicted second velocity moments as models in which the DF
f (E, Lz) does not depend on a third integral. Such models have
been widely used for fitting data of axisymmetric systems (e.g.,
van der Marel 1991). Away from the symmetry axis, models
with βJ= 0 do not have an isotropic velocity dispersion tensor.

Beyond the nonsphericity, another main difference between
MAMPOSST-PM and JAMPY is that the latter allows us to model
Draco’s rotation, by not imposing á ñ =f 0v throughout the
whole system (this equality was also imposed in many previous
analyses such as Read et al. 2018; Hayashi et al. 2020; Massari
et al. 2020). The first moment in the f-direction relates to the
second-order moment in the radial direction through

( )sá ñ = á ñ -f f f, 11a2 2 2v v

( ) ( )s = - W á ñf 1 , 11br
2 2v

where the rotation parameter Ω is introduced. This parameter
was named γ in Cappellari (2020), but we change this notation
to avoid confusion with the inner slope of the DM mass
density, which uses the same symbol.

From those equations, JAMPY samples projected velocity
moments that we use to compute the respective quantities in the
LOS and POS directions. To fit our data set, we employ an
MCMC chain using the EMCEE routine that minimizes the χ2,
defined as

( )c c c c c= + + + , 122
LOS
2

POSr
2

POSt
2

rot
2

where ( )c = å -x xx i x i
2

data model
2

,
2 . In Equation (12), the four

χ2 terms pertain to the LOS, POSr, and POSt velocity
dispersions at a given (R, ξ)33 point, while the last term
pertains to the first-order moment of the LOS velocity on the
major axis.34

We then maximize the log-probability of our data set with
the set of parameters Θ, defined as { } cQ = -ln Pr 22 , along
with respective priors defined further in Section 3.2.2. Our
MCMC routine sets a maximum of 10,000 iterations per fit,

which we run in parallel in 64 CPUs. In those configurations,
each run takes ∼3 days to complete, and we perform it for a
different set of possible inclinations from the pdf derived in
Section 2.1.3. We discard the burn-in phase by removing the
first 5000 steps of the chain and visually checking that the
chains remain stable further on.

3.2.2. Parameterizations and Priors of JAMPY

As mentioned above, the timescales to run converging
JAMPY models are drastically longer than respective MAM-
POSST-PM runs, which can be explained by both the software
languages employed in each code (PYTHON vs. FORTRAN,
respectively) and the choice of parameterizations: while
MAMPOSST-PM uses analytical parameterizations for a set of
different models, JAMPY assumes multi-Gaussian expansions
(MGEs) to model both the potential and the stellar distribution,
which allows for more general density profiles at the expense of
more time.
Therefore, we use our results from the spherical Jeans modeling

to assist our fitting choices with JAMPY. For instance, since
we observed no significant preference for a particular DM
density parameterization in our spherical modeling results (see
Section 4.1), we here decide to use only the generalized Plummer
profile, as its analytical expressions are more easily handled when
building MGEs in PYTHON. In the absence of external constraints
on the geometrical shape of Draco’s DM halo, we continue to
assume that it is spherical,35 even when the luminous density is
chosen to be axisymmetric (so as to fit the observed projected
shape of Draco). Although we use the same priors as
MAMPOSST-PM for the DM density parameters36 and Draco’s
distance, we fix the stellar density parameters,37 as we observed
no departure from the mean MAMPOSST-PM Gaussian priors. In
addition, we assume the βJ parameter to be a constant,38 since
we show in Section 4 that the data do not prefer more general
profiles such as the Osipkov–Merrit generalization of
Equation (8a). Indeed, because MAMPOSST-PM assumes no
rotation and spherical symmetry, such that σθ= σf, its velocity
anisotropy parameter is equal to JAMPYʼs βJ.
Finally, we observed that when assuming a spatially constant

rotation parameter Ω we could not fit well enough Draco’s
observed rotation curve. Hence, we assume the more general
behavior

( ) ( )
( )

( )W = W + W - W
+

¥
W

r
r r
1

1
. 130 0 2

We fit (Ω0, Ω∞) by assuming flat priors from −1.99 to 1.99
to the symmetrized quantity Ωsym=Ω/(1−Ω/2), while fixing
rΩ to the luminous scale radius.
As a consistency check that the fitting strategies of the

different Jeans modeling algorithms we use do not strongly

33 R is the projected radius, and ξ is the respective position angle in the POS.
34 Our PM analysis methodology does not allow us to measure any mean
streaming (see Section 2.3.3), so it is not included in the χ2.

35 While cosmological simulations tend to favor generally triaxial DM halos
(e.g., Jing & Suto 2000; Kazantzidis et al. 2004a), recent observational studies
of the MW DM halo support a quasi-spherical potential within the inner
∼30 kpc (Wegg et al. 2019; Hattori et al. 2021).
36 With exception of the DM scale radius, to which we allow a larger prior
toward higher radii.
37 This means that we fix Må = 4.7 × 105 Me and the major axis of the
projected density as the value fitted in Section 2.1.1, namely amaj,å = 9 1,
where amaj is the respective Plummer major axis (see Appendix A).
38 A similar assumption is also present in Hayashi et al. (2020), who base their
choices on cosmological simulations by Vera-Ciro et al. (2014). For robustness
purposes, we also ran a test with a gOM-like parameterization for βJ and
observed no departure from the constant case.
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diverge from each other, we compared two constant-anisotropy
runs from MAMPOSST-PM and JAMPY for a spherical geometry
and confirmed that both the inferred velocity anisotropy and the
DM density slope differ by much less than their respective 1σ
uncertainties.39

3.3. Practical Quantities

Given the choices of different DM parameterizations to
compare with and the fact that our data are not complete at all
radii, we define here practical quantities to help us interpret our
results. For example, the total DM mass (or M−2 for NFW
profiles) is not a well-constrained quantity, since our data do
not really allow us to constrain in detail the shape of the DM
density at large radii. Hence, a more suitable parameter to
display and use for comparison purposes is the DM mass up to
a fiducial radius. We do so by displaying further in Tables 2
and 3 the variable ( )=M r Rdark max —i.e., the total mass of DM
up to the maximum projected radius in our LOS+PM data set,
namely =R 900max pc. To aid in the interpretation of this
quantity, we also compute, at this same radius, the circular
velocity

( ) ( ) ( )=r
G M r

r
, 14circv

which depends on the total40 cumulative mass up to a certain
radius r and on the gravitational constant G.

Similarly, due to the restricted spatial extent of our data, the
inner DM slope parameter γdark, or the respective Einasto index

ndark, may not reflect accurately our fits and uncertainties of the
DM slope where we are actually able to constrain it—i.e.,
where we have both PM and LOS data. We therefore define an
effective density slope parameter as

( )

( )
( )

ò

ò

r

r
G º

r r dr

r dr
, 15r

r d
d r

r

rdark

log
logmin

max

min

max

where ρ(r) is the DM density. The rmin variable is defined as the
minimum projected radius in the data where PM information is
available. We define ( )= Lr R rmin , 3max max, PM CDM , where
Rmax, PM is the maximum projected radius in the data where PM
information is available and rΛCDM is the scale radius of a
NFW profile as expected for DM halos in ΛCDM simulations41

assuming low-mass stellar components (Read et al. 2017).
In practice, the radial limits over which we average the

logarithmic DM density slope are =r 42min pc and
=r 297max pc, which translate to roughly = ¢r 1. 9min and
= ¢r 22. 5max . If one considers the scale radius rΛCDM, the

conversion between Γdark and γdark in our PM radial range is
such that cusp (γdark=−1) and cored (γdark= 0) values
translate to Γdark=−1.2 and Γdark=−0.38, respectively, for
a generalized NFW profile. For a generalized Plummer profile
such as used in our axisymmetric fits, the respective numbers
are Γdark=−1.07 and Γdark=−0.14 for cusp and cored
models, thus providing a subtler difference.

Table 2
Main Results of the MAMPOSST-PM Spherical Jeans Modeling

ID ρdark Test D β0 β∞ rå Må rdark M R
dark

max γdark or n Γdark ΔAICc
(kpc) ( )10 pc2

( )M105 ( )10 pc2
( )M108

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

1 GKAZ ρdark -
+75.76 4.22

3.23
-
+0.45 0.19

0.07 L -
+1.74 0.11

0.10
-
+4.25 1.16

3.16
-
+1.93 0.27

12.17
-
+1.34 0.14

3.79
-
+0.76 1.43

0.32 - -
+0.11 0.79

0.28 0.00
2 EIN ρdark -

+76.73 4.28
3.03

-
+0.40 0.23

0.06 L -
+1.77 0.12

0.09
-
+5.05 1.97

2.24
-
+4.91 4.91

19.38
-
+1.45 1.45

4.49
-
+0.70 0.60

7.80 - -
+0.31 0.34

0.26 0.11
3 GPLU ρdark -

+75.99 4.52
2.89

-
+0.39 0.14

0.13 L -
+1.76 0.13

0.08
-
+5.07 2.07

2.06
-
+8.68 4.04

14.83
-
+1.41 0.43

0.68 - -
+0.24 0.55

1.25 - -
+0.41 0.42

0.88 0.17
4 GNFW ρdark -

+74.74 2.65
4.76

-
+0.41 0.18

0.09 L -
+1.75 0.09

0.11
-
+4.30 1.34

2.99
-
+2.47 0.06

15.46
-
+0.80 0.01

1.62
-
+1.44 2.00

0.01 - -
+0.24 0.72

0.01 0.34

5 GPLU βgOM -
+74.85 3.10

4.61
-
+0.48 0.21

0.08 - -
+0.98 0.92

1.78
-
+1.74 0.10

0.11
-
+4.12 1.10

3.29
-
+4.94 0.88

16.52
-
+1.14 0.12

1.54
-
+0.43 1.22

0.75 - -
+0.17 0.69

0.45 1.99
6 GPLU βgTiret -

+75.87 4.04
3.51

-
+0.52 0.23

0.19 - -
+0.21 1.26

0.95
-
+1.75 0.10

0.10
-
+4.70 1.67

2.69
-
+6.47 2.25

18.15
-
+1.25 0.32

1.05 - -
+0.03 0.81

1.10 - -
+0.35 0.54

0.71 1.76
7 GPLU Cusp -

+77.27 3.34
3.72

-
+0.25 0.17

0.11 L -
+1.78 0.10

0.11
-
+5.04 2.06

2.10
-
+28.42 7.71

83.80
-
+1.26 0.10

0.12 γ = − 1 - -
+1.00 0.00

0.00 1.52
8 GPLU Core -

+74.57 3.20
3.97

-
+0.40 0.09

0.12 L -
+1.72 0.09

0.11
-
+4.33 1.28

3.02
-
+6.92 0.82

1.93
-
+1.37 0.21

0.37 γ = 0 - -
+0.29 0.07

0.10 −2.16
9 GPLU PM -

+75.68 5.65
4.93

-
+0.53 0.18

0.07 L -
+1.73 0.13

0.14
-
+4.49 1.45

2.96
-
+6.04 2.31

47.73
-
+1.40 0.70

2.11
-
+0.34 1.13

0.70 - -
+0.09 0.81

0.27 L
10 GPLU ò -

+73.59 2.62
5.20

-
+0.56 0.21

0.04 L -
+1.69 0.07

0.14
-
+5.08 2.06

2.19
-
+5.79 1.30

8.53
-
+1.61 0.37

1.04
-
+0.70 1.24

0.64
-
+0.18 0.85

0.33 L

Note. Column (1): model ID. Column (2): DM parameterization: “GPLU” for a generalized Plummer (1911) model with free inner slope, “GKAZ” for a generalized
Kazantzidis et al. (2004b) model with free inner slope, “GNFW” for a generalized Navarro et al. (1997) model with free inner slope, and “EIN” for the Einasto (1965)
model. Column (3): test type: “ρdark” when testing different parameterizations for the DM density profile, “βgOM” for a generalized Osipkov (1979)–Merritt (1985)
parameterization of the velocity anisotropy profile, “βgTiret” for a generalized Tiret et al. (2007) parameterization of the velocity anisotropy profile, “Cusp” when
forcing an inner density slope of −1 for the DM, “Core” when forcing a cored model for the DM, “PM” when only using PMs (no LOS data), and “ò” when using a
lower PM error threshold. Column (4): heliocentric distance, in kpc. Column (5): anisotropy value at r = 0. Column (6): anisotropy value at infinity (only for models
with variable anisotropy). Column (7): Plummer scale radius of the stellar component, in 102 pc. Column (8): total mass of the stellar component, in 105 Me. Column
(9): DM scale radius, in 102 pc. Column (10): DM mass at the maximum projected data radius, in 108 Me. Column (11): DM asymptotic density slope or Einasto
index n. Column (12): DM density slope averaged over the spatial range where PMs are available. Column (13): difference in AICc relative to model 1. Listed
uncertainties are based on the 16th and 84th percentiles of the marginal distributions, unless the maximum likelihood solution was outside that boundary, in which
case the uncertainties are related to the minimum or maximum value of the MCMC chain. We did not consider the AICc diagnostic when the data set was different
from the respective standard model.

39 Precisely, we measure Δβ = 0.04 and Δγ = 0.06, while the uncertainty on
each parameter for the spherical case is of the order of ∼0.15 and ∼1,
respectively.
40 The total mass is a sum of the luminous and dark components.

41 We choose this value as a reference because we wish to compare our
observables to what is predicted from theory, while the 1/3 factor is added with
the intent of removing the part of the predicted density profile that has a cuspier
drop due to the transition from the inner to the outer density profile.
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3.4. Statistical Tools

We employ Bayesian evidence to compare our different
MAMPOSST-PM mass–anisotropy models and correct for over-
and underfitting. This model selection involves comparing the
maximum log posteriors using Bayesian information criteria.
We use the corrected Akaike information criterion (derived by
Sugiura 1978 and independently by Hurvich & Tsai 1989, who
demonstrated its utility for a wide range of models)

( ) ( )= +
+

- -
N N
N N

AICc AIC 2
1

1
, 16free free

data free

where AIC is the original Akaike information criterion
(Akaike 1998)

 ( )= - + NAIC 2 ln 2 , 17MLE free

and where MLE is the maximum likelihood estimate found
when exploring the parameter space, Nfree is the number of free
parameters, and Ndata is the number of data points. We prefer
AICc to the other popular simple Bayesian evidence model, the
Bayes information criterion (BIC; Schwarz 1978), because
AICc is more robust for situations where the true model is not
among the tested ones (e.g., our choice of a Plummer density
profile for the stellar component is purely empirical and not
theoretically motivated), in contrast with BIC (Burnham &
Anderson 2002).

The likelihood (given the data) of one model relative to a
reference one is (Akaike 1983)

⎛⎝ ⎞⎠ ( )-
-

exp
AIC AIC

2
, 18ref

and we use it to infer likelihood probabilities. In general,
ΔAICc differences 4 (i.e., a confidence level 85%,
according to Equation (18) above) are required to prefer one

model over another. It is also important to mention that such
diagnostics are purely statistical and do not account for intrinsic
astrophysical phenomena that might favor or disfavor a
particular model.

4. Results

4.1. Spherical Modeling

We first present the results of spherical Jeans modeling with
MAMPOSST-PM. Key outcomes are listed in Table 2. Our
velocity dispersion goodness of fits for the spherical case were
very similar to the ones presented in Figure 11 for the case of
axisymmetric models, so we do not show the spherical fits
separately (caveat: our spherical modeling neglects rotation, so
the spherical model predictions in the bottom left panel are
zero). Below, we detail our results.

4.1.1. Dark Matter Density Parameterization

The first four lines of Table 2 address the comparison
between the four DM density parameterizations we use:
Kazantzidis et al. (2004b) listed as GKAZ, Einasto (1965)
listed as EIN, generalized Plummer (1911) with free inner slope
listed as GPLU, and, finally, the generalized Navarro et al.
(1997) with free inner slope listed as GNFW. We refer the
reader back to Section 3.1.2 for the motivations of each
parameterization and now focus on the practical fitting results.
A comparison of these models’ AICc yields a modest

preference for the GKAZ profile, followed by EIN, GPLU, and
GNFW. However, the AICc differences reach, at most, 0.34
between the GKAZ and NFW profiles, which translates to the
GKAZ model being ∼1.2 times more likely than GNFW (from
Equation (18)). This is definitely not enough to robustly
distinguish those models, meaning that they all fit the data
equally well. This is true even though the GPLU yields a

Table 3
Main Results of the JAMPY Axisymmetric Jeans Modeling

i Ω0 Ω∞ D βJ rdark M R
dark

max γdark Γdark b̄B vR
circ

max

(deg) (kpc) ( )10 pc2
( )M108 ( )-km s 1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

43.0 -
+0.36 6.42

0.64 - -
+2.14 371.34

2.95
-
+81.32 4.63

4.34
-
+0.95 0.02

0.02
-
+9.43 3.64

102.82
-
+1.91 0.20

1.37 - -
+0.66 0.24

0.71 - -
+0.77 0.15

0.47 - -
+0.02 0.34

0.26
-
+29.21 1.34

9.14

47.7 -
+0.46 7.22

0.02 - -
+1.95 1.45

2.55
-
+76.83 4.37

3.39
-
+0.78 0.18

0.03
-
+6.22 0.44

131.43
-
+1.41 0.18

0.81 - -
+0.24 0.80

0.11 - -
+0.51 0.55

0.10 - -
+0.01 0.67

0.09
-
+25.80 1.64

6.57

52.4 -
+0.39 6.67

0.21 - -
+2.42 1.43

3.10
-
+73.33 1.85

5.16
-
+0.51 0.16

0.18
-
+6.94 1.65

74.25
-
+1.06 0.02

0.72 - -
+0.63 0.51

0.72 - -
+0.79 0.35

0.46 - -
+0.34 0.42

0.43
-
+22.91 0.44

6.63

57.1 -
+0.28 8.10

0.32 - -
+2.49 1.06

3.11
-
+74.98 3.21

3.95
-
+0.35 0.22

0.20
-
+7.01 4.56

295.92
-
+0.88 0.50

0.67 - -
+0.79 0.46

0.22 - -
+0.94 0.31

0.22 - -
+0.41 0.46

0.35
-
+20.72 7.22

6.77

61.8 -
+0.45 8.20

0.54 - -
+1.59 0.91

2.33
-
+73.19 2.71

5.51
-
+0.45 0.33

0.04
-
+10.71 4.11

289.80
-
+1.16 0.28

0.31 - -
+0.78 0.45

0.36 - -
+0.84 0.39

0.25 - -
+0.11 0.59

0.06
-
+24.00 3.27

2.73

66.5 -
+0.32 8.32

0.68 - -
+1.46 1.17

2.13
-
+73.42 3.45

4.59
-
+0.39 0.46

0.07
-
+10.16 2.40

276.71
-
+1.02 0.18

0.34 - -
+0.80 0.45

0.17 - -
+0.87 0.38

0.13 - -
+0.11 0.77

0.11
-
+22.50 2.17

3.50

71.2 - -
+5.23 3.19

4.91
-
+0.55 2.58

0.23
-
+75.99 5.91

2.30
-
+0.24 0.35

0.21
-
+70.10 64.08

209.14
-
+1.30 0.49

0.01 - -
+1.08 0.22

0.72 - -
+1.08 0.22

0.50 - -
+0.32 0.51

0.35
-
+24.90 5.07

0.40

75.9 -
+0.19 6.54

0.81 - -
+1.66 0.49

2.32
-
+72.44 1.79

5.44
-
+0.24 0.29

0.20
-
+12.74 6.02

381.65
-
+0.94 0.17

0.34 - -
+0.98 0.31

0.53 - -
+1.03 0.28

0.37 - -
+0.26 0.42

0.29
-
+21.77 2.23

3.26

80.6 - -
+4.87 2.66

4.59
-
+0.39 2.49

0.32
-
+73.07 2.52

5.56
-
+0.17 0.34

0.23
-
+24.04 14.83

260.36
-
+1.13 0.37

0.13 - -
+1.04 0.32

0.32 - -
+1.05 0.32

0.24 - -
+0.34 0.48

0.34
-
+23.77 4.45

1.02

85.3 - -
+5.70 2.09

5.34
-
+0.81 2.92

0.19
-
+74.32 3.93

4.53
-
+0.19 0.38

0.19
-
+173.12 164.65

141.10
-
+1.29 0.50

0.63 - -
+1.03 0.28

0.35 - -
+1.03 0.29

0.24 - -
+0.31 0.53

0.30
-
+25.10 5.55

7.18

90.0 - -
+0.05 6.60

0.06 - -
+2.18 318.09

2.93
-
+75.92 5.28

2.44 - -
+0.01 0.12

0.39
-
+16.82 7.06

294.31
-
+0.87 0.11

0.39 - -
+1.21 0.14

0.47 - -
+1.23 0.12

0.42 - -
+0.56 0.19

0.54
-
+20.48 1.13

4.43

〈.〉i -
+0.15 7.24

0.24 - -
+1.14 1.81

1.85
-
+75.37 4.00

4.73
-
+0.56 0.42

0.25
-
+11.18 4.89

191.03
-
+1.20 0.28

0.79 - -
+0.71 0.49

0.44 - -
+0.83 0.37

0.32 - -
+0.20 0.53

0.28
-
+24.19 2.97

6.31

Note. Column (1): inclination, in degrees (90° is edge-on). Column (2): rotation parameter at r = 0 (see Equation (13)). Column (3): rotation parameter at r →∞.
Column (4): heliocentric distance, in kiloparsecs. Column (5): βJ velocity anisotropy parameter, as defined in Equation (10). Column (6): DM scale radius, in 102 pc.
Column (7): DM mass at maximum projected data radius, in 108 Me. Column (8): DM asymptotic density slope. Column (9): DM density slope averaged over the
spatial range where PMs are available. Column (10): globally averaged βB velocity anisotropy, as defined in Equation (5). Column (11): circular velocity at maximum
projected data radius, in kilometers per second. The uncertainties are based on the 16th and 84th percentiles of the marginal distributions, unless the maximum
likelihood solution was outside that boundary, in which case the uncertainties are based on the minimum or maximum value of the MCMC chain. The last row
(highlighted in bold) displays the integrated estimate for each parameter, averaged over the inclination probability distribution of Draco, as described in Section 4.2.1.
The baryonic mass and respective Plummer major axis are fixed in all cases to 4.7 × 105 Me and 9 1.
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slightly more cuspy DM profile, but not significantly so given
the high uncertainties associated with this parameter when
using spherical models. Therefore, given the analytical
simplicity of the GPLU profile and its physical meaning,42

we choose to use this model for further tests, as well as when
modeling Draco with JAMPY further on.

4.1.2. Velocity Anisotropy Parameterization

Models 5 and 6 from Table 2 display our tests with different
velocity anisotropy parameterizations, specifically the gOM
and gTiret generalizations with free inner and outer anisotropy
values. The results show that although the inner velocity
anisotropy tends to agree with the constant-anisotropy case
(i.e., preferring radial anisotropy), the velocity anisotropy at
infinity prefers a more tangential behavior. Nevertheless, the
uncertainties associated with this parameter are extremely large
and basically encompass very radially anisotropic cases as well.
Since the anisotropy at large radii is not well constrained by the
data, the improvement in the fit is not enough for us to actually
prefer more general models such as this (i.e., AICc is higher).
Hence, we use the constant-anisotropy case here, and when
performing axisymmetric modeling, we use it as our standard
model. More general anisotropy parameterizations could overfit
the data.

4.1.3. Cusp versus Core under the Spherical Assumption

One of the main goals of our dynamical modeling is to
constrain the DM slope of Draco. From our fits that leave this
slope as a free variable, we observe a general preference
midway between a cored and a cuspy profile where the PM data
are present (i.e., column (12)). A different test is then to directly
compare two mass models, one with a fixed inner cusp (i.e.,
γ=−1) and another with a fixed core (i.e., γ= 0). We perform
those runs and display them in Table 2 as models 7 and 8.

The cusped and cored models prefer velocity anisotropies
that are consistent with each other at the 1σ levels, with cuspy
models preferring slightly lower values. The AICc comparison
between these two models shows a significant preference for
the cored case, which is ∼6 times more likely than the cuspy
counterpart, or, equivalently, rules out the latter with nearly
85% probability (from Equation (18)). This is opposite to what
was found by the spherical modeling from Massari et al.
(2020), although the much better completeness and accuracy of
our data set (see Figure 10) can easily account for such
differences. In the next section, we move on to test this result
under the more suitable geometric assumption of axisymmetry.

4.1.4. Velocity Anisotropy under the Spherical Assumption

Along with the measurement of the DM slope, our study is
the first to consistently constrain the velocity anisotropy of
Draco. As discussed in Section 2.3.6, the projected anisotropy
is directly measured by the data, independently of any model
assumption. However, to recover the intrinsic 3D value of β,
assumptions are required; here we analyze this problem under
the consideration of spherical symmetry.

Throughout all models in Table 2, the velocity anisotropy βB
remains within the 1σ range of ∼0.2−0.6. This means that
under spherical assumptions our data consistently constrain the

orbital shapes in Draco to be radially anisotropic. Previous PM
studies of Draco (Massari et al. 2020; del Pino et al. 2022) hint
toward a similar behavior, although error bars are too high to
discard tangential orbits at a 1σ level in the former work. Given
the unprecedentedly low PM uncertainties of our data set, we
are able to rule out negative values of βB in model 3 with
98.5% confidence, if one assumes sphericity.

4.2. Axisymmetric Modeling

Having explored spherical models, we now move on to more
realistic axisymmetric models. Because JAMPY is much slower
than the equivalent MAMPOSST-PM MCMC routines, we are
forced here to reduce our set of dynamical models. We thus use
the priors and assumptions specified in Section 3.2.2.
Specifically, informed by the results of the spherical models,
we focus on axisymmetric luminous models with a Plummer
density distribution and constant βJ as a function of radius,
embedded in a spherical dark halo with a generalized Plummer
profile.

4.2.1. Inclination Dependence

We ran JAMPY over a set of 11 inclinations linearly spaced
from 43° to 90° (edge-on), which encompasses Draco’s
inclination pdf computed in Section 2.1.3, and display the
results in Table 3. In addition to the parameter βJ defined by
Equation (10), we also list the globally averaged Binney
anisotropy b̄B . The latter was obtained by first calculating the
mass-weighted second velocity moments averaged over the
entire system and then substituting those into Equation (5).
Overall, the results for Ω∞ and rdark slightly increase with

inclination, while other parameters tend to decrease with i. In
particular, models that are closer to edge-on prefer more cuspy
DM profiles, lower velocity anisotropies βJ (still positive, but
closer to βJ= 0), and lower dynamical distances.
In spite of these correlations, we can provide a global

estimate and uncertainty for every model parameter, integrated
over the inclination distribution that we calculated for Draco in
Section 2.1.3. That is, for a parameter Θ, we apply

( ) ( ∣ ) ( ) ( )òQ = Qp p i p i di, 19
i

i

min

max

where p(Θ) is the final posterior distribution integrated over all
inclinations, p(Θ|i) is the posterior distribution obtained from the
MCMC chain, and p(i)di is the probability of falling into a certain
inclination range, which we compute empirically from the
distribution computed in Section 2.1.3. In practice, the integral
above is a discrete sum over the inclination ranges probed by the
11 values we calculated. We use the same procedure to obtain the
most probable value of every parameter, i.e., we average the results
in Table 3 weighted by the respective inclination probabilities.
Finally, we define the confidence regions as the 16th and 84th
percentiles of the numerically computed p(Θ).

4.2.2. Data–Model Comparison

The parameter estimates thus marginalized over all inclina-
tions are listed in the last row of Table 3. They resemble the
estimates for the cases i= 52°.4 and i= 57°.1. We choose the
case of i= 57°.1 as a canonical model for display, as it
represents a value between the median (56°.2) and the mean
(58°.9) of the inclination pdf. In Figure 11 we display, for this

42 Models such as GNFW do not have a finite mass, while EIN models are not
able to reproduce centrally decreasing density profiles.
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inclination, the data–model comparison for the three velocity
dispersion components and the LOS rotation velocity ampl-
itude. Figure 12 shows the DM density profile we estimate over
the range where we calculate its slope, as well as the circular
velocity over the entire data range.

Figure 11 shows a very satisfactory fit from JAMPY, which
helps to strengthen both our parameterization choices and our
conclusions further on. Figure 12 shows that both the circular
velocity and DM cusp (down to ∼100 pc) are well constrained
by our models.

We verified that our results do not depend sensitively on the
adopted parameterization for ρå. For this we ran a comparison
i= 57°.1 model in which the stellar density was taken to follow
a Sérsic (Sérsic 1963, 1968) profile,43 instead of the canonical
Plummer one. This yielded a considerably higher χ2 statistic,
driven in part by a poorer fit to Draco’s rotation profile.
Nonetheless, the inferred results for, e.g., Γdark and b̄B
(namely,- -

+0.70 0.14
0.64 and- -

+1.04 0.40
0.66, respectively) agree within

1σ with what is listed for i= 57°.1 in Table 3.

4.2.3. Inferred Quantities

We display in Figure 13 the posterior distributions and
correlation between the parameters { ¯ }bQ = G ,dark B , margin-
alized over all inclinations as described in Section 4.2.1. The
figure shows that models with a core generally require a more
radial velocity anisotropy to fit the data, consistent with what
has been found in other contexts (e.g., Figure 3 in van der

Marel et al. 2000). Our averaged slope estimate, G =dark
- -

+0.83 0.37
0.32, is consistent with a classic ΛCDM slope, even

though the posterior distribution we derive has a long tail
toward larger (including even positive) Γdark values. The
globally averaged Binney b̄B is well below the parameter βJ,
defined by Equation (10) for all inclinations. This is because βB
depends on á ñf

2v , while βJ does not. Axisymmetric models
generally have á ñf

2v increasing from the symmetry axis toward
the equatorial plane (see Appendix B.4). So while βB= βJ on
the symmetry axis, instead βB� βJ in the equatorial plane.
While Table 3 shows that our best-fit models have βJ positive
and increasing with decreasing inclination, the inferred value
of b̄B depends less on inclination to within the statistical
uncertainties. The overall anisotropy marginalized over incli-
nations is b̄ = - -

+0.20B 0.53
0.28. Hence, our best-fit models are

radially anisotropic on the symmetry axis and tangentially
anisotropic in the equatorial plane. When integrated over the
entire meridional (R, z) plane, they are tangentially anisotropic
but still statistically consistent with isotropy.
Similarly, we plot in Figure 14 an equivalent case for the

parameters { }gQ = r, logdark dark , with rdark in pc. As expected
from our conversions between Γdark and γdark in Section 3.3, one
has a remarkable agreement between the peak of γdarkʼs pdf and a
classic ΛCDM slope. Besides, our uncertainties on γdark are
consistent with what is expected from PM data sets having a
similar number of stars to ours, as argued in Guerra et al. (2023).
More importantly, this figure allows us to probe the core radius
that our 3D data are able to constrain: while negative asymptotic
slopes agree with a large set of DM scale radii, positive slopes
require that the respective core (or even a drop in the density) be
limited within 1 kpc. Indeed, upon analysis of our MCMC
chains, cores larger than 487, 717, and 942 pc are ruled out at 1σ,
2σ, and 3σ confidence,44 respectively. For reference, the scale

Figure 12. DM density and circular velocity. The top panel shows the DM
density profiles from our JAMPY MCMC chains for i = 57°. 1, color coded
according to their respective percentiles. We display the most probable solution
(as defined in Section 3.2) as a black line. The bottom panel shows the circular
velocity curves, defined by Equation (14), for the same models, as well as their
maximum value in green. The radial extent of the top panel covers the extent of
our PM data (where Γdark was computed), while the bottom panel covers the
extent of our entire data set.

Figure 13. Averaged DM slope and velocity anisotropy: final posterior probability
distributions of Draco’s DM density slope, Γdark, averaged over the range where
we have PM data, and the globally averaged βB velocity anisotropy (see
Equation (5)). The distributions were marginalized over inclinations, as described
in Section 4.2.1, and further smoothed for simple visualization purposes. The
values highlighted correspond to the best likelihood estimates (title texts, arrows,
and cross) and the respective 16th and 84th percentiles (dashed lines). The results
imply a classic ΛCDM-like slope in the Draco Sph galaxy and a marginal
preference for overall tangential velocity anisotropy.

43 We assigned the structural parameters provided by Odenkirchen et al.
(2001) for this specific parameterization.

44 These numbers are derived upon selecting the elements of the corner plot in
Figure 14 that correspond to γdark � 0 and retrieving the values that
encompasses 68%, 95%, and 99.7% of the respective rlog dark distribution.
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radius predicted by ΛCDM, previously mentioned in
Section 3.3, equals 1.06 kpc.

The circular velocity at our outermost data point in our best-fit
models is = -

+ -24.19 km sR
circ 2.97

6.31 1maxv . Similarly, the maximum
value of the circular velocity is ( ) = -

+ -r 27.78 km scirc
max

5.97
10.85 1v .

This ( )rcirc
maxv measurement is generally higher than most previous

calculations, namely Strigari et al. (2007; 15–35 km s−1),
Martinez (2015; -

+ -18.2 km s1.6
3.2 1), and Massari et al. (2020;

10.2–17.0 km s−1 ). Correspondingly, the dark mass in our
models is higher as well. It is difficult to precisely determine
where such differences could come from, but one could speculate
that this relates to different completeness of the respective data
sets used in each work. Indeed, the circular velocity values
measured by the likewise axisymmetric modeling from Hayashi
et al. (2020, Figure 9) over similar radial ranges lie closer to ours
(i.e., ∼25–30 km s−1).

From Table 3, one sees that higher heliocentric distances of
Draco are usually related to lower inclinations and more cored
models, and vice versa. Our estimate of Draco’s distance,

= -
+D 75.37 4.00

4.73 kpc, provides the first dynamical distance for
this dwarf. Comparatively, Bonanos et al. (2004) measured
75.8± 5.44 kpc using a set of 146 RR Lyrae stars, Aparicio
et al. (2001) found 80± 7 kpc from analyses of the magnitude
of the horizontal branch at the RR Lyrae instability strip, and
Muraveva et al. (2020) reported 80.5± 2.6 kpc when using 285
RR Lyrae stars. Our measurement is thus comparable to and
competitive with other literature results based on stellar
population methods. Thus, high-quality astrometric data also
provide a valuable validation of standard distance determina-
tion techniques.

4.2.4. Spherical versus Axisymmetric Models

Until recently, there were no PM dispersion profiles
available for internal mass modeling of dSphs. Hence, methods
employed to analyze LOS velocities had to make substantial
assumptions to remove degeneracies in the data. Among other
things, models usually assumed spherical geometry (e.g.,
Wilkinson et al. 2002; Read et al. 2018; Massari et al. 2020),
with the important exception of Hayashi et al. (2020). The

velocity moments that are derived from the Jeans equations
then depend only on the projected radius to the system’s center.
Instead, observed quantities in axisymmetric models depend on
the position angle on the sky. We have found that for the new
PM data set presented here axisymmetric models yield
substantially different results from spherical models. This is
true especially for the quantities most of interest, namely the
DM cusp slope and the velocity anisotropy. Our axisymmetric
models imply lower anisotropy b̄B and higher cusp slope Γdark.
Hence, it is critically important to construct axisymmetric
models that properly take position-angle dependencies into
account.
In Appendices B.3 and B.4, we again use the scale-free

dynamical models of the type discussed in de Bruijne et al.
(1996) to explain this result. Figure 16 in Appendix B shows
that there is a tight monotonic relation between the PM
anisotropy σPOSt/σPOSr integrated over the sky and the globally
integrated intrinsic b̄B . This relation is very similar for
spherical and axisymmetric models. However, for Draco we
have not measured σPOSt/σPOSr over the entire projected image
of the galaxy, but only for two fields along the major axis (see
Figure 6). Figure 17 in Appendix B shows that in axisymmetric
geometry σPOSt/σPOSr is not constant with position angle on the
sky. Instead, it is much lower on the major axis than on the
minor axis. Hence, a spherical model that assumes that
σPOSt/σPOSr is the same everywhere as measured on the major
axis will overestimate the radial anisotropy βB. Hence, while
our axisymmetric models imply that b̄ = - -

+0.20B 0.53
0.28, our

best-fit canonical spherical model (model 3 in Table 2) has
instead b = -

+0.39B 0.14
0.13. As mentioned in Section 4.1.4, the

latter is consistent with previous studies that assumed
sphericity (e.g., Massari et al. 2020; del Pino et al. 2022).
The higher βB in spherical models translates to a shallower DM
slope, given the correlation in Figure 13.
Systematic biases of this type are lessened, but not

necessarily erased, when using more spatially complete data
sets. This is something to keep in mind as we enter a new era of
galactic PMs: although spherical models are less costly and
thus helpful to understand general choices of parameterization
and priors, robust results and respective conclusions can only
be obtained when considering more complex models that take
into account the real shape of the galaxy (this has also been
argued previously by Genina et al. 2018).
Even in our case, there are still degeneracies that are not

fully taken into account. Specifically, as highlighted in
Cappellari (2020), the deprojection of the surface brightness
to obtain the intrinsic luminosity density is not unique unless
the axisymmetric galaxy is seen edge-on (Rybicki 1987;
Kochanek & Rybicki 1996). The degeneracy increases
considerably when the galaxy is seen at low inclinations
(Romanowsky & Kochanek 1997; van den Bosch 1997;
Magorrian 1999). Our results for Γdark do not depend strongly
on the assumed inclination (see Table 3). But it should be kept
in mind that at low inclination other deprojections of the
luminous density may be possible that differ from the Plummer
models assumed here.

5. Robustness of Modeling Results

5.1. The Effect of Binaries

As explained in Section 2.2.3, recent works have proposed
that the LOS velocity dispersion from dwarf galaxies could be

Figure 14. Asymptotic DM slope and scale radius: final posterior probability
distributions of Draco’s asymptotic DM density slope, γdark, and the logarithm
of the DM scale radius, rlog dark, with rdark in pc. The plotting details are similar
to the ones in Figure 13. The results rule out a core larger than 942 pc at 3σ
confidence.

17

The Astrophysical Journal, 970:1 (26pp), 2024 July 20 Vitral et al.



inflated owing to the presence of unresolved binaries from
single-epoch exposures. In particular, such inflation could
translate to mass overestimation and could eventually bias
our DM measurements. Beyond the tests performed in
Section 2.2.3, which have shown that the LOS velocity
dispersion remains consistent when using data with different
numbers of epochs, another independent test is to compare
mass modeling either with LOS+PM data (case (i)) or with PM
data alone (case (ii)). Due to the lack of high-quality PM data,
such a test has never been performed before. Our new state-of-
the-art PM catalog can thus shed light on this question.

Model 9 in Table 2 depicts the results from spherical Jeans
modeling with PM data alone, but with the same priors as in
our preferred model 3 (LOS+PM). Despite the slight increase
of Poisson uncertainties, due to the fact that the PM
subset alone has about half as many stars as the LOS+PM
subset, the overall predictions of model 9 agree within 1σ with
all the predictions from model 3. Therefore, we conclude from
both the tests performed in the current section and those from
Section 2.2.3 that our dynamical modeling results for Draco do
not have significant biases due to the presence of unresolved
binaries. Although we can only constrain this for the specific
galaxy analyzed here, this is an important result that sets the
stage for future interpretations on the impact of unresolved
binaries on the velocity dispersion profiles of other dwarf
galaxies.

5.2. The Effect of Tides

To derive mass estimates and density profile shapes, our
analyses assume that Draco is in dynamical equilibrium.
However, a number of recent studies have suggested that the
excessive mass-to-light ratios measured in dSphs could be due
to out-of-equilibrium dynamics, which in turn inflate the
velocity dispersion (e.g., Klessen & Kroupa 1998; Hammer
et al. 2018). Thus, it is of interest to gauge the possibility that
our conclusions could be biased by MW tidal effects.

On this subject, the past literature strongly supports that
Draco is a galaxy with no clear signs of tidal disruption: Both
Odenkirchen et al. (2001) and Ségall et al. (2007) have found
no evident stellar streams, asymmetric disturbances, or density
breaks that are characteristic of a tidally perturbed system.
Orbital analyses from Sohn et al. (2017) support that the last
pericenter passage of Draco, when accounting for a massive
Large Magellanic Cloud (see their Table 5), happens ∼4 Gyr
ago, at an average closest MW distance of ∼100 kpc, while
Pace et al. (2022) report a pericenter of = -

+r 58.0peri 9.5
11.4 kpc

and Battaglia et al. (2022) report = -
+r 51.7peri 6.1

4.1 kpc ( -
+37.6 4.4

4.2

kpc) for a lighter (heavier) MW, mostly from Gaia DR3 data.
For the lower pericenter distances found by Battaglia et al.

(2022) and Pace et al. (2022), one could envision the gas
expansion scenario proposed by Hammer et al. (2024) and
Wang et al. (2024), which could produce higher velocity
dispersion profiles than the stellar component alone (although
still with typically half of the values observed in Figure 11).
However, Sohn et al. (2017) also provide arguments (see their
Figure 4) against a mean radial expansion of the stellar
component. Hence, there is no indication that strong tidal
effects could be biasing our results, thus making Draco an ideal
galaxy for our equilibrium-based dynamical modeling.

5.3. Error Threshold

As discussed in Section 2.3.5, dynamical modeling should
be careful when including data points with PM uncertainties
higher than the system’s intrinsic velocity dispersion. The
larger the PM uncertainties, the more important it is that they
are known very accurately. This is difficult to guarantee, since
not all sources of observational uncertainty are always known
or easily quantified. If the PM uncertainties are underestimated,
then the galaxy PM dispersion will be overestimated, which
biases the dynamical modeling results. Hence, in our analysis
we have only included stars for which the observational PM
uncertainty is smaller than 0.024 mas yr−1, similar to the
intrinsic PM dispersion of the galaxy (Section 2.3.5). In
addition, previous works with globular cluster PM data have
often considered only low PM error stars when deriving PM
dispersion profiles from Gaia (Baumgardt et al. 2019; Vitral
et al. 2022) and HST (Bellini et al. 2014; Watkins et al. 2015a).
To further test our choice of PM error threshold, we also

performed, for comparison, a MAMPOSST-PM analysis with
only the subset of stars meeting a lower threshold of
0.022 mas yr−1. We display this run as model 10 in Table 2,
which should be compared to its counterpart with the higher
error threshold, model 3. Model 10 has 239 stars with measured
PMs, compared to 364 in model 3. This implies a decrease of
35% in statistical completeness and results in somewhat larger
uncertainties for all inferred model parameters. Within 1σ all
parameters agree between these two models. This further
supports that our results are robust to our choice of PM error
threshold and that there is no indication of biases due to
underestimated errors in our standard data set.

5.4. Higher-order Velocity Moments

The shape of the LOS velocity distribution can in principle
be used to obtain a constraint on the velocity anisotropy that is
independent of our Jeans results (van der Marel & Franx 1993).
However, detailed modeling of this shape requires more
complicated modeling techniques than those presented here
(e.g., Chanamé et al. 2008), which is outside the scope of the
present paper. Nonetheless, we describe in Appendix B.5 that
approximate modeling is again possible with the scale-free
dynamical models of the type discussed in de Bruijne et al.
(1996). Figure 18 in Appendix B shows that plausible
axisymmetric models exist that both (a) have values of b̄B
consistent with those derived from our Jeans models and (b)
predict a kurtosis for the LOS velocity distribution that is
consistent with the observed value. Hence, we would not
expect that future detailed modeling of higher-order moments
would change our conclusions about Draco’s velocity aniso-
tropy and hence its mass distribution. However, per Figure 18,
it might be helpful to constrain Draco’s viewing inclination, as
well as details of its phase-space DF.

6. Cosmological Implications and Future Work

Our newly measured asymptotic DM slope for Draco is
g = - -

+0.71dark 0.49
0.44, consistent with the behavior expected in

ΛCDM (Navarro et al. 1997), especially when comparing the
most likely results from our MCMC chains in Figure 14 (in other
words, the peak of the respective posterior pdf). Instead, various
early studies of dSph galaxies found that observations favored
shallow inner DM density profile slopes, consistent with a
constant-density “core” at the center (e.g., Battaglia et al. 2008;
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Walker & Peñarrubia 2011; Amorisco & Evans 2012; Browns-
berger & Randall 2021),45 and inconsistent with predictions of
standard ΛCDM cosmology, from DM-only simulations.
Hence, if future PM studies of other dSph galaxies were to
support our findings, then this supports the standard cosmo-
logical hypothesis that the DM in the Universe behaves as a
cold particle. The cold aspect of the DM particles would cause
them to clump toward the deeper regions of the potential well
and form diverging cusps such as the one we measure.

Early suggestions of DM cores in dwarf galaxies inspired
some studies to propose fundamental changes in the nature of
DM, such as WDM, e.g., sterile neutrinos and gravitinos,
which predict lower central DM densities and cored profiles
(Dalcanton & Hogan 2001), or SIDM, for which DM particles
in the central region thermalize via collisions and thereby form
a cored profile (e.g., Sameie et al. 2020). The fact that our study
can rule out cored profiles larger than 942 pc at a 3σ level thus
imposes useful constraints on the SIDM cross section.46

Independent evidence for the presence of DM cores in
gas-rich star-forming dwarf galaxies exists on the basis of H I
rotation curve modeling (e.g., Flores & Primack 1994; Moore
1994; Burkert 1995). A likely explanation for this in the
context of standard ΛCDM cosmology is the impact of baryons
on the DM density profile. This may transform DM cusps into
cores by transferring energy and mass to the outer parts of the
halos, e.g., via supernova feedback (Read & Gilmore 2005;
Pontzen & Governato 2012; Brooks & Zolotov 2014), or star
formation events (Read et al. 2018). Our findings in the present
paper suggest that these processes have not been important for
Draco. However, that is not unexpected. Draco is below the
limit where stellar feedback as implemented in current
cosmological simulations should still produce a small core
(Fitts et al. 2017). Moreover, its star formation shut down long
ago (∼10 Gyr; Aparicio et al. 2001). Hence, our work does not
provide insight into how the DM profiles of higher-mass or
star-forming galaxies may be impacted by baryonic physics.

To further probe how the variety of proposed theoretical
mechanisms to form a core compare to observations, it will be
essential to measure and model the 3D dynamics of dwarfs
with different characteristics than Draco, for example, dSphs
having more troubled dynamical pasts, those having suffered
close encounters with other satellites or the MW itself, or
instead dSphs with star formation histories that shut down more
recently. Efforts in these directions are already underway—we
have acquired multiepoch data sets of the Sculptor dSph galaxy
from the same HST programs described here (Sohn et al. 2021)
and are in the process of also acquiring analogous HST data for
the Ursa Minor dSph galaxy (Vitral et al. 2023b). Moreover,
we have ongoing programs on JWST to further extend our time
baselines for both Draco and Sculptor (van der Marel et al.
2023). The Nancy Grace Roman Space Telescope will provide
the opportunity to further extend such studies over large fields
of view (Han et al. 2023). This will help lift various
degeneracies that have so far complicated a full exploration
of existing discrepancies between observations and theoretical
predictions for dwarf galaxies.

7. Conclusions

For many decades, 3D velocity data sets of the internal
kinematics of dwarf galaxies were only conceivable through
numerical simulations. Thanks to HST’s record time in operation
and its exquisite astrometric capabilities, we can now study other
galaxies using POS velocities that are not simulated but
observed. With four epochs of HST observations of the Draco
dSph spanning an 18 yr temporal baseline, we measure precise
PMs for hundreds of stars, with uncertainties below the intrinsic
velocity dispersion of the galaxy. This provides the most precise
PM data set of Draco to date. We make this data set publicly
available as online material,47 so that it can also be used for
other studies than those described here.
By combining the PMs with existing LOS velocities, we

derive for the first time radially resolved 3D velocity dispersion
profiles for any dwarf galaxy. With suitable modeling, these
directly constrain the intrinsic velocity anisotropy of the galaxy
and resolve the mass–anisotropy degeneracy that often plagues
dynamical modeling.
To fit the measurements and infer the radial mass profile, we

solve the Jeans equations in both spherical and axisymmetric
geometries. The latter provides the first axisymmetric modeling
of any pressure-supported external galaxy that is observation-
ally constrained by all three orthogonal components of the
stellar velocity field.
The viewing inclination of the galaxy is not constrained by

the data. Hence, we marginalize our modeling results over all
possible inclinations, informed by the overall distribution of
projected galaxy shapes for elliptical galaxies in the nearby
Universe. None of our conclusions depend sensitively on the
actual inclination.
Below, we summarize our main findings for the Draco

dSph galaxy, as well as the cosmological implications of our
study.

1. We provide new estimates of the galaxy center, based on
elliptical Bayesian fits to the Gaia EDR3 stellar counts
(see Table 1).

2. We determine the LOS rotation curve of the galaxy (see
Figure 4) and find that it has measurable rotation. Over the
radial region covered by the LOS data set, sá ñ =v

0.22 0.09.
3. We show that the impact of unresolved binaries on the

LOS data is negligible and does not significantly alter the
dynamical modeling results.

4. For the PMs in our HST fields along the projected major
axis, we measure averaged observed velocity dispersion
ratios of s sá ñ á ñ = 0.80 0.08POSt POSr and s sá ñ á ñ =LOS POS

1.08 0.09, where σPOS represents an average over both
PM directions. The first ratio is independent of galaxy
distance, while the second is inversely proportional to it.48

The tight observational constraints on ratios like these
enable dynamical models to strongly constrain the
structure of Draco.

5. Axisymmetric models imply that the velocity dispersion
tensor of the galaxy is radially anisotropic along the
symmetry axis, with b = -

+0.56J 0.42
0.25. This is similar to the

anisotropy everywhere in our best-fit spherical model
(b = -

+0.39B 0.14
0.13). However, the best-fit axisymmetric

45 Notice that such analyses considered the Sculptor and Fornax dwarfs, which
have a higher stellar content, from whence it is not completely excluded that a
cuspy DM density profile could have been lowered by baryonic effects.
46 Specific constraints on how the core radius relates to the DM cross section
and particle mass can be found in Read et al. (2018) and Macciò et al. (2013;
Macciò et al. 2012's erratum), respectively.

47 The data set is available at doi:10.5281/zenodo.11111113.
48 We assume = -

+D 75.37 4.00
4.73 kpc.
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models are tangentially anisotropic in the equatorial
plane, as required to maintain hydrostatic equilibrium in
an oblate system. The globally averaged anisotropy is
b̄ = - -

+0.20B 0.53
0.28, so Draco is tangentially anisotropic but

still statistically consistent with isotropy.
6. Construction of axisymmetric models is essential for

flattened galaxies. This is particularly important for PM data
sets such as those presented here, which do not cover all
position angles. Spherical models then yield biased estimates
for both the velocity anisotropy and the inferred cusp slope.

7. We infer a DM density slope averaged over the spatial
range for which we have PM measurements, Γdark, of
- -

+0.83 0.37
0.32 and an asymptotic DM density slope of g =dark

- -
+0.71 0.49

0.44. Cores larger than 487, 717, and 942 pc are
ruled out at 1σ, 2σ, and 3σ confidence, respectively. The
data do not have the constraining power to distinguish
between different plausible parameterizations for the
cusped DM density profile (see Table 2).

8. The measured slope is in good agreement with ΛCDM
predictions,49 given that our measurements fall well within
the break radius of the DM density profile predicted by
cosmological simulations. Our best likelihood results
corroborate the idea that DM is formed by some sort of
cold particle. An asymptotic core is marginally incon-
sistent with the data at 89.5% confidence, when margin-
alized over all other quantities, arguing against modified
DM scenarios such as warm DM or SIDM. Nonetheless,
a small asymptotic core cannot be effectively ruled out.

9. The measured cusp slope provides no evidence that it has
been lowered through baryonic feedback processes,
although this cannot be ruled out either. However, this
is not unexpected given Draco’s low mass and ancient
star formation history. This provides no insight into how
the DM profiles of higher-mass or star-forming galaxies
may be impacted by baryonic physics.

10. We measure Draco’s DM halo to have a mass of
´-

+ M1.20 100.28
0.79 8 at the outermost data point ( =Rmax

900 pc), where the circular velocity reaches =circv
-
+ -24.19 km s2.97

6.31 1. The maximum circular velocity in
our best-fit models is ( ) = -

+ -r 27.78 km scirc
max

5.97
10.85 1v .

11. We infer a dynamical distance of -
+75.37 4.00

4.73 kpc. This is
consistent with estimates obtained in the literature using
other methods. Our ∼6% distance uncertainty is
competitive with the uncertainties inherent to galaxy
distances based on stellar evolution and the cosmic
distance ladder. This is similar to the situation for
globular clusters (Watkins et al. 2015b).

We have obtained here one of the most reliable constraints to
date on the DM density profiles of dwarf galaxies. The results
lessen the tension around the “cusp–core” problem and give
further credence to standard ΛCDM cosmology. Our study is
just a first step into the realm of 3D axisymmetric dynamics of
dSphs. The methods we used can be largely generalized to
other systems, and further studies on both Draco and other
galaxies are already underway. Hence, many substantial
advances are likely to be made in this area in the coming years.
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Appendix A
Density Profiles

We present here the analytical forms of the luminous and
DM density profiles considered throughout our work. Those49 For reference, a traditional NFW profile has an asymptotic cusp slope of −1.
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are, respectively, the Plummer (1911) density profile,
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where M∞ is the total tracer mass at infinity and a is a scale
radius (the same one depicted in Table 2). In projected
geometry, we have the Plummer axisymmetric surface density
profile, which we use in Section 2.1.1:
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where ξ is the projected angle on the sky (ξ= 0 on the
projected major axis) and ò is defined as ò≡ 1− b/a (b and a
are minor and major axes, respectively).

Back to the spherical profiles used for Jeans modeling, there
is the generalized Plummer model,
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where the new parameter γ< 3 measures the inner density
slope. The Kazantzidis et al. (2004b) profile is⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠( )
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The generalized (Navarro et al. 1997; NFW) profile is
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where M−2 stands for the cumulative mass within the radius
where the condition r = -d d rlog log 2 is satisfied. The
Einasto (1965) profile is ⎡⎣⎢ ⎛⎝ ⎞⎠ ⎤⎦⎥( )
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where n is the Einasto index. We also use the Sérsic
(1963, 1968) model,
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where R is the projected distance to the source center, Re is the
effective radius containing half of the projected luminosity, and
n is the Sérsic index. The term bn is a function of n, obtained by
solving the equation

( ) ( ) ( )gG =n n b2 2 2 , , A8n

where ( ) òg = - -a x t e dt,
x a t

0
1 is the lower incomplete gamma

function. This model does not have an exact analytical
deprojection into volume density (see Graham & Driver 2005
for a review). Instead, we use a combination of the most precise
analytical approximations for different domains of Sérsic

indices and radii. This combination is described thoroughly
in Appendix A from Vitral & Mamon (2021) and essentially
uses the methods from Lima Neto et al. (1999) plus Simonneau
& Prada (2004) and Vitral & Mamon (2020).

Appendix B
Scale-free Reference Models

B.1. Model Parameters and Distribution Functions

The Jeans models in Section 3 are largely based on
numerical solution of ordinary differential equations. This
means that it is somewhat complicated to quickly or
approximately explore how the intrinsic properties or predicted
observables of the models depend on its key parameters. For
the latter purpose we have found it more convenient to resort to
a simpler class of models, namely the scale-free models
introduced by de Bruijne et al. (1996).
These models consider the case of an axisymmetric luminous

density with axial ratio q and radial dependence ρå∝ r−κ,50

embedded in a spherical gravitational potential with circular
velocity vcirc∝ r− δ/2. The case of a logarithmic potential
corresponds to δ= 0, while a Kepler potential corresponds
to δ= 1.
For these potentials, there are different classes of phase-

space DFs that can yield hydrostatic equilibrium in the same
geometry and with the same globally averaged anisotropy, but
with a different variation of the anisotropy in the meridional (R,
z) plane. Specifically, de Bruijne et al. (1996) defined distinct
Case I and Case II DFs. In the Case I DFs (for which f (E, Lz)
models form a subset) the quantity βB, as defined in
Equation (5), is more tangential in the equatorial plane than
on the symmetry axis. In the Case II DFs, instead, βB is
constant throughout the system. The intrinsic and projected
quantities of interest for these DFs can be expressed
semianalytically, so that they can be computed quickly.
A software package called SCALEFREE originally written by

one of us (RvdM) for the de Bruijne et al. (1996) paper is
available for this purpose. The scale-free models have the
additional advantage that the full DF is known, so that higher-
order moments can be calculated in addition to the second-
order moments constrained by the Jeans equations (see
Appendix B.5).
The scale-free models exactly reproduce the asymptotic

large-radius limit of our Jeans models in Section 3, at intrinsic
and projected radii well in excess of the scale radii rå and rdark
of the luminous and DM (see, e.g., Table 2). But they also
provide a reasonable approximation at the intermediate radii
where we have PM measurements, if the power-law slopes κ
and δ are set to reproduce the average slopes of the luminous
density and circular velocity over those radii.
From exploration of the known properties of our best-fit

Jeans models in Section 3, we found that the combination of
κ= 2 and δ= 0 (i.e., an axisymmetric isothermal luminous
density in a spherical isothermal potential) is reasonable over
the relevant radial range in Draco. We show below some
predictions of such models as a function of the geometry
(spherical, or axisymmetric of a given axial ratio and
inclination), of the type of DF, and of the globally averaged
b̄B . The latter can be calculated numerically for given βp,

50 We relabel the parameter γ used in de Bruijne et al. (1996) here as κ, to
avoid confusion with the central cusp slope of the DM density defined in
Appendix A.
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where βp is a parameter that enters into the analytical DFs and
controls the amount of anisotropy in the models.51

B.2. Evaluation of Proper Motions

The de Bruijne et al. (1996) paper addressed the evaluation
of projected LOS velocities of the scale-free models, but not the
calculation of PMs, which were not observationally accessible
at the time. We therefore extended their formalism to POS
velocities.52

Figure 15 shows the general geometry of the problem, with
the same conventions as in Evans & de Zeeuw (1994). The
Cartesian frame (x, y, z) is aligned with the axisymmetric
luminous density, so that the z-axis is its symmetry axis. The (r,
θ, f) are spherical coordinates in this system. A second
Cartesian frame ( )¢ ¢ ¢x y z, , is introduced so that the ( )¢ ¢x y,
frame corresponds to the POS, with ¢ ºx y along the projected
major axis of the luminous density and ¢z along the LOS
direction. The viewing inclination i is the angle between the
z- and ¢z -axes. The coordinates are related through

( )¢ =x y, B1a

( )¢ = - +y x i z icos sin , B1b

( )¢ = +z x i z isin cos . B1c

The velocity along any coordinate direction in the ( )¢ ¢ ¢x y z, ,
frame can be expressed as a combination of radial, tangential,
and azimuthal components,

( )= + +q q f fC C C . B2r rdirv v v v

For the LOS direction dir= ¢z , the Ci terms are given by
Equation (49) in de Bruijne et al. (1996):

( )q f q= +C i isin sin cos cos cos , B3ar

( )q f q= -qC i icos sin cos sin cos , B3b

( )f= -fC isin sin . B3c

The velocities in the radial and tangential directions on the POS
can be written as
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From these relations it follows53 that the Ci terms for the POSr
and POSt directions are, respectively,

1. vPOSr:
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With these equations one can calculate the nth-order intrinsic
and projected moments for dir= (LOS, POSr, POSt) starting
from Equation (50) in de Bruijne et al. (1996),
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are uniquely determined by the DF and the model parameters.

B.3. Anisotropy Dependence of Observables

Leonard & Merritt (1989) and van der Marel & Anderson
(2010) both showed that in spherical geometry there is a direct
relation between the projected anisotropy σPOSt/σPOSr and the
intrinsic 3D velocity dispersion anisotropy s srtan , where

[( ) ]s s sº +q f 2tan
2 2 1 2. The scale-free models discussed

above allow us to demonstrate that a similar relation holds in
axisymmetric geometry as well.
Figure 16 shows the relation for three different geometries,

namely (a) spherical; (b) axisymmetric and edge-on, with the
same axial ratio as observed in projection of the sky (listed in
Table 1); and (c) axisymmetric and at viewing inclination
i= 57°.1, as in Section 4.2.2, which is close to the median

Figure 15. Geometry of the system: set of coordinate definitions. The
astronomical source is inclined by an angle i, and the LOS direction is the same
as the ¢z -direction depicted above.

51 We relabel the parameter β in de Bruijne et al. (1996) here as βp, to set it
apart from the distinct quantities b̄B and βJ already defined by Equations (5)
and (10).
52 The corresponding software can be found at https://gitlab.com/eduardo-
vitral/scalefree.
53 We computed the relations in Equations (B5a)–(B7) using the MATHEMA-
TICA software.
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expected inclination given Draco’s projected axial ratio. The
intrinsic axial ratio of the latter model is q= 0.608. The figure
shows mass-weighted averages over all position angles (either
on the POS or in the meridional (R, z) plane, respectively),
given that in axisymmetric models all quantities generally vary
as a function of position angle (see Appendix B.4). The two
different panels show the predictions for Case I and Case II
DFs, respectively. In the figures, σ is used as shorthand for
á ñ ;2 1 2v these quantities are independent of whether or not the
system has mean rotation, but the quantities are equal to the
dispersion only if there is no rotation.

In all cases shown, the projected σPOSt/σPOSr is simply a
diluted measure (i.e., brought closer to unity owing to
projection effects) of the intrinsic 3D ratio s srtan , with only
subtle variations depending on the assumed geometry and the
type of DF. The slope of the relation does vary with the radial
slope κ of the luminous tracer density distribution (not shown
here, but see van der Marel & Anderson 2010), but the relation
remains monotonic and one-to-one. This explains why, with
suitable modeling, our new PM measurements have the
constraining power to determine the intrinsic velocity disper-
sion anisotropy of Draco, even when not using LOS data.

B.4. Position-angle Dependence

For this paper, we have obtained new HST PM data
primarily along the projected major axis. Thus, while Figure 16
shows the quantity σPOSt/σPOSr integrated over all position
angles, it is important to assess also how the kinematics vary
with position angle in the models. The three rows of Figure 17
show SCALEFREE model predictions for the same three
geometries as in Figure 16. For each of the geometries we
show models with two different types of DF (Case I and
Case II), but always with b̄ = -0.20B , consistent with the best
fit from our axisymmetric Jeans models in Table 3. The left two
panels show the variations of the internal kinematics in the
meridional (R, z) plane, while the right two panels show the
variations of the projected kinematics in the POS.

The main difference in the internal kinematics predictions for
the axisymmetric models between the two types of DF is in the
variation of σr with q¢ (≡90°− θ). For either DF, σf increases

from the symmetry axis to the major axis (as before, we use in
this discussion σ as shorthand for á ñ2 1 2v ). This is a direct
consequence of the tensor virial theorem, which requires that
overall the system has more dynamical pressure parallel to the
equatorial plane than perpendicular to it, so as to support its
flattened shape. The right two panels show that in projection
σPOSr decreases from the major to the minor axis, while σPOSt
increases from the major to the minor axis. These behaviors are
nearly independent of inclination (at fixed projected axial ratio)
and of the specific type of DF. These variations are ignored
when a spherical model is constructed because the projected
quantities are then independent of position angle. This can
introduce important biases, as discussed in Section 4.2.4.
While Figure 17 pertains to a specific set of parameter

combinations, we verified that different parameter combina-
tions yield qualitatively similar conclusions. For example,
when considering flatter models with lower axial ratio (either
intrinsically or in projection), the variations from major to
minor axis become more pronounced than in Figure 17 but
otherwise remain qualitatively similar.

B.5. Higher-order Moments

Our analysis in this paper has been based on the second (and
first) velocity moments that enter into the Jeans equations of
hydrostatic equilibrium. However, for the observed LOS
velocities we have enough measurements, with small enough
error bars, to make it possible to also determine higher-order
moments. Specifically, we calculated both the fourth-order
Gauss-Hermite moment h4 (as in van der Marel & Franx 1993)
and the kurtosis KLOS of the overall LOS velocity distribution.
The kurtosis is defined here as

[ ] ( )= á ñ á ñ -K 3, B9LOS LOS
4

LOS
2 2v v

where, as before, á ñkv indicates a kth-order velocity moment.
We use all position angles on the sky and center the LOS
velocity distribution on the bulk systemic velocity listed in
Table 1. Hence, odd moments are generally statistically
consistent with zero. The observations then imply that
h4= 0.065± 0.036 and = K 0.21 0.25LOS . Both of these
quantities are positive, indicating that the LOS velocity
distribution is more centrally peaked than a Gaussian.
The second-order Jeans equations cannot be used to interpret

these measurements. However, the scale-free DF models
predict all higher-order moments á ñkv for any given set of
model parameters. Reconstructing the full velocity distribution
and Gauss–Hermite moments from the higher-order moments
is not a straightforward inversion problem (de Bruijne et al.
1996), so we restrict data–model comparisons here to the
kurtosis. Figure 18 shows the predicted kurtosis as a function of
the globally averaged Binney bB , defined by Equation (5). As
in Figure 16, we show predictions for different geometries,
with Case I DFs in the left panel and Case II DFs in the right
panel. We now also include a flatter axisymmetric model with
true axial ratio q= 0.45, which at viewing inclination 48°.3
projects to the observed axial ratio for Draco. The horizontal
orange-gray band shows the observed kurtosis with its
uncertainty. For reference, the vertical green band shows the
68% confidence band on bB for Draco from our axisymmetric
Jeans models (bottom row of Table 3).
The predictions in the figure show that more radially

anisotropic models predict more peaked LOS velocity

Figure 16. Anisotropy dependence of kinematics: projected anisotropy σPOSt/
σPOSr as a function of intrinsic 3D velocity dispersion anisotropy s srtan . Here
σ is used as shorthand for á ñv2 1 2. Mass-weighted averaged predictions over all
position angles are shown for scale-free models with κ = 2 and δ = 0 and for
Case I (left) and Case II (right) DFs, respectively. Each panel shows predictions
for three different geometries, namely (a) spherical, (b) axisymmetric and edge-
on, and (c) axisymmetric and at viewing inclination i = 57°. 1. The axisym-
metric models all have the same projected axial ratio as Draco. The projected
anisotropy in the POS is tightly related to the intrinsic anisotropy.
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distributions (higher kurtosis), as has been previously estab-
lished (e.g., van der Marel & Franx 1993). For the Case II DFs,
the predictions are more or less independent of geometry. But
for the Case I DFs, flatter axisymmetric models (seen at lower
inclinations) predict higher kurtosis values. Hence, higher-
order moments can help to determine both the viewing
inclination and the full structure of the DF. More sophisticated
dynamical modeling is required to fully exploit this information
(e.g., Chanamé et al. 2008). Nonetheless, we note here that an

axisymmetric Case I scale-free model at the median inclination
of 57°.1 predicts the observed =K 0.21LOS when b = -0.07B .
The latter is fully consistent with the constraints that we have
obtained from our axisymmetric Jeans models. Hence, there is
no reason to expect that detailed modeling of higher-order
moments would alter the conclusions about Draco’s velocity
anisotropy, and hence its mass distribution, that we have drawn
in this paper.
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