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The advancements in high-throughput technologies provide exciting opportunities to
obtain multi-omics data from the same individuals in a biomedical study, and joint anal-
yses of data from multiple sources offer many benefits. However, the occurrence of
missing values is an inevitable issue in multi-omics data because measurements such
as mRNA gene expression levels often require invasive tissue sampling from patients.
Common approaches for addressing missing measurements include analyses based on
observations with complete data or multiple imputation methods. In this paper, we pro-
pose a novel integrative multi-omics analytical framework based on p-value weight
adjustment in order to incorporate observations with incomplete data into the analysis.
By splitting the data into a complete set with full information and an incomplete set with
missing measurements, we introduce mechanisms to derive weights and weight-adjusted
p-values from the two sets. Through simulation analyses, we demonstrate that the pro-
posed framework achieves considerable statistical power gains compared to a complete
case analysis or multiple imputation approaches. We illustrate the implementation of
our proposed framework in a study of preterm infant birth weights by a joint analysis of
DNA methylation, mRNA, and the phenotypic outcome.
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1. INTRODUCTION

Advancements in high-throughput technologies have enabled the generation of large-
scale multi-omics data from multiple sources. Increasingly, multi-omics data such as DNA
sequences, copy number variations, methylation, miRNA, and gene expression are collected
from the same individuals in biomedical studies. The benefits of combining multiple data
sources and performing joint analyses with all available genomic information and the phe-
notypic outcome are multi-fold. First, different data types could reflect various aspects of the
underlying biological system (Song et al. 2020; Kristensen et al. 2014). Second, if multiple
data sources all pinpoint the same gene or pathway, then it is less likely to be a false posi-
tive. Third, combining data from various sources can lead to better statistical performance
in detecting signals among the noise.

In integrative multi-omics data analysis, mRNA gene expression often serves as the inter-
mediate variable in many underlying etiological mechanisms. Due to the fact that mRNA
measurements often require invasive tissue sampling from participants, it is common to
have a large portion of missing values in mRNA gene expression measurements as shown in
Fig. 1. A straightforward approach for handling missing values is to implement a complete
case analysis by removing observations with incomplete information (Guillermo et al. 2021;
Ramaswami et al. 2020; de Silva and Perera 2017). Another solution could be to apply impu-
tation methods Lin et al. 2016; Rubin 2004; Van Buuren and Groothuis-Oudshoorn 2011;
Troyanskaya et al. 2001; Shah et al. 2014. Multiple imputation (Rubin 2004) is a widely
used solution to the missing value problem. Multivariate imputation by chained equations
(MICE) (Van Buuren and Groothuis-Oudshoorn 2011) is a useful tool for implementing
multiple imputation to iteratively generate missing values from conditional distributions on
the basis of the observed data while considering the relationships between variables.

Imputation algorithms can provide adaptable solutions for dealing with missing informa-
tion. However, in the situation where there is a large proportion of missing values, imputation
approaches might not perform well (Yang et al. 2014; Yu et al. 2020). Multiple imputation
algorithms such as MICE can quickly become computationally intensive as the number of
variables with missing values increases (Ratolojanahary et al. 2019). Furthermore, impu-
tation methods mainly use information from single omics data rather than considering the
connections among multi-omics data, which can lead to biases in the final imputation (Lin
et al. 2016).

In this paper, we propose a novel integrative analytical framework using weighted p-
value adjustment approaches to incorporate both the complete and incomplete (with missing
mRNA gene expression measurements) observations in multi-omics analyses. The weighted
p-value adjustment approaches were proposed in the context of multiple hypothesis testing
to incorporate external information or prior knowledge while maintaining the type I error
rate (Roeder and Wasserman 2009). Several weighting procedures have been proposed in
the literature, such as weighted Bonferroni method for family-wise error rate (FWER) con-
trol (Roeder and Wasserman 2009; Li et al. 2013), weighted Benjamini–Hochberg (BH)
method (Genovese et al. 2006; Habiger 2017) and q-value method (Storey and Tibshirani
2003; Storey et al. 2004) for false discovery rate (FDR) control, and grouped FDR methods
(Ignatiadis and Huber 2021; Roquain and Van De Wiel 2009). To ensure the independence
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between p-values and the derived weights (Roeder and Wasserman 2009), the sample split-
ting strategy (Rubin et al. 2006; Roeder et al. 2007) provides a useful tool that uses a subset
of the data to generate weights and the remaining data to compute p-values.

In our proposed approaches, we split the samples into a complete set with full information
and an incomplete set with missing mRNA gene expression measurements. Two weighted
p-value mechanisms (general and reverse weighting schemes) are proposed. Compared to
integrative procedures that utilize Markov chain Monte Carlo such as iBAG (Wang et al.
2013), Bayesian integrative model (Fridley et al. 2012), multi-dataset integration (Kirk et al.
2012), and Bayesian consensus clustering (Lock and Dunson 2013), our proposed approach
is fast and computationally simple for a whole-genome study. Computational efficiency is
particularly critical for integrating multi-omics data since the interactions between multiple
data types grow exponentially with the number of variables considered in the study.

In this paper, we describe the proposed weighted p-value mechanisms in Sect. 2. We
demonstrate the advantages of our proposed approach compared to imputation algorithms
in simulation studies in Sect. 3. To illustrate the use of our proposed approaches, we apply
them to jointly analyze DNA methylation, gene expression, and phenotypic outcome in a
preterm infant birth weights study in Sect. 4. Finally, we conclude with a discussion in
Sect. 5.

2. MATERIALS AND METHODS

2.1. DATASETS AND DATABASES

The dataset considered in this paper came from a genetic association study for preterm
infants (Kashima et al. 2021) and can be accessed through Gene Expression Omnibus (GEO)
with accession number GSE110828. This study contains 157 observations with DNA methy-
lation and phenotypic outcome information. However, mRNA gene expression measure-
ments were collected for only 55 observations (65% missing). DNA methylation levels
were measured using the Ilumina HumanMethylation450 BeadChip for 410,735 cytosine–
phosphate–guanine (CpG) sites and reported after quantile normalization and background
correction. The mRNA gene expression levels of 46,789 transcripts were profiled using
the SurePrint G3 Human GE microarray 8×60K version 3.0 (Agilent Technologies). Tran-
scriptional activities were analyzed using GeneSpring 14.5 to perform probe filtering and
quantile normalization to report the gene expression signal levels.

2.2. MODELS

Let Y = (Y1, . . . , Yn)T be the vector of phenotypic outcome with n representing the
total number of subjects, X be the matrix of clinical covariates, and M = (M1, . . . , Mq)

be the matrix of DNA methylation levels of q CpG sites, where M j = (M1 j , . . . , Mnj )
T ,

j = 1, . . . , q, is the vector of methylation levels for the j th CpG site. Let G = (G1, . . . , Gd)

be the matrix of standardized mRNA gene expression data (mean = 0 and standard deviation
= 1) of d genes and Gl = (G1l , . . . , Gn1l)

T be the vector of expression levels for the lth gene
(l = 1, . . . , d) with n1 representing the number of subjects of gene expression data (n1 ≤ n).
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Figure 1. Diagram of the matrix form of the full data with complete DNA methylation M but incomplete gene
expression G .

All subjects can be split into two subsets: a complete set (Z (1) = (M(1), Y(1), X(1), G))
with n1 subjects where mRNA expression data can be observed and an incomplete set
(Z (2) = (M(2), Y(2), X(2))) with n2 subjects where the mRNA gene expression data are
completely missing. The total number of subjects is n = n1 + n2. Note that in some
situations, the covariates X may not be included in the study. In this case, the complete set
is Z (1) = (M(1), Y(1), G) and the incomplete set is Z (2) = (M(2), Y(2)). Figure 1 provides
a diagram of the matrix form of the data without the covariates X. A diagram illustrating
the data collection process is shown in Web Fig. 1 in Web Appendix A.

2.2.1. General Weight

In the complete set, Z (1), we consider the integrative analytical framework (IG) proposed
by Zhao et al. (2014) to integrate the DNA methylation, mRNA gene expression data, and
the phenotypic outcome to derive the p-value (pI G

j ) for testing the association between
the j th DNA methylation measurement ( j = 1, . . . , q) and the phenotypic outcome. Other
integrative analysis approaches can also be used instead. A detailed description of the IG
approach can be found in the paper authored by Zhao et al. (2014). Briefly, pI G

j is calculated
via two linear models formulated as follows:

E(Y (1)
i |Gi , X(1)

i ) = α0 + GT
i αG + (X(1)

i )T αX (1)

GT
i αG = β0 j + βM j M (1)

i j + (X(1)
i )T βX + ui j , (2)

where α0 and β0 j are the intercepts and αG is the coefficient describing the association
between mRNA gene expression and the outcome. The clinical covariates X may have a
direct effect on the outcome through the coefficient αX or an indirect effect via its association
with the gene expression G through the coefficient βX. Hence, they are included in both
Equation (1) and (2). The parameter of interest, βM j , measures the association between the
j th DNA methylation level and the phenotypic outcome via the regulation of mRNAs; and
ui j ∼ N (0, σ 2

u ) is the error term (i = 1, . . . , n1) with variance σ 2
u . Let α̂G and ̂βM j be

the estimates of αG and βM j . In practice, ̂βM j can be estimated via Equation (2) with α̂G

derived from Equation (1). Under the null hypothesis of no association between M j and
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Y (H0 : βM j = 0), the p-value for βM j is calculated as follows. First, a linear model for
the complete data in Equation (1) is fitted to obtain the estimate α̂G . The estimate α̂G is
used to compute GT

i α̂G , which is then regressed onto DNA methylation Mi j and covariates
Xi in Equation (2) to obtain β̂M j , the regression coefficient of DNA methylation at the j th

CpG site. The p-value for testing the association of the j th CpG site is obtained from the
t-statistic

β̂M j − 0

seβ̂M j

for H0 : βM j = 0 versus H1 : βM j �= 0, where seβ̂M j
is the standard error of β̂M j .

In the incomplete set, Z (2), we implement the linear model

Y (2)
i = γ0 j + γM j M (2)

i j + (X(2)
i )T γX + εi j , (3)

where εi j
i id∼ N (0, σ 2

ε ), i = 1, . . . , n2 and j = 1, . . . , q, is the error term with variance
σ 2

ε ; γ0 j is the intercept and γM j represents the association between j th methylation data
measurement and the phenotypic outcome; and γX is the vector of coefficients for the
covariates. Let γ̂M j be the estimate of γM j . The p-value (pL M

j ) can be derived based on γ̂M j

and var(̂γM j ) under the null hypothesis, γM j = 0. As described in Zhao et al. (2014), when
Equation (1) and (2) hold, we can plug Equation (2) into Equation (1), and hence, testing
the null hypothesis of γM j = 0 in equation (3) is equivalent of testing that of βM j = 0 in
Equation (2).

In the general weighting scheme, pL M
j derived from Z (2) is used to generate the weight.

As suggested by Li et al. (2013), we set wG j =
√

− log10(pL M
j ) when pL M

j < 0.05, and
set wG j = 1 otherwise. Since smaller p-values are associated with null hypotheses that are
more likely to be false, the proposed weights are anticipated to be positively correlated with
optimal weights and perform well (Habiger 2017). To control the type I error, the general
weights are then divided by the average weight w∗

G j
= wG j /wG (wG = 1/q

∑q
j=1 wG j ) to

ensure w∗
G = 1 (Genovese et al. 2006; Wasserman and Roeder 2006D). Finally, the adjusted

p-values for general weighting scheme can be calculated as p1 j = pI G
j /w∗

G j
.

2.2.2. Reverse Weight

The general weighting scheme is more effective when the missing rate of gene expression
data is low. When the missing rate is high (i.e., > 50%), we propose a reverse weighting
scheme to increase the power of identifying significant CpG sites. This approach to deriving
weights by a reverse weighting scheme is similar to the general weighting scheme but uses
Z (1) to obtain weights while deriving p-values using Z (2).

In Z (2), the weights are calculated in terms of pI G
j obtained from Z (1) by implementing

the IG model. The reverse weight is set to be wR j =
√

− log10(pI G
j ) when pI G

j < 0.05 and

wR j = 1 otherwise. Then the weights are adjusted by the average value as follows, w∗
R j

=
wR j /wR , where wR = 1/q

∑q
j=1 wR j , to ensure w∗

R = 1 (Genovese et al. 2006; Wasserman
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and Roeder 2006D). Finally, we derive the p-value adjusted by the corresponding reverse
weight, p2 j = pL M

j /w∗
R j

.

2.2.3. Omnibus Method

For the j th CpG site ( j = 1, 2, . . . , q), we obtain adjusted p-values, p1 j and p2 j from the
general and the reverse weighting scheme, respectively. We consider an omnibus approach,
the aggregated Cauchy association test (ACAT) (Liu et al. 2019; Liu and Xie 2020), to
combine the two adjusted p-values. The ACAT calculates the test statistic via a weighted
sum of Cauchy transformations of the component p-values:

T AC AT
j = (1 − λ) × tan{(0.5 − p1 j )π} + λ × tan{(0.5 − p2 j )π}. (4)

In equation 4, p1 j from the general and p2 j from the reverse weighting scheme are combined
for the j th CpG site and λ is 0 ≤ λ ≤ 1. Because the general scheme is more powerful
when the missing rate is low, while the reverse scheme becomes more effective when the
missing rate is greater than 50%, we set λ as the missing proportion of the gene expression
data. Therefore, the adjusted p-values from the general weighting scheme are emphasized
in studies with low missing rates and vice versa.

3. SIMULATION

3.1. SETTINGS

We conducted simulation studies to compare the performance of the proposed weighting
approaches to the IG method (Zhao et al. 2014), the popular MICE imputation (Van Buuren
and Groothuis-Oudshoorn 2011), and the K-nearest-neighbor (KNN) imputation method
(Batista and Monard 2002) under various scenarios. In this section, we use the notation γMG

to describe the DNA–gene association between DNA methylation loci and gene expressions,
and γGY to denote the association between gene expressions and the phenotypic outcome.
Since there were 157 observed subjects in the experimental dataset, we generated n = 150
samples in all scenarios and studied the power of models averaged over 1,000 simulation
iterations.

The following steps describe the data generation procedures for Scenarios I and II with
low-dimensional gene expression data. For the i th subject, we first generated data for q =
5 DNA methylation loci (Mi ) and r = 2 clinical covariates (Xi ) from standard normal
distributions. A single CpG site was selected to be the true underlying methylated CpG
site associated with the phenotypic outcome. We denote the methylation of this CpG site
by Mi1. A related simulation scenario where the phenotypic outcome is associated with
multiple CpG sites is presented in detail in Wed Appendix B. The results are similar to the
results presented here.

Then, we considered d = 8 genes with expression levels (Gi ), of which 3 genes were
simulated based on the underlying CpG site (Mi1) via the linear model,

Gi = γ0G + Mi1γMG + XT
i γXG + εi1, (5)
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where γMG is the vector of DNA–gene association; and εi1 ∼ N (0, I) and I is an identity
matrix. The values of the intercept (γ0G) were determined based on the mean expression
levels of randomly selected genes from the experimental dataset. The values of the elements
in the coefficient vectors (γXG) were all set equal to 0.5. The five other genes served as
unrelated signals and were generated from the normal distribution, N (μ0G, 1), where μ0G

was also determined by the mean expression level of a randomly picked gene from the
experimental dataset described in Sect. 4.

Finally, we simulated Yi based on the mRNA expression levels of the three modulating
genes, according to the second linear model,

Yi = γ0Y + GT
i γGY + XT

i γXY + εi2, (6)

where εi2 ∼ N (0, 1) is the error term with the variance of the phenotypic outcome being
set equal to 1. Here, the intercept (γ0Y ) was set equal to the mean birth weight score of
the preterm infants in the experimental dataset, and the associations between the clinical
covariates and the phenotypic outcome (γXY ) were all set equal to 0.5. Without loss of
generality, we also assumed the same values for all the elements in the vector γGY . After
generating n = 150 subjects, which is close to the sample size of the experimental dataset,
multiple records of gene expression levels were removed randomly.

3.1.1. Scenario I

In Scenario I, we set both γMG and γGY equal to 0. The missing proportion was set
to be 20%, 50%, and 70%. After obtaining the weight-adjusted p-values via the proposed
weighting schemes, we considered both the weighted Bonferroni method for FWER control
(Bland and Altman 1995) and the q-value method (Storey and Tibshirani 2003; Storey 2003;
Storey et al. 2004) for FDR control. The FWER was calculated as the proportion of times
that at least one significant CpG site was observed among all CpG sites. The FDR was
calculated as the ratio of falsely detected CpG sites after the q-value adjustment. The results
for FWER and FDR at the nominal level of 0.05 are reported in Table 1.

3.1.2. Scenario II

In this scenario, we examine the power of the proposed methods for identifying M1

under varying missing proportions in gene expression data and various combinations of
DNA–gene and gene–phenotype associations (γMG was set equal to 0, 0.1, 0.2, and 0.5,
and γGY was set equal to 0.1 and 0.2.) We calculate power of detecting M1 (the true DNA
methylation signal) over 1,000 simulation iterations.

3.1.3. Scenario III

In this scenario, we considered 1,000 mRNA expression measurements and assumed
that Mi1 was associated with Yi for the i th subject through the regulation of k = 5 genetic
pathways (fi ). The associations between Gi and fi could be estimated using a factor model
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(Baek et al. 2020),

Gi = Bfi + Ui , (7)

where fi ∈ Rk (k < d) is the vector of latent factors with cov(fi ) = Ik , Ui ∈ Rd is the error
term, and B ∈ Rd×k is the loading matrix describing the gene–factor associations. Here, d
is the number of mRNAs (d=1,000 in this simulation scenario).

For i th subject, five factors were first simulated based on Mi1 from the equation,

fi = Mi1γMG + XT
i γXG + εi1, (8)

where εi1 ∼ N (0, I), and γXG were set equal to 0.5. Second, Yi was generated based on
the fi from the equation,

Yi = γ0Y + fT
i γGY + XT

i γXY + εi2, (9)

where εi2 ∼ N (0, 1) is the error term, and γXY and γ0Y were set to the same values as the
low-dimensional cases.

In the last step, Gi were generated based on fi , Ui ∼ N (0, I), and B Baek et al. (2020).
We formed B = 1/

√
n × LT E where L ∼ N (0, I) and E is an n × k orthogonal matrix

formulated by the eigenvectors corresponding to the k largest eigenvalues of LLT . The
optimal k can be estimated by minimizing the cross-validated mean squared error (MSE)
(Owen and Perry 2009).

We performed the singular value decomposition (SVD) using the gene expression matrix
G to identify the latent pathways corresponding to the k largest eigenvalues. These latent
pathways are then used in Equations (1) and (2) in place of Gi to derive pI G

j (reducing
dimension from d to k).

Finally, we reported the empirical power of the underlying CpG site with methylation
for γMG ranging from 0 to 0.5. The gene–phenotype association γGY was set equal to 0.1
and 0.2, and the missing rate was 70%. Importantly, multiple imputation is computationally
infeasible in this high-dimensional scenario.

3.1.4. Competing Methods

Four competing methods were considered in the simulation studies: (1) complete case
studies using only the complete set with the integrative analytical framework (IG) (Zhao
et al. 2014), (2) KNN imputation algorithm (KNN impute)(Batista and Monard 2002) to
estimate the missing values using the mean of the nearest values of kth closest subjects,
(3) multivariate imputation via chained equations (MICE) method to estimate the missing
values by combining results derived from multiple imputed datasets, and (4) linear model
on all subjects of M and Y. In (2) and (3), the IG model was implemented to identify the
underlying CpG site after imputing the missing values in the gene expression data.

We implemented a 10 nearest-neighbor imputation method with the impute package
(Hastie et al. 2001) and applied the MICE algorithm with the mice package (Van Buuren
and Groothuis-Oudshoorn 2011) in R. The maximum number of iterations was set equal
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Table 1. Type I error control for FWER using weighted Bonferroni method and FDR using q-value method when
γMG = γGY = 0

KNN General Reverse Omnibus Linear
IG MICE Impute Weight Weight Method Model

20% FWER 0.037 0.010 0.045 0.037 0.048 0.047 0.053
FDR 0.037 0.010 0.052 0.037 0.049 0.053 0.057

50% FWER 0.063 0.013 0.061 0.061 0.060 0.065 0.053
FDR 0.062 0.013 0.061 0.062 0.059 0.077 0.057

70% FWER 0.028 0.026 0.044 0.027 0.045 0.048 0.053
FDR 0.031 0.027 0.050 0.030 0.040 0.054 0.057

Results were calculated from 1000 simulation iterations with n = 150

to 5 in MICE, and 5 datasets were generated for pooling results. Due to the intractable
computational time in the high-dimensional case, MICE was not implemented in Scenario
III.

3.2. SIMULATION RESULTS

Based on simulation Scenario I, Table 1 reports the FWER after the weighted Bonferroni
method and the FDR after q-value method of testing the CpG sites with γMG = γGY = 0
(no association with the outcome Y). The results show that our proposed methods and the
existing method maintained both FWER and FDR at the nominal 0.05 level.

Based on Simulation Scenario II, Fig. 2 presents the average power of the proposed
omnibus method and the competing methods to compare the performance for identifying
the underlying CpG site. In datasets with a high missing rate (70%), the proposed omnibus
method is more powerful than the IG model with the complete case analysis and the impu-
tation algorithms. For example, when γMG = γGY = 0.2, the proposed omnibus method
achieves the highest power, which is 10.5% higher than the IG model and 52.3% higher
than MICE. Furthermore, the proposed omnibus method (0.027 s) is much faster than the
MICE method (1.553 s).

In Web Appendix B, Web Fig. 2 presents the performance using the general weighting
scheme, the reverse weighting scheme, and the omnibus method. Based on our simulation
results, the general weighting scheme performs better in dataset with a low missing rate,
while the reverse weighting scheme performs better with a high missing rate (> 50%). We set
λ in the ACAT test statistic as the missing rate as described in Sect. 2.2.3. Our results show
that the proposed omnibus method demonstrates competitive performance under various
missing rates.

The performance of our proposed method in a high-dimensional case is illustrated in
Fig. 3. In this scenario, the missing rate was set equal to 70% to mimic that of the experimental
dataset considered in this paper. As shown in the power plots, the omnibus method achieves
competitive performance compared to other existing approaches. The KNN impute approach
performs the worst in this setting due to the curse of dimensionality.



W. Zhang et al.

Figure 2. Power comparisons of the omnibus method, MICE, KNN imputation, IG, and linear model for γMG
ranging in 0, 0.1, 0.2, and 0.5. The value of γGY was set equal to 0.1 or 0.2. The standard deviations of both γMG
and γGY were set equal to 1. Power was calculated from 1,000 simulation iterations with n = 150 .

Figure 3. Power curves for omnibus method and competing methods in high-dimensional case based on 1,000
simulation iterations with n = 150. The number of factors k = 5 was determined by the tenfold cross-validation.
The gene–phenotype association γGY was set to be 0.1 or 0.2 .

4. EXPERIMENTAL DATA ANALYSIS

We implemented our proposed omnibus weighting approach using the preterm infant data
(Kashima et al. 2021; Agha et al. 2016; Oken et al. 2003) described in Sect. 2.1. The infant
birth weight scores were used as the phenotypic outcome. The weight scores were calculated
by the normal quantile of the birth weights for each gestational age in the entire population
of newborn infants so that they are normally distributed, as described in Kashima et al.
(2021). The methylation levels were measured by β values ranging from 0 (completely
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Figure 4. Manhattan plot for cytosine–phosphate–guanine (CpG) sites associated with preterm infants’ birth
weights. The weighted p-values after logarithmic transformation (− log10 Pad j ) were used as the y-axis. The gray
solid line represents the family-wise error rate (FWER) threshold under the weighted Bonferroni method. Four
CpG sites with the strongest significant associations with the preterm infants’ birth weights were labeled with the
corresponding CpG site IDs .

unmethylated) to 1 (completely methylated) to indicate the intensity of methylation on
each CpG site (Kashima et al. 2021). The methylation intensities and gene expression
measurements were then quantile normalized before the analysis. In addition, the birth
weight scores were scaled to have a mean of 0 and a variance of 1.

The clinical covariates considered in this analysis included paternal age, maternal age,
paternal body mass index (BMI), maternal BMI, maternal smoking status before pregnancy,
and the gender of the infants. To correct for population stratification, we implemented the
surrogate variable analysis (SVA) (Leek and Storey 2007) to account for the unobserved
effect. The genomic inflation factor (van Iterson et al. 2017) was used after SVA for adjusting
the inflated p-values due to population stratification. The quantile–quantile plot for the
omnibus method presented in Web Appendix C suggests proper type I error control.

As described in Sect. 2.1, data was collected from 157 participants. However, mRNA gene
expression measurements were only available for 55 participants. In the complete dataset,
after normalizing the mRNA expression measurements, we implemented the dimension
reduction method described in Sect. 3.1.3 for 46,789 mRNA expression measurements. The
optimal number of factors was determined by minimizing the Wold-style tenfold cross-
validated MSE (Owen and Perry 2009).

For 410,735 CpG sites, we implemented our proposed weighting schemes one CpG site
at a time to derive the weighted p-values for identifying the association with infant birth
weights. The weighted p-values for all CpG sites with the corresponding chromosomes
are presented in Fig. 4. The top 15 CpG sites are listed in Table 2 with the corresponding
reference sequence (RefSeq) gene symbols. After implementing our proposed omnibus
method, none of the CpG sites was identified as significant with either the q-value method
or the weighted Bonferroni method.

Fifteen CpG sites are listed in Table 2 in ascending order of the p-values derived from the
omnibus method after SVA and the genomic inflation factor adjustment. In addition, based on
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Table 2. Top table for 15 CpG sites associated with birth weight scores of preterm infants with the smallest
weighted p-values derived from the proposed omnibus method

Rank Chromosome CpG site Gene name Weighted p-value q-value

1 11 cg04549076 PRG2 8.98e-07 0.295
2 4 cg14818154 ANTXR2 1.75e-06 0.295
3 20 cg26540123 WFDC3 2.16e-06 0.295
4 3 cg04127903 AHSG 8.81e-06 0.651
5 2 cg11074070 CTNNA2 1.13e-05 0.651
6 17 cg14655552 ACCN1 1.83e-05 0.651
7 12 cg17085352 HOXC13 2.10e-05 0.651
8 3 cg10805254 RYBP 2.20e-05 0.651
9 1 cg20801751 C1orf69 2.67e-05 0.651
10 17 cg07425985 ANKFY1 2.68e-05 0.651
11 17 cg24675735 MGAT5B 2.74e-05 0.651
12 8 cg22268164 TRHR 3.08e-05 0.651
13 10 cg23339629 TACR2 3.43e-05 0.651
14 7 cg10374862 MTERF 3.52e-05 0.651
15 14 cg07688213 BATF 4.38e-05 0.651

Chromosomes, CpG sites, UCSC RefSeq gene names, weighted p-values, and q-values are reported. The results
were adjusted for paternal age, maternal age, paternal BMI, maternal BMI, maternal smoking status before preg-
nancy, and the gender of infants

Figure 5. KEGG pathway enrichment analysis based on the weighted p-values using methylGSA Ren and Kuan
(2019). Presented here are pathways with unadjusted p-value < 0.05. After adjusting for multiple testing using the
Benjamini–Hochberg procedure, the only FDR significant pathway is bacterial invasion of epithelial cells (q-value
= 0.010) .
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the weighted p-value from all CpG sites, we performed a KEGG pathway enrichment anal-
ysis using the methylGSA algorithm in the gene set analysis for DNA methylation datasets
(Ren and Kuan 2019). Figure 5 presents twenty-one KEGG pathways with unadjusted p-
values less than 0.05. After adjusting for multiple testing using the Benjamini–Hochberg
procedure, we identified one enriched pathway: bacterial invasion of epithelial cells. Path-
ways reported by our analysis and Kashima et al. (2021) hint at common mechanisms that
are associated with low birth weights in preterm infants, such as the initiation of inflamma-
tory responses, cytokine–cytokine receptor interaction, coregulation of ErbB, and estrogen
signaling.

5. DISCUSSION

In this paper, we propose a novel framework to implement integrative analysis for multi-
omics data where the intermediate variables, such as mRNA gene expression measurements,
are completely missing for a large proportion of subjects. Existing multi-omics integrative
studies require removing missing records or applying data imputation techniques to prepare
a complete dataset for analysis. However, when the missing rate is high, especially higher
than 50%, the power of complete case analysis and imputation methods decreases drastically
due to the reduction in sample size. Our proposed framework utilizes a p-value weighted
adjustment and hence incorporates information from both complete and incomplete obser-
vations in the data.

The advantages of implementing the proposed framework in the multi-omics integrative
analysis are multi-fold. First, by incorporating the information from incomplete observa-
tions, our proposed approaches boost the power of multi-omics integrative analyses com-
pared to the existing methods. Second, our proposed approaches perform well even in situ-
ations with a large missing proportion of intermediate variables. Third, the two-component
weighting schemes combined in the omnibus test can provide flexibility in the implementa-
tion of multi-omics integrative analyses with missing rates ranging from 0 to 1. Furthermore,
our simulation analyses showed that the proposed method maintains proper FWER control
with the weighted Bonferroni method and FDR control with the q-value method. Accord-
ing to Storey and Tibshirani (2003) and Storey et al. (2004), the utilization of the q-value
method can also maintain FDR even with weak dependence structures between CpG sites.

In our proposed method, the two-component weighting schemes perform differently in
datasets with various missing rates. According to Sect. 3.2, the general weighting scheme
achieves greater power in cases where the missing rates are lower than 50%, while the
reverse weighting scheme achieves better performance when the missing rates are high. The
proposed omnibus method is effective in that it up-weights the general scheme in situations
where the missing rate is low and vice versa. The simulation studies show that the proposed
omnibus method demonstrates competitive results in both low- and high-missing rate situ-
ations. Our proposed methods are best suited when there is a large proportion of missing
records in the intermediate variables. In the situation when phenotypic outcomes or inde-
pendent variables are also missing, methods such as data imputations could be considered
in conjunction with our proposed methods.
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We implemented the proposed method in a birth weight study of preterm infants and
examined the CpG sites with DNA methylation that are associated with birth weights of
preterm infants via the regulation of gene expression. In practice, our analytical framework
can be directly applied to any continuous predictor variables (such as DNA methylation
levels) or discrete variables (such as SNP genotypes or DNA mutation status). Since the
measurements were generated via microarray experiments, we assumed that the intermediate
variables followed normal distributions. However, if the intermediate measurements are
generated by high-throughput RNA sequencing (RNAseq), preprocessing procedures such
as normalization by the sequencing depth and log transformation of the data, as described
in the limma (Cloonan et al. 2008) or voom (Law et al. 2014), could be applied to ensure
normality before implementing the weighting schemes.

In the experimental data analysis, we considered the model proposed by pediatric scien-
tists (Kashima et al. 2021) and did not include the interactions in this paper. However, as
was shown in Zhao et al. (2014), the proposed model in Equations (1) and (2) can be readily
modified to include interaction terms between gene expression, methylation, and clinical
covariates. Furthermore, in the situation when clinical covariates X are not included in the
study, Equations (1) and (2) could also be readily modified accordingly.

In this paper, we considered the approach proposed by Zhao et al. (2014) in our pro-
posed methods; other integrative analysis approaches could be easily adapted to our weight
adjustment framework. Compared to the two-stage approaches (the methylation model and
the transcription model) implemented by Kashima et al. (2021), the proposed unified inte-
grative analytic framework provides a straightforward way to control overall FDR at the
nominal level. The main contribution of our work here is to combine the information in both
complete and incomplete data through p-value weight adjustment for statistical power gain.
A major benefit of this approach is the ease of computation, which is becoming increasingly
important in big data analysis.

As discussed in Sect. 3.1.3, the implementation of SVD-based dimension reduction
techniques allows us to apply our integrative framework to datasets with high-dimensional
intermediate variables. Other variable selection approaches such as LASSO could also be
used to reduce the dimension of mRNA gene expression in the analysis. Another future
research area is the Cox model for survival outcomes in the integrative framework. Applying
the Cox regression in our proposed integrative framework would require the implementation
of estimating equation theory and to derive the asymptotic distribution of the estimates
(Zhao et al. 2014). Therefore, further work is needed to develop multi-omics integration
frameworks for survival outcomes.

6. SUPPORTING INFORMATION

Web Appendices and figures referenced in this paper are included as online sup-
plemental materials. R-package is available at Github repository (https://github.com/
zhangwenda1990/integrative).
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