
HOLE RADII FOR THE KAC POLYNOMIALS AND DERIVATIVES
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Abstract. The Kac polynomial

fn(x) =
nX

i=0

⇠ix
i

with independent coe�cients of variance 1 is one of the most studied models of random
polynomials.

It is well-known that the empirical measure of the roots converges to the uniform measure
on the unit disk. On the other hand, at any point on the unit disk, there is a hole in which
there are no roots, with high probability. In a beautiful work [13], Michelen showed that the
holes at ±1 are of order 1/n. We show that in fact, all the hole radii are of the same order.
The same phenomenon is established for the derivatives of the Kac polynomial as well.

1. Introduction

Approximation by roots of polynomials of coe�cients {�1, 0, 1} is a classical and interest-
ing topic in analysis, with fascinating pictures and conjectures. For instance, it follows from
a result of Borwein and Pinner [3, Theorem 1] that for any given ⇣ of d-th root of unity,
the distance from it to any z 6= ⇣ from the set of zeros of {�1, 0, 1} polynomials of degree n
which vanish at ⇣ of order at most k (i.e. f (k+1)(⇣) 6= 0) can be bounded by

|z � ⇣| � e
�1 (k!)d�(d)/2e

(n+ 1)(k+1)d�(d)/2e+1
,

where �(d) is the usual Euler phi-function. This result is asymptotically optimal. On the
other hand, the smallest distance can be sub-exponentially small as n ! 1 if ⇣ is on the
unit circle and not a root of unity (such as when ⇣ is an algebraic number of small Mahler
measure), see for instance [3, Corollary 1, Theorem 3]. The situation at 1 is also interesting,
it was shown from the same paper [3, Corollary 4, Theorem 6] that |1� z| �

1
nk+2 (which is

again near optimal) for any real roots z of {�1, 0, 1} polynomials of degree n which vanish
at 1 of order exactly k. Note that the distance is significantly larger if z is purely complex.
See Figure 1. We also refer the reader to [3, 5, 19] and the references therein for further
interesting discussions and problems.

Our goal in this note is to study the distances from some probabilistic viewpoint. More
generally, consider the Kac polynomial

f0,n(x) =
nX

i=0

⇠ix
i
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Figure 1. Zeros of all polynomials with ±1 coe�cients and degree at most
eight ([3]).

where ⇠i are independent (not necessarily identically distributed), real-valued random vari-
ables with mean 0 and variance 1.

For this random polynomial, it is well-known that the empirical distribution of the roots
converges to the uniform distribution on the unit circle ([9]). So, the roots concentrate near
the unit circle. And in particular, the real roots concentrate near ±1. However, precisely at
±1, there are holes that do not contain any roots. It was conjectured by Shepp and Vanderbei
[20], and confirmed recently by Michelen [13, Theorem 1.2] that the typical distance of real
roots to 1 for random Kac polynomial is of order O(1/n).

Theorem 1.1. Let ⇠i be iid with mean zero and variance one. For any constant � > 0, there
exists a constant C > 0 so that

P(there exists a real root in [1� C/n, 1 + C/n]) � 1� �

for all n su�ciently large.

It is not hard to establish the lower bound and conclude that the hole at 1 (and �1) has
radius of order ⇥(1/n).

How about the hole radius at other points on the unit circle? A recent result by Cook,
Yakir, Zeitouni and the first author [6] (see also Michelen and Sahasrabudhe [14] for the
Gaussian case) shows that the distance between the zero set of fn,0 and the unit circle is of
order 1

n2 . So, this is a lower bound for all hole radii.
From the result in [3] and Figure 1, it is natural to predict that the hole radii exhibit

di↵erent orders at di↵erent points. For instance, in Figure 2 (source [2]) where all roots
of polynomials with coe�cients ±1 and degree at most 24, one can observe that there are
largest holes at ±1, smaller holes possibly at the roots of unity, and barely visible holes
at other points. In Figure 3, we draw sampled roots of random Kac polynomials with ±1
coe�cients and degree n = 1000. Note that as n = 1000 is large compared to 24, the holes
are no longer visible in the figure unless being zoomed in properly. However, the striking
similarities between the two figures would suggest that the same observation would remain
true for large n. In Figure 4, we display sampled roots of the first derivative polynomial
with ±1 coe�cients and degree n = 1000 which has the same pattern as in Figure 3.
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Figure 2. All roots of polynomials with coe�cients ±1 and degree at most
24 (source [2])

Figure 3. Sampled roots of the Kac polynomials with Rademacher coe�cients

Disproving this prediction, in this paper, we show that for every point ⇣ on the unit circle,
the precise order of the hole at ⇣ is ⇥(1/n) (although the implied constant might depend on
⇣). Moreover, we show that this holds also for the derivatives of the Kac polynomial. For a
positive integer constant ⇢, let us define

f⇢,n =
nX

i=0

ai,⇢,n⇠iz
i

where ai,⇢,n = (1 + on(1))i(i� 1) . . . (i� ⇢+ 1) 2 R with the on(1) converges to 0 uniformly
in i, as n ! 1 and ⇢ fixed. For any set S ⇢ C, let Nf⇢,n(S) be the number of roots of
f⇢,n in S. If ⇢ = 0, we get the Kac polynomial. The ⇢-th derivative of the Kac polynomial
corresponds to x

�⇢
f⇢,n(x). Here is our main result.

Theorem 1.2. Let ⇢ be any positive integer constant. Assume that the random variables
⇠i are independent (and not necessarily identically distributed) with mean 0, variance 1 and
bounded (2 + "0)-moment for some "0 > 0. For every ⇣ 2 S

1, the radius of the hole at ⇣ is
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Figure 4. Sampled roots of the first derivative of Kac polynomials with
Rademacher coe�cients

⌦(1/n). In particular, for every " > 0, there exist positive constants c⇢ and C⇢ such that for
all ⇣ 2 S

1

[Upper bound] P(Nf⇢,n(B(⇣, C⇢/n)) > 0) � 1� " (1)

and

[Lower bound] P(Nf⇢,n(B(⇣, c⇢/n)) = 0) � 1� " (2)

for su�ciently large n.

As far as we understand, the proof in [13] is restricted to real roots and cannot be applied
to complex roots.

For a somewhat related discussion, we refer to [4], [10, Section 5.1.3] and the references
therein, where the authors studied the probability there is no zero in a given region.

2. Proof sketch and ingredients

For the upper bound, we need to split into two cases: ⇣ = ±1 and ⇣ 6= ±1. For the former,
we show that the proof in [13] can be adapted to cover f⇢,n for general ⇢ 2 N. This method
relies on the simple observation that if a polynomial f changes sign in an interval on the
real line then it has at least one root there. Since this observation only holds for real roots,
it merely works for ⇣ = ±1 where one can reduce the upper-bound problem to showing that
there exists a real root in the interval centered at ⇣ and radius C/n. For ⇣ 6= ±1, we need a
di↵erent approach.

To this end, we note that the expected value ofNf⇢,n(B(⇣, C/n)) being large does not imply
that the number of real roots is non-zero with high probability. However, it can be achieved
via Chebyshev inequality if we can show that its variance is of smaller order than its mean
squared. To do so, the high-level idea is to show that f⇢,n, after rescaled properly, converges
to a Gaussian process, say f1 which we can estimate the growth of Var (Nf1(B(⇣, C/n))),
the variance of the number of roots of f1 in the ball, in terms of C and then pass the
result back to f⇢,n. So, we consider a rescaled version of f⇢,n by zooming in at the local
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neighborhood of ⇣ as follows

gn(z) =
1

n⇢+1/2
f⇢,n

✓
⇣ +

1

n
⇣z

◆
.

When the random variables are Gaussian, we know that gn is a Gaussian process with
covariance

Egn(z)gn(w) =
1

n2⇢+1

nX

k=0

|⇣|
2k
a
2
k,⇢,n

✓
1 +

1

n
z

◆k ✓
1 +

1

n
w̄

◆k

=
1

n2⇢+1

nX

k=0

a
2
k,⇢,n

✓
1 +

1

n
z

◆k ✓
1 +

1

n
w̄

◆k

.

We note that ⇣ disappears on the right-most side and could potentially account for why the
hole radii are of the same order.

To show the cancellation Var (Nf1(B(⇣, C/n))) = o (E (Nf1(B(⇣, C/n))))2, we note that
the variance is an integral of its correlation functions, namely an integral of ⇢2(z1, z2) �
⇢1(z1)⇢1(z2) which is in turn of order |z1 � z2|

�1. So, when z1 and z2 are far away, the
integrand is small, accounting for the cancellation. This suggests that the numbers of roots
in far-away regions are weakly correlated which is consistent with previously established
results for real roots ([17]) and radius of complex roots ([6, 15, 16]). To handle the diagonal
region when z1 is near z2, we come up with a simple argument, though via rather long and
tedious algebraic manipulations, showing that the function ⇢2(z1, z2)�⇢1(z1)⇢1(z2) is indeed
continuous everywhere and hence the diagonal has negligible contribution, see Lemma 4.5.
To carry out this strategy, we actually replace the whole ball B(⇣, C/n) by a subset, denoted
by UC , which is a thin strip along the unit circle. This is a major device that allows us to
reduce from |z1 � z2| to |Im(z1) � Im(z2)| which reduces the dimension and facilitates the
rather elegant proof that follows.

To pass from f1 to f⇢,n, we need to show some sort of uniform integrability ofNf1(B(⇣, C/n).
For that, we adapt a double Taylor expansion argument used in [12] (see Lemma 4.6).

Finally, to establish the lower bound (2), we will show that the expected number of roots
in the ball B(⇣, c/n) is small for su�ciently small c and then apply Markov’s inequality. The
derivation of the expected number of roots is first reduced to the Gaussian setting when
all coe�cients ⇠i are iid standard Gaussian, via the universality properties of the random
polynomials. To do the calculation for the Gaussian case, there are two possible ways. The
first way is to directly apply the classical Kac-Rice formula to f⇢,n. The second way, which
is what we perform here, is to derive it through f1 using the limits that we already establish
for the upper bound.

Notations. For the rest of the paper, to simplify the notation, we will often drop the
subscript ⇢. For instance, we write fn in place of f⇢,n. For a function f , let Z(f) = {z 2 C :
f(z) = 0} be the zero set of f .

We use standard asymptotic notations under the assumption that n tends to infinity. For
two positive sequences (an) and (bn), we say that an � bn or bn ⌧ an if there exists a
constant C such that bn  Can. If |cn| ⌧ an for some sequence (cn), we also write cn ⌧ an.
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If an ⌧ bn ⌧ an, we say that bn = ⇥(an). If limn!1
an
bn

= 0, we say that an = o(bn). We
also write that an = OC(bn) if the implied constant depends on a given parameter C.

3. Proof of Theorem 1.2: upper bound for ⇣ = ±1

When ⇣ = ±1, Michelen [13] already showed the stated upper bound for the Kac polyno-
mial f0,n. We will show that this proof can be easily adapted to cover the general case f⇢,n.
We assume that ⇣ = 1 as the case ⇣ = �1 is completely similar. It su�ces to show that with
probability � 1� ", there is at least one root of f⇢,n in the interval J := [1� C/n, 1 + C/n]
for some large constant C. Let f0,n be the ⇢-th anti-derivative of z�⇢

f⇢,n, then

f0,n =
nX

i=0

(1 + o(1))⇠iz
i

is basically the Kac polynomial (if disregarding the 1+ o(1) terms). By interlacing, this can
be deduced from showing that there are at least ⇢+ 1 roots of f0,n in the same interval. To
this end, we show that we can find (⇢ + 1) sub-intervals of J each of which observes a sign
change of f0,n and hence contains at least one root.

Consider the rescaled polynomial

hn(x) =
1
p
n
f0,n(1 + x/n), x 2 R.

Let M be a large constant and x1, . . . , xM be deterministic points in J . By [13, Lemma 5]
(which is a rather direct application of the Lindeberg-Feller Central Limit Theorem), the
random vector (hn(x1), . . . , hn(xM)) converges to the Gaussian vector (h(x1), . . . , h(xM))
where h is a centered, real Gaussian process with covariance

Eh(x)h(y) =

Z 1

0

e
(x+y)t

dt.

(In fact, in [13], this result is established for the Kac polynomial without the 1 + o(1) terms
as above but the proof can easily go through without changes when these terms are present.)

Let M = (⇢ + 1)K where K is a large constant to be chosen. By [13, Lemma 6], there
exists a constant � > 0 such that any centered Gaussian vector (Z1, . . . , ZK) with variances
EZ2

i
= 1 for all i and covariances |EZiZj|  � for all i 6= j satisfies

P(all Z1, . . . , ZK have the same sign)  2�K+2
.

Direct calculation shows that if y = ↵x with x > 1 and ↵ > 1 then
�����E

h(x)h(y)p
Varh(x)Varh(y)

����� = o↵!1(1).

So, for a given K, by taking ↵ su�ciently large, we can make this number smaller than �.
We then take xi = ↵

i�1, i = 1, . . . ,M . So, for j = 0, . . . , ⇢,

P(all h(xjK+1), . . . , h(xjK+K) have the same sign)  2�K+2
.

And so, for su�ciently large n,

P(hn does not have any real roots in [1 + xjK+1/n, 1 + xjK+K/n])  2�K+3
.
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By the union bound, the probability that hn has less than ⇢+ 1 real roots in [1 + x1/n, 1 +
xM/n] (which is a union of ⇢+1 such intervals above) is at most (⇢+1)2�K+3. By choosingK
su�ciently large so that this number is smaller than ", we obtain the desired tail probability.

4. Proof of Theorem 1.2: upper bound for ⇣ 6= ±1

We want to show that there exists a constant C such that with probability at least 1� ",
there is at least one root of f⇢,n in the ball B(⇣, 2C/n). For a su�ciently small constant
� > 0 depending only on ⇢, we consider the strip ⇣ + ⇣UC/n that goes along the unit circle
where UC = (��, �) ⇥ (�C,C) ⇢ B(0, 2C). Since this strip is a subset of B(⇣, 2C/n), it
su�ces to show that with probability at least 1� ", there is at least one root of f⇢,n in UC .
The use of UC in place of the ball allows us to derive the upper bound using much simpler
arguments because for z1, z2 2 UC , they are either very close or |z1 � z2| ⇡ |y1 � y2| where
yi is the imaginary part of zi and is a real number!

Since the upper bound at ±1 has been proved in Theorem 1.1, it su�ces to assume that
⇣ 6= ±1.

4.1. The setup. Consider the following rescaled version of fn, centered around ⇣

gn(z) =
1

n⇢+1/2
f⇢,n

✓
⇣ +

1

n
⇣z

◆
, z 2 UC . (3)

The proof consists of the following steps.

(1) Construct a Gaussian process g1 that shall be the limit of gn.
(2) Show that for all " � 0, there exists C such that

P(Ng1(UC) = 0)  ". (4)

(3) When the random variables ⇠i are iid standard Gaussian, show that on UC , gn weakly
convergences to g (see Subsection 4.5)

gn
w
�! g. (5)

(4) Show that for each positive integer k,

ENk

gn
(UC) ! ENk

g1(UC) (6)

for general ⇠i (not necessarily Gaussian).
(5) Show that this implies

P(Ngn(UC) = 0) ! P(Ng1(UC) = 0). (7)

These steps are carried out in Sections 4.2, 4.3, 4.5, 4.6, 4.7, respectively.

4.2. Construct g1. We have for all z, w 2 UC ,

Egn(z)gn(w) =
1

n⇢+1

nX

k=0

|⇣|
2k
a
2
k,⇢,n

(1 +
1

n
z)k(1 +

1

n
w̄)k

= (1 + on(1))
1

n
(1 +

1

n
z)⇢(1 +

1

n
w̄)⇢

@
2⇢

@z⇢@w̄⇢

nX

k=0

(1 +
1

n
z)k(1 +

1

n
w̄)k

= (1 + on(1))
@
2⇢

@z⇢@w̄⇢

(1 + 1
n
z)n+1(1 + 1

n
w̄)n+1

� 1

n
�
(1 + 1

n
z)(1 + 1

n
w̄)� 1

� .
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where we used |⇣| = 1. When ⇢ = 0, we have

Egn(z)gn(w)
n!1
���!

1

z + w̄
(exp(z + w̄)� 1) =

Z 1

0

e
(z+w̄)t

dt = F (z + w̄).

where

F (u) :=

Z 1

0

e
tu
dt =

e
u
� 1

u
. (8)

Similarly, for all ⇢, we have

Egn(z)gn(w)
n!1
���!

@
2⇢

@z⇢@w̄⇢
F (z + w̄) = F

(2⇢)(z + w̄) =

Z 1

0

t
2⇢
e
t(z+w̄)

dt.

Moreover, since ⇣ 6= ±1,

Egn(z)gn(w) = (1 + o(1))
@
2⇢

@z⇢@w⇢

⇣
2n+2(1 + 1

n
z)n+1(1 + 1

n
w)n+1

� 1

n
�
⇣2(1 + 1

n
z)(1 + 1

n
w)� 1

� n!1
���! 0

as the denominator blows up (with its derivatives bounded) and the numerator is bounded.
So, it is logical to define the tentative limit g1 to be

g1(z) =

Z 1

0

t
⇢
e
zt
dB(t)

where B is the standard complex Brownian motion B(t) = 1p
2
(B1(t) +

p
�1B2(t)) with

B1, B2 being independent standard real Brownian motions. We shall prove in Section 4.5
that gn indeed converges to g1 when ⇣ 6= ±1.

4.3. Upper bound the hole radius for g1. In this section, we want to show that there
exists at least one root of g1 in UC with high probability (as C ! 1). By Chebyshev’s
inequality, it su�ces to show the following

VarNg1(UC) = oC!1(ENg1(UC))
2
. (9)

Indeed, we have

P(Ng1(UC) = 0) 
VarNg1(UC)

(ENg1(UC))2
= o(1).

So, by choosing C to be su�ciently large, the probability of g1 having no roots can be
arbitrarily small.

To prove (9), let us evaluate ENg1(UC). Since g1 is a Gaussian analytic function ([10]),
we can use Kac-Rice formula for Gaussian case. By [10, Corollary 3.4.2], we have

ENg1(UC) =

Z

UC

⇢1(z) :=

Z

UC

V � T
2
S
�1

⇡S
dz =

Z

UC

V S � T
2

⇡S2
dz

where
S(u) = E|g1(z)|2, T (u) = Eg01(z)g1(z), V (u) = E|g01(z)|2.

Let u = z + z̄ 2 R. By the definition (8) of F , we have

S = F
(2⇢)(u).

Taking derivative gives
T = F

(2⇢+1)(u), V = F
(2⇢+2)(u).
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Since

F (u) =
e
u
� 1

u
=

1X

k=0

u
k

(k + 1)!
,

we have

F
(k)(0) =

1

k + 1
.

Therefore,

F
(⇢+2)(0)F (⇢)(0)�

�
F

(⇢+1)(0)
�2

6= 0. (10)

And so, V (0)S(0)�T
2(0) = 1

(2⇢+1)(2⇢+3) �
1

(2⇢+2)2 > 0. By choosing � to be su�ciently small,

it holds that for all |u|  2�, we have

V (u)S(u)� T
2(u) = ⇥⇢(1) and S(u) = ⇥⇢(1). (11)

By the definition of UC , u = z + z̄ 2 [�2�, 2�] for all z 2 UC . Hence, ⇢1(z) = ⇥⇢(1) which
implies

ENg1(UC) = ⇥(C).

It remains to show the following.

Lemma 4.1. We have

VarNg1(UC) ⌧ C logC. (12)

Proof of Lemma 4.1. Let N = Ng1(UC). We have

Var(Ng1(UC)) = EN(N � 1) + EN = EN(N � 1) +O(C).

So, it su�ces to show that EN(N � 1) ⌧ C logC. By [10, Corollary 3.4.2],

EN(N � 1) =

Z

UC

Z

UC

⇢2(z1, z2)� ⇢1(z1)⇢1(z2)dz1dz2 (13)

where ⇢2 is the 2-point correlation function which can be derived using the following formula
(also [10, Corollary 3.4.2])

⇡
2
⇢2(z1, z2) =

per(V � T S
�1
T

⇤)

det(S)
, (14)

with S, T ,V being 2⇥ 2 matrices defined by

Si,j = Eg(zi)ḡ(zj) =

Z 1

0

t
2⇢
e
tuijdt = F

(2⇢)(uij), uij = zi + z̄j

Tij = Eg0(zi)ḡ(zj) =

Z 1

0

t
2⇢+1

e
tuijdt = F

(2⇢+1)(uij)

Vij = Eg0(zi)g0(zj) =

Z 1

0

t
2⇢+2

e
tuijdt = F

(2⇢+2)(uij).

Since T
⇤ = T , by letting W = T S

�1
T

⇤, we have

Wij = =
2X

k=1

2X

`=1

Tik(S
�1)k`T`j (15)
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where

det(S)S�1 =

✓
S22 �S12

�S21 S11

◆
.

We present a straightforward observation from the forms of ⇢1 and ⇢2 that if S, T ,V ,W

were diagonal (namely, setting the o↵-diagonal entries to 0), then ⇢2(z1, z2)�⇢1(z1)⇢1(z2) = 0.
Motivated by this, we will show that for z1 and z2 far away, the above matrices are indeed
diagonally dominated, and hence ⇢2(z1, z2) � ⇢1(z1)⇢1(z2) is small. In particular, we show
the following.

Lemma 4.2 (O↵ diagonal). For all D0 satisfying 10  D0  C, let DC,D0 = {(z1, z2) 2 U
2
C
:

|z1 � z2| � D0}. For all (z1, z2) 2 UC, it holds that

|⇢2(z1, z2)� ⇢1(z1)⇢1(z2)| ⌧ |z1 � z2|
�1
.

In particular, we have
ZZ

DC,D0

⇢2(z1, z2)� ⇢1(z1)⇢1(z2)dz1dz2 ⌧ C log(C/D0).

When z1 and z2 are close, we show that ⇢2(z1, z2)� ⇢1(z1)⇢1(z2) is bounded and hence the
contribution from the diagonal region is negligible.

Lemma 4.3 (Diagonal). There exists a constant M , independent of C, such that for all
(z1, z2) 2 U

2
C
, we have

|⇢2(z1, z2)� ⇢1(z1)⇢1(z2)| ⌧ M.

This implies ZZ

U2
C\DC,D0

(⇢2(z1, z2)� ⇢1(z1)⇢1(z2)) dz1dz2 ⌧ CD0.

Assuming these lemmas, letting D0 = logC, we get that VarN(UC) ⌧ C logC as desired.
This finishes the proof of Lemma 4.1. ⇤

Proof of Lemma 4.2. We write xi = Re(zi) and yi = Im(zi) for i = 1, 2. Note that |xi|  �

for all i. By (11),
|S11| = ⇥(1), |S22| = ⇥(1). (16)

Let |z1 � z2| = D, we have D � D0 � 10. So, |y1 � y2| � D and hence

|u12| = |u21| � D. (17)

For all u 2 C, since (uF (u))(k) = kF
(k�1) + uF

(k) and since the left-hand side equals eu for
all k, we get

F
(k)(u) =

e
u
� kF

(k�1)(u)

u
.

For u12 = z1 + z̄2, we have |Re(u12)|  2� and so,

|e
u12 | = e

Re(u12) = O(1).

Hence, by (17) and induction in k, it holds for all k  ⇢ that

|F
(k)(u12)| ⌧

1

|u12|

which gives
|S12| = O(D�1). (18)
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Similarly, |S21| = O(D�1).
Thus,

det(S) = S11S22 �O(D�2) = (1 +O(D�2))S11S22 = ⇥(1).

And so,

S
�1 =

 
1+O(D�2)

S11
O(D�1)

O(D�1) 1+O(D�2)
S22

!
.

Similarly, the same bounds as in (16) and (18) hold for T and V in place of S.
Using these bounds, we get that W12 is the sum of 4 terms each of which is of order

O(D�1). So, |W12| = O(D�1). Likewise, |W21| = O(D�1).
Similarly,

W11 = O(D�1) + T
2
11(S

�1)11 = O(D�1) +
(1 +O(D�2))T 2

11

S11
=

T
2
11

S11
+O(D�1) = ⇥(1)

and

W22 =
T

2
22

S22
+O(D�1) = ⇥(1).

Therefore,
|(V �W)12| = O(D�1), |(V �W)12| = O(D�1).

And

(V �W)11 = V11 �
T

2
11

S11
+O(D�1) = ⇥(1)

where in the last equality, we used (11). So,

per(V �W) =

✓
V11 �

T
2
11

S11

◆✓
V22 �

T
2
22

S22

◆
+O(D�1).

All in all, we get

⇡
2
|⇢2(z1, z2)� ⇢1(z1)⇢1(z2)| =

⇣
V11 �

T
2
11

S11

⌘⇣
V22 �

T
2
22

S22

⌘
+O(D�1)

(1 +O(D�2))S11S22
�

⇣
V11 �

T
2
11

S11

⌘⇣
V22 �

T
2
22

S22

⌘

S11S22

=
O(D�1)

⇥(1)
= O(D�1).

Integrating this over DC,D0 we get
ZZ

DC,D0

⇢2(z1, z2)� ⇢1(z1)⇢1(z2)dz1dz2 ⌧

ZZ

DC,D0

|z1 � z2|
�1
dz1dz2

⌧

Z

UC

dz1

Z

w2[�2�,2�2]⇥[�2C,2C],|w|�D0

|w|
�1
dw

= ⇥(C

Z
C

D0

y
�1
dy) = ⇥(C log(C/D0)).

This finishes the proof of Lemma 4.2. ⇤

Proof of Lemma 4.3. Since ⇢1(z1)⇢1(z2) is bounded over U2
C
, we only need to show the bound-

edness of ⇢2. By the first part of Lemma 4.2, we can reduce to the region

Udiag := {(z1, z2) 2 U
2
C
: |z1 � z2| ⌧ 1}.
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Since ⇢2 can be written as a function of (uij)i,j=1,2, it is also a function of x1, x2 and �y :=
y1 � y2 where we recall xi = Re(zi) and yi = Im(zi). Note that Udiag is a subset of {(z1, z2) :
|x1|  �, |x2|  �,�y ⌧ 1} which is a compact set. So, if we can show that ⇢2 is in fact a
continuous function of x1, x2 and �y := y1 � y2, we conclude that it is bounded Udiag. To
show continuity, note that the only possible singularities of ⇢2 occur when det(S) = 0. Thus,
it su�ces to show the following.

Lemma 4.4. If det(S(z1, z2)) = 0 then z1 = z2.

Lemma 4.5. For all z 2 UC, ⇢2(z1, z2) is continuous at (z1, z2) = (z, z).

Proving these lemmas will complete the proof of Lemma 4.3. ⇤

Proof of Lemma 4.4. Assume that det(S(z1, z2)) = 0. Since S(z1, z2) is a 2 ⇥ 2 (complex)
matrix, there exist deterministic complex numbers w1, w2 such that

(w1 w2)S(w1 w2)
T = 0.

In other words,
E|w1g(z1) + w2g(z2)|

2 = 0.

Since the left-hand side equals
R 1

0 |w1e
tz1 +w2e

tz2 |
2
dt, we conclude that the integrand is 0 for

almost all t (and hence for all t by continuity). Therefore, it is necessary that z1 = z2. ⇤

Next we give a direct proof for Lemma 4.5, where we note that there might be other ways
to justify it by using the methods of [1, 15, 16].

Proof of Lemma 4.5. We need to show that for all z 2 C (or just UC if needed),

lim
(",�)!(0,0)

⇢2(z, z + "+ i�) exists.

We shall perform Taylor expansion to the order 2 of the functions appearing in (14). Here
z1 = z = x+ iy, z2 = z + "+ i�. Then

u11 = 2x =: u, u12 = (2x+ ")� i�, u22 = 2x+ 2".

Let
a = F

(2⇢)(u), b = F
(2⇢+1)(u), c = F

(2⇢+2)(u), d = F
(2⇢+3)(u), e = F

(2⇢+4)(u).

So,
S11 = F

(2⇢)(u) = a,

S22 = F
(2⇢)(u+ 2") ⇡ a+ 2"b+ 2"2c,

S12 = S21 = F
(2⇢)(u+"�i�) ⇡ a+("�i�)b+

("� i�)2

2
c =

✓
a+ "b+

"
2
� �

2

2
c

◆
�i (�b+ "�c) .

That is

S ⇡

0

@
a

⇣
a+ "b+ "

2��
2

2 c

⌘
� i (�b+ "�c)

⇣
a+ "b+ "

2��
2

2 c

⌘
+ i (�b+ "�c) a+ 2"b+ 2"2c

1

A . (19)

The denominator of ⇢2 is

det(S) = S11S22 � S12S21 ⇡ a(a+ 2"b+ 2"2c)�

✓
a+ "b+

"
2
� �

2

2
c

◆2

� (�b+ "�c)2

= 2"2ac� "
2
b
2
� ("2 � �

2)ac� �
2
b
2 + o("2 + �

2) ⇡ ("2 + �
2)(ac� b

2).
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Note that by (11), ac� b
2
6= 0.

Since T and V are similar to S, we get

T ⇡

0

@
b

⇣
b+ "c+ "

2��
2

2 d

⌘
� i (�c+ "�d)

⇣
b+ "c+ "

2��
2

2 d

⌘
+ i (�c+ "�d) b+ 2"c+ 2"2d

1

A

and

V ⇡

0

@
c

⇣
c+ "d+ "

2��
2

2 e

⌘
� i (�d+ "�e)

⇣
c+ "d+ "

2��
2

2 e

⌘
+ i (�d+ "�e) c+ 2"d+ 2"2e

1

A .

Note that the numerator of (14) for ⇢2 equals

per(V �W) =
1

det(S)2
per((detS)V � (detS)W).

So far, (14) becomes

⇡
2
⇢2 ⇡

per((detS)V � (detS)W)

("2 + �2)3(ac� b2)3
=:

per(Y)

("2 + �2)3(ac� b2)3
.

Next, we write down (detS)W . We have

(detS)W11 = T11S22T11 � T12S21T11 � T11S12T21 + T12S11T21

(detS)W12 = T11S22T12 � T12S21T12 � T11S12T22 + T12S11T22

(detS)W21 = T21S22T11 � T22S21T11 � T21S12T21 + T22S11T21

(detS)W22 = T21S22T12 � T22S21T12 � T21S12T22 + T22S11T22

So,

Y11 = ("2 + �
2)(ac� b

2)c� (T11S22T11 � T12S21T11 � T11S12T21 + T12S11T21)

= ("2 + �
2)(ac� b

2)c� b
2(a+ 2"b+ 2"2c)

+2bRe

✓✓
b+ "c+

"
2
� �

2

2
d

◆
+ i (�c+ "�d)

◆✓✓
a+ "b+

"
2
� �

2

2
c

◆
� i (�b+ "�c)

◆

�a

✓
b+ "c+

"
2
� �

2

2
d

◆2

� a (�c+ "�d)2

= ("2 + �
2)(ac� b

2)c� b
2(a+ 2"b+ 2"2c)

+2b

✓✓
b+ "c+

"
2
� �

2

2
d

◆✓
a+ "b+

"
2
� �

2

2
c

◆
+ (�c+ "�d) (�b+ "�c)

◆

�a

✓
b+ "c+

"
2
� �

2

2
d

◆2

� a (�c+ "�d)2 .

Grouping the terms with ", �, "�, "2, �2 and smaller order terms together, we get

Y11 = "
�
�2b3 + 2b3 + 2abc� 2abc

�
+ "

2
�
(ac� b

2)c+ b
2
c+ abd� ac

2
� abd

�

+�
2
�
(ac� b

2)c� b
2
c� abd+ 2b2c+ abd� ac

2
�
+O("3 + "�

2 + "
2
� + �

3)

= O("3 + "�
2 + "

2
� + �

3).
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We now try to accomplish the same estimate for the other three entries of Y . We have

Y22 = ("2 + �
2)(ac� b

2)
�
c+ 2"d+ 2"2e

�
� (T22S11T22 � T22S21T12 � T21S12T22 + T21S22T12)

= ("2 + �
2)(ac� b

2)
�
c+ 2"d+ 2"2e

�
� a

�
b+ 2"c+ 2"2d

�2

+2
�
b+ 2"c+ 2"2d

�
Re

✓✓✓
b+ "c+

"
2
� �

2

2
d

◆
+ i (�c+ "�d)

◆

✓✓
a+ "b+

"
2
� �

2

2
c

◆
� i (�b+ "�c)

◆�

�
�
b+ 2"c+ 2"2d

�✓
b+ "c+

"
2
� �

2

2
d

◆2

�
�
b+ 2"c+ 2"2d

�
(�c+ "�d)2 .

So,

Y22 = ("2 + �
2)(ac� b

2)
�
c+ 2"d+ 2"2e

�
� a

�
b+ 2"c+ 2"2d

�2

+2
�
b+ 2"c+ 2"2d

�✓✓
b+ "c+

"
2
� �

2

2
d

◆✓
a+ "b+

"
2
� �

2

2
c

◆
+ �

2 (c+ "d) (b+ "c)

◆

�
�
a+ 2"b+ 2"2c

�✓
b+ "c+

"
2
� �

2

2
d

◆2

�
�
a+ 2"b+ 2"2c

�
�
2 (c+ "d)2

Comparing this with Y11, we get

Y22 = Y11 + ("2 + �
2)(ac� b

2)
�
2"d+ 2"2e

�
+ (2"b3 + 2"2b2c� 4"2ac2 � 4"2abd� 4"abc)

+2
�
2"c+ 2"2d

�✓✓
b+ "c+

"
2
� �

2

2
d

◆✓
a+ "b+

"
2
� �

2

2
c

◆
+ (�c+ "�d) (�b+ "�c)

◆

�
�
2"b+ 2"2c

�✓
b+ "c+

"
2
� �

2

2
d

◆2

�
�
2"b+ 2"2c

�
�
2 (c+ "d)2 +O("3 + "�

2 + "
2
� + �

3)

= O("3 + "�
2 + "

2
� + �

3) + (2"b3 + 2"2b2c� 4"2ac2 � 4"2abd� 4"abc)

+2
�
2"c+ 2"2d

�
(b+ "c) (a+ "b)�

�
2"b+ 2"2c

�
(b+ "c)2

which gives

Y22 = O("3 + "�
2 + "

2
� + �

3) + (2"b3 + 2"2b2c� 4"2ac2 � 4"2abd� 4"abc)

+2
�
2"c+ 2"2d

� �
ab+ "b

2 + "ac
�
�
�
2"b+ 2"2c

� �
b
2 + 2"bc

�

= O("3 + "�
2 + "

2
� + �

3) + (2"b3 + 2"2b2c� 4"2ac2 � 4"2abd� 4"abc)

+
�
4"abc+ 4"2b2c+ 4"2ac2 + 4"2abd

�
�
�
2"b3 + 6"2b2c

�

= O("3 + "�
2 + "

2
� + �

3).
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Finally,

Y12 = ("2 + �
2)(ac� b

2)

✓✓
c+ "d+

"
2
� �

2

2
e

◆
� i (�d+ "�e)

◆

�(T11S22T12 � T12S21T12 � T11S12T22 + T12S11T22)

= O("3 + "�
2 + "

2
� + �

3) + ("2 + �
2)(ac� b

2)c

�b
�
a+ 2"b+ 2"2c

�✓✓
b+ "c+

"
2
� �

2

2
d

◆
� i (�c+ "�d)

◆

+

✓✓
b+ "c+

"
2
� �

2

2
d

◆
� i (�c+ "�d)

◆2✓✓
a+ "b+

"
2
� �

2

2
c

◆
+ i (�b+ "�c)

◆

+b
�
b+ 2"c+ 2"2d

�✓✓
a+ "b+

"
2
� �

2

2
c

◆
� i (�b+ "�c)

◆

�a
�
b+ 2"c+ 2"2d

�✓✓
b+ "c+

"
2
� �

2

2
d

◆
� i (�c+ "�d)

◆
.

So,

Y12 = O("3 + "�
2 + "

2
� + �

3) + ("2 + �
2)(ac� b

2)c

�ab

✓
b+ "c+

"
2
� �

2

2
d� i (�c+ "�d)

◆
� 2"b2(b+ "c� i�c)� 2"2b2c

+b

✓
b+ "c+

"
2
� �

2

2
d� i (�c+ "�d)

◆✓
a+ "b+

"
2
� �

2

2
c+ i (�b+ "�c)

◆

+"c ((b+ "c)� i�c) (a+ "b+ i�b) +
"
2
� �

2

2
dab

�i�c ((b+ "c)� i�c) (a+ "b+ i�b)� i"�abd

+b
2

✓
a+ "b+

"
2
� �

2

2
c� i (�b+ "�c)

◆
+ 2"bc (a+ "b� i�b) + 2"2abd

�ab

✓
b+ "c+

"
2
� �

2

2
d� i (�c+ "�d)

◆
� 2"ac (b+ "c� i�c) + 2"2abd
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giving

Y12 = O("3 + "�
2 + "

2
� + �

3) + ("2 + �
2)(ac� b

2)c

�ab

✓
b+ "c+

"
2
� �

2

2
d� i (�c+ "�d)

◆
� 2"b2(b+ "c� i�c)� 2"2b2c

+b
2

✓
a+ "b+

"
2
� �

2

2
c+ i (�b+ "�c)

◆
+ "bc (a+ "b+ i�b) +

"
2
� �

2

2
abd

�i�bc (a+ "b+ i�b)� i"�abd

+"bc (a+ "b+ i�b) + "
2
c
2 (a+ "b+ i�b)� i"�ac

2 +
"
2
� �

2

2
dab

�i�bc (a+ "b+ i�b)� i"�ac
2
� �

2
ac

2
� i"�abd

+b
2

✓
a+ "b+

"
2
� �

2

2
c� i (�b+ "�c)

◆
+ 2"bc (a+ "b� i�b) + 2"2abd

�ab

✓
b+ "c+

"
2
� �

2

2
d� i (�c+ "�d)

◆
� 2"ac (b+ "c� i�c) + 2"2abd

= O("3 + "�
2 + "

2
� + �

3).

Since the product of any two terms in {"
3
, "�

2
, "

2
�, �

3
} is bounded by ("2+ �

2)3, we yield the
continuity of ⇢2. ⇤

4.4. More on Ngn(UC) and Ng1(UC). Before moving on the next section to show the
convergence of gn to g1 and their number of roots, we will first show that Ngn(UC) have
uniformly bounded higher moments.

Lemma 4.6. There exists a constant A = A(C) such that the following holds. For any
` � 0, we have

EN `

gn
(UC)  (A`)`.

Proof. Let k � A` for some large constant A. We want to bound the probability that
Ngn(UC) � k. We divide UC into O(C⌘

�2) (possibly overlapping) open balls Bi = B(ci, ⌘)
centered at ci of radius ⌘, which is chosen to be su�ciently small. Then there exists i such
that Bi contains at least s = k⌘

2
/C roots. Then by Hermite interpolation, as gn is analytic

with probability one, we have

|gn(ci)| 
1

s!
⌘
s sup
z2B(ci,⌘)

|g
(s)
n
(z)|. (20)

By Taylor expanding g
s

n
(z) around ci, we obtain for any m � 0 (we later choose m = log n),

|g
(s)
n
(z)| 

s+m�1X

j=s

|g
(j)
n (ci)|

(j � s)!
⌘
j�s + sup

w2B(ci,⌘)

|g
(s+m)
n (w)|

m!
⌘
m
. (21)

For each j, g(j)n (ci) is a Gaussian random variable with mean 0 and variance equals that of
1

nj+⇢+1/2f
(j)
n (⇣ + 1

n
⇣ci), which is of order

(1 + o(1))
1

n2j+2⇢+1

nX

h=j

h
2(h� 1)2 . . . (h� j + 1)2a2

h,⇢,n
|⇣ +

1

n
⇣ci|

2h�2j = OC(1)
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where we used |⇣ + 1
n
⇣ci|

j
 (1 + 2C/n)n  e

2C = OC(1).
So, by Gaussianity, for all Mj � 1,

P(|g(j)
n
(ci)| � Mj)  e

�Mj .

Finally, for the supremum term, we observe

sup
w2B(ci,⌘)

|g
(s+m)
n

(w)| ⌧
1

ns+m+⇢+1/2

nX

h=s+m

h(h� 1) . . . (h� s�m+ 1)|ah,⇢,n||⇠h|(|ci|+ ⌘)h

⌧
1

n1/2

nX

h=1

|⇠h|.

Note that if we hadn’t used another round of Taylor expansion in (21) and just applied the

above bound to |g
(s)
n (z)| and take supremum, the term n

�1/2
P

n

h=1 |⇠h|, which can be as large
as

p
n, would be too big to handle. Here, we performed (21) so that the extra term ⌘

m
/m!

would swallow the n
�1/2

P
n

h=1 |⇠h|. Indeed, for an M0 to be chosen,

P(
nX

h=1

|⇠h| � M0n)  nP(|⇠h| � M0)  ne
�M0 .

Thus,
P( sup

w2B(ci,⌘)
|g

(s+m)
n

(w)| � n
1/2

M0) ⌧ ne
�M0 .

Combining all of these events, we conclude that with probability at least 1 � ne
�M0 �P

s+m�1
j=s

e
�Mj , we have

sup
z2B(ci,⌘)

|g
(s)
n
(z)| ⌧

s+m�1X

j=s

Mj

(j � s)!
⌘
j�s +

n
1/2

M0⌘
m

m!
.

On this event,

|gn(ci)| ⌧
1

s!
⌘
s

 
s+m�1X

j=s

Mj

(j � s)!
⌘
j�s +

n
1/2

M0⌘
m

m!

!

which only happens with probability at most

OC(1)
1

s!
⌘
s

 
s+m�1X

j=s

Mj

(j � s)!
⌘
j�s +

n
1/2

M0⌘
m

m!

!

since gn(ci) is a Gaussian random variable with variance ⇥C(1). All together, we get that
the probability that N `

gn
(UC) � k is at most (up to a constant depending on C),

C

⌘2

"
1

s!
⌘
s

 
s+m�1X

j=s

Mj

(j � s)!
⌘
j�s +

n
1/2

M0⌘
m

m!

!
+

s+m�1X

j=s

e
�Mj

#
+ ne

�M0

for any choice of ⌘, M0,Mj, with s = k⌘
2
/C. For instance, we choose s = 8`, we get

⌘ =
p
8C`p
k



q
8C
A
. By setting

Mj = s log
1

⌘
+ ⌘

�(j�s)/2
, M0 = 2` log k + log n,
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we obtain the tail probability of

C

⌘2


1

s!
⌘
s

✓
e
p
⌘ +

n
1/2

M0⌘
m

m!

◆
+ ⌘

s

�
+ k

�2`
.

Sending m ! 1, the term with m goes to 0, so we end up with

⌘
s�2 + k

�2`
⌧ (C`)4`k�4`+1 + k

�2`
.

So,

EN `

gn
(UC) ⌧ (A`)` + `

1X

k=A`

k
`�1P(Ngn(UC) � k)

⌧ (A`)` + `

1X

k=A`

�
(C`)4`k�3` + k

�`�1
�
⌧ (A`)`

as desired.
⇤

4.5. Convergence of gn to g1 when ⇠̃i are iid N (0, 1). 1 Now, we prove (5). We first
start with two simple results for the Gaussian models.

Lemma 4.7. With probability one, gn and g1 do not have double roots in UC.

Proof. For gn, if it has a double root then fn also has a double root. As this is a polynomial
of degree n, if fn(z) and f

0
n
(z) have common roots then the resultant must have zero deter-

minant. But the resultant is a non-degenerate multivariate function of the Gaussians, so it
is zero with probability zero.

For g1(z), for any ↵ > 0, we divide UC into O(C↵
�2) balls Bi of radius ↵. We will show

that the probability there exists i such that Ni, the number of zeros in Bi, is greater than
2 is of order O(↵4), from which we see that the given probability will be bounded by O(↵2)
after taking union bound. Indeed, using the boundedness of ⇢2 in Lemma 4.3,

P(Ni � 2)  E(Ni(Ni � 1)) =

Z

Bi⇥Bi

⇢2(z1, z2)dz1dz2  O(|Bi|⇥ |Bi|) = O(↵4).

Sending ↵ to 0, we conclude that the probability that g1 has double roots is 0. ⇤

Our next simple result is the following.

Claim 4.8. With probability one, gn(z) and g1 do not have roots on the boundary @UC of
UC.

Proof. We will show for g1 as the treatment for gn is similar. From (11), we saw that for
all ↵ > 0 su�ciently small, ⇢1(z) = O(1) for all z 2 UC + B(0,↵). Let N be the number of
roots in @UC +B(0,↵), then

P(N � 1)  EN =

Z

@UC+B(0,↵)

⇢1(z)dz  OC(↵).

Sending ↵ to 0, we obtain the claim. ⇤

1We reserve the notation of ⇠i for random variables of general distribution (in the spirit of Theorem 1.2),
while for Gaussian we use ⇠̃i.
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Our treatment below is similar to [11, Section 4] where instead of real roots, we consider
complex roots. First, let H be the set of all analytic function on the entire complex plane.
We endow H with the topology of uniform convergence on the compact sets, which can be
generated by the complete separable metric

d(f, g) =
X

k

1

2k
kf � gkD̄k

1 + kf � gkD̄k

,

where D̄k = {z 2 C : |z|  k} and kfkK = sup
z2K |f(z)|.

Lemma 4.9. Let AC be the set of all f 2 H which do not have multiple roots in UC and do
not have roots over the boundary of UC. Then the set AC is open.

Proof. This follows from Hurwitz’s theorem. Indeed, consider a sequence (fn)n2N inH, which
converges to some f 2 AC locally uniformly. We will show that fn 2 AC for su�ciently large
n. Let R > 0 be large such that UC ⇢ DR = {z : |z| < R}. Let z1, . . . , zd be the collections
of all zeros of f in DR with multiplicities m1, . . . ,md. Let ↵ > 0 be su�ciently small such
that the open disks zi +D↵ are disjoint, and do not intersect the boundary of the open sets
DR and of UC , except when zi are on one of these boundaries. By Hurwitz’s theorem for
sequence of (locally convergent) analytic functions, there exists n0 such that for all n � n0,
fn has exactly mk zeros in zk +D↵. Now if zi 2 UC , then as f 2 AC , we must have mi = 1,
and fn has exactly one zero in zi +D↵. Thus, fn 2 AC for all n � n0. ⇤

Lemma 4.10. The mapping f ! ZUC (f) = {z 2 UC : f(z) = 0} to the space of locally
finite point measures on UC endowed with the vague topology is continuous on AC.

Proof. This also follows from Hurwitz’s theorem with the same argument as in the proof of
Lemma 4.9, by letting the radius ↵ tend to zero. ⇤

Lemma 4.11. We have the following weak convergence (of random elements with values in
the metric space H)

gn
w
�! g1.

Proof. By Prokhorov’s theorem, it su�ces to verify convergence in finite dimensional and
tightness. Let z1, . . . , zk be complex numbers. We first observe that the convergence in distri-
bution of the Gaussian vector (gn(z1), . . . , gn(zk)) to the Gaussian vector (g1(z1), . . . , g1(zk))
already follows from our previous computations verifying the convergences of Egn(zi)gn(zj)
and Egn(zi)gn(zj) to Eg1(zi)g1(zj) and Eg1(zi)g1(zj), respectively.

We need to verify tightness, for this, it su�ces to show that for any R > 0, there exists
CR < 1 such that

sup
n

sup
|z|R

E|gn(z)|
2
< CR.

However, this is clear as

E|gn(z)|
2 = (1 + on(1))

@
2⇢

@z⇢@w̄⇢

(1 + 1
n
z)n+1(1 + 1

n
w̄)n+1

� 1

n
�
(1 + 1

n
z)(1 + 1

n
w̄)� 1

�
���
w=z

.

⇤

Theorem 4.12. We have that Ngn(UC) ! Ng1(UC) in distribution and for each k 2 N,
limn!1 ENk

gn
(UC) = ENk

g1(UC).
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Proof. We have that gn ! g1 weakly, they are analytic and with probability one, they all
belong to AC . By Lemma 4.10, the point process ZUC (gn) converges to ZUC (g1) weakly, and
hence the number of zeros Ngn(UC) converges to Ng1(UC) in distribution. In particular, for
all m 2 N, pn,m := P(Ngn(UC) = m) ! P(Ng1(UC) = m) := pm as n ! 1. By Fatou’s
lemma and Lemma 4.6, it holds for all ` 2 N that

EN `

g1(UC)  lim inf
n

EN `

gn
(UC)  (A`)`. (22)

Fix k 2 N, we have for a large constant M ,
��ENk

gn
(UC)� ENk

g1(UC)
��



M�1X

m=0

m
k
|pnm � pm|+ ENk

gn
(UC)1Ngn (UC)�M + ENg1(UC)1Nk

g1 (UC)�M



M�1X

m=0

m
k
|pnm � pm|+ 2 sup

n̂

�
EN2k

gn̂
(UC)

�1/2
P (Ngn̂

(UC) � M)1/2 by Jensen’s inequality



M�1X

m=0

m
k
|pnm � pm|+ 2(Ak)k

r
A

M
by (22) and Markov’s inequality.

Letting M and n go to infinity, we obtain the convergence in moments. ⇤

4.6. Convergence for the number of real roots. In this section, we prove (6). In other
words, we prove the following convergence of the number of roots UC . Note that the random
variables are not necessarily Gaussian here.

The following generalizes Theorem 4.12 to non-Gaussian random variables.

Theorem 4.13. Let C be a fixed positive number. For all k � 0, we have

ENk

gn
(UC) ! ENk

g1(UC)

as n ! 1.

Let g̃n be the version of gn when the random variables ⇠i are iid standard Gaussian. By
Theorem 4.12, we have

ENk

g̃n
(UC) ! ENk

g1(UC). (23)

We note that the same proof holds with UC replaced by UC +B(0,↵).

Proof. Note that the number of roots of gn in UC is the same as the number of roots in the
original function fn in the set ⇣ + 1

n
⇣UC , by (3). For a small constant ↵, let ' be a test

function approximating the indicator of (UC)k, in particular, we let ' be a smooth function
such that

1(UC)k  '  1(UC+B(0,↵))k (24)

and |O
a
'(z)| ⌧ 1 for all multi-indices a with 0  |a|  2k + 4.
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By [7, Theorem 2.4] 2 applied to the function G = ' and the centers z1 = · · · = zk = ⇣,
we get

������
E

X

⇣i1 ,...,⇣ik
2Z(gn)

'(n(⇣i1/⇣ � 1), . . . , n(⇣i1/⇣ � 1))

�E
X

⇣i1 ,...,⇣ik
2Z(g̃n)

'(n(⇣i1/⇣ � 1), . . . , n(⇣i1/⇣ � 1))

������
⌧ n

�c

where c > 0 is a small constant. Here, we note that the transformation z := n(⇣i/⇣ � 1)
is just the inverse of the rescaling map ⇣i = ⇣ + 1

n
⇣z that brings the neighborhood of ⇣ to

UC . We note that when ' is replaced by 1(UC)k , the term under the expectation becomes
N

k(UC). So, we have from (24) that

ENk

gn
(UC)  ENk

g̃n
(UC +B(0,↵)) +O↵(n

�c).

Using (23), we obtain

lim sup
n!1

ENk

gn
(UC)  lim sup

n!1
ENk

g̃n
(UC +B(0,↵)) = ENk

g1(UC +B(0,↵)).

Sending ↵ to 0, we obtain

lim sup
n!1

ENk

gn
(UC)  lim sup

↵!0
ENk

g1(UC +B(0,↵)) = ENk

g1(UC)

where the last equality follows from the dominated convergence theorem, knowing that
ENk

g̃1(UC + B(0,↵)) < 1 for some ↵ > 0 (by (22)). Similarly, we get the reverse direction
and conclude the proof. ⇤

4.7. Upper bound the hole radius for gn. In this section, we show the following theorem.

Theorem 4.14. The random variables Ngn(UC) converges to Ng1(UC) in distribution as
n ! 1. In particular, we have (7):

P(Ngn(UC) = 0) ! P(Ng1(UC) = 0).

Here, we recall that since the random variables Ngn(UC) are discrete random variables
supported on N, convergence in distribution means convergence of the probability density
P(Ngn(UC) = i), as i varies.

Proof. By Theorem 4.13, Ngn(UC) converges to Ng1(UC) in moments. By (22) and the Car-
leman’s criteria (see [8]), Ng1(UC) is uniquely determined by its moments. Thus, we infer
that Ngn(UC) converges to Ng1(UC) in distribution. ⇤

2or perhaps a slightly readable [18, Theorem 4.3] which was written for the Kac polynomial but it holds
also for the derivatives of the Kac polynomial.
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5. Proof of Theorem 1.2: Lower bound

We want to show that for any " > 0 ,there exists c = c(", ⇣) such that

E(Nfn(B(⇣, c/n)))  ". (25)

Without loss of generality, we assume that " < 1/100 and c < ".
The first step is to reduce to the Gaussian case, via universality results. Consider the

Gaussian version of fn,

f̃n = f̃⇢,n =
nX

i=0

ai,⇢,n⇠̃iz
i

where ⇠̃i are iid standard Gaussian.
Let G be a smooth function such that approximates the indicator of the ball, or more

specifically, 1B(⇣,c/n)  G  1B(⇣,2c/n) and ||O
a
G||1 = O(na) for all a  3. We now apply

a universality property of fn established in [7, Theorem 2.3]. This theorem applied to the
function G states that the linear statistics E

P
w2Z(fn)

G(w) is universal, i.e.,

E
X

w2Z(fn)

G(w)� E
X

w2Z(f̃n)

G(w) ⌧ n
��

for a constant � independent of n and ⇣.
Using this, we obtain

E(Nfn(B(⇣, c/n)))  E
X

w2Z(fn)

G(w) = E
X

w2Z(f̃n)

G(w) + o(1)

 E(N
f̃n
(B(⇣, 2c/n))) + o(1).

Thus, it su�ces to prove that

E(N
f̃n
(B(⇣, 2c/n)))  "/2. (26)

In other words, it su�ces to prove for the Gaussian case. To this end, we let Bc = B(0, 2c)
and define the functions gn and g1 as before. We apply the Kac-Rice formula to g1 to get

ENg1(Bc) =

Z

Bc

⇢1(z).

By (11), we have for all z 2 Bc, ⇢1(z) ⌧ 1. Thus,

ENg1(Bc) ⌧ c
2
 "/4.

By the same argument as for UC (noting that Bc ⇢ UC for small c and for C � c), we obtain
the same limit as in Theorem 4.12. So, we get

lim
n!1

ENgn(Bc) = ENg1(Bc)  "/4.

So, by choosing n to be su�ciently small, we obtain (26) as desired.
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