HOLE RADII FOR THE KAC POLYNOMIALS AND DERIVATIVES
HOI H. NGUYEN AND OANH NGUYEN

ABSTRACT. The Kac polynomial
i=0

with independent coefficients of variance 1 is one of the most studied models of random
polynomials.

It is well-known that the empirical measure of the roots converges to the uniform measure
on the unit disk. On the other hand, at any point on the unit disk, there is a hole in which
there are no roots, with high probability. In a beautiful work [13], Michelen showed that the
holes at +£1 are of order 1/n. We show that in fact, all the hole radii are of the same order.
The same phenomenon is established for the derivatives of the Kac polynomial as well.

1. INTRODUCTION

Approximation by roots of polynomials of coefficients {—1,0, 1} is a classical and interest-
ing topic in analysis, with fascinating pictures and conjectures. For instance, it follows from
a result of Borwein and Pinner [3, Theorem 1] that for any given ¢ of d-th root of unity,
the distance from it to any z # ( from the set of zeros of {—1,0, 1} polynomials of degree n
which vanish at ¢ of order at most k (i.e. f*+1(¢) # 0) can be bounded by

o (k) [e(d)/2]
z =z e @

where ¢(d) is the usual Euler phi-function. This result is asymptotically optimal. On the
other hand, the smallest distance can be sub-exponentially small as n — oo if { is on the
unit circle and not a root of unity (such as when ( is an algebraic number of small Mahler
measure), see for instance [3, Corollary 1, Theorem 3|. The situation at 1 is also interesting,
it was shown from the same paper [3, Corollary 4, Theorem 6] that |1 — z| > —i% (which is
again near optimal) for any real roots z of {—1,0, 1} polynomials of degree n which vanish
at 1 of order exactly k. Note that the distance is significantly larger if 2 is purely complex.
See Figure . We also refer the reader to [3, B [19] and the references therein for further
interesting discussions and problems.

Our goal in this note is to study the distances from some probabilistic viewpoint. More
generally, consider the Kac polynomial

fonlw) =) &a'
=0
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FIGURE 1. Zeros of all polynomials with +1 coefficients and degree at most
eight ([3]).

where &; are independent (not necessarily identically distributed), real-valued random vari-
ables with mean 0 and variance 1.

For this random polynomial, it is well-known that the empirical distribution of the roots
converges to the uniform distribution on the unit circle ([9]). So, the roots concentrate near
the unit circle. And in particular, the real roots concentrate near +1. However, precisely at
41, there are holes that do not contain any roots. It was conjectured by Shepp and Vanderbei
[20], and confirmed recently by Michelen [13, Theorem 1.2] that the typical distance of real
roots to 1 for random Kac polynomial is of order O(1/n).

Theorem 1.1. Let &; be iid with mean zero and variance one. For any constant 6 > 0, there
exists a constant C' > 0 so that

P(there exists a real root in [1 —C/n,1+C/n]) >1—-10
for all n sufficiently large.

It is not hard to establish the lower bound and conclude that the hole at 1 (and —1) has
radius of order ©(1/n).

How about the hole radius at other points on the unit circle? A recent result by Cook,
Yakir, Zeitouni and the first author [6] (see also Michelen and Sahasrabudhe [14] for the
Gaussian case) shows that the distance between the zero set of f, o and the unit circle is of
order # So, this is a lower bound for all hole radii.

From the result in [3] and Figure 1, it is natural to predict that the hole radii exhibit
different orders at different points. For instance, in Figure 2 (source [2]) where all roots
of polynomials with coefficients +1 and degree at most 24, one can observe that there are
largest holes at 41, smaller holes possibly at the roots of unity, and barely visible holes
at other points. In Figure 3, we draw sampled roots of random Kac polynomials with +1
coefficients and degree n = 1000. Note that as n = 1000 is large compared to 24, the holes
are no longer visible in the figure unless being zoomed in properly. However, the striking
similarities between the two figures would suggest that the same observation would remain
true for large n. In Figure 4, we display sampled roots of the first derivative polynomial
with 41 coefficients and degree n = 1000 which has the same pattern as in Figure 3.
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F1GURE 2. All roots of polynomials with coefficients +1 and degree at most
24 (source [2])

F1GURE 3. Sampled roots of the Kac polynomials with Rademacher coefficients

Disproving this prediction, in this paper, we show that for every point  on the unit circle,
the precise order of the hole at ¢ is ©(1/n) (although the implied constant might depend on
(). Moreover, we show that this holds also for the derivatives of the Kac polynomial. For a
positive integer constant p, let us define

fp,n = Z ai,p,n&izi
i=0
where a; ,, = (1+0,(1))i(i —1)...(: — p+ 1) € R with the 0,(1) converges to 0 uniformly
in 4, as n — oo and p fixed. For any set S C C, let Ny  (S5) be the number of roots of
fon in S. If p =0, we get the Kac polynomial. The p-th derivative of the Kac polynomial
corresponds to 7 f, ,(x). Here is our main result.

Theorem 1.2. Let p be any positive integer constant. Assume that the random variables
& are independent (and not necessarily identically distributed) with mean 0, variance 1 and
bounded (2 + £¢)-moment for some g9 > 0. For every ¢ € St, the radius of the hole at ( is
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FIcURE 4. Sampled roots of the first derivative of Kac polynomials with
Rademacher coefficients

Q(1/n). In particular, for every e > 0, there exist positive constants c, and C, such that for
all ( € St

[Upper bound)] P(Ny, . (B((,Cy/n)) >0) > 1—¢ (1)
and

[Lower bound] P(Ny, . (B((,c,/n)) =0)>1—¢ (2)
for sufficiently large n.

As far as we understand, the proof in is restricted to real roots and cannot be applied
to complex roots.

For a somewhat related discussion, we refer to [4], [10, Section 5.1.3] and the references
therein, where the authors studied the probability there is no zero in a given region.

2. PROOF SKETCH AND INGREDIENTS

For the upper bound, we need to split into two cases: ( = +1 and ( # £1. For the former,
we show that the proof in [13] can be adapted to cover f,, for general p € N. This method
relies on the simple observation that if a polynomial f changes sign in an interval on the
real line then it has at least one root there. Since this observation only holds for real roots,
it merely works for ( = 4+1 where one can reduce the upper-bound problem to showing that
there exists a real root in the interval centered at ¢ and radius C'/n. For { # 41, we need a
different approach.

To this end, we note that the expected value of Ny, (B(¢,C/n)) being large does not imply
that the number of real roots is non-zero with high probability. However, it can be achieved
via Chebyshev inequality if we can show that its variance is of smaller order than its mean
squared. To do so, the high-level idea is to show that f,,, after rescaled properly, converges
to a Gaussian process, say f, which we can estimate the growth of Var (N;_(B((,C/n))),
the variance of the number of roots of f,, in the ball, in terms of C' and then pass the
result back to f,,. So, we consider a rescaled version of f,, by zooming in at the local
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neighborhood of ¢ as follows
1 1
9n(2) = i3 fon (C + ECZ’) :

When the random variables are Gaussian, we know that g, is a Gaussian process with
covariance

— 1 n - 1 k 1 B k
Eg,(2)gn(w) = W;;\C A.pn (1+ﬁz) 1+ﬁw

1 & 1\" 1 \*
_ 2 _
= Za/ww <1 + EZ> (1 + ﬁw) .
k=0
We note that ¢ disappears on the right-most side and could potentially account for why the
hole radii are of the same order.

To show the cancellation Var (Ny_(B(¢, C/n))) = o (E (N (B(¢,C/n))))?, we note that
the variance is an integral of its correlation functions, namely an integral of ps(zy,22) —
p1(21)p1(22) which is in turn of order |z; — 25|7!. So, when z; and z, are far away, the
integrand is small, accounting for the cancellation. This suggests that the numbers of roots
in far-away regions are weakly correlated which is consistent with previously established
results for real roots ([17]) and radius of complex roots ([6, [15, [16]). To handle the diagonal
region when z; is near 25, we come up with a simple argument, though via rather long and
tedious algebraic manipulations, showing that the function po(z1, 22) — p1(21)p1(22) is indeed
continuous everywhere and hence the diagonal has negligible contribution, see Lemma [4.5]
To carry out this strategy, we actually replace the whole ball B(¢, C'//n) by a subset, denoted
by U, which is a thin strip along the unit circle. This is a major device that allows us to
reduce from |z; — 23| to |Im(z;) — Im(z3)| which reduces the dimension and facilitates the
rather elegant proof that follows.

To pass from fo to f, ., we need to show some sort of uniform integrability of N;_(B(¢,C/n).
For that, we adapt a double Taylor expansion argument used in [12] (see Lemma .

Finally, to establish the lower bound , we will show that the expected number of roots
in the ball B((,¢/n) is small for sufficiently small ¢ and then apply Markov’s inequality. The
derivation of the expected number of roots is first reduced to the Gaussian setting when
all coefficients &; are iid standard Gaussian, via the universality properties of the random
polynomials. To do the calculation for the Gaussian case, there are two possible ways. The
first way is to directly apply the classical Kac-Rice formula to f,,. The second way, which
is what we perform here, is to derive it through f. using the limits that we already establish
for the upper bound.

Notations. For the rest of the paper, to simplify the notation, we will often drop the
subscript p. For instance, we write f,, in place of f,,. For a function f, let Z(f) ={z € C:
f(z) = 0} be the zero set of f.

We use standard asymptotic notations under the assumption that n tends to infinity. For
two positive sequences (a,) and (b,), we say that a, > b, or b, < a, if there exists a
constant C' such that b, < Ca,. If |¢,| < a, for some sequence (¢, ), we also write ¢, < a,.
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If a, < b, < a,, we say that b, = O(a,). If lim,_, 3 =0, we say that a, = o(b,). We
also write that a,, = O¢(b,,) if the implied constant depends on a given parameter C'.

3. PROOF OF THEOREM [1.2: UPPER BOUND FOR ( = +1

When ¢ = +1, Michelen [13] already showed the stated upper bound for the Kac polyno-
mial fo,. We will show that this proof can be easily adapted to cover the general case f, .
We assume that ¢ = 1 as the case ( = —1 is completely similar. It suffices to show that with
probability > 1 — ¢, there is at least one root of f,,, in the interval J :=[1 — C/n,1+ C/n]
for some large constant C'. Let f;, be the p-th anti-derivative of 277 f,,,, then

fon = _(1+o0(1)&7"
=0
is basically the Kac polynomial (if disregarding the 1+ o(1) terms). By interlacing, this can
be deduced from showing that there are at least p + 1 roots of fy,, in the same interval. To
this end, we show that we can find (p + 1) sub-intervals of J each of which observes a sign
change of fj, and hence contains at least one root.
Consider the rescaled polynomial

1

=7
Let M be a large constant and xy, ...,z be deterministic points in J. By [13] Lemma 5]
(which is a rather direct application of the Lindeberg-Feller Central Limit Theorem), the

random vector (h,(z1),...,h,(za)) converges to the Gaussian vector (h(z1),...,h(zy))
where h is a centered, real Gaussian process with covariance

1
Eh(x)h(y):/ e Wtr,
0

(In fact, in [13], this result is established for the Kac polynomial without the 1+ o(1) terms
as above but the proof can easily go through without changes when these terms are present.)

Let M = (p+ 1)K where K is a large constant to be chosen. By [13] Lemma 6], there
exists a constant v > 0 such that any centered Gaussian vector (Zy, ..., Zx) with variances
EZ? =1 for all i and covariances |EZ;Z;| <~y for all i # j satisfies

hn(x) fon(l+2/n), zeR

P(all Zy,..., Zx have the same sign) < 2752,

Direct calculation shows that if y = ax with x > 1 and a > 1 then

h(z)h(y)
\/Varh(z)Varh(y)

= Op—o00(1)-

So, for a given K, by taking « sufficiently large, we can make this number smaller than ~.
We then take z; = a1, i=1,...,M. So, for j =0,...,p,

P(all h(zjk11), .-, h(7jr k) have the same sign) < 2752,
And so, for sufficiently large n,

P(h,, does not have any real roots in [1 + zjx41/n, 1 + 2 rc/n]) < 27513,
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By the union bound, the probability that h, has less than p + 1 real roots in [1 + z1/n, 1+
27 /n] (which is a union of p+1 such intervals above) is at most (p+1)27573. By choosing K
sufficiently large so that this number is smaller than ¢, we obtain the desired tail probability.

4. PROOF OF THEOREM [1.2: UPPER BOUND FOR ( # =£1

We want to show that there exists a constant C' such that with probability at least 1 — ¢,
there is at least one root of f,, in the ball B((,2C/n). For a sufficiently small constant
d > 0 depending only on p, we consider the strip ¢ + (Ug/n that goes along the unit circle
where Ux = (—0,9) x (—=C,C) C B(0,2C). Since this strip is a subset of B((,2C/n), it
suffices to show that with probability at least 1 — ¢, there is at least one root of f,, in Uc.
The use of Ug in place of the ball allows us to derive the upper bound using much simpler
arguments because for z1, 29 € Ug, they are either very close or |23 — 23| & |y; — yo| where
y; is the imaginary part of z; and is a real number!

Since the upper bound at +1 has been proved in Theorem it suffices to assume that

¢ # +1.

4.1. The setup. Consider the following rescaled version of f,,, centered around (

gn(z) = #fpm <C + %Cz) .z € Ue. (3

The proof consists of the following steps.

~—

(1) Construct a Gaussian process ¢, that shall be the limit of g,.
(2) Show that for all € > 0, there exists C' such that

P(Ny..(Uc) =0) <e. (4)

(3) When the random variables &; are iid standard Gaussian, show that on Ug, g, weakly
convergences to g (see Subsection

Gn = 9. (5)
(4) Show that for each positive integer £,
EN} (Uc) — EN}_(Uc) (6)

for general &; (not necessarily Gaussian).
(5) Show that this implies

P(N,, (Uc) = 0) = P(N,,(Uc) =0). (7)
These steps are carried out in Sections [4.2] [4.3], [4.5] respectively.
4.2. Construct g.,. We have for all z,w € Ug,
1

— 1 & 1 )
Egn(z)gn(w) - nrtl Z K 2kai,p,n(1 + Ez)k(l + Ew)k
k=0

1 1 1 oA — 1 1
- Z\P — )P — )k — )k
n<1 + nz) (1+ nw) 0zPOWP Z(l + nz) (1+ nw)

= (1+0,(1))
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where we used |¢| = 1. When p = 0, we have

nooo, 1 g
Eg,(2)gn(w) == (exp(z+w) — 1) = / eFTOt — F(z + ).
zZ+w 0

where

F(u) := /0 edt = - 1. (8)

u
Similarly, for all p, we have

2
n—oo a P

Eg, ()9 (1) e

Moreover, since ( # +1,

1
Flz+w) = F®) (2 + o) = / 12 et gt
0

0% (14 )" (14 )T =1
9zp0wr  n (C2(1+ 22)(1+ 2w) — 1)

as the denominator blows up (with its derivatives bounded) and the numerator is bounded.
So, it is logical to define the tentative limit g., to be

goo(z):/o tPe*tdB(t)

where B is the standard complex Brownian motion B(t) = \%(Bl(t) + v/ —1By(t)) with
B, By being independent standard real Brownian motions. We shall prove in Section
that g, indeed converges to g, when ( # +1.

0

Eg.(2)gn(w) = (1+0(1))

4.3. Upper bound the hole radius for ¢... In this section, we want to show that there
exists at least one root of g in Ug with high probability (as C' — oo). By Chebyshev’s
inequality, it suffices to show the following

VarN,_(Uc) = oc—e(EN,(Uc))?. (9)
Indeed, we have
N,
Var gm(UCZ o),
(ENQOO (UC))
So, by choosing C to be sufficiently large, the probability of g, having no roots can be
arbitrarily small.

To prove (9), let us evaluate EN,_(Uc). Since g, is a Gaussian analytic function ([10]),
we can use Kac-Rice formula for Gaussian case. By [10, Corollary 3.4.2], we have

vV —T1%5"1 VS —T?
s (Uc) /UC p1(2) /UC iS) : /Uc w52 .

S(u) = Elgs(2)*,  T(u) = Eglo(2)gc(2),  V(u) = Elgl(2)[".
Let u = 2+ z € R. By the definition of F', we have

S = F)(u).

P(Ngoo(UC) = 0) <

where

Taking derivative gives
T — F(2p+1)(u), vV = F2rt2) (u).
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Since
e —1 =
F(u) = Z
=
we have .
) _—
(©) k+1
Therefore,
PU2(0)PU)(0) = (PU+D(0))" # 0. (10)
And so, V(0)S(0) —T2(0) = (2p+1)1(2p+3) — (QP}FQ)Q > (. By choosing ¢ to be sufficiently small,

it holds that for all |u| < 2§, we have
V(u)S(u) — T*(u) = 0,(1) and S(u)=0,(1). (11)

By the definition of Ux, u = 2 + Z € [—26,26] for all z € Uc. Hence, p1(z) = ©,(1) which
implies

EN,,.(Uc) = 6(C).
It remains to show the following.
Lemma 4.1. We have
VarN, _(Us) < ClogC. (12)
Proof of Lemmal[{.1. Let N = N, _(Uc). We have
Var(N,_(Uc)) = EN(N —1)+EN =EN(N — 1) + 0(C).
So, it suffices to show that EN(N — 1) < C'log C'. By [10, Corollary 3.4.2],

EN(N — 1) = / / p2<21, Zg) - p1(21>p1(22)d21d22 (13)
Uo JU
where p is the 2-point correlation function which can be derived using the following formula
(also [10, Corollary 3.4.2])

per(V — TS™1T*)
det(S) ’

2 py(21, 22) = (14)
with S, 7,V being 2 x 2 matrices defined by

1
Si,j = Eg(zl).g(zj) = / tQpetuﬁdt = F(Qp) (U/ij)v U5 = 24 + 2]‘
0
1
7:] — Eg/(Zz)g(ZJ) — / t2p+letui]‘dt — F(2p+1) (Uzj>
0

1
V;j _ Eg/(Zi)E(Zj) _ / t2p+2€tuij dt = (2p+2) (Uzj)-
0

Since 7* = T, by letting W = TS™1T*, we have

Z ke Te; (15)

2
k=1 ¢=1
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det(8)S ! = < S22 _512) |

where

=8 Su
We present a straightforward observation from the forms of p; and p, that if S, 7,V, W
were diagonal (namely, setting the off-diagonal entries to 0), then pa(21, 22)—p1(21)p1(22) = 0.
Motivated by this, we will show that for z; and 2z, far away, the above matrices are indeed
diagonally dominated, and hence po(z1, 29) — p1(21)p1(22) is small. In particular, we show
the following.

Lemma 4.2 (Off diagonal). For all Dy satisfying 10 < Dy < C, let Do.p, = {(21,22) € U :
|21 — 22| > Do}. For all (21, 22) € Ug, it holds that
|p2(21, 22) — pr(z1)p1(22)| < |21 — 22|

In particular, we have
[ etz = miamCea)dadzs < Clog(c/ Do)
Dc,p,

When z; and 2z are close, we show that pa(z1, 22) — p1(21)p1(22) is bounded and hence the
contribution from the diagonal region is negligible.

Lemma 4.3 (Diagonal). There ezists a constant M, independent of C, such that for all
(21, 20) € UZ, we have

p2(21, 22) — p1(21)p1(22)| < M.
This implies

// (pa(z1, 22) — p1(21)p1(22)) dz1dze < C'Dy.
UZ\Dc,p,

Assuming these lemmas, letting Dy = log C, we get that VarN (Ug) < C'log C' as desired.
This finishes the proof of Lemma 4.1 O

Proof of Lemmal[{.2. We write z; = Re(z;) and y; = Im(z;) for ¢ = 1,2. Note that |z;] < ¢
for all i. By ,

[S11| = O(1), [S22| = O(1). (16)
Let |21 — 20| = D, we have D > Dy > 10. So, |y1 — 32| > D and hence
|U12| = |U21| > D. (17)

For all u € C, since (uF(u))® = kF*=Y 4+ yF® and since the left-hand side equals e* for
all k£, we get
) (u) = e’ — k:F(kil)(U)‘
For u1s = 21 + Z3, we have |Re(u2)| < 20 and so, !
le"12| = efteluiz) — O(1).
Hence, by and induction in k, it holds for all £ < p that

1
|F®) ()| < —
|u12]

which gives
[S12| = O(D7). (18)



HOLE RADII FOR THE KAC POLYNOMIALS AND DERIVATIVES 11

Similarly, |821| = O(D_l)
Thus,
det(S) = 811822 - O(D_Z) = (1 + O(D_2>>811822 = @(1)

= (o 24)
-1 +om—>) |-
oD ) =
Similarly, the same bounds as in and hold for 7 and V in place of S.
Using these bounds, we get that W, is the sum of 4 terms each of which is of order

O(D™). So, [Wha| = O(D™). Likewise, [Wa| = O(D™).

And so,

Similarly,
-2
Wi = 0D + TS = o(p) + LEOL TS _Ti o1y g
811 811
and -
Wag = S_ +0(D™ ) =6(1).
22
Therefore,
(V= W)ia| = O(D7), [(V = W)o| = O(D7Y).
And -
11

where in the last equality, we used . So,

All in all, we get

)

<V11 - ) <V22 — gz) +O(D™) (Vn — 8121) <V22 _ g_zz

7 |pa(21,22) = pr(21)pa(22)] = (1 + O(D72))811S2 S1182
o) -1
= om) O(D™).

Integrating this over D¢ p, we get

// pz(Zl,ZQ) — p1<21)p1(22)d21d22 < // ‘21 — Zg’ildzleQ
De,p, Dc,p,

< / dzl/ lw| ™ dw
Uc we[~26,252] x [~2C,2C],[w|> Do

C
~ o(C / y~\dy) = O(C'log(C/Dy)).

Dy
This finishes the proof of Lemma O

Proof of Lemmal[{.3. Since p1(21)p1(22) is bounded over U, we only need to show the bound-
edness of py. By the first part of Lemma [4.2] we can reduce to the region

Udiag 1= {(21722) e US|z — 2| < 1}
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Since py can be written as a function of (u;;); j=12, it is also a function of z1, x5 and A, :=
y1 — y2 where we recall x; = Re(z;) and y; = Im(z;). Note that Ugi,g is a subset of {(z1, 22) :
|z1| <6, |za] < §,A, < 1} which is a compact set. So, if we can show that ps is in fact a
continuous function of z1,x2 and A, := y; — y2, we conclude that it is bounded Ugiag. To
show continuity, note that the only possible singularities of py occur when det(S) = 0. Thus,
it suffices to show the following.

Lemma 4.4. If det(S(21,22)) = 0 then z; = 2.
Lemma 4.5. For all z € Ug, pa(z1, 22) is continuous at (21, 22) = (2, 2).
Proving these lemmas will complete the proof of Lemma [4.3 U

Proof of Lemmal[{.4 Assume that det(S(z1,22)) = 0. Since S(z1,29) is a 2 X 2 (complex)
matrix, there exist deterministic complex numbers wy, ws such that

(w1 wy)S(wy wy)” = 0.
In other words,
Elwig(z1) + wag(2)[* = 0.
Since the left-hand side equals fol |wiet* 4+ wyet2|2dt, we conclude that the integrand is 0 for

almost all ¢ (and hence for all £ by continuity). Therefore, it is necessary that z; = z,. O

Next we give a direct proof for Lemma [4.5] where we note that there might be other ways
to justify it by using the methods of [I] [15] [16].

Proof of Lemmal[4.5. We need to show that for all z € C (or just U if needed),

lim  pa(z, 2 4 € + 1) exists.
(,6)—(0,0)

We shall perform Taylor expansion to the order 2 of the functions appearing in ((14]). Here
z1=z=x+1Y, 2 =2+¢c+1. Then
Uil = 2r =: U, U9 = (ZLU + 5) — Z(S, U9y = 2z + 2e.

Let
a=FC@)(y),b=F®(y),c = FP*2(y),d = F®+) (y), e = FH) (y).
So,
311 == F(2”)(u) = a,
Sy = FCP) (u+ 2¢) = a + 2eb + 2<%,

- —id 2 2 _ 62
Sio = 8o = F@P(ute—id) ~ a+(€—i5)b+%c = (a ebt o c) —i(0b+€dc).
That is
s a (a—|—5b+ #C) — 1 (0b+ €éc) (19)
(o eb+252e) +i (66 + 2do) o+ 2eb + 2%
The denominator of ps is
g2 — 2

2
det(S) = 811822 — 812821 ~ a(a + 2eb + 2626) — (CL + &b+ C) — (6() + 556)2

= 2e%ac — %0 — (% — 6%)ac — 8*b* + o(e? + 0%) =~ (&% + 6%)(ac — b?).
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Note that by (11), ac — b* # 0.
Since T and V are similar to S, we get

_ b (b+ec+%d> — i (§¢ + 8d)
h ((b%—ec%—#d) + i (dc + €dd) b+ 2ec+ 2e%d )
and
b c (c+ed+=52e) — i (3d + =de)
- ((c+5d+¥e)+z’(6d+a§e) ¢+ 2ed + 2¢% )

Note that the numerator of for py equals

1
per(V —W) = det<8)2per((det S)V — (det S)W).
So far, becomes
o per((detS)V — (detS)W) per())
T (e2 4+ 82)3(ac —b2)3 " (24 62)3(ac — b2)3’

Next, we write down (det S)WW. We have
(det )W = Ti1S2 T — TiaSa1 T — TiiS127T21 + Ti2S11 T
(det S)Whz = Ti1Sa2Tia — Ti2Sa1Th2 — TinS12Tz2 + T12S11 T2
(det S)Wa1 = T21820T11 — TS Tt — T21S127T21 + T22S11 721
(det S)

det S)Wao = T21822T12 — T22S21Th2 — Ta1S12T22 + T22811 720
So,

Vi = (62 + 52)(610 - bQ)C - (ﬂ1322ﬂ1 — T12821T11 — Ti1S12Tan + 712511751)
= (2 +0%)(ac — b*)c — b*(a + 2eb + 2£%¢)

g2 — 42 g2 —§?
+2bRe <(b+ec+ 5 d) +i(5c+55d)) ((a—l—sb—l— 5 c) —i(éb—l—eéc))

g2 — §?

2
—a (b+5c+ d) — a(0c + edd)®

= (2 +0%)(ac — b*)c — b*(a + 2eb + 2£%¢)

&2 2 2§52
+2b ((b +ec+ d) (a +eb+ 5 c) + (6c + €dd) (9b + 6(50))

2

£2 _ §2

2
—a (b+€c+ d) —a(dc+edd)? .

Grouping the terms with ¢, §, &6, €2, 6% and smaller order terms together, we get
Vi = e (=20 +2b° 4 2abc — 2abe) + €* ((ac — b*)c + b*c + abd — ac? — abd)
+0% ((ac — b*)c — b*c — abd + 2b°c + abd — ac®) + O(® 4 €0 + 25 + &°)
= O +e6* +% +6°).
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We now try to accomplish the same estimate for the other three entries of ). We have

Voo = (52 + 52)((10 — 52) (C + 2ed + 2626) — (T22S11T22 — T22S21Th2 — T21S812Ta2 + T21S522T12)

= (2 +6%)(ac — %) (c+ 2ed + 2e%) —a (b + 2ec + 2€2d)2
2 _ 52

+2(b—|—2€c+252d)Re(((b—l—sc—l—g g d)—l—z’(éc—irséd))

2
<(a—|—5b—|— 52;52c> —¢(5b+550)>]

2 _ 52 2
d) — (b+2ec+ 2e%d) (6c+ £od) .

—(b+26c~|—252d) (b+e€c+8

So,

Voo = (£2+6%)(ac —b%) (c+ 2ed + 2e%) — a (b+ 2ec + 2€2d)2
g2 — §?

d) <a+€b+ = 5 520) + 6% (c+ ed) (b+€c))

+2 (b + 2ec + 2520[) ((6—1— ec+

2 2

2
—(a + 2eb + 2¢%¢) (b tect S d) — (a + 2eb+ 2¢%¢) 6 (c + ed)?

Comparing this with Y1, we get

Voo = Vi + (2 +6%)(ac — b?) (2€d —i— 2e e) + (2eb® + 2e%b*c — 4e*ac® — 4e*abd — 4eabe)

d> <a+5b+ 5 520) + (0c + €dd) (5b+€5c))

+2 (2e¢ + 2¢2d) ((b +ect =

—(2eb + 2¢%¢) (b tect S 5 d) (2eb + 2¢%¢) 62 (c + ed)? + O(® + 267 + %0 + 6%)

= O(c® +e6* + 20 + 6%) + (2eb® + 2e%b*c — 4”ac® — 4e®abd — 4eabe)
+2 (2ec + 2¢%d) (b + ec) (a + eb) — (2eb + 2e%¢) (b + ec)?

which gives

Voo = O(® 4 0% 4+ 25 + 8°) + (2eb® 4 2%%c — 4e*ac® — 4e%abd — 4eabe)
+2 (250 + 252d) (ab + eb?® + Eac) — (256 + 2520) (b2 + 2€bc)
= O(® + &6 + 25 + 6°) + (2eb® + 2e°b*c — 4e”ac® — 4eabd — 4sabe)
+ (45abc +4e2b%c + 4e%ac® + 452abd) — (251)3 + 652620)
= O +e6* +20+6%).
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Finally,

Vo = (&2 2 72 e? — ¢ o
2 = (e°+0)(ac—=0b°) | (c+ed+ 5 ¢ i (0d + ede)

—(T11822 112 — T1281Thig — T11S12To2 + T12S11Th2)
= O@E®+e8* +20+8) + (% + 6% (ac — b*)c

2 52
—b (a + 2eb + 2¢%¢) ((b+ec+€ g d) —z’(éc+55d))

2
g? — §2 ? g? — §?
—l—((b—l—ac—l— 5 d)—z’(éc—l—aéd)) <(a+€b—|— 5 c>+i((5b—|—£5c)>

2
+b(b+25c+252d)((a+ab+5 5) 5b+55c>

d) i(0c+ edd) )

—a (b+ 2ec + 2¢%d) ((b fect o

So,

Vio = O 46 +%0 +6°) + (2 + 6*)(ac — b*)c
2 _ 52

—ab (b tect S d—i(oc+ aéd)) — 2eb*(b + ec — idc) — 2e%b%c

2 2

2 2

—l—b(b—l—ec—i—8 d—i(60+65d)) (a—irab—l—8

2 _

c+1(0b+ 550))

2
+ec((b+ ec) — idc) (a + b+ idb) + g dab
—idc ( (b+ec) — 250) (a + €b + i0b) — iedabd

2
a+€b+

c—1i(0b+ 550)) + 2¢be (a + eb — i0b) + 2e*abd

2

—ab (b tect S d—1i(oc+ 55d)) — 2eac (b + ec — idc) + 2*abd



16 HOI H. NGUYEN AND OANH NGUYEN

giving
Vo = O +e0” + %6 +6°) + (e2 + 8*)(ac — b*)c
2 _ 52
—ab (b tect S g d—1i(dc+ eéd)) — 2eb*(b + ec — idc) — 2%b%c
g2 — 52 g2 — 52
+b? (a+€b—|— c+i((5b+5(50)) + ebc (a + b +i0b) + abd

—i0bc (a + b + i0b) — icdabd

g2 — §2

+ebe (a + b+ i6b) + ¢ (a + eb + i0b) — iedac® + dab

—i6be (a + b + i6b) — icdac® — 6*ac® — iedabd

g2 — §2

+b? (a +eb+ c—i(db+ 560)) + 2ebc (a + eb — idb) + 22abd

g2 — 42

—ab <b +ec+ d—i(dbc+ sdd)) — 2¢ac (b + ec — idc) + 2&%abd

= O(e* + &6 + 25+ 6°).

Since the product of any two terms in {&3,£2, €25, 6%} is bounded by (g2 + 6%)3, we yield the
continuity of ps. O

4.4. More on N, (Uc) and N, _(Uc). Before moving on the next section to show the
convergence of g, to go and their number of roots, we will first show that Ny, (Uc) have
uniformly bounded higher moments.

Lemma 4.6. There exists a constant A = A(C) such that the following holds. For any
(>0, we have

EN' (Uc) < (A0)".
Proof. Let k > Al for some large constant A. We want to bound the probability that
Ny, (Ug) > k. We divide Ug into O(Cn~2) (possibly overlapping) open balls B; = B(c;, 1)
centered at ¢; of radius 1, which is chosen to be sufficiently small. Then there exists ¢ such

that B; contains at least s = kn?/C roots. Then by Hermite interpolation, as g, is analytic
with probability one, we have

1 S S
gn(c)] < =n° sup [gi(2)]. (20)
S8 2€B(eim)
By Taylor expanding ¢2(z) around ¢;, we obtain for any m > 0 (we later choose m = logn),

s+m—1, (j) (s+m)
S gn C’L —s8 gn w m
GIESY GNP i OIS (21)

—s (] - S>! weEB(¢;,m) m!

For each j, gT(lj )(cl-) is a Gaussian random variable with mean 0 and variance equals that of
anthﬁﬂ)(g + 1¢¢;), which is of order

1 . , 1 o
(L +o(1) s D oRh =17 (h—j+1)%a ¢ + ;CC¢|2h 2 =0c(1)
h=j
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where we used | + 1(¢;[! < (1+2C/n)" < €2¢ = Oc(1).
So, by Gaussianity, for all M; > 1,

P(|lgP(ci)] > Mj) < e ™.
Finally, for the supremum term, we observe

s+m 1 .
Sup )\gﬁﬁ J(w)] < P SE Y] D hh=1) . (h=s—m+Dlanyallénl(lei] + )"
web(c;,n h=s+m

1 n
< WZKM-
h=1

Note that if we hadn’t used another round of Taylor expansion in and just applied the
above bound to [¢&” (z)| and take supremum, the term n="/2 3" |¢,], which can be as large
as y/n, would be too big to handle. Here, we performed so that the extra term n™/m!
would swallow the n=1/23""_ |&,|. Indeed, for an M to be chosen,

P(> (&l = Mon) < nP(|&] > My) < ne ™.
h=1
Thus,
P( sup |g¥t™(w)| > n'/2My) < ne Mo,
weB(¢;,m)

Combining all of these events, we conclude that with probability at least 1 — ne= Mo —

St o= M) we have

j=s
s+m—1
M. ) nl/ZM m
(s) i j-s 07
sup |, ()] < : o+ :
z€B(cs ) jz; (] _3>! m!

On this event,

s+m—1
1 Mj : nl/QMoT]m
. —_ns E J—s R L
lgnle)] < sl ( (7 — 5)!” L

j=s

which only happens with probability at most

R A niinu iV R VE S ) i
Oc(1) ns(z i 20T

s! (7 —s)! m!

since g,(c;) is a Gaussian random variable with variance ©¢(1). All together, we get that
the probability that N, gn(UC) > k is at most (up to a constant depending on C'),

j=s

s+m—1

s+m—1
1 M; . nY2Mgnm M,
S J—S R L -
sl (Z (j—s)!77 + m! * jz; ©

j=s

C

— + ne~Mo
n

for any choice of 7, My, M;, with s = kn?/C. For instance, we choose s = 8¢, we get

V8CY <

= %. By setting

1 )
M; = slog — + =02 My = 20logk + logn,
n
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we obtain the tail probability of
Crli 1/2M m
) |:—‘T]S (Gﬁ + w> + 7]8:| + k?_2€.
n? | s! m!

Sending m — oo, the term with m goes to 0, so we end up with

77572 + kf% < <C€)4£k745+1 + ]{7726.

So,
EN, (Uo) < (A" +0> k'P(N,, (Uc) > k)
k=A¢
< (A 0 ((COME + k1) < (A0
k=A¢
as desired.

O

4.5. Convergence of g, to g, when ¢ are iid N(0,1). E Now, we prove . We first
start with two simple results for the Gaussian models.

Lemma 4.7. With probability one, g, and g do not have double roots in Uc.

Proof. For g,, if it has a double root then f, also has a double root. As this is a polynomial
of degree n, if f,,(z) and f/(z) have common roots then the resultant must have zero deter-
minant. But the resultant is a non-degenerate multivariate function of the Gaussians, so it
is zero with probability zero.

For g..(z), for any a > 0, we divide Uc into O(Ca~?) balls B; of radius a. We will show
that the probability there exists ¢ such that N;, the number of zeros in B;, is greater than
2 is of order O(a?), from which we see that the given probability will be bounded by O(a?)
after taking union bound. Indeed, using the boundedness of py in Lemma [4.3]

BiXBi

Sending « to 0, we conclude that the probability that g., has double roots is 0. 0
Our next simple result is the following.

Claim 4.8. With probability one, g,(z) and goo do mot have roots on the boundary OUc of
Uc.

Proof. We will show for go as the treatment for g, is similar. From (11]), we saw that for
all a > 0 sufficiently small, p;(z) = O(1) for all z € Us + B(0,«). Let N be the number of
roots in dUc + B(0, a), then

P(N >1) <EN = p1(2)dz < Oc(a).
OUc+B(0,a)

Sending a to 0, we obtain the claim. O

IWe reserve the notation of &; for random variables of general distribution (in the spirit of Theorem ,
while for Gaussian we use &;.



HOLE RADII FOR THE KAC POLYNOMIALS AND DERIVATIVES 19

Our treatment below is similar to [I1, Section 4] where instead of real roots, we consider
complex roots. First, let H be the set of all analytic function on the entire complex plane.
We endow H with the topology of uniform convergence on the compact sets, which can be
generated by the complete separable metric

B 1 Hf_gHDk
d(f,9) = %:ﬁl 17 —dllo,

where Dy = {z € C: |2| <k} and ||f||x = sup,cx | f(2)].

Lemma 4.9. Let Ac be the set of all f € H which do not have multiple roots in Usc and do
not have roots over the boundary of Ux. Then the set Ac is open.

Proof. This follows from Hurwitz’s theorem. Indeed, consider a sequence ( f,,)nen in H, which
converges to some f € Aq locally uniformly. We will show that f,, € A for sufficiently large
n. Let R > 0 be large such that Uo C Dgr = {z : |z| < R}. Let z1,..., zq be the collections
of all zeros of f in Dg with multiplicities mq,...,mg. Let a > 0 be sufficiently small such
that the open disks z; + D, are disjoint, and do not intersect the boundary of the open sets
Dpgr and of Ug, except when z; are on one of these boundaries. By Hurwitz’s theorem for
sequence of (locally convergent) analytic functions, there exists ny such that for all n > ny,
fn has exactly my, zeros in 2z, + D,. Now if z; € Ug, then as f € Ag, we must have m; = 1,
and f,, has exactly one zero in z; + D,. Thus, f, € A¢ for all n > ny. O

Lemma 4.10. The mapping f — Zy.(f) = {z € Uc : f(z) = 0} to the space of locally
finite point measures on Us endowed with the vague topology is continuous on Ac.

Proof. This also follows from Hurwitz’s theorem with the same argument as in the proof of
Lemma [4.9] by letting the radius « tend to zero. O

Lemma 4.11. We have the following weak convergence (of random elements with values in
the metric space H)

Gn = Goo-

Proof. By Prokhorov’s theorem, it suffices to verify convergence in finite dimensional and
tightness. Let 21, ..., zx be complex numbers. We first observe that the convergence in distri-
bution of the Gaussian vector (g, (21), - - ., gn(2x)) to the Gaussian vector (goo(21), - - -, goo(2k))
already follows from our previous computations verifying the convergences of Eg,,(z;)gn(2;)

and Eg,,(2)9n(2;) t0 Egoo(2i)900(2j) and Egoo(2:)goo(2;), respectively.
We need to verify tightness, for this, it suffices to show that for any R > 0, there exists
Cr < oo such that

sup sup Elga(2)]? < C.
n |z|<R

However, this is clear as
2P (1 + %Z)n+1(1 + %w)n+1 . 1‘
0zPOwWP n ((1 + %z)(l + %u‘;) — 1) w=z

E|g.(2)]* = (14 0a(1))

O

Theorem 4.12. We have that N, (Uc) — Ny _(Uc) in distribution and for each k € N,
lim, oo EN* (Ug) = EN®_(Up).
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Proof. We have that g, — g, weakly, they are analytic and with probability one, they all
belong to Ac. By Lemmal4.10] the point process Zy,,(g,) converges to 2y, (go) weakly, and
hence the number of zeros N, (Uc) converges to N, _(Uc) in distribution. In particular, for
all m € N, p,, == P(N,, (Uc) =m) = P(N,_(Uc) =m) := p,, as n — oo. By Fatou’s
lemma and Lemma [4.6} it holds for all £ € N that

EN._(Uc) < lim inf EN! (Uc) < (A1) (22)

Fix k € N, we have for a large constant M,

|EN (Uc) — ENY_(Uc)

M-1
< Y ¥ pum — Pl + BN, (Uo) 1, weyznr + ENo, (Uo)1ne_ we)sm

m=0

M-1
< Z M| D — Pm| + 2 sup (E]\fng(Uc))l/2 P (N, (Uc) > M)"? by Jensen’s inequality

< 3
Tl

[ A
< M Do — Pm| + 2(Ak)F M by and Markov’s inequality.

3
Il
o

Letting M and n go to infinity, we obtain the convergence in moments. 0

4.6. Convergence for the number of real roots. In this section, we prove @ In other
words, we prove the following convergence of the number of roots Us. Note that the random
variables are not necessarily Gaussian here.

The following generalizes Theorem to non-Gaussian random variables.

Theorem 4.13. Let C be a fixed positive number. For all k > 0, we have
EN} (Uc) — EN} _(Uc)
as n — oo.

Let g, be the version of g, when the random variables &; are iid standard Gaussian. By
Theorem we have

ENZ (Uc) — EN} _(Uc). (23)

We note that the same proof holds with Ue replaced by Us + B(0, ).

Proof. Note that the number of roots of g, in Ug is the same as the number of roots in the
original function f, in the set { + %CUC, by . For a small constant «, let ¢ be a test

function approximating the indicator of (Ug)*¥, in particular, we let ¢ be a smooth function
such that

Loy = ¢ < Lwe+B0,a)k (24)

and |V%(z)| < 1 for all multi-indices a with 0 < |a| < 2k + 4.
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By [7, Theorem 2.4] ﬂapplied to the function G = ¢ and the centers z; = -+ = 2, = (,
we get

Giy seesGif, €2(gn)

-E Z @(n(Ql/C—1)v--~a”((z'1/é—1)) <Ln~*

GigreGig, €2(Gn)

where ¢ > 0 is a small constant. Here, we note that the transformation z := n({/¢ — 1)
is just the inverse of the rescaling map (; = ( + %(z that brings the neighborhood of ( to
Uc. We note that when ¢ is replaced by 1(y,x, the term under the expectation becomes
Nk(Ug). So, we have from that

ENF (Uc) < ENE (Uc + B(0,@)) + Oa(n™).

Using , we obtain

limsup EN? (Uc) < limsup EN? (Uc + B(0,)) = EN_(Uc + B(0, ).

n—0o0 n—oo

Sending « to 0, we obtain

lim sup EN:n(UC) < limsup ENgkoo(Uc + B(0,a)) = EN;OO(UC)

n—oo a—0

where the last equality follows from the dominated convergence theorem, knowing that
EN! (U + B(0,a)) < oo for some a > 0 (by (22)). Similarly, we get the reverse direction
and conclude the proof. O

4.7. Upper bound the hole radius for g,. In this section, we show the following theorem.

Theorem 4.14. The random variables N, (Uc) converges to N,_(Uc) in distribution as
n — 00. In particular, we have :

P<N9n<UC> - 0) - P(Ngoo(UC) - 0)'

Here, we recall that since the random variables N, (Uc) are discrete random variables
supported on N, convergence in distribution means convergence of the probability density
P(Ny,(Uc) = 1), as i varies.

Proof. By Theorem Ny, ey converges to Ny (Uc) in moments. By and the Car-
leman’s criteria (see |8]), N, (Uc) is uniquely determined by its moments. Thus, we infer
that Ny, ) converges to N, (Uc) in distribution. O

2or perhaps a slightly readable [18, Theorem 4.3] which was written for the Kac polynomial but it holds
also for the derivatives of the Kac polynomial.
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5. PROOF OF THEOREM [1.2: LOWER BOUND
We want to show that for any € > 0 ,there exists ¢ = ¢(g, () such that
E(Ny, (B(¢,¢/n))) <e. (25)

Without loss of generality, we assume that ¢ < 1/100 and ¢ < e.
The first step is to reduce to the Gaussian case, via universality results. Consider the

Gaussian version of f,,,
f pin Z Gip, ”&

where é are iid standard Gaussian.

Let G be a smooth function such that approximates the indicator of the ball, or more
specifically, 1p(c.c/m) < G < 1pcaem) and ||[VGllo = O(n®) for all a < 3. We now apply
a universality property of f, established in [7, Theorem 2.3]. This theorem applied to the
function G states that the linear statistics E>° -, ) G(w) is universal, i.e.,

E Z Z )< n?
wEZ(fn) weZ(fn)

for a constant v independent of n and (.
Using this, we obtain

E(N;,(B(¢.¢/n) < E Y G E ) G

wEZ(fn) weZ(Fn)
< E(N}, (B 2¢/m))) + o(1).
Thus, it suffices to prove that
E(N;, (B(C,2¢/n)) < /2. (26)

In other words, it suffices to prove for the Gaussian case. To this end, we let B. = B(0, 2¢)
and define the functions g, and g., as before. We apply the Kac-Rice formula to g, to get

EN,.(B) = [ ;o)
B
By (11), we have for all z € B,, p1(z) < 1. Thus,
EN, (B, < ¢* <¢e/4.

By the same argument as for Ug (noting that B. C Ug for small ¢ and for C' > ¢), we obtain
the same limit as in Theorem So, we get

lim EN, (B,) = EN,_(B.) < ¢/4.
n—oo

So, by choosing n to be sufficiently small, we obtain as desired.
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