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Abstract. In this note we show that the singular probability of the adjacency matrix of a random d-regular
graph on n vertices, where d is fixed and n ! 1, is bounded by n�1/3+o(1). This improves a recent bound
by Huang in [15]. Our method is based on the study of the singularity problem modulo a prime developed
in [15] (and also partially in [24, 27]), together with an inverse-type result on the decay of the characteristic
function. The latter is related to the inverse Kneser’s problem in combinatorics.

1. Introduction

The singularity problem in combinatorial random matrix theory states that if a square matrix An of size n
is “su�ciently random”, then An is non-singular asymptotically almost surely as n tends to infinity, in other
words pn, the probability of An being singular, tends to zero. This problem has a rich history, which we now
mention briefly. In the early 60s Komlós [19] showed that if the entries of An take values {0, 1} independently
with probability 1/2 then pn = O(n�1/2). This bound was significantly improved to exponential bounds
of type (1 � ")n by Kahn, Komlós and Szemerédi [18] in 1995, by Tao and Vu [30] in 2007, by Rudelson
and Vershynin [28] in 2008, and by Bourgain, Vu and Wood [7] in 2010. More recently, Tikhomirov [32]
has obtained a nearly optimal bound pn = ( 12 + o(1))n. The methods of these results also give exponential
bounds for other more general iid ensembles. Since then, there have been subsequent papers addressing the
sparse cases, such as [34], [3], [16], [8], [22], [17]. We refer the reader to these papers and the references
therein to various extension and application of the singularity problem for the iid models.

In another direction, there have been results regarding the singularity problem for matrices with various
dependency conditions on the entries. For instance in [26] the first author studied random doubly stochastic
matrices, or in [1] Adamczak, Chafai and Wol↵ studied random matrices with exchangeable entries. More
relatedly, Cook [9] studied the singularity of An,d, the adjacency matrix of a random directed d-regular graph,
where he showed that pn = d�⌦(1) as long as min(d, n�d) � C log2 n for some absolute constant C. A similar
result was also established by Basak, Cook and Zeitouni [2] for sum of d random permutation matrices as
long as d � log12�o(1) n. While these results are highly non-trivial, the random matrices are still relatively
dense. For smaller d, the recent work by Litvak, Lytova, Tikhomirov, Tomczak-Jaegermann and Youssef in

[20] shows that pn  C log3
dp

d
as long as C  d  cn/ ln2 n for some constants c, C. As a consequence, this

bound implies that pn ! 0 if d ! 1. Through a more involved study of the structure of the eigenvectors of
matrices of An,d, it has been shown by the same group of authors in [21] that asymptotically almost surely
the rank of An,d is at least n � 1 as long as d > C for su�ciently large constant C. Finally, very recently
Huang [15], Mészáros [24] (see also [27]) confirmed the conjecture by Vu [33] that pn ! 0 as n ! 1 for the
An,d model with fixed d.1 The following quantitative result was shown in [15, Theorem 1.3].

Theorem 1.1. Let d � 3 be a fixed integer. Then if n su�ciently large, for a random d-regular directed
graph on n vertices, the probability pn that its adjacency matrix An,d is singular is

pn  n�min{1/4,(d�2)/(2d)}.

The authors are supported by the NSF CAREER grant DMS-1752345.
1We also refer the reader to [8, 12] for results regarding other models of extremely sparse graphs.
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In particular, when d = 3 the above gives O(n�1/6).

The papers [15, 24, 27] also addressed the symmetric case, which is more complicated and is not the main
focus of our current paper. As the reader can see, although there have been massive contributions on the
quantitative aspect of the singularity bound for various (not very sparse) random matrix models, the above
paper [15] is the only reference that produces a quantitative estimate for pn of An,d. In the current note we
further explore this quantitative direction by showing

Theorem 1.2 (Main result). Let " > 0 be given. Let d � 3 be fixed. Then for su�ciently large n, for a
random d-regular directed graph on n vertices, the probability that An,d is singular is bounded by

pn  n�1/3+".

Hence with respect to the model An,d, our result improves over the n�1/4 barrier from Theorem 1.1 for all
d � 2. With a more careful analysis, we can also replace the bound n�1/3+" by Cn�1/3 for some su�ciently
large constant C, but our bounds are still far from being best possible, where it seems the bound for pn
should be of order 1/nd�2, which would mean that the singularity event is mainly from the cases of having
two identical rows or two identical columns (see Figure [1]). It is desirable to establish similar probability
bound for the least singular value of An,d, for which the current approach does not seem to work.

Our approach mainly follows the method of [15] which studies the singularity of the matrix An,d over Z/pZ
for some large p. In this approach we will consider P(An,dv = 0) for each fixed non-zero v 2 (Z/pZ)n.
We hope that the probability is still small after taking union bound over all non-zero choices of v (modulo
its direction). A somewhat similar strategy was also carried out in [24, 27] for the cokernel statistics of
An,d as an integral matrix. Our new contribution shows an interesting relation between the decay of the
characteristic functions of a special family of random walks arises from the configuration model of An,d and
an inverse-type Kneser problem in combinatorics (Theorem 3.3). More specifically, we extend the treatment
of [15] on the central limit theorem (Proposition 2.5) and on the tail bound estimate (Proposition 2.4) to
a broader range p  n1/3�o(1). Least but not last, it is an interesting problem to extend the treatments to
larger p, a problem which is directly related to the upper bound of pn, but is also useful toward the study
of Z-statistics of the cokernels of An,d.

Notations. We say that X ⇣ Y if X = O(Y ) and Y = O(X). We say that X = ⌦(Y ) if X � CY for some
absolute positive constant C. Given a parameter ↵, we say that X = O↵(Y ), or X ⌧↵ Y , if X  CY and
C is allowed to depend on ↵.

For any x 2 R, we define kxk := kxkR/Z to be the distance of x to the nearest integer.

Finally, if not specified otherwise, the parameter n in this note is assumed to be su�ciently large.

2. Some formulas and the proof method

As mentioned, the singularity problem views the M as matrices over R, but if the entries are integers they
could also be viewed as elements of the field Z/pZ for any prime p. A matrix is singular mod p exactly when
its determinant is 0 mod p, and so heuristically, one expects this to happen about 1/p of the time instead of
0% of the time. This was the motivation for the treatments of [15, 24, 27]. In what follows we closely follow
the approach of [15].

We first use work of Bollobás [4], to replace An,d with a random multi-graph A⇤
n,d

given as follows (see [5,
Corollary 2.18]). We associate to each vertex k 2 {1, . . . , n} a fiber Fk of d points and select a permutation
P of the nd points uniformly at random. Then for each vertex k 2 {1, . . . , n} and point k0 2 Fk we add
a directed edge from k to vertex ` if the points P(k0) belongs to the fiber F`. By [4], for any fixed d the
probability that A⇤

n,d
has a loop or multiple edge is bounded away from 1. Hence it su�ces to prove the
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Figure 1. Sum of three random permutation matrices

theorem with A⇤
n,d

replaced by An,d. Without loss of generality, in what follows by the configuration model
An,d we mean the model A⇤

n,d
.

For a vector x = (x1, . . . , xd) 2 Fd
p
with nj components xi of value j, we define

�(x) := (n0, . . . , np�1).

Thus we have X

j

nj = d and
X

j

jnj = x1 + · · ·+ xd.

Given n0, . . . , np�1 where
P

i
ni = n we denote by Sn0,...,np�1 the set of vectors v = (v1, . . . , vn) where for

each i = 0, . . . , p� 1 there are exactly ni entries i in (v1, . . . , vn); so there are
�

n

n0,...,np�1

�
such vectors.

Let Ud,p be the multi-set

Ud,p :=
n
�(x) : x 2 Fd

p
,

dX

i=1

xi = 0
o
.

Hence |Ud,p| = pd�1. For instance, when d = 3 the vectors (3, 0, . . . , 0), (1, 1, 0, . . . , 0, 1), and (1, 0, 1, 0, . . . , 0, 1, 0)
all belong to U3,p.

We have the following beautiful random walk interpretation (see [15, Proposition 2.1]).

Claim 2.1. Given n0, . . . , np�1, and given v 2 Sn0,...,np�1 , for the configuration model An,d on random
d-regular directed graphs we have

���{M 2 An,d : Mv = 0}
��� =

p�1Y

j=0

(dnj)!
���{(u1, . . . ,un) 2 Un

d,p
: u1 + · · ·+ un = d(n0, . . . , np�1)}

���

=
p�1Y

j=0

(dnj)!p
(d�1)nP(X1 + · · ·+Xn = (dn0, . . . , dnp�1)),

3



where X1, . . . , Xn are independent copies of X, which is uniformly distributed over Ud,p.

2.2. Proof methods. As shown by the above interpretation, it boils down to understanding the random
variable X. It is elementary to show

µ = EX = (d/p, . . . , d/p)

and

⌃ = E((X � µ)(X � µ)t) =
d

p
I � d

p2
11t.

Also, the characteristic function of X and X � µ are defined as

�X(s) =
1

pd�1

X

w2Ud,p

eis·w

and
�X�µ(s) = E exp(it · (X � µ)) = exp(�it · µ)�X(s), s 2 Rp.

For instance when d = 3, we have

�X(s) =
1

p2

X

a,b2Z/pZ
ei(sa+sb+s�a�b).

Because of Claim 2.1 and because |An,d| = (nd)!, in order to prove the singularity probability to be small
we aim to show that

X

(n0,...,np�1)2Z�0,n0<nP
i ni=n

✓
n

n0, . . . , np�1

◆
p(d�1)n

Q
p�1
j=0(dnj)!

(dn)!
P(X1 + · · ·+Xn = (dn0, . . . , dnp�1)). (1)

is small.

Definition 2.3. Let b > 0 be chosen to be su�ciently large, and let E = Eb be the set of vectors satisfying

p�1X

j=0

(
nj

n
� 1

p
)2  b log n

n
. (2)

We will call such vectors equidistributed.

Let N be the set of p-tuples (n0, . . . , np�1) which are not (n, 0, . . . , 0) and not equidistributed. Our main
result can be deduced from the following two key propositions.

Proposition 2.4 (Deviation estimate for the error term). The contribution in (1) from N is bounded by
o(1) as long as p  n1/3�".

Note that this result improves upon [15, Proposition 3.2] where a similar statement was proved for p 
n(d�2)/2d. As a consequence, to justify Theorem 1.2 it su�ces to work with equidistributed vectors. For this
we show

Proposition 2.5 (Local limit theorem for the main term). The contribution in (1) from equidistributed
vectors is at most 1 + o(1) as long as p  n1/3�".

We note that with some extra work it might be possible to actually prove that the contribution is 1 + o(1),
see Remark ??. The above result slightly improves [15, Proposition 3.1] where the author there worked with
p  n1/4.

We will prove Proposition 2.4 in Section 5 and Proposition 2.5 in Section 3, in what follows we deduce our
main result.
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Proof. (of Theorem 1.2) Note that if M 2 An,d is singular then there exists a non-zero vector v so that
Mv = 0 (and hence M(tv) = 0 for t = 1, . . . , p� 1). We thus have

(p� 1)P(M 2 An,d is singular)  1

(nd)!

X

M2An,d

X

v 6=0

1Mv=0 =
X

v 6=0

���{M 2 An,d : Mv = 0}
���

=
X

(n0,...,np�1)2Z�0,n0<nP
i ni=n

✓
n

n0, . . . , np�1

◆
p(d�1)n

Q
p�1
j=0(dnj)!

(dn)!
P(X1 + · · ·+Xn = (dn0, . . . , dnp�1))

=
X

(n0,...,np�1)/2E

...+
X

(n0,...,np�1)2E

...

 o(1) + 1 + o(1) = 1 + o(1).

Hence

P(M 2 An,d is singular)  1 + o(1)

p� 1
= O(n�1/3+").

⇤

Choices of p, �. Here and later, " is a su�ciently small positive constant. If not specified otherwise we will
assume

� = p�(1+3") and p3(1+2") ⇣ n. (3)

3. Treatment over equidistributed vectors: proof of Proposition 2.5

There are two factors of the terms of (1) to analyze, we will give some preliminary discussion on each

separately: (i) Stirling formulas for the factor
�

n

n0,...,np�1

�p
(d�1)n Qp�1

j=0 (dnj)!

(dn)! and (ii) Fourier analysis for the

factor P(X1 + · · ·+Xn = (dn0, . . . , dnp�1)). We then combine these estimates in Section 3.6.

3.1. Stirling formulas. We first recall the following Stirling bound by Robbins for all positive integers l,
p
2⇡l(l/e)le

1
12l+1 < l! <

p
2⇡l(l/e)le

1
12l . (4)

So l! =
p
2⇡l(l/e)leO(1/l) and therefore (see also [15, Eqn (3.4)])

✓
n

n0, . . . , np�1

◆
p(d�1)n

Q
p�1
j=0(dnj)!

(dn)!
= p(d�1)n n!Q

j
nj !

Q
p�1
j=0(dnj)!

(dn)!

= p(d�1)n

p
2⇡n(n/e)neO(1/n)

Qp
2⇡nj(nj/e)njeO(1/nj)

Qp
2⇡dnj(dnj/e)dnjeO(1/nj)

p
2⇡dn(dn/e)dneO(1/n)

= eO(1/n) ⇥ (
p
d)p�1 ⇥

Q
n
(d�1)nj

j

(n
p
)(d�1)n

= (1 + o(1))⇥ (
p
d)p�1 ⇥ [

p�1Y

j=0

(
nj

n/p
)nj ]d�1

=
⇣
1 + o(1)

⌘
d(p�1)/2 exp

⇣
(d� 1)n

X

j

(
nj

n
log

nj

n
+ log p)

⌘
.

Recall that
p�1X

j=0

(
nj

n
� 1

p
)2  b log n

n
.
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Hence trivially

|nj

n
� 1

p
| = O(

p
log n/

p
n), |pnj

n
� 1| = O(p

p
log n/

p
n) = o(1).

Hence X

j

1/nj = O(p2/n) = o(1).

Note that Taylor expansion for |h| < 1 shows

(h+ 1) log(h+ 1) = h+ h2/2� h3(1/2� 1/3) + h4(1/3� 1/4) + · · · .
Hence, because |(pnj/n)� 1| = o(1)

nj log((nj/n)/(1/p)) = nj log[(pnj/n� 1) + 1] = (n/p)⇥ (pnj/n� 1 + 1) log[(pnj/n� 1) + 1]

= (n/p)[(pnj/n� 1) + (pnj/n� 1)2/2 +
1X

k=3

(�1)k

(k � 1)k
(pnj/n� 1)k].

So
X

j

nj log((nj/n)/(1/p)) = (n/p)[
X

j

(pnj/n� 1)2/2 +
1X

k=3

(�1)k

(k � 1)k
(pnj/n� 1)k].

We will use the above expansion for
P

j
nj log nj . One can see that for equidistributed vectors the termsP

j
(pnj/n�1)2 and n(d�1)

P
j
(pnj/n�1)3 are the main contributions, while the contributions from higher

order terms are bounded by O(
P

j
(pnj/n� 1)4), which is in turn bounded trivially by

(
X

j

(pnj/n� 1)2)2 = O(
p2b log n

n

X

j

(pnj/n� 1)2) = O(p�1�"/4
X

j

(pnj/n� 1)2),

and hence are negligible when p  n1/3(1+2") (see also (7)). So we obtain
✓

n

n0, . . . , np�1

◆
p(d�1)n

Q
p�1
j=0(dnj)!

(dn)!
= (1+o(1))d(p�1)/2 exp

⇣ (d� 1)pn

2

X

j

(
nj

n
�1

p
)2� (d� 1)p2n

6
(
nj

n
�1

p
)3
⌘
.

(5)

3.2. Treatment of the characteristic function. We notice that |�X�µ(s)| = 1 i↵

s 2 2⇡Zp + 2⇡(0, 1/p, . . . , (p� 1)/p)Z+ (1, . . . , 1)R.
For  > 0, for j = 0, . . . , p� 1 we define the domains

Bj() = 2⇡j(0, 1/p, . . . , (p� 1)/p) +Q({x 2 Rp�1 : kxk2  }⇥ [0, 2
p
p⇡]),

where Q is an orthogonal transform of the form Q = [O,1/
p
p] and O is an orthogonal transform in the

space 1?.

Suppose that s 2 Bj() for some j, and d = 3. Then s = 2⇡j(0, 1/p, . . . , (p � 1)/p) + Ox + y1 for some
kxk2   and y 2 [0, 2⇡]. Let s0 = Ox.

|�X(s)| = | 1
p2

X

a,b

ei(s
0
a+s

0
b+s

0
�(a+b))|

=
1

p2

X

a,b

ei(s
0
a+s

0
b+s

0
�(a+b)) = 1�O(

1

p2

X

a,b

k
s0
a
+ s0

b
+ s0�(a+b)

2⇡
k2R/Z)

= 1�O(
1

p2
p
X

a

k s
0
a

2⇡
k2R/Z) = 1�O(/p).

Our main result says the converse.
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Theorem 3.3 (Inverse result for fixed d). Assume that for s 2 2⇡Rp/Zp

|�X�µ(s)| � 1� ↵p�2

where ↵ is a small constant. Then there exists j such that s 2 Bj() for some   Ap�1, where A is a
su�ciently large constant depending on ↵, d.

This is an improvement of [15, Proposition 2.3] as there the right hand side is replaced by 1 � O(p�3).
Compared to [15], our proof for this new setting is more complicated, but we believe that this is a delicate
matter. In application,  is set to be �.

3.4. Fourier analysis. For equidistributed (n0, . . . , np�1) we first write

P(X1 + · · ·+Xn = (dn0, . . . , dnp�1)) =
1

(2⇡)p

Z

2⇡Rp/Zp

�n
X�µ(x)e

�ihx,dn�nµidx

=
p3/2

(2⇡)p�1

Z

x2Rp�1:kxk2
2�

�n
X�µ(Ox)e�ihOx,dn�nµidx+O(e�↵n/p

2

).

(6)

where ↵ is a small constant and the error term O(e�↵n/p
2

) comes from |�X�µ(x)|  1� ↵/p2 and Theorem
3.3.

We write

�X�µ(Ox) = E(1 + ihOx, X � µi � 1

2
hOx, X � µi2 � i

6
hOx, X � µi3 +O(hOx, X � µi4)).

Let
s := Ox.

Then clearly ksk2 = kxk2. Because the columns of O are orthogonal to 1, we have
P

i
si = 0. For �(a) 2 Ud,p

hs,�(a)� µi = sa1 + · · ·+ sad�1 + s�P
ai
.

From the above discussion it su�ces to work with

ksk22  �.

The first moment is zero as
P

i
si = 0,

Ehs, X � µi = 1

pd�1

X

a1,...,ad�1

(
X

i

sai + s�P
i ai

) = 0.

For the second moment,

Ehs, X � µi2 =
1

pd�1

X

a1,...,ad�1,ad,
P

i ai=0

(
X

i

sai)
2 =

1

pd�1
pd�2 ⇥ d

X

a

s2
a
= (d/p)ksk22 = (d/p)kxk22.

For the third moment, we see that the sum is a multiple of 1
pd�1 pd�2

P
a
(sa/p)3.

Ehx, Ot(X�µ)i3 = Ehx, Ot(X)i3 =
1

pd�1

X

a1,...,ad,
P

i ai=0

(
X

i

sai)
3 =

1

pd�1

X

a1,...,ad,
P

i ai=0

X

1i1,i2,i3d

sai1
sai2

sai3

Ehs, X � µi3 =
1

pd�1

X

a1,...,ad,
P

i ai=0

(
X

i

sai)
3 =

1

pd�1

X

a1,...,ad,
P

i ai=0

X

1i1,i2,i3d

sai1
sai2

sai3
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=
1

pd�1
[
X

a

s3
a
dpd�2(1+

d(d� 1)

p
+
d(d� 1)(d� 2)

p2
)+

X

a 6=b

s2
a
sb3d(d�1)pd�3(1+

d� 3

p
)+

X

a<b<c

sasbsc6

✓
d

3

◆
pd�4].

By passing the sum
P

a<b<c
sasbsc to (

P
a
sb)3 and

P
a<b

s2
a
sb to (

P
a
s2
a
)(
P

a
sa), we arrive at

Ehs, X � µi3 = (
d

p
+

c0

p2
+

c00

p3
)
X

j

s3
a
=:

Cp

p

X

j

s3
a

for absolute constants c0, c00, where
Cp := d+ c0/p+ c00/p2.

Notice that we can bound
P

a
|sa|3 from above by (

P
a
s2
a
)3/2, but this does not give us a desirable bound.

For the fourth moment,

1

pd�1

X

a1,...,ad,
P

i ai=0

(
X

i

sai)
4 = Cd

1

pd�1
pd�3

X

a,b

s2
a
s2
b
+ (d/p)

X

a

(sa)
4

= (Cd/p
2)ksk42 + (d/p)

X

a

(sa)
4.

Hence if ksk22  � then

nksk42/p2  n�2/p2  p�1�"/4.

Also X

a

(sa)
4  (

X

a

s2
a
)2  �

X

a

s2
a
 p�1�"/4

X

a

s2
a
.

Note that
(1 +O(1/p1+"/4))p = 1 + o(1). (7)

Hence for (6) it boils down to considering (where for short we write ds for ds1 . . . dsp�1)
���(1 + o(1))

p3/2

(2⇡)p�1

Z

s2Rp:ksk2
2�,

P
a sa=0

e�
dn
2p ksk2

2e�ihs,dn�bµi+i
Cpn

p

P
a s

3
ads

���.

In fact, we can extend the integral to all s 2 Rp with
P

a
sa = 0 excluding B2(�) = {s :

P
a
s2
a
 �} above

because

|(1 + o(1))
p3/2

(2⇡)p�1

Z

s2Rp\B2(�),
P

a sa=0
e�

dn
2p ksk2

2e�ihs,dn�µi+i
Cpn

p

P
a s

3
ads|

 (1 + o(1))
p3/2

(2⇡)p�1

Z

ksk2
2��,

P
a sa=0

e�
dn
4p ksk2

2ds  e�n�/8p  e�p
1+"

.

Hence we can pass to consider

|(1 + o(1))
p3/2

(2⇡)p�1

Z

s2Rp,
P

a sa=0
e�

dn
2p ksk2

2e�ihs,dn�bµi+i
Cpn

p

P
a s

3
ads|.

For short (with j playing to role of a), let

tj := (d
n

n
� µ)j . (8)

We will show the following estimate.

Lemma 3.5. We have

|
Z

s2Rp,
P

j sj=0
e�

dn
2p ksk2

2e�ihs,dn�bµi+i
Cpn

p

P
j s

3
jds|  (1+o(1))(

p
2⇡)p�1(

r
p

dn
)p�1e

�np
2d

P
j t

2
j+Cp(

p
p
n ) 1

d3/2
(
p

np
d )3t3j .

8



Proof. We notice that
X

j

tj = 0 and
X

j

t2
j
= kdn

n
� µk22  b log n

n
.

By the change of variable yj =
q

dn

p
sj (and with dy = dy1 . . . dyp�1), we can rewrite the left hand side of

Lemma 3.5 as

(

r
p

dn
)p�1

Z

y2Rp,
P

yj=0
e
P

j � 1
2y

2
j�itj

p
np
d yj+iCp(

p
p
n ) 1

d3/2
y
3
j dy.

To simplify furthermore, with rj = tj
p

np

d
and ↵0 = Cp(

p
p

n
) 1
d3/2 , we have

Z

yj2R,P yj=0
e
P

j � 1
2y

2
j�irjyj+i↵0y

3
j dy

=
Y

j

e�
1
2 r

2
j

Z

yj2R,P yj=0
e
P

j � 1
2 (y+irj)

2+i↵0y
3
j dy

=
Y

j

e�
1
2 r

2
j

Z

yj2R,P yj=0;zj=yj+irj

e
P

� 1
2 z

2
j+i↵0(zj�irj)

3

dy

=
Y

j

e�
1
2 (r

2
j�↵0r

3
j )

Z

yj2R,P yj=0;zj=yj+irj

e
P

� 1
2 z

2
j+i↵0(z

3
j�3z2

j (irj)+3zj(irj)
2)dy

=
Y

j

e�
1
2 (r

2
j�↵0r

3
j )

Z

yj2R,P yj=0;zj=yj+irj

e
P

� 1
2 z

2
j+i↵0z

3
j+3↵0z

2
j rj�3i↵0zjr

2
j dy

=
Y

j

e�
1
2 (r

2
j�↵0r

3
j )

Z

yj2R,P yj=0;zj=yj+irj

e
P

�( 1
2�3↵0rj)z

2
j+i(↵0z

3
j�3↵0r

2
j zj)dy

=
Y

j

e�
1
2 (r

2
j�↵0r

3
j )

Z

yj2R,P yj=0
e
P

�( 1
2�3↵0rj)y

2
j+i(↵0y

3
j�3↵0r

2
jyj)dy

by contour integral. (Indeed, to see the last identity, by substituting yp = �
P

p�1
j=1 yj into the exponent we

can rewrite the integral as
Z

y1,...,yp�12R
e
Pp�1

j=1 �( 1
2�3↵0rj)y

2
j+i(↵0y

3
j�3↵0r

2
jyj)�( 1

2�3↵0rp)(
Pp�1

j=1 yj)
2�i(↵0(

Pp�1
j=1 yj)

3�3↵0r
2
p(

Pp�1
j=1 yj))dy1 . . . dyp�1

=

Z

y2,...,yp�12R
e
Pp�1

j=2 ...

⇣Z

y12R
e�( 1

2�3↵0r1)y
2
1+i(↵0y

3
1�3↵0r

2
1y1)�( 1

2�3↵0rp)(
Pp�1

j=1 yj)
2�i(↵0(

Pp�1
j=1 yj)

3�3↵0r
2
p(

Pp�1
j=1 yj))dy1

⌘
dy2 . . . dyp�1.

By using the fact that e�(a+ib)2 ! 0 as a ! 1 for any fixed b and the integrand is holomorphic in y1 for
any given y2, . . . , yp�1, we can replace the inner integral from y1 2 R to y1 2 R + ir1. Keep iterating the
process until yp�1, noting that

P
p

j=1 rj = 0, we obtain as claimed.)

Next, because ↵0|tj | = o(1), the integral |
R
yj2R,P yj=0 e

P
�( 1

2�3↵0rj)y
2
j+i(↵0y

3
j�3↵0r

2
jyj)dy| can be bounded

by (
p
2⇡)p�1

Qp
1 +O(↵0rj)  (

p
2⇡)p�1

Q
eO(↵0|rj |). Hence we have

|
Z

yj2R,P yj=0
e�

P
j

1
2y

2
j�irjyj+i↵0y

3
j dy|  (

p
2⇡)p�1

Y

j

e�
1
2 (r

2
j�↵0r

3
j )+O(↵0|rj |).

Notice that with the choice of p from (3)

e↵0
P

j |rj |  e↵0
p
p

pP
j r2j  e↵0p

p
b log n

d = o(1).

Putting these bounds together,

|
Z

yj2R,P yj=0
e�

P
j

1
2y

2
j e�irjyj+i↵0y

3
j dy|  (1 + o(1))(

p
2⇡)p�1e

�np
2d

P
j t

2
j+Cp(

p
p
n ) 1

d3/2
(
p

np
d )3t3j .
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⇤

As a consequence of (6) and Lemma 3.5, we thus obtain

P (X1 + · · ·+Xn = (dn0, . . . , dnp�1))  (1 + o(1))p3/2(
p

2⇡dn
)

p�1
2 e�

np
2d

P
j t

2
j+Cpnp

2 1
d3

t
3
j , (9)

where tj are defined in (8).

3.6. Completion of proof of Proposition 2.5. First recall that

X

v2Sn0,...,np�1

P(An,dv = 0) =

✓
n

n0, . . . , np�1

◆
pn(d�1)

Q
p�1
j=0(dnj)!

(dn)!
⇥ P(X1 + · · ·+Xn = (dn0, . . . , dnp�1)).

Recalling the first factor from (5) and the second factor from (9), after cancellation we obtain

(1 + o(1))p3/2(p/2⇡n)(p�1)/2e�(pn/2)
P

j(
nj
n � 1

p )
2�[ (d�1)

6 �Cp

d3
]np2(

nj
n � 1

p )
3

.

Our main goal in this part is the following (where Dp = (d�1)
6 � Cp

d3 )

Lemma 3.7. We have
X

(n0,...,np�1)2E,
P

j jnj⌘0 (mod p)

(1 + o(1))p3/2(p/2⇡n)(p�1)/2e�(pn/2)
P

j(
nj
n � 1

p )
2�Dpp

2
n(

nj
n � 1

p )
3

= 1 + o(1).

It is clear that Proposition 2.5 then follows. For Lemma 3.7, we first show that one can pass from
P

jnj ⌘ 0
(mod p) to general (n0, . . . , np�1) 2 E .

Claim 3.8. We have
X

(n0,...,np�1)2E,
P

j jnj⌘0 (mod p)

p3/2(p/2⇡n)(p�1)/2e�(pn/2)
P

j(
nj
n � 1

p )
2�Dpp

2
n(

nj
n � 1

p )
3

= (1 + o(1))
X

(n0,...,np�1)2E

p1/2(p/2⇡n)(p�1)/2e�(pn/2)
P

j(
nj
n � 1

p )
2�Dpp

2
n(

nj
n � 1

p )
3

.

Proof. First, it is clear from [15, Eqn (3.14), (3.15)] that

e�(pn/2)k(n+ek�e0
n �µ

d )k2
2 = (1 +O(p log1/2 n/n1/2))e�(pn/2)k( n

n�µ
d )k2

2 .

Note that

((
n+ ek � e0

n
�µ

d
)j)

3 = ((
n

n
�µ

d
)j+(

ek � e0
n

)j)
3 = ((

n

n
�µ

d
)j)

3+O(((
n

n
�µ

d
)j)

2/n)+|(n
n
�µ

d
)j |/n2+O(1/n3)

and clearly p2
P

j
((n

n
� µ

d
)j)2  p2 log n/n, Hence we see that

e�(pn/2)
P

j(
nj
n � 1

p )
2�Dpp

2
n(

nj
n � 1

p )
3

= (1 +O(p log1/2 n/n1/2 + (p2 log n)/n)⇥

⇥ e�(pn/2)
P

j((
n+ek�e0

n �µ
d )j)

2�Dpp
2
n
P

j((
n+ek�e0

n �µ
d )j)

3

.

Summing over j and taking the average we obtain the claim. ⇤

We then claim that
X

(n0,...,np�1)2E

p1/2(p/2⇡n)(p�1)/2e�
pn
2

P
j(

nj
n � 1

p )
2�Dpp

2
n(

nj
n � 1

p )
3

= 1 + o(1).

Replacing this Riemann sum by its integral, it su�ces to show that
10



Lemma 3.9. With the choices of parameters as in (3),
Z

kyk2
2p logn

(1/
p
2⇡)pe�

P
j y

2
j/2+Dp

p
p/n

P
j y

3
j dy1 . . . dyp  1 + o(1).

Proof. For each positive R such that R2  p log n we consider
P

i
y2
i
= R2 and write

Z

kyk2
2=R2

e�R
2
/2+Dp

p
p/n

P
j y

3
j dy1 . . . dyp = e�R

2
/2Rp

Z

kxk2=1
eDp

p
p/nR

3 P
j x

3
jdx1 . . . dxp.

It is well known that the uniform measure 1
Vol(Sp)

dx1 . . . dxp over the unit sphere can be replaced by xj =

⇠i/
pP

i
⇠2
i
where ⇠1, . . . , ⇠p are iid standard Gaussian. As such, our first goal is to show that for R2  p log n,

with respect to the random Gaussian variables ⇠1, . . . , ⇠p

EeDp

p
p/nR

3 P
i(⇠i/

pP
i ⇠

2
i )

3

= 1 + o(1). (10)

First, as R3  (p log n)3/2 and clearly e�cpeDp

p
p/nR

3

= o(1) if p ⌧ n1/3, by large deviation of
P

j
⇠2
j
(that

P(
P

i
⇠2
i
< p/4 or

P
i
⇠2
i
> 4p)  e�cp for some absolute constant c), the contribution in the expectation

when
P

i
⇠2
i
< p/4 or

P
i
⇠2
i
> 4p is o(1). Let Eb denote the event p/4 

P
i
⇠2
i
 4p.

Second, on the eventR3
P

i
(⇠i/

pP
i
⇠2
i
)3  p, as

p
p/n  1/p1+"/8 we must have eDp

p
p/nR

3 P
i(⇠i/

pP
i ⇠

2
i )

3

=

eo(1) = 1+o(1). Hence it remains to focus on the events p1+"/8  R3
P

i
(⇠i/

pP
i
⇠2
i
)3 and the event Eb thatP

i
⇠2
i
has order p.

Claim 3.10. For p1+"/8  t  R3 we have

P
⇣
R3

X

i

(⇠i/

sX

i

⇠2
i
)3 � t ^ Eb

⌘
 e�ct

2/3
p/R

2

,

for some absolute constant c.

Proof. For short, let ↵ := tp3/2/R3. As P(⇠3
i
� x) = P(⇠ � x1/3) = O(e�x

2/3
/2) if x is large, by a result of

Nagaev (see for instance [13, Eqn. (1.2) and Theorem 1]) we have

P(
pX

i=1

⇠3
i
� ↵) = P(

X

i

⇠3
i
/p � ↵/p)  e�cp

2/3(↵/p)2/3 = e�c↵
2/3

,

for some absolute constant c. ⇤

Back to our proof, with X = R3
P

i
(⇠i/

pP
i
⇠2
i
)3,

EeDp

p
p/nR

2
X1p1+"/8XR3^Eb


Z

R
3

p1+"/8

p
p/neDp

p
p/ntP(X > t ^ Eb)dt


Z

R
3

p1+"/8

p
p/nR2eDp

p
p/nt�ct

2/3
p/R

2


Z

R
3

p1+"/8

p
p/ne�(c/2) t

2/3
p/R

2

= o(1)

where in the second to last bound we used the fact that t  R3 and R2  p log n and the choices of
parameters from (3) (where we note that our bounds are slightly better than needed). With this we are done
with proving (10). ⇤
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We have shown that for each R so that R2  p log n
Z

kyk2
2=R2

e�R
2
/2+Dp

p
p/n

P
j y

3
j dy1 . . . dyp = e�R

2
/2Rp

Z

kxk2=1
eDp

p
p/nR

3 P
j x

3
jdx1 . . . dxp

= e�R
2
/2RpVol(Sp)EeDp

p
p/nR

3 P
i(⇠i/

pP
i ⇠

2
i )

3

= (1 + o(1))e�R
2
/2RpVol(Sp).

HenceZ

kyk2
2p logn

(1/
p
2⇡)pe�

P
j y

2
j/2+Dp

p
p/n

P
j y

3
j dy1 . . . dyp = (1 + o(1))

Z

R
p
p logn

(1/
p
2⇡)pe�R

2
/2RpVol(Sp)dR

= 1 + o(1),

completing the proof of Lemma 3.9.

4. Proof of Theorem 3.3

We will choose ⌘ so that
⌘2p = ↵p�1

and assume that

| 1

pd�1

X

a1,...,ad�1

exp(i(sa1 + · · ·+ sad�1 + s�P
i ai

))| � 1� ⌘2.

In other words, if  = � arg �X(s) then

1

pd�1

X

a1,...,ad�1

Re(exp(i(sa1 + · · ·+ sad�1 + s�P
i ai

+  ))) � 1� ⌘2. (11)

By shifting every sa by a constant, we can assume

s0 = 0.

Note that | sin(x)| � 2kx/⇡kR/Z (which we replace by k · k for short),

Re(exp(i(sa1 + · · ·+ sad�1 + s�P
i ai

+  ))) = cos(sa1 + · · ·+ sad�1 + s�P
i ai

+  )

= 1� 2 sin2(
sa1 + · · ·+ sad�1 + s�P

i ai
+  

2
)  1� 8k

sa1 + · · ·+ sad�1 + s�P
i ai

+  

2⇡
k2.

Hence the assumption of Theorem 3.3 (or more specifically (11)) implies

X

a1,...,ad�1

k
sa1 + · · ·+ sad�1 + s�P

i ai
+  

2⇡
k2  ⌘2pd�1/8. (12)

Macroscopic analysis. Our first goal is the following

Lemma 4.1. There exists d0 2 {0, . . . , p� 1} such that for all a

k sa
2⇡

� d0a

p
k ⌧

p
⌘2p.

For this, we first show the following

Claim 4.2. We have

(1)

k  
2⇡

k ⌧d

p
⌘2p. (13)

12



(2) Also, for all a1, . . . , ad�1

k
sa1 + · · ·+ sad�1 + s�a1�···�ad�1

2⇡
k ⌧d

p
⌘2p.

Note that the proof of this result is similar to the first part of the proof of [15, Proposition 2.3].

Proof. We have learned that
X

a

khs,ai+  

2⇡
k2  ⌘2pd�1/8.

Let "0 < 4/d. Let G be the set of a (such that
P

i
ai = 0) where k hs,ai+ 

2⇡ k 
q
"�1
0 ⌘2p, then we have that

the size of the set complement Ḡ is at most

|Ḡ|  "0p
d�2/8.

Fix a1 = a = (a1, . . . , ad) with
P

i
ai = 0, and let w = �(a1). The total number of zero sum d⇥ d matrices

(of zero column and row sums) with the first row a1 is p(d�1)(d�2). For any b, the number of such matrices
with first row a1 and some other row b is at most (d� 1)p(d�3)(d�1), and the number with first row a1 and
some other column b is at most dp(d�2)(d�2). So the number of zero sum d ⇥ d matrices with the first row
a1 and at least one row or column belonging to Ḡ is bounded by ((d � 1)p(d�3)(d�1) + dp(d�2)(d�2))|Ḡ| <
2dp(d�2)(d�2)"0pd�2/8 < p(d�2)(d�1). It thus follows that there exists a zero sum d⇥ d matrix with the first
row a1 and all other rows a2, . . . ,ad and columns b1, . . . ,bd belonging to G. By the triangle inequality,

khs,ai+  

2⇡
k = k

P
n

i=1(hs,bii+  )�
P

n

j=2(hs,aji+  )

2⇡
k  (2d� 1)

q
"�1
0 ⌘2p.

⇤

Choosing a1 = a, a2 = �a, a3 = · · · = ad�1 = 0, we obtain that

ksa + s�a

2⇡
k ⌧

p
⌘2p.

Hence without loss of generality we can assume that s�a = �sa.

Proof. (of Lemma 4.1) For short we let

q := dp
p
⌘2pe.

Note that by definition q is much smaller than p. By Claim 4.2, given that ↵ is su�ciently small, we have
that

k
sa1 + · · ·+ sad�1 + s�a1�···�ad�1

2⇡
k <

p
⌘2p, 8a1, . . . , ad�1.

It su�ces to assume sa 2 [�⇡,⇡] for all a. We first choose ka 2 Z such that

|ka
p

� sa
2⇡

|  1

2p

and k�a = �ka. Let K be a su�ciently large even constant (and recall that p is su�ciently large). Our goal
is to show that there exists an integer d0 such that

ka ⌘ d0a+ [�5Kq, 5Kq] (mod p), for all a. (14)

(Here we can replace 5 by 2 but it will not yield any significant improvement in application.) Lemma 4.1
would then follow because

k sa
2⇡

� d0a

p
kR/Z  10Kq + 1

2p
⌧

p
⌘2p.

13



In what follows we show (14). Consider intervals (arcs) Ia in Z/pZ of length Kq centered at ka,

Ia = [ka �Kq/2, ka +Kq/2] ⇢ Z/pZ.
Note that I0 = [�Kq/2,Kq/2]. Let B be the set of the following points in Z/pZ⇥ Z/pZ,

B = {(a, l), a 2 Z/pZ, l 2 Ia}.

For each k � 1, we will be interested in the set kB := {b1 + · · ·+ bk, bi 2 B}. In particular,

(d� 1)B =
[

a1,...,ad�1

{a1 + · · ·+ ad�1}⇥ (Ia1 + · · ·+ Iad�1).

For this set, on one hand,

Ia1 + · · ·+ Iad�1 = [
X

i

kai �Kq(d� 1)/2,
X

i

kai +Kq(d� 1)/2].

On the other hand, by definition, k sa1+···+sad�1
+s�a1�···�ad�1

2⇡ k 
p
⌘2p, and so by the triangle inequality

|
ka1 + · · ·+ kad�1 + k�(a1+···+ad�1)

p
|  k

sa1 + · · ·+ sad�1 + s�a1�···�ad�1

2⇡
k+ d

2p


p
⌘2p+

d

2p
.

Hence (noting the choice of ⌘) we have

|ka1 + · · ·+ kad�1 + k�(a1+···+ad�1)|  2p
p
⌘2p  2q,

and for any m  d� 1, by choosing kam+1 = · · · = kad�1 = 0,

|ka1 + · · ·+ kam + k�(a1+···+am)|  2q.

It can be shown by induction that for any m � 0

|ka1 + · · ·+ kam + k�(a1+···+am)|  6q
m� 1

d� 2
.

Indeed, for m = 2, from |l(ka + kb + k�(a+b))|  2q with l = bd/3c we have |ka + kb + k�a�b|  2q
l
 6q

d�2 . If
the above is true up to m� 1, then

|ka1+· · ·+kam+k�(a1+···+am)|  |ka1+· · ·+kam�2+kam�1+am+k�(a1+···+am)|+|kam�1+am�kam�1�kam |  6q
m� 1

d� 2
.

Therefore with c = �(a1 + · · ·+ am), over Z/pZ

Ia1 + · · ·+ Iam = [
X

i

kai �Kqm/2,
X

i

kai +Kqm/2]

⇢ [�kc �Kqm/2� 6q
m� 1

d� 2
,�kc +Kqm/2 + 6q

m� 1

d� 2
]. (15)

Notice that the set B has size p(Kq + 1), while the union of the sets {c} ⇥ [�kc � Kqm

2 � 6qm�1
d�2 ,�kc +

Kqm

2 + 6qm�1
d�2 ] has size p(Kqm+ 12qm�1

d�2 + 1). Thus we have

|mB|  pKqm+ p+ 12pq
m� 1

d� 2
 m|B|+ 12pq

m� 1

d� 2
. (16)

When d = 3. We have
|2B|  2|B|+ 12pq.

Note that when K is large, 12pq is small compared to |B|. This is similar to Freiman’s (3n� 3)-theorem [31]
except that our setting is not torsion-free. We then use a very recent result by Lev [23, Theorem 1], which
says that if B is not contained in the union of fewer than ` cosets of a subgroup of G = Z/pZ⇥Z/pZ and if
|2B|  3(1� 1/`)|B|, then there exists an arithmetic progression P ⇢ G of size |P | � 3 and a subgroup G0

of G such that
|P +G0| = |P ||G0|, B ⇢ P +G0, and (|P |� 1)|G0|  |2B|� |B|. (17)
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For short, we call such a structure P +G0 a coset progression (of rank one). We will choose ` = 4. Consider
the case that B is contained in 3 cosets of a subgroup G0 of G. By definition, G0 must be Z/pZ ⇥ {0}.
However this is impossible because |Ia| = Kq + 1 > 3 (for any a) as K is large.

Hence B cannot be contained in 3 cosets, as |B+B| < 3(1� 1/4)|B|, we see that there is some subgroup G0

and some arithmetic progression P ⇢ G such that

B ⇢ P +G0.

We then divide into several subcases.

(i) G0 = {0}⇥ Z/pZ, as Ia is a proper subset of Z/pZ, this is impossible.

(ii) G0 = {0}⇥ {0}, we then see that B ⇢ P and |P | has size at most |2B|� |B|+ 1  |B|+ 12pq + 1 <
(K + 13)pq. As P is an arithmetic progression, it can be written as P = {(p0, q0) + i(x, y), 0 
i  |P | � 1} for some (p0, q0) and (x, y) in G, where it is clear that x 6= 0. For each a, consider
Sa = {0  i  |P |� 1, p0 + ix = a}. Each i 2 Sa has the form i = ia + lp for some representative ia.
So Ia ⇢ {q0 + (ia + lp)y} = {q0 + iay}. However, this is impossible as Ia has length Kq + 1, which
is su�ciently large.

(iii) G0 is a cyclic proper subgroup of form {i(g, h), 0  i  p � 1}, for some (g, h) 6= (0, 0) in G. We
see that (|P | � 1)p  (K + 13)pq, and so |P |  (K + 13)q. Write P = {(p0, q0) + j(x, y), 0  j 
|P |� 1  (K+13)q}. For each a we let Sa be the set of pairs (i, j) such that p0+ ig+ jx = a. Then
it is clear that g 6= 0, Ia ⇢ {q0 + ih+ jy, (i, j) 2 Sa}, and

i = g�1(a� p0)� jg�1x.

So we have

Ia ⇢ {q0 + (g�1(a� p0)� jg�1x)h+ jy, 0  j  (K + 13)q}
= {q0 + g�1h(a� p0)� j(g�1xh� y), 0  j  (K + 13)q}.

Hence either g�1xh � y = �1 or g�1xh � y = 1. Without loss of generality we assume the latter.
Note that as I0 ⇢ {q0 � g�1hp0 � j(g�1xh� y), 0  j  (K + 13)

p
⌘2p}, we must have (with some

room to spare)

q0 � g�1hp0 2 [�2Kq, 2Kq].

Putting this together,

Ia = [ka �Kq/2, ka +Kq/2] ⇢ {q0 � g�1hp0 � j(g�1xh� y) + g�1ha, 0  j  (K + 13)q}
⇢ [�4Kq + g�1ha, 4Kq + g�1ha].

We thus conclude that for all a we have ka 2 [g�1ha� 5Kq, g�1ha+ 5Kq], confirming (14).

From the proof, we can actually obtain (14) from a slightly more general result (when we applied [23] for
` = 4 as above)

Lemma 4.3. Assume that B = {(a, l), a 2 Z/pZ, l 2 Ia}, where Ia are intervals of length K + 1 for
su�ciently large K as above, and K ⌧ p. Then if |B + B| < 9|B|/4, the set B can be contained in a coset
progression of rank one P +G0 as in (17).

Corollary 4.4. Assume that for some positive integer h of order O(1) we have

|2hB| < 2.25h|B|.

Then there exists a coset progression of rank one P +G0 of size Oh(|B|) as in (17) such that B ⇢ P +G0.

It is important to note that if there exists such P +G0, we can argue as (iii) in the above proof to then arrive
at (14) (with H depending on h.)

15



Proof. By assumption, there exists 0  h0  h� 1 so that

|2h
0+1B|  2.25|2h

0
B|.

We will then apply Lemma 4.3 to contain the set 2h
0
B in a coset progression P + G0 of size at most

2|2h0
B|  2.25h|B|. Now as B ⇢ 2h

0
B (as B contains {0} 2), we hence have a similar containment for B. ⇤

General d. From (16), we have

|mB|  m|B|+ 6pq
m� 1

d� 2
 m|B|+ 6pqm  m(1 +

6

K
)|B|

Choosing m = 2h and K to be su�ciently large we can apply Corollary 4.4.

⇤

4.5. Microscopic analysis. With the help of Lemma 4.1, by replacing sa by sa � 2⇡(d0a/p) for all a, we
are thus free to replace k · k (that is k · kR/Z) by | · | as all the numbers are su�ciently small. In the next step
we establish the following key estimate.

Lemma 4.6 (structure of triple). Assume that for all a

| sa
2⇡

| = o(1)

|
sa1 + · · ·+ sad�1 + s�a1�···�ad�1 +  

2⇡
|2  ⌘2p.

Then there exists an absolute constant A such that
X

a2Z/pZ
| sa
2⇡

|2  A⌘2p.

Proof. (of Lemma 4.6) By shifting each sa by  /d (in 2⇡R/Z), we can assume  = 0. (Since  = o(1), we
still have | sa2⇡ | = o(1).) In what follows "0 > 0 is a su�ciently small constant, which can change depending
on the situation.

For transparency, we again consider the simple case first.

When d = 3. Let B be the collection of (a, b) where

|sa + sb + s�a�b

2⇡
|+ |s�a + s�b + sa+b

2⇡
| � ⌘"�1

0 .

By assumption,
|B|  "20p

2.

Let G be the complement of B in (Z/pZ)2. Hence for all (a, b) 2 G (and at the same time (�a,�b) 2 G and
(a,�a� b), (b,�a� b) 2 G) we have that

|sa + sb + s�a�b

2⇡
|, |s�a + s�b + sa+b

2⇡
| < "�1

0 ⌘ =: ⌘0. (18)

Let ⌘0 be of order p�1. As before, for each a we let ka 2 Z be such that �p/2 < ka < p/2 and that
| sa2⇡ � ka

p
|  1

2p . Then by the assumption of Lemma 4.6, ka = o(p), and also by (18), as long as (a, b) 2 G we
have

ka + kb + k�a�b 2 {�3, . . . , 3}.
Indeed, this is because

kka + kb + k�a�b

p
k  ks�a + s�b + sa+b

2⇡
k+ 3

2p
 3

p
.

2This assumption is not needed, as 2h
0
B contains a translation of B.
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As this holds for all (a, b) 2 G (which consist most of the pairs (a, b)), we guess that ka must be linear in
a. This is very similar to our situation in the previous section, except that here we are working over Z, and
not all but almost all pairs (a, b) have this property. To confirm this we prove

Claim 4.7. |ka| is at most O(1) for all but O("0p) indices a 2 {0, . . . , p� 1}.

Proof. We say that a is good if the number of pairs (b, c) 2 G such that a+ b = �c is at least (1� "0)p. It is
not hard to see that there are (1 � "0)p such good indices. Assume that a0 is such that |ka0 | is the largest
among the good a. Without loss of generality we assume that ka0 is positive. Consider (b, c) 2 G such that
a + b = �c. There are (1 � "0)p such pairs, and because most indices are good, there are (1 � 2"0)p pairs
in which b, c are good. Because kc 2 �(ka0 + kb) + {�3, . . . , 3}, and because ka0 is maximal, the following
holds: either kb is negative, or 0 < kb  2 . So for each case we can decompose {0, . . . , p� 1} into two sets
P = {a, ka � 0} and N = {a, ka < 0}.

Assume that |N | � 10"0p. Let s 2 N , then either there exists t 2 N such that s + t = �ka0 + O(1) or
s = �ka0 + O(1). In either case, if ka0 � 1 then we have |s| � |ka0 |/2 + O(1). Now the set of a 2 N
where |ka| > ka0/2 + 3 cannot be of size "0p because otherwise we could choose two elements a1, a2 so that
k�a1�a2 > ka0 , a contradiction. Also, the number of of a 2 N such that |ka|  ka0/2 � 2 cannot be more
than "0p because then |k�a0�a| � ka0/2 + 3, and we have learned that the number of such is at most "0p.
Putting this together, we see that the remaining set N ⇤ of a such that |ka| < ka0/2 � 2 has size at least
|N | � 2"0p which has order around �ka0/2. To this end, consider the set {(a, a0) 2 G, a + a0, a, a0 2 N ⇤}.
This set has size at least approximately |N ⇤|, and if a00 = �(a + a0) then ka00 is approximately ka0 . So if
there are many such a00 and therefore a pair (a001 , a

00
2) 2 G, we then see that k�a00

1 �a00
2
is approximately 2ka0 ,

a contradiction. Hence |N | < 10"0p, and therefore |P| � (1� 11"0)p, completing the proof. ⇤

Let B be the set of indices satisfying Claim 4.7. Assume that B is a proper subset of Z/pZ. Let c 2 (Z/pZ)\B,
then as |B| � (1�O("0))p, there are (1�O("20))p pairs (a, b) 2 B2 such that a+ b+ c = 0. By assumption
we have

X

a,b;�(a+b)/2B

ksa + sb + s�a�b

2⇡
k2 

X

a,b

ksa + sb + s�a�b

2⇡
k2  ⌘2p2/8.

Hence
X

c,c=�(a+b)/2B

k�sa � sb + sc
2⇡

k2  ⌘2(1�O("20))
�1p2/8.

Notice that when a 2 B, as ka = O(1), we have k sa
2⇡k = O( 1

p
) = O(⌘0). So by the triangle inequality

k sc
2⇡

k  (k�sa � sb + sc
2⇡

k+O(⌘0)).

Thus we have
X

c,c=�(a+b)/2B

k sc
2⇡

k2 
X

c,c=�(a+b)/2B

2(k�sa � sb + sc
2⇡

k2 +O(⌘0
2
))  2⌘2(1�O("20))

�1p2/8 + 2p2⌘2.

Recall that there are (1�O("20))p pairs (a, b) 2 B2 such that a+ b+ c = 0. Then
X

c/2B

k sc
2⇡

k2  O(⌘0
2
p).

Altogether,
X

c

k sc
2⇡

k2 =
X

c/2B

k sc
2⇡

k2 +
X

c2B

k sc
2⇡

k2 = O(⌘0
2
p).

This completes the proof of our result for d = 3.
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Treatment for general d. The proof here will be similar to the case d = 3, so we will be brief. Let B be
the collection of (a1, . . . , ad�1) for which

|
sa1 + · · ·+ sad�1 + s�P

ai

2⇡
| � ⌘"�1

0 .

By assumption,
|B|  "20p

d�1.

Let G be the complement of B in (Z/pZ)d�1. Hence for all (a1, . . . , ad�1) 2 G we have that

|
sa1 + · · ·+ sad�1 + s�P

ai

2⇡
| � ⌘"�1

0 =: ⌘0. (19)

Let ⌘0 be of order p�1. As before, for each a we let ka 2 Z be such that �p/2 < ka < p/2 and that
| sa2⇡ � ka

p
|  1

2p . Then by the assumption of Lemma 4.6, ka = o(p), and also by (19), as long as (a, b) 2 G we
have

ka1 + · · ·+ kad�1 + k�a1�···�ad�1 2 {�3d, . . . , 3d},
where A is an absolute constant. As this holds for all (a, b) 2 G (which occupies most of the tuples of
(a1, . . . , ad�1)), we will show as in the case d = 3 the following

Claim 4.8. Most of |ka| are at most O(d).

Proof. We say that a is good if the number of tuples (a1, . . . , ad�1) 2 G such that a = �
P

i
ai is at

least (1 � "0)pd�1. It is not hard to see that there are (1 � "0)p such good indices. Assume that a0 is
such that |ka0 | is largest among the good a. Without loss of generality we assume that ka0 is positive.
Consider (a1, . . . , ad�1) 2 G such that a0 = �

P
i
ai. There are (1 � "0)pd�2 such tuples, and because

most of the indices are good, there are (1 � 2")pd�2 tuples where for which all ai are good. Because
ka0 2 (�

P
i
kai) + {�3d, . . . , 3d}, and because ka0 is the largest, there must be a good ai such that kai is

negative. Arguing as in the case d = 3, assume that the set N of a for which ka is negative has size at least
10d"0n, then most of the ka must be around �ka0/(d� 1). We can find many a00 for which ka00 ⇡ ka0 , and
therefore a tuple (a001 , . . . , a

00
d�1) 2 G . Then k�P

a00
i
⇡ (d�1)ka0 , which is larger than ka0 , a contradiction. ⇤

The rest of the proof of Lemma 4.6 can be completed as in d = 3, hence we omit the details. ⇤

5. The error term: proof of Proposition 2.4

Recall that we are working with
p�1X

j=0

(
nj

n
� 1

p
)2 >

b log n

n
.

Our proof here is similar to [15, Proposition 3.4], which can be divided into four cases

(i) N1 of (n0, . . . , np�1) 2 N with
max

j

|nj/n� 1/p|  �/p;

(ii) N2 of (n0, . . . , np�1) 2 N with

(bp log n)/n < |n0/n� 1|  �/p;

(iii) N3 of (n0, . . . , np�1) 2 N with
|n0/n� 1| < (bp log n)/n;

(iv) N4 of the remaining non-equidistributed p-tuples.

We then have
18



Lemma 5.1. For p ⌧ n1/3 3, the sum over (n0, . . . , np�1) /2 N3 is bounded by

X

(n0,...,np�1)2N1[N2[N4

✓
n

n0, . . . , np�1

◆✓
dn

dn0, . . . , dnp�1

◆�1���{(u1, . . . ,un) 2 Un

d,p
: u1+· · ·+un = (dn0, . . . , dnp�1)}

���

= O(1/nd�2).

The proof of this is identical to that of [15, Proposition 3.4], hence we omit it.

Our new contribution is that the sum from N3 is also insignificant for p ⌧ n1/3, for which we state below.

Lemma 5.2. For p ⌧ n1/3 we have

X

(n0,...,np�1)2N3

✓
n

n0, . . . , np�1

◆✓
dn

dn0, . . . , dnp�1

◆�1���{(u1, . . . ,un) 2 Un

d,p
: u1+· · ·+un = (dn0, . . . , dnp�1)}

��� = o(1).

Proof. (of Lemma 5.2) The treatment here is motivated by Case 3 in the proof of [15, Proposition 3.4],
although we introduce some minor modifications. We assume that n0 = n �m0 and n1 + · · · + np�1 = m0,
where

m0  bp log n.

We list Ud,p as
Ud,p = {w1, . . . ,wpd�1},w1 = (d, 0, . . . , 0).

Notice that (where w(j) is the j-th coordinate of w)

wj(1) + · · ·+wj(p� 1) � 2, 2  j  pd�1.

For short, we let m be the number of non-zero vectors (and n�m be the number of w1) in u1, . . . ,un, and
n0
0 = m� n2 � · · ·� np�1. We have 2m  dm0, so

m  dm0/2.

This shows that the number of w1 in (u1, . . . ,un) must be at least n � dm0/2. We thus have
�
n

m

�
ways

to arrange the ui to be w1. After that we have a sum of u1 + · · · + um = (dn0
0, dn1, . . . , dnp�1) and

n0
0 + n1 + · · ·+ np�1 = m where n0  (d� 2)m/d.

As we are interested in
�

n

n0,...,np�1

��
dn

dn0,...,dnp�1

��1⇥ |{(u1, . . . ,um) : u1+ · · ·+um = (dn0
0, dn1, . . . , dnp�1)}|,

we can rewrite the first factor as
n!

n0! . . . np�1!
=

n!n0
0!

m!n0!

m!

n0
0! . . . np�1!

=
n!n0

0!

m!n0!

✓
m

n0
0, . . . , np�1

◆

and we can write the second factor as

dn0! . . . dnp�1!

dn!
=

dm!dn0!

dn!dn0
0!

dn0
0!dn1! . . . dnp�1!

dm!
=

dm!dn0!

dn!dn0
0!

✓
dm

dn0
0, . . . , dnp�1

◆�1

.

Note that n0 = n�
P

p�1
i=1 ni = n� (m� n0

0). Hence

n!n0
0!

m!n0!
⇡ nm�n

0
0/mm�n

0
0 ⇡ (n/m)m�n

0
0

and
dm!dn0!

dn!dn0
0!

⇡ (dn)�d(m�n
0
0)(dm)d(m�n

0
0) ⇡ (n/m)�d(m�n

0
0).

Thus
n!n0

0!

m!n0!

dm!dn0!

dn!dn0
0!

⇡ (m/n)(d�1)(m�n
0
0).

We next apply the following analog of [15, Proposition 3.2] (where n is replaced by m)

3In fact the statements here are also true for p ⌧ n1/2.
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Lemma 5.3. We have
✓

m

n0
0, . . . , np�1

◆✓
dm

dn0
0, . . . , dnp�1

◆�1

|(u1, . . . ,um),u1 + · · ·+ um = (dn0
0, dn1, . . . , dnp�1)| = O(eO(p)).

This result is a special case of Lemma 5.4 to be stated below.

By this result, in total we obtain

X

mbp logn

X

(n0
0,...,np�1),

n
0
0+···+np�1=m

eO(p)

✓
n

m

◆
(m/n)(d�1)(m�n

0
0)

=
X

mbp logn

X

n0
0(d�2)m/d

X

(n1,...,np�1),
n1+···+np�1=m�n

0
0

eO(p)

✓
n

m

◆
(m/n)(d�1)(m�n

0
0)


X

mbp logn

X

n0
0(d�2)m/d

✓
p+m� n0

0

p� 1

◆
eO(p)

✓
n

m

◆
(m/n)(d�1)(m�n

0
0).

Case 1. We see that the contribution is small for p/ log n ⌧ m  bp log n because
�
p+m�n

0
0

p�1

�
 (e(p+m)/p)p

and
�
n

m

�
 (en/m)m , while (m/n)(d�1)(m�n

0
0)  (m/n)2(d�1)m/d.

Case 2. For m ⌧ p/ log n, Lemma 5.3 is not powerful enough because as n0
0 + n1 + · · ·+ np = m, many ni

are zero. To amend this, let ` be the number of nonzero nij , then 0  `  m and ni1 + · · ·+ni` = m. There

are
�
p

`

�
ways to choose the i1, . . . , i`. So

�
m

n0
0,...,np�1

��
dm

dn0
0,...,dnp�1

��1
becomes

�
m

ni1 ,...,ni`

��
dm

dni1 ,...,dni`

��1
.

Also, as u1+· · ·+um = (dn0
0, dn1, . . . , dnp�1), the vectors ui are from the set Ud;i1,...,i` of vectors �(x1, . . . , xd)

where xi 2 {i1, . . . , i`} and
P

i
xi = 0. Note that this set Ud;i1,...,i` has at most `d�1 elements, so

|(u1, . . . ,um) : u1 + · · ·+um = (dn0
0, dn1, . . . , dnp�1)| = |Ud;i1,...,i` |m ⇥ P(X1 + · · ·+Xm = (dni1 , . . . , dni`)),

where Xi are sampled uniformly from the set Ud;i1,...,i` .

Lemma 5.4. We have
✓

m

ni1 , . . . , ni`

◆✓
dm

dni1 , . . . , dni`

◆�1

|{(u1, . . . ,um),u1 + · · ·+ um = (dni1 , . . . , dni`)}|  eO(`).

Assuming Lemma 5.4 for a moment, by summing over (n0, . . . , n`) as a partition of m (of which there are
at most

�
m+`�1

m

�
) and over the choices of i1, . . . , i` we have

X

m⌧p/ logn

X

n0
0(d�2)m/d

X

1`m

✓
p

`

◆✓
m+ `� 1

m

◆
eO(`)

✓
n

m

◆
(m/n)(d�1)(m�n

0
0).

We remark that for `  m  p/ log n we have
�
p

`

�
 (ep/`)`  (ep/m)m and

�
m+`+1

m

�
< 2m, and

�
n

m

�


(en/m)m, while (m/n)(d�1)(m�n
0
0)  (m/n)2(d�1)m/d  (m/n)4m/3 (where d = 3 is the worst case). Hence

the sum above is trivially bounded by

(p/ log n)⇥m⇥m⇥ (ep/m)m2m(en/m)m(m/n)4m/3  (p/ log n)m2(2e2)m ⇥ (p/n1/3)m(1/m)2m/3 = o(1)

where we used the crucial fact that p ⌧ n1/3. This complete the proof of Lemma 5.2. ⇤
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Proof. (of Lemma 5.4) Without loss of generality assume {i1, . . . , i`} = {0, . . . , `� 1}. Using (4),

✓
n

n0, . . . , n`�1

◆Q
`�1
j=0(dnj)!

(dm)!
=

m!Q
j
nj !

Q
`�1
j=0(dnj)!

(dm)!

= e
1

12m� 1
12dm+

P
j

1
12dnj

� 1
12nj ⇥ (

p
d)`�1 ⇥ [

`�1Y

j=0

(
nj

m
)nj ]d�1.

Write nj =
nj

m
and hj = nj � 1/`. We then write the expression in Lemma 5.4 as

eO(`)emI(n0,...,n`)

where the eO(`) term comes from (
p
d)`�1 and

I(n0, . . . , n`) = log |Ud;0,...,`�1|+ (d� 1)
X

j

nj log nj + inf
t2R`

(logEeht,Xi � dht, ni).

It remains to show the following

Claim 5.5. We have I(n0, . . . , n`)  0 and equality holds only if either nj = 1/` for all j or n0 = 1 and
nj = 0 for j 6= 0.

To show this claim we follow [14, Prop 3.3]. Choose t = d�1
d

(log n0, . . . , log n`�1) +
log |U|

d
1. Then I is

bounded by

log |Ud;0,...,`�1|+ (d� 1)
X

j

nj log nj + logEeht,Xi � dht, ni = logEeht,Xi,

where X is sampled uniformly from Ud;0,...,`�1. We will show that Eeht,Xi  1. Let w1, . . . ,w`d�1 be an
enumeration of Ud;0,...,`�1, we have

Eeht,Xi =
1

|U|
X

j2U
ehwj ,ti =

1

|U|
X

j2U
e
P`�1

k=0 wj(k)((d�1)/d) log nk+wj(k) log |U|/d

=
X

j2U
e
P`�1

k=0 wj(k)((d�1)/d) log nk =
X

j2U

`�1Y

k=0

n
((d�1)/d)wj(k)
k

=
X

a=(a1,...,ad)2{0,...,`�1}d
,P

i ai=0

`�1Y

k=0

n((d�1)/d)�(a)(k)
k

=
X

a2{0,...,`�1}d
,P

i ai=0

`�1Y

k=0

n
((d�1)/d)

Pd
r=1 1ar=k

k

=
X

a2{0,...,`�1}d
,P

i ai=0

dY

r=1

nar
(d�1)/d.

Next, note that
P

i2{0,...,`�1} ni = 1 and

dY

r=1

nar
(d�1)/d  1

d

dX

r=1

Y

1sd,

s 6=r

nas .
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So

Eeht,Xi =
X

a2{0,...,`�1}d
,P

i ai=0

dY

r=1

nar
(d�1)/d

 1

d

X

a2{0,...,`�1}d
,P

i ai=0

dX

r=1

Y

1sd,

s 6=r

nas

 (
X

i2{0,...,`�1}

ni)
d = 1.

⇤
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