A NOTE ON THE SINGULARITY PROBABILITY OF RANDOM DIRECTED
d-REGULAR GRAPHS

HOI H. NGUYEN AND AMANDA PAN

ABSTRACT. In this note we show that the singular probability of the adjacency matrix of a random d-regular
graph on n vertices, where d is fixed and n — oo, is bounded by n—1/3+e(1) This improves a recent bound
by Huang in [15]. Our method is based on the study of the singularity problem modulo a prime developed
in [15] (and also partially in [24|[27]), together with an inverse-type result on the decay of the characteristic
function. The latter is related to the inverse Kneser’s problem in combinatorics.

1. INTRODUCTION

The singularity problem in combinatorial random matrix theory states that if a square matrix A,, of size n
is “sufficiently random”, then A, is non-singular asymptotically almost surely as n tends to infinity, in other
words p,,, the probability of A,, being singular, tends to zero. This problem has a rich history, which we now
mention briefly. In the early 60s Komlés [19] showed that if the entries of A,, take values {0, 1} independently
with probability 1/2 then p, = O(n‘l/ 2). This bound was significantly improved to exponential bounds
of type (1 — &)™ by Kahn, Komlés and Szemerédi [18] in 1995, by Tao and Vu [30] in 2007, by Rudelson
and Vershynin [28] in 2008, and by Bourgain, Vu and Wood [7] in 2010. More recently, Tikhomirov [32]
has obtained a nearly optimal bound p,, = (% + 0(1))™. The methods of these results also give exponential
bounds for other more general iid ensembles. Since then, there have been subsequent papers addressing the
sparse cases, such as [34], [3], [16], [8], [22], [17]. We refer the reader to these papers and the references
therein to various extension and application of the singularity problem for the iid models.

In another direction, there have been results regarding the singularity problem for matrices with various
dependency conditions on the entries. For instance in [26] the first author studied random doubly stochastic
matrices, or in [1] Adamczak, Chafai and Wolff studied random matrices with exchangeable entries. More
relatedly, Cook [9] studied the singularity of A,, 4, the adjacency matrix of a random directed d-regular graph,
where he showed that p, = d~(1) as long as min(d, n—d) > C'log® n for some absolute constant C. A similar
result was also established by Basak, Cook and Zeitouni [2] for sum of d random permutation matrices as
long as d > 1og12_0(1) n. While these results are highly non-trivial, the random matrices are still relatively
dense. For smaller d, the recent work by Litvak, Lytova, Tikhomirov, Tomczak-Jaegermann and Youssef in

[20] shows that p, < Clo“id as long as C < d < ¢en/ In? n for some constants ¢, C'. As a consequence, this
bound implies that p,, — 0 if d — oo. Through a more involved study of the structure of the eigenvectors of
matrices of A, 4, it has been shown by the same group of authors in [21] that asymptotically almost surely
the rank of A, 4 is at least n — 1 as long as d > C' for sufficiently large constant C. Finally, very recently
Huang [15], Mészéros [24] (see also [27]) confirmed the conjecture by Vu [33] that p,, — 0 as n — oo for the
Ap.q model with fixed d The following quantitative result was shown in [15] Theorem 1.3].

Theorem 1.1. Let d > 3 be a fized integer. Then if n sufficiently large, for a random d-regular directed
graph on n vertices, the probability p, that its adjacency matrixz A, 4 is singular is

D < m mIn{1/4,(d=2)/ ()}
The authors are supported by the NSF CAREER grant DMS-1752345.
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In particular, when d = 3 the above gives O(n~'/%).

The papers [15], 24, 27] also addressed the symmetric case, which is more complicated and is not the main
focus of our current paper. As the reader can see, although there have been massive contributions on the
quantitative aspect of the singularity bound for various (not very sparse) random matrix models, the above
paper [15] is the only reference that produces a quantitative estimate for p,, of A, 4. In the current note we
further explore this quantitative direction by showing

Theorem 1.2 (Main result). Let ¢ > 0 be given. Let d > 3 be fized. Then for sufficiently large n, for a
random d-regular directed graph on n vertices, the probability that A, q is singular is bounded by

pp < p~1/3+e,

Hence with respect to the model A,, 4, our result improves over the n~4 barrier from Theorem for all
d > 2. With a more careful analysis, we can also replace the bound n~1/3+¢ by Cn=1/3 for some sufficiently
large constant C, but our bounds are still far from being best possible, where it seems the bound for p,
should be of order 1/n%~2, which would mean that the singularity event is mainly from the cases of having
two identical rows or two identical columns (see Figure [1]). It is desirable to establish similar probability
bound for the least singular value of A, 4, for which the current approach does not seem to work.

Our approach mainly follows the method of [15] which studies the singularity of the matrix A, 4 over Z/pZ
for some large p. In this approach we will consider P(A4, 4v = 0) for each fixed non-zero v € (Z/pZ)".
We hope that the probability is still small after taking union bound over all non-zero choices of v (modulo
its direction). A somewhat similar strategy was also carried out in [24] [27] for the cokernel statistics of
Ap.q as an integral matrix. Our new contribution shows an interesting relation between the decay of the
characteristic functions of a special family of random walks arises from the configuration model of A,, 4 and
an inverse-type Kneser problem in combinatorics (Theorem . More specifically, we extend the treatment
of [15] on the central limit theorem (Proposition and on the tail bound estimate (Proposition [2.4]) to
a broader range p < n!/37°(1)_ Least but not last, it is an interesting problem to extend the treatments to
larger p, a problem which is directly related to the upper bound of p,, but is also useful toward the study
of Z-statistics of the cokernels of A, 4.

Notations. We say that X <Y if X = O(Y) and Y = O(X). We say that X = Q(Y) if X > CY for some
absolute positive constant C'. Given a parameter «, we say that X = O,(Y), or X <, Y, if X < CY and
C is allowed to depend on «.

For any = € R, we define |z|| := ||z|[r/z to be the distance of x to the nearest integer.

Finally, if not specified otherwise, the parameter n in this note is assumed to be sufficiently large.

2. SOME FORMULAS AND THE PROOF METHOD

As mentioned, the singularity problem views the M as matrices over R, but if the entries are integers they
could also be viewed as elements of the field Z/pZ for any prime p. A matrix is singular mod p exactly when
its determinant is 0 mod p, and so heuristically, one expects this to happen about 1/p of the time instead of
0% of the time. This was the motivation for the treatments of [15] 24} 27]. In what follows we closely follow
the approach of [15].

We first use work of Bollobas [4], to replace A, 4 with a random multi-graph A}, ; given as follows (see [5,

Corollary 2.18]). We associate to each vertex k € {1,...,n} a fiber Fj of d points and select a permutation

P of the nd points uniformly at random. Then for each vertex k € {1,...,n} and point ¥’ € F} we add

a directed edge from k to vertex £ if the points P(k’) belongs to the fiber F;. By [4], for any fixed d the

probability that A;, 4 has a loop or multiple edge is bounded away from 1. Hence it suffices to prove the
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FIGURE 1. Sum of three random permutation matrices

theorem with A7, ; replaced by A, 4. Without loss of generality, in what follows by the configuration model
Ap,a we mean the model 47 ;.

For a vector x = (21,...,24) € Fg with n; components x; of value j, we define

D(x) := (ng, ..., Np—1)-

Thus we have
an =d and Zjnj =21+ -+ x4
J J

the set of vectors v = (vq,...,v,) where for
such vectors.

Given no,...,n,_1 where ) . n; = n we denote by Sy, . n, ,

each i =0,...,p — 1 there are exactly n; entries ¢ in (vy,...,v,); so there are (no Y 1)
B

Let Uz, be the multi-set
d
Ugp = {(I)(x) IX € Fﬁ,in = O}.
i=1

Hence |Uy ,| = p?~!. For instance, when d = 3 the vectors (3,0, ...,0),(1,1,0,...,0,1),and (1,0,1,0,...,0,1,0)
all belong to Us .

We have the following beautiful random walk interpretation (see Proposition 2.1]).

Claim 2.1. Given ng,...,np_1, and given v € Sy, . n, ., for the configuration model Ay, 4 on random
d-regular directed graphs we have
p—1
{MeA,qs: Mv= 0}) = H(dnj)!‘{(ul, ) EUG, tur A+ u, =d(no, .. npo1)}
j=0

p—1
= [J(dn;)'p'" D"P(X1 + - + X, = (dno, ..., dnp_1)),
j=0 3



where X1, ..., X, are independent copies of X, which is uniformly distributed over Uy .

2.2. Proof methods. As shown by the above interpretation, it boils down to understanding the random
variable X. It is elementary to show

® = B((X ~ p)(X - ) = 51 - S

and

Also, the characteristic function of X and X — p are defined as

oxe) = o Y e

d—1
p wEU,p

and
bx—u(s) = Eexp(it - (X — p)) = exp(—it - p)ox (s), s € RV,
For instance when d = 3, we have

1 )
¢x(s) = — Z ei(satsots—a—p)

a,beZ/pZ

Because of Claim and because |4, 4| = (nd)!, in order to prove the singularity probability to be small
we aim to show that

n (d=nn ] dn;)!
2 <no . np—l)p (lc_lITJLiO( ) P(Xy 4o+ X = (dno, ... dnp-1)). - (1)

(no,---np—1)EL>0,mo<n
2o mi=n

is small.

Definition 2.3. Let b > 0 be chosen to be sufficiently large, and let £ = &, be the set of vectors satisfying

p—1

n; 1 blogn
SRy < ZOBT @)
i=0 p n

We will call such vectors equidistributed.

Let NV be the set of p-tuples (no,...,np—1) which are not (n,0,...,0) and not equidistributed. Our main
result can be deduced from the following two key propositions.

Proposition 2.4 (Deviation estimate for the error term). The contribution in from N is bounded by
o(1) as long as p < n'/3~¢,

Note that this result improves upon [15] Proposition 3.2] where a similar statement was proved for p <
n(d=2)/2d A5 g consequence, to justify Theorem it suffices to work with equidistributed vectors. For this
we show

Proposition 2.5 (Local limit theorem for the main term). The contribution in from equidistributed
vectors is at most 1 4+ o(1) as long as p < nl/3—¢,

We note that with some extra work it might be possible to actually prove that the contribution is 1 + o(1),
see Remark ??. The above result slightly improves [15, Proposition 3.1] where the author there worked with
p<nt/t

We will prove Proposition in Section [5] and Proposition in Section [3] in what follows we deduce our
main result.
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Proof. (of Theorem Note that if M € A, 4 is singular then there exists a non-zero vector v so that
Mv =0 (and hence M(tv) =0fort=1,...,p—1). We thus have

1

(p—1P(M € A, 4 is singular) < —— Z Z 1pfv—0 = Z ‘{M €Apq: Mv=0}
( ) MeA, q v#0 v#0
(d—1)n d
P n

N Z <TL nn ) (lc—lln) ( j) P<X1+"'+Xn:(anv""dnp—l))

(no,...,np_1)EZL>g,no<n 0y -5 Top—1 !

> ni=n

= > L+ Y

(no,np—1)¢E (no,...,np_1)EE

o(1) +1+40(1) =1+ o(1).
Hence
1+4+0(1)

_ —1/3+4¢
p— O(n ).

P(M € A, q is singular) <
O

Choices of p,d. Here and later, ¢ is a sufficiently small positive constant. If not specified otherwise we will
assume

§ = p~(1439) and p3H2e) = . (3)

3. TREATMENT OVER EQUIDISTRIBUTED VECTORS: PROOF OF PROPOSITION |2.5

There are two factors of the terms of to analyze, we will give some preliminary discussion on each

(d n HP (dnj)

separately: (i) Stirling formulas for the factor (n0 o —1)T and (ii) Fourier analysis for the

factor P(Xy +--- + X,, = (dno, ...,dn,—_1)). We then combine these estimates in Section

3.1. Stirling formulas. We first recall the following Stirling bound by Robbins for all positive integers [,
V2rl(l/e)em i < Il < V27l(l/e) e . (4)
So 1! = v/27l(1/e)'e® /Y and therefore (see also [15, Eqn (3.4)])
no NP ) oy al [T
<n0, ) (dn)! - b I,n!  (dn)

_ pld—Dn Varn(n/e)"eCW/m) ] \/2rdn;(dn;/e)dms ¢O1/n)
[1\/27n;(n;/e)"ieC0/m)  \/amdn(dn/e)dneO1/n)

sy Np—1

’I’L(-dil)nj
= 60(1/n) X (\/g)p—l X 1;‘[2)-](“
= o p—1 = & nj1d—1
= (L +0(1)) x (Vd) X[:O(n/p) ]

J
Recall that
= nj 1 2 blogn

n n
7=0



Hence trivially

n; 1 n;

= 1= 0Wlogn/ Vi), 122~ 1] = O(p/log n/v/n) = o(1).
Hence

S 1/n; = 0(?/n) = o(1).

j
Note that Taylor expansion for |h| < 1 shows

(h4+1)log(h+1)=h+h?/2 - h*(1)2 —1/3) + h*(1/3 —1/4) + - - - .
Hence, because |(pn;/n) — 1| = o(1)

3 Yo8((n3/m)/ (/) = mosl(pn; /m — 1) + 1] = (n/p) (s /m — 1+ 1)logl(pn; /m — 1) + 1
0o Nk

= /)y = 1)+ (s /= 124 3 G (omg /= P,

k=3

So

(o)
(=D*
> nylo((ny /m)/(1/p)) = (/)3 /m = 1)%/2+ 3 g omy/m = 1))
J J k=3
We will use the above expansion for ;1 logn;. One can see that for equidistributed vectors the terms
> i(png/n— 1)2 and n(d—1) > i(png/n— 1)3 are the main contributions, while the contributions from higher

order terms are bounded by O(3_;(pn;/n — 1)*), which is in turn bounded trivially by

(/= 1777 = OB S o = 12) = O/ Y (pmy /= 12),

and hence are negligible when p < n'/3(1422) (see also ) So we obtain

n (@=D)n T1PZ} (dnj)! —1)pn <, n; —1)p*n n;
(no >p [1;—0(dn;) :(1+0(1))d(p71)/2exp((d L)p 2(4*1)27(61 Lp (7]7})3)'

ceyMp1 (dn)! 2 —~n p 6 n p

3.2. Treatment of the characteristic function. We notice that [¢px_,(s)| =1 iff
s € 2nZF 4+ 27(0,1/p,...,(p—1)/p)Z + (1,...,1)R.
For k > 0, for 5 =0,...,p — 1 we define the domains
Bj(k) = 27§(0,1/p, ..., (0 — 1)/p) + Q({x € R*1 : x| < w} x [0, 2y/p)),
where @ is an orthogonal transform of the form @ = [0,1/,/p] and O is an orthogonal transform in the

space 1+,

Suppose that s € Bj(k) for some j, and d = 3. Then s = 275(0,1/p,...,(p — 1)/p) + Ox + y1 for some
|Ix]|? < k and y € [0,27]. Let s’ = Ox.

1 ; ’ ’ ’
[ox(E)] =15 D et
a,b

LS (sl 4spts! 1 Sat 55+ 5 (aqp)
= i) —1-0( 5 3| o2 2)
a,b

1 Sq 2\
=1- O(Z?p; H%HR/Z) =1-0(k/p).

Our main result says the converse.



Theorem 3.3 (Inverse result for fixed d). Assume that for s € 2nRP /ZP

‘(bX—u(S)‘ >1- ap_z

where « is a small constant. Then there exists j such that s € Bj(k) for some xk < Ap~1, where A is a
sufficiently large constant depending on ., d.

This is an improvement of [I5, Proposition 2.3] as there the right hand side is replaced by 1 — O(p~3).
Compared to [15], our proof for this new setting is more complicated, but we believe that this is a delicate
matter. In application, x is set to be 4.

3.4. Fourier analysis. For equidistributed (no,...,np—1) we first write
1 )
P(X1 4+ Xn = (dno, . ..,dn,_ :—/ A% (x)eHodn—na) gy
( 1 ( 0 P 1)) (27T)p onRP /Tp X ;4( )
3/2
_ p n —i(Ox,dn—np) —an/p?
(2m)Pp—1 /xeRP—1:|x|g§5 P —p(Ox)e dx + O(e )-

(6)
where « is a small constant and the error term O(e=*"/?") comes from |px—p(x)] <1—a/p? and Theorem
3.3l

We write

¢X—M(OX) = E(l + i<OX7X - /J’> <OX7X - /J’>2 <OX7 X — l'l’>3 + O(<OX’X - I’L>4))

1 i
2 6

Let
s = Ox.
Then clearly ||s|l2 = ||x[|2. Because the columns of O are orthogonal to 1, we have ) . s; = 0. For ®(a) € Uy,
(s.®(a) = p) = Sa, + -+ Sauy +5-Tar-
From the above discussion it suffices to work with

sz < o.

The first moment is zero as ), s; = 0,

1
]E<S’X - l"’) - pd—1 Z (Z Sa; T85_3, ai) =0.
%

ag,...,ad—1

For the second moment,

E(s, X — p)? = pi ) (3 50,)? = ]%pd-z % dS" 52 = (d/p)lsll3 = (d/p)|xII3

a1,...,ad—1,04,_,; a;=0 %

For the third moment, we see that the sum is a multiple of p,},l p?2Y (sa/p)?.

1 1
E(x,0'(X-p))* =Ex0"(X)’ === > Os)’=—3 > Y Sau San,Say
p a1,4..,ad,ziai=0 7 p al,.A.,LLd,Ziuizolg’il,iz,iggd

1 1
3 3
E(s, X — p)° = s, E ( E Sq;)° = s, E E Sai, Sai, Sai,
a1,...,04,p,,; a;=0 1 a1,...,04,y,,; a;=01<i1,i2,i3<d
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s pi-2(14 20D dld - Dd -2 —I—Zs sp3d(d—1)p? =3 )+ > saspse ( ) .

2
p p a#b a<b<c

By passing the sum Y, _.saspsc to (3, s)® and Y, _, 253 to (3, 52)(3, Sa), We arrive at
d ¢ ¢ C
E{s, X —p)’=(-+ 5+ §)252 = L3
p p p ; p ;
for absolute constants ¢/, ¢, where
Cpi=d+c/p+c’/p
Notice that we can bound 3, |sq|* from above by (3°, s2)%/2, but this does not give us a desirable bound.

For the fourth moment,

1

o1 > Qsa)t=Cagp 328 +(d/p) 3 (50)"
A1,.,0d,p,, a;=0 1 a

= (Ca/p)sllz + (d/p) Y _(sa)*.

a

Hence if [|s]|3 < 6 then
nllsla/p?* < né®/p* < ptoe/t

D)< QoshP <Yy sa<p Y sk

(1+01/p/M)P =1+ o(1). (7)

Also

Note that

Hence for (6) it boils down to considering (where for short we write ds for ds; ...ds,_1)

3/2 cp n

p 1/ o llsl3 o
(2m)P~ Jserri|is|2<5,5, sa=0

i(s,dn—bu)+i DO dsl.

1+ o(1))

In fact, we can extend the integral to all s € R? with > s, = 0 excluding B2(J) = {s : >, s2 < §} above
because

p3/2

(2m)p—t /seRp\BQ(s),za 50=0

3/2 . E
=@+ 0(1))p7/ I e
- @CmP~ s3>0, sa=0 = =

. .C
o B3 it dn—p) i 5, 7 g

[(1+0(1))

Hence we can pass to consider

3/2
11+ o0(1)) L «ads|.

. .Cpn
1/ o e Isl13 —i(s.dn—bp) +i 2 5
(2m)P SERP,Y, 54=0

For short (with j playing to role of a), let

n
tj = (dg — [i)j. (8)
We will show the following estimate.

Lemma 3.5. We have

|/ e—g—;Hnge—i(s,dn—bu}-&-i% > S?dS| < (1_"_0(1))(\/%)1)—1( dﬂ)p—le—% > t?—&-Cp(\/g)dg%(v%)?’t?.
ERP,3" . 5;=0 V dn
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Proof. We notice that

B 2 1,0 5 _ blogn
th =0 and th = lld— — pl3 < —>=.
J J
By the change of variable y; = ,/%”sj (and with dy = dy1 ...dyp—1), we can rewrite the left hand side of

Lemma [3.5] as
P \p—1 325 = 5Y; it/ %yﬁ‘icp(\/g)ﬁy?d
W2, s K a Y.
YERP, ) y;j=

To simplify furthermore, with r; = t;,/%7 and ap = Cp(\/g)dg,%, we have

/ e —3Y; —irjy;tiaoy; dy

y;€ER, 3 y;=0

- H e 37 / 25 — 2 (ytin)) Fiooy} gy
J

y;ER,3 D y;=0
_ 1,2 —1.24 c—ir)3
:He 27 eZ 2zy+m‘0(z.7 irj) dy
J

/yj €R,>" y;=052;=y;+ir;

_ H o~ 42 —aor?) / o X bt rian (3323 (im) 432, (ir)?) gy
; y; €ER,Y y;=0;s2=y;+ir;

_ H -3 (7’ 70107" / 62 7%2?4’1‘0{02?4’3@02?7‘]‘ 73iaozj-r_? dy

y; €R 3 y; =0z =y; +ir;

_ H 67%(” 7a0rj) / ez 7(%73agrj)z]2.+i(aoz?73ao7’]2-2j)dy
j y; €R 3 y; =0z =y; +ir;

= [t / o=~ (h=3a0r))u3 +ilaoys ~3a0r3u;) gy,
; y; €R,DZy;=0

by contour integral. (Indeed, to see the last identity, by substituting y, = — Zg’;i y; into the exponent we
can rewrite the integral as

/ er;f —($=3aor))y]+ilaoys —3aoriy;)— (3 —3aor,) (TFZ{ y;)? —i(ao (527 y;)* —Baor (0] y’))dy1 dy,
Y1,---3Yp 1€ER

:/ 625?;;..(/ o~ (3 =3a0r1)y3 Filaoy? —Baoriy) — (3 —Baory) (S22E y5)? —i(ao (S22} ;)° —Baor? (S22 1%))dy1)dy2...
Yy Yp—1€ER y1 ER

By using the fact that e=(a+i)* 5 0 as @ — oo for any fixed b and the integrand is holomorphic in y; for
any given o, ...,Yp—1, we can replace the inner integral from 4 € R to y; € R + ir1. Keep iterating the
process until y,_1, noting that Zle r; = 0, we obtain as claimed.)

Next, because aylt;| = o(1), the integral |f JER,S ;=0 Z_(%_3(’0’“1')?/?“(&0%3'—3%’"?%‘)dy\ can be bounded
J

V2m)P LT V/1 + O(agry) < (vV2m)P—t Heo(o‘o‘”‘) Hence we have
| / e~ Ty bl =imsitioon gyl < (/am)p—t [ e b -eord+0taoln),
y; €R,3Sy;=0 j
Notice that with the choice of p from

e 251l < geoVPV/ 2T < paopy PR o(1).

Putting these bounds together,

| e~ X5 39} e=imiuiticoy] gyl < (1 4 o(1))(V2r)P~le” 2 2 540 (VB 3 VI
Y3 €R, 3D y;=0



As a consequence of @ and Lemma we thus obtain

P(X1 4+ Xo = (dno, ... dnyp1)) < (L o)) (5 10-) "7 e 52 5Ot ()

where ¢; are defined in .

3.6. Completion of proof of Proposition First recall that

n(d—1) T7P—1 Y]
n p szo(dnj)-
E ]P(An,dV:O) = (’I’Lo, .7np1) (dn)' X]P)(X1++X = (dno,...,dnp_l)).

VESng,...

Mp—1
Recalling the first factor from and the second factor from @, after cancellation we obtain

nj d—1) C 2,1 3
j_ 1 ( )7?1’:]71 (L2 1)

(14 o(1))p*/ 2 (p/2mn) P~ /2= n/D 5, (5 =515 ~5

m TP
Our main goal in this part is the following (where D, = (dgl) — %)

Lemma 3.7. We have
> (1 4+ (152 (p/2mm) 0D/ 2e /) S, =D D" _ 1 4y o(1),
(no,...,np—1)€E, 3", jn;=0 (mod p)

It is clear that Proposition then follows. For Lemma we first show that one can pass from ) jn; =0
(mod p) to general (ng,...,np_1) € E.

Claim 3.8. We have
3 P32 (p)2mn) P~ D/ 2= /D (5= 5)" =Dypn(5E =)
(no,....,np—1)€E, 30, jn; =0 (mod p)

_(+o(l) X pMR(p/2mm) oD 2D T (Dt

Proof. First, it is clear from [15, Eqn (3.14), (3.15)] that
o~ (pr/2)[[(PFEE=20 k|5 (1+ O(plog!/? n/nl/Q))e—(Pnﬂ)H(%—%)H%.

Note that
(o B s (=B (B20),0 = (BB 2+0((B-52 i+ G- B w401 /%)

and clearly p? >0 = £);)? < p®logn/n, Hence we see that

nj_1

e~ (Pn/2) (=32 =D n(F =5 _ (1+ O(plogl/2 n/n1/2 + (p*logn)/n)x

% o= (Pn/2) 5 (FFE=20 — £) )2 —Dyp?n 37 (PFA=20 &) ;)°

Summing over j and taking the average we obtain the claim. O

We then claim that
S P Ppf2mn) PV 2 Z,GE =D G =) Z 1 4 o(1).
(no,...,np—1)EE

Replacing this Riemann sum by its integral, it suffices to show that
10



Lemma 3.9. With the choices of parameters as in ,

/ (1/V2r)Pe™ 2 Y; /24 Dp\/p/n T, yf-dyl dy, <1+0(1).
lyll3<plogn

Proof. For each positive R such that R? < plogn we consider P y? = R? and write

/ e B/ 24D T W gy |y, = e—R2/2RP/ PV T 5 g da,,
lyl3=R? I

x|[2=1

It is well known that the uniform measure ﬁsp)dxl ...dx, over the unit sphere can be replaced by z; =

&/ > & where &1, ..., &, are iid standard Gaussian. As such, our first goal is to show that for R? < plogn,
with respect to the random Gaussian variables &;,...,¢,

EePrVP/nB Zi&/VE )’ = 1 4 o(1). (10)

First, as R3 < (plogn)3/2 and clearly e~PePrVP/nR — (1) if p < n!/3, by large deviation of >; &7 (that
P(>, & < p/dor Y, & > 4p) < e~ P for some absolute constant c), the contribution in the expectation
when Y, &2 < p/dor >, &2 > 4pis o(1). Let & denote the event p/4 < >, &2 < 4p.

Second, on the event R S".(¢:/1/>, €2)% < p, as /p/n < 1/p'T5/® we must have e”»V /B &/ VE €D =
e®® = 1+0(1). Hence it remains to focus on the events p!*</8 < R3S (¢,/1/3, €?)% and the event &, that
>, & has order p.

Claim 3.10. For pHE/8 <t < R® we have

P<RB > (&l 263)3 >t A &) < ot D/R

g

for some absolute constant c.

Proof. For short, let a := tp*/2/R3. As P(¢&} > x) = P(¢ > 2/3) = O(e*"’”2/3/2) if x is large, by a result of
Nagaev (see for instance [13] Eqn. (1.2) and Theorem 1]) we have

P
—ep?/3(a 2/3 —ca?/?
PO > a) = (Y € /p > afp) < @@/ _ gmea®
i=1 i

7

for some absolute constant c. O
Back to our proof, with X = R*>" (&/v/>; €2)3,

14¢/8

R3
EePrVPInRX ] s xsrone, < / Vp/nePrVPIMP(X >t &)t
P

R? R?
< / V/p[nR2ePrVplnt=et? /R < / V/pne= (€12 FIE — (1)
p plte/8

14¢/8

where in the second to last bound we used the fact that ¢ < R3 and R? < plogn and the choices of

parameters from (where we note that our bounds are slightly better than needed). With this we are done

with proving . O
11



We have shown that for each R so that R2 < plogn
/ e /DN PN 0 gy, | dy, = e‘RQ/QRp/ ePr VIS
lyll3=R? lIx[l2=1

p
= e B2 RPVOI(S, ) EePr VP/m B (& /2 60)°
(14 o(1))e F/2RPVOI(S,).

Hence
/ (1/v/2m)Pe” >, ¥5/2+Dp/p/nY, y?dyl dy, = (1+0(1)) / (1/+ ﬁQW)pe—R2/2RPV01(Sp)dR
lyll3<plogn R<+/plogn
= 1+o0(1),

completing the proof of Lemma [3.9

4. PROOF OF THEOREM [3.3]

We will choose 7 so that
n’p=ap!
and assume that
\p—d_l Z exp(i(sa, + -+ 8y, +5-5 )| > 1 - n%.

A1,...,Qd—1

In other words, if ¥ = —arg ¢ x (s) then
1
pd—1

D Re(exp(i(sa, + -+ oy + 55,0, +1))) = 1 =1, (11)

By shifting every s, by a constant, we can assume
so = 0.
Note that [sin(z)| > 2[|x/7||r/z (which we replace by || - || for short),
Re(exp(i(sa; + -+ + Say_, + S a0 1)) = cos(Sa, + -+ + Say_, + S St )

Say + F Sag s FSox a0+ Say + o+ Sag s F S5 a4 F
:1*2Sin2( 1 d2 > a ,l/))§1*8|| 1 d2 > ai w”Q
™
Hence the assumption of Theorem [3.3] (or more specifically (11))) implies
Say T T Sag s TS- 4 TV _
> 5 . 2 <oPp?t/s. (12)
0
Al,...,Qd—1
Macroscopic analysis. Our first goal is the following
Lemma 4.1. There exists dy € {0,...,p — 1} such that for all a
Sq  dpa 5
I - ) < VP
For this, we first show the following
Claim 4.2. We have
(1)
(U
I5- Il <a Vn?p. (13)

12



(2) Also, for all ai,...,aq-1

Sa; + -+ S + S _gi—
|| al ad—217T al ad—1 H <<d /nzp.

Note that the proof of this result is similar to the first part of the proof of |15, Proposition 2.3].

Proof. We have learned that
+ ¢ _
Z |2 < n?p*/8.

Let €9 < 4/d. Let G be the set of a (such that >, a;, = 0) where ||%H < \/eo 'n2p, then we have that

the size of the set complement G is at most
G| < eop™?/8.

Fix a; =a = (a1,...,aq) with ), a; = 0, and let w = ®(a;). The total number of zero sum d x d matrices
(of zero column and row sums) with the first row a; is p(?~1(¢=2), For any b, the number of such matrices
with first row a; and some other row b is at most (d — 1)p{¢=3(@=1 "and the number with first row a; and
some other column b is at most dp(=2(=2)  So the number of zero sum d x d matrices with the first row
a; and at least one row or column belonging to G is bounded by ((d — 1)p{@=3)(d=1) 4 gp(d=2(d=2))|G| <
de(d_Q)(d_Q)Eopd_Q/S < pld=2)(d=1) Tt thus follows that there exists a zero sum d x d matrix with the first
row a; and all other rows as, ..., as and columns by,..., by belonging to G. By the triangle inequality,

[UEI Sl +0) = 5 o((s.a) +0)

I < (2d = 1)y/eq .

2w
|
Choosing a1 = a,as = —a,a3 = --- = ag—1 = 0, we obtain that
Sq +S—
1=l < Vn’p.
s
Hence without loss of generality we can assume that s_, = —s,.

Proof. (of Lemma For short we let

q:= [pV/n?p].

Note that by definition ¢ is much smaller than p. By Claim given that « is sufficiently small, we have
that

Sq; -+ s + S _gi—em
I = a1 “ a1 I < vV/n?p,Va,...,a4-1.

2m
It suffices to assume s, € [—m, x| for all a. We first choose k, € Z such that
Rty
p ~ 2

and k_, = —k,. Let K be a sufficiently large even constant (and recall that p is sufficiently large). Our goal
is to show that there exists an integer dy such that

ko = doa+ [-5Kq,5Kq] (mod p), for all a. (14)

(Here we can replace 5 by 2 but it will not yield any significant improvement in application.) Lemma

would then follow because

doa,

10Kq+1
7_7|]RZ§ —— < V7?p.
| ) |r/ R

13



In what follows we show (14). Consider intervals (arcs) I, in Z/pZ of length Kq centered at kq,
I, =[ke — Kq/2,kqe + Kq/2] C Z/pZ.
Note that Iy = [-Kq/2,Kq/2]. Let B be the set of the following points in Z/pZ x Z/pZ,
B={(a,1),a € Z/pZ,l € I,}.

For each k > 1, we will be interested in the set kB := {by 4+ - - - + bg, b; € B}. In particular,
@d-1)B= |J {ar+-+asa}x o, ++1a,).
For this set, on one hand,
Toy 4+ a“—Zkal— _1/22k + Kq(d—1)/2).

On the other hand, by definition, || “1+"'+S“d712"7‘rsfa1—~-~—ad,1 I < +/n%p, and so by the triangle inequality

Ikal + e+ kad71 + k_(a1+,..+ad71) | S || Saq 44 Sag_1 —+ S—a;——ag_1 || 4 i < \/T+ i
P o 2 2
Hence (noting the choice of 1) we have

|kay + -+ kagy k(a4 tau_)| < 20V 10?0 < 2g,

Amy1 — 7T kay_, =0,

Koy + -+ ke +E_(ay4tam)| < 2q.

It can be shown by induction that for any m > 0

and for any m < d — 1, by choosing k

|ka1 + o+ ka,, +k_ (a1+-- +am)| > 6q

d—2"

Indeed, for m = 2, from [[(ky + kb + k_(q41))| < 2¢ with [ = [d/3] we have |kq + ky +k_q_p| < ? < d(%q. If
the above is true up to m — 1, then

[

m—1
|ka1+' ' .+ka7n+k/’7(al+“'+am)| < ‘kal +-- .+ka7n72 +kam71+am+k*(a1+---+am)|+|kam71+am_k/’am,1 _kam < 6g d—9°
Therefore with ¢ = —(ay + -+ + am, ), over Z/pZ

I+ +1a, = [Zkal - qu/272kai + Kqm/2]
-1
ke— K 2—-6 —ke+ K 246 15
Cl- qm/ qd2 +qm/+qd — ) (15)

Notice that the set B has size p(Kq + 1), while the union of the sets {c} x [k, — @ — 6q2=3, —k. +
Kg’" + 6¢%=1] has size p(Kgm + 12¢3=; +1). Thus we have

m —

d—2"

-1
|m B <qum+p+12pqd 5 < m|B|+ 12pq (16)

When d = 3. We have
|2B| < 2|B| + 12pg.

Note that when K is large, 12pq is small compared to |B|. This is similar to Freiman’s (3n — 3)-theorem [31]
except that our setting is not torsion-free. We then use a very recent result by Lev [23] Theorem 1], which
says that if B is not contained in the union of fewer than ¢ cosets of a subgroup of G = Z/pZ x Z/pZ and if
|2B| < 3(1 — 1/4)|B], then there exists an arithmetic progression P C G of size |P| > 3 and a subgroup G’
of G such that

|P+G'|=|P||G'|,BC P+ G, and (|P| —1)|G'| < |2B| —|B|. (17)

14



For short, we call such a structure P+ G’ a coset progression (of rank one). We will choose £ = 4. Consider
the case that B is contained in 3 cosets of a subgroup G’ of G. By definition, G’ must be Z/pZ x {0}.
However this is impossible because |I,| = K¢+ 1 > 3 (for any a) as K is large.

Hence B cannot be contained in 3 cosets, as |B+ B| < 3(1 — 1/4)|B|, we see that there is some subgroup G’
and some arithmetic progression P C G such that

BCcP+d.

We then divide into several subcases.

(i) G' = {0} x Z/pZ, as I, is a proper subset of Z/pZ, this is impossible.

(ii) G' = {0} x {0}, we then see that B C P and |P| has size at most [2B| — |B|+1 < |B|+12pg+1 <
(K + 13)pq. As P is an arithmetic progression, it can be written as P = {(po,qo) + i(z,y),0 <
i < |P| — 1} for some (pg,qo) and (z,y) in G, where it is clear that x # 0. For each a, consider
Se={0<i¢<|P|—1,pp+ixz =a}. Each i € S, has the form i = i, + Ip for some representative i,.
So I, C{qo+ (ia + Ip)y} = {qo + iay}. However, this is impossible as I, has length K¢ + 1, which
is sufficiently large.

(iii) G’ is a cyclic proper subgroup of form {i(g,h),0 < ¢ < p — 1}, for some (g,h) # (0,0) in G. We
see that (|P| — 1)p < (K + 13)pq, and so |P| < (K + 13)q. Write P = {(po,q0) + j(z,¥),0 < j <
|P|—1 < (K +13)q}. For each a we let S, be the set of pairs (, j) such that py +ig+ jz = a. Then
it is clear that g # 0, I, C {qo + ih + jy, (i,7) € S.}, and

i=g '(a—po) —jg ‘=
So we have
I C {go+ (97 (a —po) = jg~'x)h+jy,0 < j < (K + 13)q}
={ao + 9 'h(a—po) —j(g 'wh —y),0 < j < (K +13)q}.
Hence either g~ 'zh —y = —1 or g~ 'zh — y = 1. Without loss of generality we assume the latter.

Note that as Iy C {qo — g ‘hpo — j(¢g 7 xh — y),0 < j < (K + 13)y/n?p}, we must have (with some
room to spare)

g — 9~ 'hpo € [-2K¢,2Kq].
Putting this together,
Iy = ke — Kq/2,ka + Kq/2] € {q0 — g~ hpo — (g~ zh —y) + ¢~ 'ha,0 < j < (K +13)q}
C[-4Kq+ g 'ha,4Kq+ g~ 'hal.
We thus conclude that for all @ we have k, € [g”'ha — 5Kq, g~ ha + 5K¢|, confirming .
From the proof, we can actually obtain from a slightly more general result (when we applied [23] for
¢ = 4 as above)

Lemma 4.3. Assume that B = {(a,l),a € Z/pZ,l € I,}, where I, are intervals of length K + 1 for
sufficiently large K as above, and K < p. Then if |B+ B| < 9|B|/4, the set B can be contained in a coset
progression of rank one P+ G’ as in .

Corollary 4.4. Assume that for some positive integer h of order O(1) we have
12" B| < 2.25"|B|.
Then there exists a coset progression of rank one P + G’ of size Oy (|B]) as in such that BC P+ G'.

It is important to note that if there exists such P+ G’, we can argue as (iii) in the above proof to then arrive
at (with H depending on h.)
15



Proof. By assumption, there exists 0 < A’ < h — 1 so that
|2/ +1B| < 2.25]2" B.

We will then apply Lemma to contain the set 2" B in a coset progression P + G’ of size at most
212" B| < 2.25"|B|. Now as B C 2" B (as B contains {0} , we hence have a similar containment for B. O

General d. From , we have

~1
ImB]| <m|B|+6pqd 5 < mIB| + 6pgm < m(1 + )IBI

Choosing m = 2" and K to be sufficiently large we can apply Corollary u

O

4.5. Microscopic analysis. With the help of Lemma by replacing s, by s, — 2m(dpa/p) for all a, we
are thus free to replace || - || (that is || - ||g/z) by |- | as all the numbers are sufficiently small. In the next step
we establish the following key estimate.

Lemma 4.6 (structure of triple). Assume that for all a

32 = o(1)

Sal + e + Sadfl —|— Sfalf"'fad—l +Ilp‘2 < 7,]2p
2m B .

Then there exists an absolute constant A such that

S
> 5 * < An’p.
iy

a€Z/pZ

Proof. (of Lemma By shifting each s, by ¢/d (in 27R/Z), we can assume ) = 0. (Since 3 = o(1), we
still have [32] = o(1).) In what follows €9 > 0 is a sufficiently small constant, which can change depending
on the situation.

For transparency, we again consider the simple case first.

When d = 3. Let B be the collection of (a,b) where
+ Sp+ S_a—

|5a Sb2 S a b| +|

™

S_q+S_p+ Satb
2w

| > nzg
By assumption,
1B| < efp?
Let G be the complement of B in (Z/pZ)?. Hence for all (a,b) € G (and at the same time (—a, —b) € G and
(a,—a —b), (b,—a — b) € G) we have that

sa+sb+sab 5a+8 b+5a+b

et Bt iect) |t BID T Sesh) < pty iy, (15)
Let 77 be of order p~l. As before, for each a we let k, € Z be such that —p/2 < k, < p/2 and that
Sa < 5-. Then by the assumption of Lemma@4.6} k, = o(p), and also by (18), as long as (a,b) € G we
2m
have

ko +ky+k_qp € {—37 e ,3}.
Indeed, this is because
ka""_kb""_kfafb” < Hs a+5 b+5a+b

= < LT Serb )y

’B\W

2This assumption is not needed, as 2"’ B contains a translation of B.
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As this holds for all (a,b) € G (which consist most of the pairs (a,b)), we guess that k, must be linear in
a. This is very similar to our situation in the previous section, except that here we are working over Z, and
not all but almost all pairs (a, b) have this property. To confirm this we prove

Claim 4.7. |k,| is at most O(1) for all but O(gop) indices a € {0,...,p—1}.

Proof. We say that a is good if the number of pairs (b, c) € G such that a +b = —c is at least (1 —eg)p. It is
not hard to see that there are (1 — &g)p such good indices. Assume that ag is such that |k, | is the largest
among the good a. Without loss of generality we assume that k,, is positive. Consider (b,c) € G such that
a+ b = —c. There are (1 — g¢)p such pairs, and because most indices are good, there are (1 — 2g¢)p pairs
in which b, ¢ are good. Because k. € —(kq, + kv) + {—3,...,3}, and because k,, is maximal, the following
holds: either k; is negative, or 0 < k; < 2. So for each case we can decompose {0,...,p — 1} into two sets
P ={a,k, >0} and N = {a, k, < 0}.

Assume that |N| > 10gop. Let s € N, then either there exists ¢ € N such that s +t = —k,, + O(1) or
s = —kg, + O(1). In either case, if k,, > 1 then we have |s| > |kq,|/2 + O(1). Now the set of a € N
where |kq| > kq,/2 + 3 cannot be of size ggp because otherwise we could choose two elements aj, as so that
k—ay—ay > kay, & contradiction. Also, the number of of a € N such that |k,| < kq,/2 — 2 cannot be more
than eop because then |k_q,_q| > kqo/2 + 3, and we have learned that the number of such is at most egp.
Putting this together, we see that the remaining set N* of a such that |k,| < kq,/2 — 2 has size at least
V| — 2e9p which has order around —k,,/2. To this end, consider the set {(a,a’) € G,a + a’,a,a’ € N*}.
This set has size at least approximately [N*|, and if ’/ = —(a + a’) then k,~ is approximately kq,. So if
there are many such a” and therefore a pair (af,a3) € G, we then see that k_,»_,y is approximately 2k,
a contradiction. Hence |N| < 10eop, and therefore |P| > (1 — 11&¢)p, completing the proof. O

Let B be the set of indices satisfying Claim Assume that B is a proper subset of Z/pZ. Let ¢ € (Z/pZ)\B,
then as |B| > (1 — O(gg))p, there are (1 — O(&3))p pairs (a,b) € B2 such that a + b+ ¢ = 0. By assumption
we have

Sq + Sp+ S—a—b 2 Sq + Sp+S—a—b 2 2 2
— " < —° < .
> o [RE o I <n°p”/8
a,b;—(a+b)¢B a,b
Hence
—8q — Sp+ S
> I P <P - OER) P,
i
c,c=—(a+b)¢B

Notice that when a € B, as k, = O(1), we have [|52|| = (7) = O(n'). So by the triangle inequality

—Sq — Sb T+ Sc

221 o0,

Sc
2o <
120 <
Thus we have
Sc 12 —Sa — 8b 1 Sc 2 2 2 2,2
Zez < —fa b T % < - )
> 51" < > 5 12+ 00")) < 27°(1 - O(<5)) " 'p* /8 + 2p%n
c,c=—(a+b)¢B c,c=—(a+b)¢B
Recall that there are (1 — O(e2))p pairs (a,b) € B2 such that a + b+ ¢ = 0. Then
SC 2 /2
— 7 < .
> I 17 = Ot p)
c¢B
Altogether,
/2
ZH md ZH ||2+Z|| ~[* = 0("p).
c¢B

This completes the proof of our result for d = 3.
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Treatment for general d. The proof here will be similar to the case d = 3, so we will be brief. Let B be

the collection of (aq,...,aq—1) for which

Sa; T+ Say T S—>a;
27

1

>neg

By assumption,
1B| < op® .
Let G be the complement of B in (Z/pZ)%~!. Hence for all (ai,...,aq_1) € G we have that
|Sa1 +...+Sad—1 —"_S*Zai
27

>negt =1 (19)

Let 7 be of order p~!. As before, for each a we let k, € Z be such that —p/2 < k, < p/2 and that
Se — %| < 2—11). Then by the assumption of Lemma kq = o(p), and also by (19), as long as (a,b) € G we
have

ko, +-- -+ kay | +k_gi——ay, € {-3d,...,3d},
where A is an absolute constant. As this holds for all (a,b) € G (which occupies most of the tuples of
(a1,...,a4-1)), we will show as in the case d = 3 the following

Claim 4.8. Most of |k,| are at most O(d).

Proof. We say that a is good if the number of tuples (ai,...,aq4-1) € G such that a = =), a; is at
least (1 — go)p?~!. It is not hard to see that there are (1 — ¢)p such good indices. Assume that ag is
such that |kg,| is largest among the good a. Without loss of generality we assume that k,, is positive.
Consider (a1,...,a4-1) € G such that ag = —>_,a;. There are (1 — g9)p?~2 such tuples, and because
most of the indices are good, there are (1 — 2¢)p?~2 tuples where for which all a; are good. Because
kay € (=2, ka,) +{—3d,...,3d}, and because k,, is the largest, there must be a good a; such that k, is
negative. Arguing as in the case d = 3, assume that the set A/ of a for which k, is negative has size at least
10degn, then most of the k, must be around —k,,/(d — 1). We can find many a” for which k,» =~ k,,, and
therefore a tuple (a7, ...,ay ;) € G. Thenk_y . ~ (d—1)kq, , which is larger than k,,, a contradiction. [

The rest of the proof of Lemma [4.6| can be completed as in d = 3, hence we omit the details. O

5. THE ERROR TERM: PROOF OF PROPOSITION [2.4]

Recall that we are working with

pil(ﬁ 7 1)2 - blogn
oo n

Our proof here is similar to [I5] Proposition 3.4], which can be divided into four cases

(i) M of (no,...,np—1) € N with
max [n; /n —1/p| < 6/p;
J
(ii) N of (ng,...,np—1) € N with
(bplogn)/n < |ng/n — 1] < 6/p;

(iii) N5 of (no,...,np—1) € N with
ino/n 1| < (bplog ) /n;
(iv) Nj of the remaining non-equidistributed p-tuples.

We then have
18



Lemma 5.1. For p < n'/? P, the sum over (ng,...,n, 1) ¢ N3 is bounded by

n dn - n
Z (Tlo,. ) <dno, ) ‘{(ul“"vun) €Uy Wit Fuy, = (dno, ... dnp_1)}

ey N1 ..., dn —1
(o, smp—1) ENTUN2UNY TP e

= 0(1/n%?).
The proof of this is identical to that of |15, Proposition 3.4], hence we omit it.

Our new contribution is that the sum from A is also insignificant for p < n'/3, for which we state below.

Lemma 5.2. For p < n'/? we have

n dn ! n
Z (7107. )(dnm ) ‘{(ulwwun) €Uy, uy+ - +uy, = (dng, ..., dny 1)} = o(1).

ey M1 ...,dn —1
(05 mp—1)EN3 P HR

Proof. (of Lemma The treatment here is motivated by Case 3 in the proof of [15] Proposition 3.4],
although we introduce some minor modifications. We assume that no =n —m’ and nq +--- +n,_1 = m/,
where
m’ < bplogn.

We list Ug,p, as

Ugp ={w1,...,Wpa_1},w1 = (d,0,...,0).
Notice that (where w(j) is the j-th coordinate of w)

Wi+ +wip—1) >2,2<5 <ph

For short, we let m be the number of non-zero vectors (and n — m be the number of wy) in uy,...,u,, and
ng=m-—ng —---—np_1. We have 2m < dm/, so

m < dm'/2.

This shows that the number of wy in (uy,...,u,) must be at least n — dm’/2. We thus have (Tz) ways
to arrange the u; to be wy. After that we have a sum of uy + --- + u,, = (dng,dns,...,dn,—1) and
ny+mn1+ - +np_1 =m where n’ < (d —2)m/d.

-1
nOy---y,an—l) (dnoy_"lznp_l) x {(ar,. .., up) s ug +- o Huy, = (dnf,dng, ... dn, 1)},

we can rewrite the first factor as
n! nlng! m! nlngy! ( m >
g,

= ) =
nol...np—1!  minglngl...np_1! mlng! co Np—1

As we are interested in (

and we can write the second factor as
dng!...dn, 1!  dmldng! dngldny!...dn, 1! dm!ldng! dm -1
dny, '

dn! ~ dnldn)) dm! dnldny)! oo dnp_q
Note that ng =n — f;ll n; =n — (m —ny). Hence
n!ng! m—ng m—mn m—mn,
m!n?g! ~nm T /MM & (n/m)™m T
and dmldnel
miang: —d(m—n)) d(m—n}) ~, —d(m—ng)
Al (dn) o/(dm) o)z (n/m) o),
Thus

nlng! dmldng! (d—1)(m—n})
minol dnidniy = (/) "

We next apply the following analog of [15, Proposition 3.2] (where n is replaced by m)

3In fact the statements here are also true for P nl/2,
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Lemma 5.3. We have

d 1
< / " )( / " ) |(u17...,um),u1+~-—|—um:(dng,dnl,...7dnp,1)|:O(eo(p)).
ng, - dny,

sy Np—1 .,dnp_l

This result is a special case of Lemma to be stated below.

By this result, in total we obtain

> 2 (Z) (m)/n)d= D m=mo)

m<bplogn  (nf,...,np_1),
My =m)

- 3 3 >y LO) <:1> (m /)@= (m=n)

m<bplogn ny<(d—2)m/d (n1,...,mp_1),
n1+---+np_1:mfn6

p+m—n n D (m—n
< ¥ 3 ( " o)eom <m> (m /)@= m=rt).
m<bplogn ny<(d—2)m/d p

Case 1. We see that the contribution is small for p/logn < m < bplogn because (p+m "0) < (e(p+m)/p)P
and (") < (en/m)™ , while (m/n)(d-D(m= m0) < (m/n)2d=Dm/d,

Case 2. For m < p/logn, Lemma is not powerful enough because as ny + nq + - - - +n, = m, many n;
are zero. To amend this, let £ be the number of nonzero ng;, then 0 < ¢ <mand n; +---+n;, =m. There

p . - m dm -1 m dm -1
are (4) ways to choose the i1,...,4s. So (ng,...,npfl) (dng,...,dnp,l) becomes (n1 n[) (dml,m,dml) .
Also, as uy+- - -+u,, = (dng,dna, ..., dn,_1), the vectors u; are from the set Uy,;, . ;, of vectors ®(z1, ..., zq)
where z; € {i1,... i} and >, z; = 0. Note that this set Uy, . ;, has at most £¢~! elements, so

|(U.1, ) um) ‘Ut Uy = (dn6>dn17 ) dnp*1>| = |ud;i1,-~~’ie|m X P(Xl +-+ X = (dnin- p dnie))v
where X, are sampled uniformly from the set Uy, .. ,.

Lemma 5.4. We have

—1
m dm
(o ™ o ) (™ ) )t b = (g ) < 910,

Assuming Lemma for a moment, by summing over (ng,...,n¢) as a partition of m (of which there are
at most (mtﬁ_l)) and over the choices of i1,...,4i, we have

Z Z Z < ) <m + 40— )eo(e) (:1) (m/n)(d=D(m=n),

m<p/lognn{<(d—2)m/d 1<L<m

We remark that for £ < m < p/logn we have (}) < (ep/0)* < (ep/m)™ and (mtﬁﬂ) <2m and () <
(en/m)™, while (m/n)@=Dm=n0) < (g /p)2d=1m/d < (7 /n)4m/3 (where d = 3 is the worst case). Hence
the sum above is trivially bounded by

YIS < (p/ log mym2(2¢%)™ x (/)™ (1/m)>™/3 = o(1)

where we used the crucial fact that p < n'/3. This complete the proof of Lemma O
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Proof. (of Lemma [5.4) Without loss of generality assume {iy, ... i} = {0,...,¢—1}. Using (),

( n )Hﬁ:éwnj)!_ m! TTj—o(dn;)!
no, s Np—1

(dm)! [I;ns! (dm)!
-1
— eﬁ*ﬁJij ﬁfﬁ % (\/g)ffl ~ [H(%)nj]dfl.
3=0

Write nj = 22 and h; =n; —1/¢. We then write the expression in Lemma as
cO0) gmI(no,...ne)
where the ¢©®) term comes from (v/d)!~! and
I(ng,...,ng) =log [Uao.. o—1]+ (d—1) an logn; + mf (10gEe<t XD d(t,n)).
J

It remains to show the following

Claim 5.5. We have I(ng,...,n;) < 0 and equality holds only if either n; = 1/¢ for all j or ng =1 and
n; = 0 fOT’j 7& 0.

To show this claim we follow |14, Prop 3.3]. Choose t = dT(logno, ..o logmy_q) + %1. Then I is
bounded by

1|+ (d—-1 an logn; + log Ee!tX) —d(t,n) = logEe**),
J

.....

where X is sampled uniformly from Ug,g,... ,—1. We will show that Ee(tX) < 1. Let W1i,...,Wpa-1 be an
enumeration of Uy, ¢—1, we have

,,,,,

(wj,t) _ o w;(k)((d—1)/d) log n+w; (k) log |U|/d
|Z/l| Z |Z/l\ Ze k=0 g ny g

Jjeu JeEU

Z Szt w;(k)((d—1)/d) logny, _ ZH ((d=1)/d)yw; (k)

jeu JEU k=0
£—1

Z H n](c(d*l)/d)q’(é\)(ff)

a=(a1,...,aq)€{0,...,0—1}¢, k=0
>, a:=0

Z ﬁ nlgc(dfl)/d) 5oy Lap=t

ac{0,...,6—1}¢, k=0
22;ai=0

- ﬁnaT(d—l)/d

ae{0,...,0—1}¢,7=1
Zi ai:O

Next, note that ZiG{O -1y = 1 and

d d
llﬂaT(dil)/d < éz H Ng, -



So

Re(tX) — Z ﬁ nar(d—l)/d

ac{0,...,.—1}4, =1
22 ai=0

d
1
i o2 2 I
ae{0,...,0—1}¢, r=11<s<d,
> ai=0 SF#T

( Z ni)d =1.

i€f0,...,0—1}

IN

IN

O
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