
1. Introduction
The initial development of a lightning flash inside the cloud has long been, at best, partly understood (Dwyer & 
Uman, 2014). Not only does the understanding of the underlying streamer and leader physics remain intriguing 
(e.g., Liu et al., 2022; Lyu, Cummer, Lu, et al., 2016; Petersen et al., 2008), but it also carries significant impli-
cations for high-energy radiation, such as terrestrial gamma ray flashes (TGFs), which most commonly occur 
during this stage of lightning development (e.g., Cummer et al., 2015; Lu et al., 2010; Stanley et al., 2006). Draw-
ing from previous research, the initial development of an in-cloud (IC) lightning flash can be divided into three 
distinct parts: the initiation stage, characterized by either fast breakdown or non-fast breakdown processes within 
the first tens of microseconds (Lyu et al., 2019; Rison et al., 2016); the initial breakdown (IB) stage, involving 
multiple large radio pulses named IB pulses (IBPs) over the first several milliseconds (Marshall et al., 2013; Wu 
et al., 2015); and the subsequent normal negative stepped leader stage.

Although previous reports show that IBPs exhibit some characteristics reminiscent of a typical stepped leader, 
radio and optical observations also suggest that the process responsible for IBPs could be predominantly driven 
by cold streamers and thus physically different from the typical stepped leader with a hot conducting channel 
(Huang et al., 2022; Stolzenburg et al., 2013). In contrast, recent LOFAR observations (Liu et al., 2022) suggested 
that IBPs may involve space stem and space leader processes, which are crucial features of typical negative 
stepped leaders. However, no direct evidence of this has been reported thus far.

Meanwhile, the step formation process involving space stems and space leaders has remained a sustaining mystery 
in atmospheric electricity as well as in plasma physics and chemistry. Despite numerous reports confirming the 
existence of space stems/leaders in laboratory long sparks (e.g., Kochkin et al., 2014; Kostinskiy et al., 2018; 
Les Renardieres Group, 1981; Zhao et al., 2023) and both natural and triggered lightning (e.g., Biagi et al., 2009; 
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Gamerota et al., 2014; Jiang et al., 2020; Petersen & Beasley, 2013), the detailed evolution of a space stem into 
a space leader and thus the subsequent leader step has yet to be clarified due to the extremely short time scale of 
the process (<10 μs near the ground). This poses significant challenges in reliably uncovering the mechanisms 
underlying space stem and space leader formation (e.g., Babich et al., 2021; Iudin et al., 2018).
In this study, employing state-of-the-art interferometric imaging with a 30–250 MHz VHF interferometer and 
leveraging the large temporal-spatial scale of IC IB, we unveiled the intricate sequence of step formation processes 
during IBPs at 7.4–9.0 km altitudes. We found that IBP steps are similar to conventional negative leader steps, but 
with significantly longer steps (300–1,000 m) and ∼1 millisecond inter-step intervals. New VHF radio features 
interpreted as the development of space stems (observed as edge structures at the previous corona fan edge) and 
space leaders (observed as attempted fast propagation of VHF along the edge structure) are identified, providing 
evidence of the forming conducting main leader. Additionally, we observed fast VHF extension beyond the poten-
tial space-leader region where no prior VHF activity was detected, which could be fast breakdown.

2. Instrumentation and Data Processing
The data were collected using a 30–250 MHz broadband VHF interferometer situated near Duke University in 
Durham, NC, which comprises three discone antennas that form two 52-m-long orthogonal baselines (Pu & 
Cummer, 2019). Acquisition was performed using a 4-channel 500 MS/s Spectrum Instrumentation digitizer, 
providing a wide signal bandwidth of up to 250 MHz.
We utilized a 2-step focused interferometry method (Shao et al., 2020) to enhance the imaging quality. While 
alternative approaches exist, we have found the following procedures yield good images:
1.  VHF signals were filtered within a passband of 30–250 MHz, with broadcast transmitter noise eliminated.
2.  Pulse peaks in the denoised waveforms were identified by finding local maxima with a minimum separation 

of 50 ns.
3.  Signal windows centered at each peak were defined, and a 2-step focused cross-correlation was applied to the 

windowed signals. The window widths were set to 6 and 1 microsecond, respectively.
This approach results in significantly overlapped cross-correlation windows with a sliding size as short as 50 ns. 
As argued by Shao et al. (2020), for continuously moving sources, even a single data point difference can provide 
new information about their positions. For static sources, the points cluster near the same location, which is over-
determined but not erroneous. Although artifacts could occur due to sudden shifts in discharge location, they can 
be easily identified by their non-physical high speeds close to or exceeding the speed of light (Shao et al., 2020).
Based on uncertainty simulations (Shao et al., 2021), the current 3-antenna VHF interferometer demonstrates 
angular uncertainty below 0.1° for 30–250 MHz signals with SNR exceeding 10 dB. To validate with real light-
ning data, we focused on initial weak emissions immediately following flash initiation, with SNR mostly below 
5 dB during 0–1.8 ms (Figure 1c), and found a spatial spread of 0.3°. This represents a reasonable upper bound of 
uncertainty and aligns with the simulation results. Therefore, the wide spatial extent of the fan-shaped sources in 
our images (>2° and >10 dB, Figure 1), which we call corona fan, is not due to imaging artifacts but represents 
genuine lightning characteristics.

3. Results
3.1. Initial 0–10 Milliseconds of an In-Cloud Lightning Flash
Figure 1 shows the initial lightning development within 0–10 milliseconds for a well-resolved IC flash observed 
by our VHF interferometer on 5 August 2022, at 02:06:29 UTC. To facilitate our description, we have labeled 
three distinct VHF bursts associated with IB pulses (IBPs) (Belz et al., 2020; Kolmasova et al., 2018). They 
correspond to separate groups of initially fast propagating sources and subsequently slowly expanding fan-shaped 
sources, defining three IBP steps (IS1, IS2, and IS3) and their corona fans (CF1, CF2, and CF3) in Figure 1a.
According to the U.S. National Lightning Detection Network (NLDN), the flash horizontal range to the inter-
ferometer is 4.5 km for IS2 and 4.4 km for IS3, with peak currents of 9 and 7 kA, respectively. This corresponds 
to approximate 300 m per 1° elevation and 2° azimuth near 60° elevation, leading to an altitude progression of 
7.4–9.0 km for the three IBP steps. The reported NLDN uncertainty for both IBPs is a 200 × 200 m 50% error 
ellipse, resulting in an angular resolution shift of only ∼10 m per 1° elevation and is thus negligible.
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The source point size corresponds to the peak/center-point power of each 1-μs window, providing an estimate 
of instantaneous VHF power. The signal-to-noise ratio (SNR) is computed for each 1-μs windowed waveform, 
serving as a measure of the received signal quality and an indicator of the angular accuracy in the imaging.

Upon analyzing VHF emissions and imaged sources, we find that strong VHF bursts occur after initial weak 
emissions in the first 2 ms of detectable VHF activity. These weak VHF sources propagate upward at a velocity 
of ∼1.2 ×10 5 m/s over 200 m, preconditioning the subsequent IBP development. In the next section, we focus on 
the development of three IBP steps.

3.2. Evolution of Three IBP Steps
Figure 2 depicts the evolution of three distinct IBP steps during 3–6.2 ms. The start and end of an IBP step are 
defined where the SNR of VHF emissions reaches a minimum value (approximately 10 dB above our noise level) 
during the inter-step interval, marking the end of the previous step and the start of a new one. The precise time 
windows for these three IBP steps are labeled in Figure 2b, and the process is further divided for detailed exami-
nation of both stepping and inter-step intervals.

In Figures 2a.1, 2a.5, and 2a.8, strong VHF bursts and their trailing decaying emissions are observed during the 
progression of an IBP step, featuring intensive, narrow, and fast-propagating VHF in the initial 50–100 μs, tran-
sitioning to weaker, more spatially extensive, and slowly propagating corona fans lasting 500–800 μs at the end.

As the corona fans decrease in VHF intensity and propagation speeds, notable VHF pulses emerge at their edges 
in Figures 2a.2, 2a.3, and 2a.6, resulting in a modest intensification of VHF emissions. Soon after that, much 
stronger discrete VHF pulses (∼0.2 μs duration) occur at the edges immediately before the advancement of the 
subsequent step, as illustrated in Figures 2a.4 and 2a.7. These are termed edge structures and will be further 
analyzed in Section 4.

Figure 1. Overview of the initial development of an in-cloud lightning flash in 0–10 milliseconds on 5 August 2022, at 02:06:29 UTC. (a) A 2D map from our 
interferometer. Source marker size corresponds to the center point power of the 1-μs waveform. Three distinct IBP steps with corona fans are marked with closed loops 
for further examination. (b) Time-dependent source elevation. (c) Time-dependent VHF waveform and signal-to-noise ratio. IBP: initial breakdown pulse.
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IBP steps IS2 and IS3 initiate sequentially at the CF1 edge, revealing the branching process during IC initial 
development. According to our observation, the branching is closely related to the multiple edge structures 
around the same corona fan. Despite IS2 occurring first, the edge structures responsible for the two branches 
initiate nearly simultaneously, as evident from emissions at the top and lateral sides of CF1 in Figure 2a.4. Reac-
tivation and development of the top edge structure for IS3 are observed in Figure 2a.6, approximately 1 ms after 
IS2 completes. In the next section, we will study the detailed IBP step formation process using IS2 as an example.

3.3. Distinct Development Phases Comprising an IBP Step
Figure 3 illustrates the four distinct phases that encompass the formation of a complete IBP step for IS2.
Phase 1: Emergence of VHF Sources Forming an Edge Structure at the Previous Corona Fan Edge (Figures 3a.1 
and 3b.1)—Discrete VHF pulses lasting ∼0.2 μs emerge at the edge of the previous decaying corona fan CF1, 
primarily located on the right side, along with a single source at the top. The localized emissions at the right edge 
form a structure in the direction outward from the CF1 core over a length of 200 m, but are spatially unorganized 
within this length without consistent propagation direction. Besides the impulsive signatures, the VHF SNR 
begins to build up in this phase.
Phase 1b: Fast propagation of VHF along the Edge Structure (first attempt) (Figures 3a.2 and 3b.2)—Along the 
newly formed edge structure, outward propagating sources are observed at a fast speed of ∼1 × 10 7 m/s within 
24 μs. The VHF emissions are continuous but not significantly enhanced. This phase appeared in half of the IBPs 
analyzed (additional IBPs shown in the Supporting Information S1).
Phase 2: Fast Propagation of VHF along the Edge Structure (Figures 3a.3 and 3b.3)—The VHF reinitiates at the 
back end of the edge structure with a strong narrow pulse, and rapidly traverses this preconditioned region at a 
velocity of ∼4.3 × 10 7 m/s, comparable to that of a strong dart leader. The VHF emissions in this phase reach the 
maximum intensity of the entire IBP step.
Phase 3: Fast Extension of VHF beyond the Edge Structure (Figures 3a.4 and 3b.4)—The fast VHF in Phase 
3 extends beyond the edge structure and immediately penetrates into the air where no previous VHF activities 
were detected, for approximately 400 m long and 100 m wide, while maintaining a slower but still high speed of 
∼1 × 10 7 m/s. The VHF emissions in this phase slightly decrease but remain at a high SNR above 30 dB.

Phase 4: Slow VHF Propagation of the Corona Fan (Figures 3a.5 and 3b.5)—The observed VHF activity contin-
ues to decelerate and expand extensively in space, forming a fan-shaped corona reminiscent of those observed 

Figure 2. VHF emission sources and waveforms illustrating the evolution of three IBP steps. Individual IBP steps are separated at the minimum signal-to-noise ratio in 
inter-step intervals. IBP: initial breakdown pulse.
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in laboratory experiments (Kostinskiy et al., 2018). The corona fan spans an area of over 500 × 500 m, with the 
outward propagation speed steadily decreases from 2 × 10 6 to 5 × 10 5 m/s over approximately 600 μs. The VHF 
emissions in this phase decay continuously to ∼10 dB until the next new edge structure manifests for the next 
IBP step.

Note that these four distinct phases may not always be well resolved due to the distance and the viewing angle, 
especially Phase 1b. To maintain generalization, we present more examples in Figures S1–S5 in Supporting 
Information S1, where distinct IBP steps with similar development phases are depicted in VHF, in conjunction 
with the available low-frequency (LF) magnetic measurements.

4. Analysis
4.1. Interpretation of Dynamics of IBP Step Formation
The three IBP steps observed between 7.4 and 9.0 km altitudes exhibit typical negative leader stepping features 
but with massive steps (300–1,000  m) occurring less frequently (∼1  millisecond intervals), in contrast to 
cloud-to-ground negative leader steps that are shorter (∼10  m) and more frequent (5–50  microsecond inter-
vals) (Chen et al., 1999). This scale difference cannot be simply scaled by altitude with similarity laws (Pasko 
et al., 1998; Scholten et al., 2021) and merits further study.

To understand the observed IBP stepping characteristics in VHF, the key question is: What physical processes 
produce VHF emissions? Theoretical calculations suggest that VHF emissions result from rapid changes in 
current moments on a nanosecond timescale (Liu et al., 2019; Qin et al., 2012). To the best of our knowledge, 
two scenarios have been demonstrated in simulations, including exponentially growing streamers in high electric 
fields (Liu et al., 2019; Shi et al., 2016) and colliding streamers emitting at VHF and UHF (Luque, 2017; Shi 
et al., 2019).

In Figure  4a, we introduce an IBP stepping model primarily relying on the streamer-growth theory (Liu 
et al., 2019) to interpret the data. This theory is the only fully formed theory of VHF generation and aligns with 
our previous VHF-UHF spectral measurements (Pu et al., 2022). Although accelerating streamers have been 
explored as a source of VHF emissions, uncertainty remains about the processes generating VHF and higher 
frequencies, making it an active area of research.

Figure 3. VHF emission source map and waveforms illustrate distinct development phases within an IBP stepping cycle for IS2 marked in Figures 1 and 2. IBP: initial 
breakdown pulse.
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4.1.1. Edge Structures, Space Stems, and Space Leaders
We suspect that the edge structures we observed at the corona fan edges are space stems, which are electrode-like 
plasma structures ahead of a conducting leader tip (Les Renardieres Group, 1981). In our observations, discrete 
strong VHF pulses scatter along a 100–200 m long linear structure for over 50 μs at the previous corona fan edge 
before the subsequent IBP step. These timing and location characteristics suggest that they are VHF signatures 
of a forming space stem. Similar structures ahead of the negative leader tip were observed optically in laboratory 
experiments and triggering lightning, which were interpreted as space stems but with significantly shorter length 
(a few millimeters to meters near the ground) (Biagi et al., 2009; Zhao et al., 2023). In addition, multiple edge 
structures, or space stems, appear at the sides of the preceding corona fan and evolve into separate steps, offer-
ing a natural explanation for the branching and zigzagging nature seen in negative stepped leaders (e.g., Jiang 
et al., 2017; Qi et al., 2016).

The VHF emissions forming edge structures could be generated by new exponentially growing streamers of the 
space stem, or collisions between positive streamers of the space stem and negative streamers of the main leader 
tip. These speculations may be validated in future work by detecting UHF emissions from colliding streamers, as 
predicted by simulations (Luque, 2017; Shi et al., 2019).

Regarding the space leader, we suspect that the first attempted fast propagation of VHF along the newly formed 
edge structure, or the space stem, enhances conductivity and converts the perhaps poorly conducting space stem 
into a conducting space leader. This process, reminiscent of a dart leader, might be triggered by the high electric 
potential difference at the inner positive end of the space stem. However, we acknowledge that the attempted fast 
propagation may not always occur, and alternative discharge forms may exist to transform a space stem into a 
space leader.
4.1.2. Fast Propagation of VHF Connecting the Main Leader and the Space Leader
We suggest that there is a connection between the invisible main leader tip and the space leader which formed a 
leader section (labeled as number two in Figure 4a). The observed strongest dart-leader-like VHF (∼4.3 × 10 7 m/s) 

Figure 4. Illustration of initial lightning development based on three IBP steps in Figure 1, and a comparison between a VHF-imaged initial leader and a photography 
of a cloud-to-air leader. (a) A diagram summarizing the key components in three IBP steps. (b) Imaged initial lightning development on 15 August 2022, at 
19:45:55 UTC, with a dart leader traversing the initial main leader channel. (c) Photograph of a cloud-to-air leader adapted from Edens et al. (2014). IBP: initial 
breakdown pulse.
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is likely driven by the strong electric potential between the main leader tip and the space leader, suggesting the 
presence of a conducting main leader and a connection between the two parts. However, the precise location of 
the main leader tip remains unclear based on available imaging. Additional evidence demonstrating this connec-
tion is discussed in Section 4.2.

It is worth noting that our observation shows negative dart-leader-like VHF propagating outward from the posi-
tive end of the space leader, deviating from previous depictions of streamers emerging from both ends (e.g., 
Bazelyan & Raizer,  2000; Petersen et  al.,  2008). While a bidirectional connection is possible, with positive 
streamers moving backward to the main leader, the weak positive breakdown may go undetected in VHF when 
the forward negative breakdown predominates.

4.1.3. Fast Extension Beyond the Space Leader Could Be Fast Breakdown
In our observations, the fast VHF extends beyond the space leader, penetrating into perhaps undisturbed air with 
no prior VHF activity. It fills a region over 400 m long and 100 m wide with strong VHF power while maintaining 
a rapid speed of ∼1 × 10 7 m/s, typical of fast breakdown in NBEs (Rison et al., 2016; Tilles et al., 2019).

It is important to highlight that this fast breakdown process was recently observed in cloud-to-ground IBPs 
simultaneous with downward TGFs recorded by the Telescope Array Surface Detector (Belz et al., 2020) and in 
a 247-kA energetic in-cloud-pulse (EIP) (Tilles et al., 2020) tightly connected to upward TGFs (Lyu, Cummer, 
Briggs, et al., 2016). Therefore, the fast extension phase observed in this study within the IC IBP step could be 
closely related to TGF generation. The presence of this process spanning hundreds of meters in only tens of 
microseconds indicates a large-scale high electric field, which is essential for the relativistic runaway electron 
avalanche process leading to TGFs. With our IBP having an NLDN-reported peak current of only 9 kA, further 
investigation into how the peak current affects IBP stepping characteristics and TGF generation is interesting. A 
machine learning study on identifying lower-peak-current EIPs was conducted by Pu et al. (2023) in this direction.

We anticipate that part of the fast breakdown streamers could transition to a conducting leader section, as labeled 
with number three in Figure 4a. The transformation could be facilitated by the heating through subsequent corona 
fan development in the 500–800 μs interstep interval, and should be completed to serve as the new main leader 
tip before the next step. However, the length of the fast breakdown section that will convert to a conducting leader 
is unknown, and Figure 4b shows additional observations on this point.

4.1.4. The Decaying Corona Fan Challenges the Physical Interpretation of VHF Emissions
VHF emissions continuously decrease after the fast extension phase, forming a corona fan with extensively 
expanding streamers and decreasing speeds. This stage represents the IBP development during the inter-step 
intervals, constituting the majority (>80%, 500–800 μs) of the IBP stepping cycle. As VHF intensity diminishes, 
new space stems emerge at the corona fan edge, initiating a new stepping cycle.

However, it's important to note that decaying and branching streamers are generally not considered VHF emitters 
upon exiting high electric field regions (Shi et al., 2019). One plausible interpretation might be that the branching 
streamer tree can be seen as an ensemble of individual streamers starting randomly and fluctuating on a nanosec-
ond timescale, collectively producing VHF emissions (Liu et al., 2019, 2020).

4.2. Relationship Between the Main Leader and Corona Fans
To clarify the main leader location, which was unclear in VHF maps in Figures 1–3, we investigate an additional 
IC flash from 15 August 2022, at 19:45:55 UTC, in Figure 4b. This flash, farther from our interferometer than 
the previous one, has less well-resolved IBP stepping features but contains a subsequent dart leader (white dots) 
traversing IB regions. Meanwhile, Figure 4c compares this with a photo of a cloud-to-air leader near 11.8 km 
altitude (Edens et al., 2014).

It is noteworthy that many features in both VHF and optical images are consistent and interpretable:

1.  VHF dart leader path aligns with the luminous main leader channel in the photo.
2.  VHF corona fans match purple filamentary streamers in the photo.
3.  Edge structures (space stems) at lateral sides occur consistently in both, causing alternating steps and zigzag-

ging channels.
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4.  Two labeled corona fans show wide extension and significant direction change during steps. The bright leader 
section (∼100 m) in the photo suggests transformation into a hot conducting channel, possibly heated by 
corona fan development.

Moreover, the initially invisible VHF connecting leader becomes distinguishable due to the dart leader (No. 2, 
pink arrows). Additionally, part of VHF fast breakdown streamers transforms into the conducting main leader 
channel (No. 3, yellow arrows).

5. Summary
This study unveils clearly the processes involved in the initial development of in-cloud lightning flashes with 
30–250 MHz VHF interferometry. The IB pulses (IBPs) exhibit stepping characteristics similar to typical nega-
tive stepped leaders but with notably longer steps and inter-step intervals. New VHF radio features show distinct 
sequential development phases within an IBP stepping cycle (Section 3), which we interpret as space stems, space 
leaders, connection between the main leader and the space leader, fast breakdown, and corona fan development, 
providing evidence of the conducting main leader in the IB stage. Questions on the physical connection between 
streamer processes and VHF emissions are discussed in Section 4 and warrant further exploration. Moreover, 
these measurements provide insights into other processes known to occur simultaneously, including TGFs.

Data Availability Statement
This work complies with the AGU data policy. The data analyzed in the study are available on the data repository 
website at http://doi.org/10.5281/zenodo.8371237 (Pu & Cummer, 2023).
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