EXPONENTIAL CONCENTRATION FOR THE NUMBER OF ROOTS OF
RANDOM TRIGONOMETRIC POLYNOMIALS

HOI H. NGUYEN AND OFER ZEITOUNI

ABSTRACT. We show that the number of real roots of random trigonometric polynomials with i.i.d.
coefficients, which are either bounded or satisfy the logarithmic Sobolev inequality, satisfies an
exponential concentration of measure.

1. INTRODUCTION
Consider a random trigonometric polynomial of degree n
(1) P,(z) = \f Z ay, cos(kx) + by sin(kz),

where ay, by, are i.i.d. copies of a random variable £ of mean zero and variance one. Let N, denote
the number of roots of P, (z) for z € [—m,7]. It is known from a work of Qualls [27] that when ¢
is standard gaussian then

EN, =2/ (2n+1)(n +1)/6.

By a delicate method based on the Kac-Rice formula, about ten years ago Granville and Wigman
showed the following.

Theorem 1.1 ([15]). When & is standard gaussian, there exists an explicit constant cg such that
Var(N,,) = (cg + o(1))n.

Furthermore,
N, — EN, IR

Cg

4 N(0,1).

This confirms a heuristic by Bogomolny, Bohigas and Leboeuf. More recently, Azais and Leén
[4] provided an alternative approach based on the Wiener chaos decomposition. They showed
that Y, (t) = P,(t/n) converges in certain strong sense to the stationary gaussian process Y (t) of
covariance r(t) = sin(t)/t, from which variance and CLT can be deduced.

These methods do not seem to work for other ensembles of £&. Under a more general assumption,
a recent result by O. Nguyen and Vu shows the following. Throughout, we use the standard O(-)
notation, see Section [L.6] for definition.
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Theorem 1.2 ([24]). Assume that & has a bounded (2 + €g)-moment for a positive constant €.
Then, there exists a constant ¢ > 0 such that

EN, = (2/V3+0(n )n

and [[
Var(N,) = O(n?7).

Furthermore, assuming that |£| has finite moments of all order, under an anti-concentration estimate
on ¢ of the form that there exists an 7 > 0 and a € R for which P(§ € A) > cLeb(A) for all
A C B(a,r), a special case of a recent result by Bally, Caramellino, and Poly [7] regarding the
number N, ([0, 7]) of roots over [0, 7] reads as follows.

Theorem 1.3 ([7]). There exists a constant cg such that

lim ~Var(N, ([0,7)) = ¢ + —B(¢* - 3).

n—oo n 30

This result has been generalized to more general £ in [10]. Our goal in this note is rather different
from the results above, in that we are interested in the concentration (deviation) of N,, rather than
the asymptotic statistics. In some way, our work is motivated by a result by Nazarov and Sodin
[21] on the concentration of the number of nodal domains of random spherical harmonics, and by
the exponential concentration phenomenon of the number of zeros of stationary gaussian process
[5]. See also [14]. We will show the following.

Theorem 1.4. Let Cy be a given positive constant, and suppose that either |§| is bounded almost

surely by Cy, or that its law satisfies the logarithmic Sobolev inequality with parameter Cy. Then

there exist constants ¢,c such that for e > n~¢ we have that
P(IN, — EN,| > en) = O(e~“¢

9

).

The above result immediately implies that % — % almost surely. Note that the latter result has

also been obtained recently by Angst and Poly (|2, Theorem 6]) where the authors there used the
moment method to establish a polynomial-type speed of convergence E

In case ¢ is Gaussian, Theorem bears resemblance to [5]. Note however that it is not immediate
to read Theoremfrom [5], since there is no direct relation between the length of the time interval
T in the latter and n. It is plausible that with some effort, one could modify the proof technique
in [5] to cover this case. Our methods however are completely different and apply in particular to
the Bernoulli case.

We also remark that in the Gaussian case, by following [11] our result yields the following equi-
distribution interpretation. Consider the curve v(z) on the unit sphere S$?"~! defined by our
polynomial,
v(z) = T(cos(x),sin(:c), ..., cos(nx),sin(nxz)),z € [—m, 7.
n

For each z, let y(z), be the set (known as “great hypercircles”) of vectors on S?"~! that are
orthogonal to y(x). Let v, be the region (counting multiplicities) swept by y(z), when z varies
in [~m,7]. Then v, covers S?"~! uniformly in the sense that the Haar measure of those sphere

1See [10, Section 8].

2We remark that the authors of [7] work with roots over [0, 7).

3The assumption of ¢ in [2], on the other hand, is slightly more general.
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points that are covered k-times, where k ¢ [(2/v/3 — €)n, (2/v/3 + €)n], is at most e~¢="" whenever
n~¢ < e. In another direction, our result also implies an exponential-type upper bound for the
persistence probability that P, (z) does not have any root (over [—m, 7], and hence entirely).

Our overall method is somewhat similar to [21], but the situation for trigonometric functions seems
to be rather different compared to spherical harmonics, for instance we don’t seem to have the
analogs of [21| Claim 2.2] or |21} Claim 2.4] for trigonometric polynomials. Another different aspect
of our work is its universality, that the concentration phenomenon holds for many other ensembles
where we clearly don’t have any invariance property at hands. One of the main ingredients in the
proof is the phenomenon of root repulsion, which has also been recently studied in various ensembles
of random polynomials, see [9} 13} 23] 26] among others. Our method is robust, and seems to be
applicable to other models of random polynomials. In any case, it remains an interesting problem
to optimize the range of ¢ in Theorem Although our proofs give explicit values of ¢, ¢, they
are far from being optimal.

Remark 1.5. Versions of Theorem hold for other types of &, which are neither bounded nor
satisfy the logarithmic Sobolev inequality. Specifically, the following holds for ¢ > n™¢, for some
sufficiently small constant ¢ > 0.

(i) Assume || has sub-exponential tail. Then, for some positive constant 0 depending on the tail
of |€|, we have the sub-exponential concentration

P(|N, — EN,| > en) = O(e~ ™).

(ii) Fiz C > 0. Assume that is E(|€|°") < oo for some sufficiently large C' = C'(C), then we have
the polynomial concentration

P(|N, — EN,| > en) = O((en)™©).

Both cases can be established by taking Cy = n® in Theorem below, with an appropriate cg.
We refer the reader to the end of Section [6] for further details.

Before concluding this section we record here a corollary of Theorem which will be useful later:
for £ as in the theorem, for any € > 0 we have

(2) P(|N, — EN,| > en/2) = O(s*n™°).

1.6. Notation. We will assume n — oo throughout the paper. We write X = O(Y), X < Y, or
Y > X if | X| < CY for some absolute constant C. If C' depends on another parameter 7, we will
write Y = O;(X). We write X <Y if X > Y and Y > X. Also, if V,,/|X,| = o0 (as n — o)
then we write X,, = o(Y,,). In what follows, if not specified otherwise, all of the norms on Euclidean

spaces are Lo-norm (i.e. dy(.) distance). Finally, we use Leb to denote the Lebesgue measure on
T.

2. SOME SUPPORTING LEMMAS AND THE PROOF METHOD

In this section we gather several well-known results regarding trigonometric polynomials. We then

describe in Section [2.7] our proof strategy for Theorem
3



On the deterministic side, a useful ingredient is the classical Bernstein’s inequality in Ly('T), where
T = [—m, 71]. The proof is immediate from the orthogonality relations satisfied by the trigonometric
base.

Theorem 2.1. Let f(x) =Y )_, aicos(kz) + by sin(kz),z € T. Then,

/xe (f(x d:r<n/ f(x

Another crucial inequality we will be using is the so-called large sieve inequality.

Theorem 2.2. [16, Theorem 7.7][20, (1.1)] Assume that f is as in Theorem [2.1. Then for any
—nm <z <x2 < - < xpr <7 we have

M
N2 2n 461 9
DIl < =g | @

where § is the minimum of the gaps between x;, x;11 on the torus.

As a corollary, we obtain the following.

Corollary 2.3. Assume that || f||1,1) < 7. Then the set of x € T with |f
is contained in the union of 2M intervals of length 26, where M < %

)= Xor |f'(z)] = An

e

Proof. Choose a maximal set of d-separated points x; for which |f(x;)| > A. Then by Theorem

we have M\? < %72. We can apply the same argument for f’ where by Bernstein’s inequality
we have ||f'|l2 < n||f|l2 < nt. O

We next introduce an elementary interpolation result (see for instance [8, Section 1.1, E.7]).

Lemma 2.4. Assume that a trigonometric polynomial P, has at least m zeros (counting multiplic-
ities) in an interval I of length r. Then

der
P.(0)] < (—)™ Pm™
max | P (0)] < (——)™ max | P"™ (z)]
as well as

der
P(0)] <
max | P, (0)] < (——

)" max | P (a)].

Consequently, if P, has at least m roots on an interval I with length smaller than (1/8e)m/n, then
for any interval I' of length (1/8¢)m/n and I C I' we have

1.1
< (= (m)
(3) max | P (0)] < (5)™ ()" max [F™ (x)]
as well as
1 m—1 1 (m)
< — .
(4) Iglea13<lP( )< nx ()77 ()™ max [P ()]

Proof. Tt suffices to show the estimates for P, because P/ has at least m — 1 roots in I. For P,, by
Hermite interpolation using the roots x; we have that for any 6 € I there exists = € I so that

P(m) m

n (LU) (m) r
— . < .

[Pa(O)] = == [ [(0 = 2)| < max |P{™ (2) —

)



On the probability side, for bounded random variables we will rely on the following consequence of
McDiarmid’s inequality.

Theorem 2.5. Assume that & = (&1,...,&), where & are iid copies of & of mean zero, variance
one, taking values in Q = [—Cy, Cp]. Let A be a set of Q*. Then for any t > 0 we have

P(¢ € A)P(da(€, A) > ty/n) < dexp(—t'n/16C1).

For random variables £ satisfying the log-Sobolev inequality, that is so that there is a positive
constant Cj such that for any smooth, bounded, compactly supported functions f we have

() Ente(f?) < CoEe|V f[%,
where Ente(f) = E¢(flog f) — (Ee(f))(log E¢(f)), we use the following.

Theorem 2.6. Assume that & = (&1,...,&n), where & are iid copies of £ satisfying with a given
Cy. Let A be a set in R™. Then for any t > 0 we have

P(ds(€, A) > ty/n) < 2exp (— P?(€ € A)t*n/4C)).

In particularly, if P(§ € A) > 1/2 then P(da(€,A) > t/n) < 2exp(—t?n/16Cy). Similarly if
P(day(€,A) > ty/n) > 1/2 then P(€ € A) < 2exp(—t2n/16Cy).

For consistency with Theorem [2.5] we sometimes use (2" in place of R™ in various applications of
Theorem [2.61

For completeness, the proofs of these well-known results will be presented in Section [A.

2.7. Proof strategy. We now sketch our proof method, which broadly speaking, follows the per-
turbation framework of [21]. Our starting point is the input that N, (P,) is moderately con-
centrated around its mean EN,,. This will ensure that various sets have probability at least 1/2
so that the concentration estimates in Theorems 2.5 and will give effective bounds, see for an
example the proof of Corollary

(i) Our first highlight is Section [4| where we show that it is highly unlikely that there is a large
set of unstable intervals where | P,| and |P)| are both small (see Definition for this notion).
This is justified by relying on a repulsion estimate (Theorem , on Theorem and also
on Theorem and to exploit exponential concentration. We call polynomials in this
unlikely set exceptional.

(ii) Additionally, we will show in Corollary of Section |5 that the number of roots over the
unstable intervals is small for any non-exceptional P,. We justify this deterministic result by
using the elementary tool of Lemma [2.4]

(iii) Building on these results, and with the stability result of Corollary if P, is not too
exceptional and Ny, (P,) is close to EN,, then N,,(Q»,) is also close to EN,,, as long as || P,,—Qn||2
is small. As such, geometric concentration tools such as Theorem and can be invoked
once more to show that indeed N,, satisfies near exponential concentration, as desired.

3. REPULSION ESTIMATE

We show that the measure of t € [—m, 7] where both |P,(¢)| and |P)(t)| are small is negligible.
More precisely we will be working with the following condition.
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Condition 1. Let 0 < 7 < 1/64 be given, and let C{j be a positive constant to be chosen sufficiently
large. Assume that t € [—m, | is such that there do not exist integers k with |k| < C{, satisfying

1kt /el gyz < HHET

Here ||.||g/z is the distance to the nearest integer.

Theorem 3.1. |10, Theorem 2.1] Assume that & has mean zero and variance one. Then as long
asa>1/n, B> 1/n and t satisfies Condm'on with given T,C we have

P(|P.(t)] < a APy (H)] < Bn) = O, ¢ (af).

To see that Theorem can indeed be deduced from [10], note that we can view the event in
Theorem [3.1] as a random walk event in R?

1 n
Z(Elvl =+ gévg) € [—Oé,Oé] X [_ﬁa B]a
v2n i
where &;, £, are iid copies of the random variables £, with

v; := (cos(it), —% sin(it)) and v, := (sin(it), %cos(z’t)).

Remark 3.2. The full version of [10, Theorem 2.1] allows for o, 3 > n~C (for any given C > 0).
As we only need here C' =1, a simpler and more direct proof can be given. We refer the reader to
the preprint version of this article [25], where the argument is detailed.

4. EXCEPTIONAL POLYNOMIALS ARE RARE

This current section is motivated by the treatment in |21), Section 4.2]. We begin with a definition.
Let R > 0 be a sufficiently large constant. Cover T by Q’TT” open interval I; of length (approximately)
R/n each. Let 31I; be the interval of length 3R/n having the same midpoint with I;.

Definition 4.1. Fix o, 3,6 > 0 and R as above. We call an interval I; stable for a function f if
there is no point in = € 3I; such that both |f(z)] < a and |f'(z)| < fn. We call f exceptional if
the number of unstable intervals is at least dn. We call f not exceptional otherwise.

Note that the notion of exceptional f depends on the parameters «, 3,6, R,n, but we will not
emphasize it in the notation.
For convenience, for each P,(z) = ﬁ > py ak cos(kx) 4 by sin(kz) we assign a unique (unscaled)
vector vp, = (a1,...,an,b1,...,b,) in Q%" which is a random vector when P, is random.
Let & = E.(R,a, 8;0) denote the set of vectors vp, in Q2" associated to exceptional polynomials
P,,. Our goal in this section is the following.
Theorem 4.2 (Exceptional polynomials are rare). Assume that o, 5,6 satisfy
(6) a=8? =878 >n"20,
Assume that & is as in Theorem|[1.4l Then we have

P(an € Ee> < 67058",

where ¢ is allowed to depend on Cy (one can take ¢ = 1/160§ in the setup of Theorem and
¢ =1/16Cy in the setup of Theorem[2.6)
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We now discuss the proof. The first part is deterministic. Assume that f (playing the role of P,)
is exceptional, then there are K = |dn/3| unstable intervals that are R/n-separated (and hence
4 /n-separated, as long as R is chosen larger than 4).

Now for each unstable interval in this separated family we choose x; € 3I; where |f(z;)| < o and
|f'(z;)| < pn and consider the interval B(x;,v/n) for some v < 1 chosen sufficiently small (given
9). Let

M = max ().
ng(xj,»y/n)‘f ()]

By Theorem [2.2] and Theorem [2.1] we have
K
2n 4+ (4/n)~!
S I [ peps <ot [ faran
j=1 u zeT zeT

Now we use randomness: in both the bounded and the log-Sobolev cases we have || f|j2 > 2 with
exponentially small probability, so without loss of generality it suffices to assume in what follows
that ||f||2 < 2. We then infer from the above that the number of j for which M; > Cy6~/?n? is at
most 2C; 2dn. Hence for at least (1/3 — 2C5 ?)dn indices j we must have M; < Cyd~/?n2.

Fix z; as the center of such interval B(xj,v/n). By Taylor expansion of order two around xz;, we
obtain for any x in this interval,

[f(@)] < a+ By +Co072%/2  and | f'(2)] < (B + Cod )0,

So far we have dealt with one such exceptional polynomial. We now wish to perturb it and show that
an appropriate perturbation is also exceptional. Toward this end, consider a (perturbing) trigono-
metric polynomial g such that ||g||2 < 7, of the form g(x) = ﬁ(zzzl aj, cos(kx) + bj sin(kz)), and
write h = f + g. Then, similarly to Corollary , as the intervals B(xj,~v/n) are 4/n-separated,
by Theorem [2.2] we have
Y. max g(x)? < 8ng|3 < 8n7
; z€B(zj,y/n)

and
S max () < sald|3 < s
= ©€B(z5.v/n)
Hence, again by an averaging argument, the number of intervals where either max,e p(z; v/n) [9(7)| >
C36~ 127 or MaXeeB(e,y/n) 19 (T)] > C36~1/21n is bounded from above by (1/3 — 2C5%)dn/2 if Cy
is sufficiently large. On the remaining at least (1/3 —2C5%)dn/2 intervals, we have simultaneously
that

(7) h@)| <o and  [W(2)| < 8n,

where
of = a4 By + Cod 1422+ C367 V%7 and B = B+ Cod Y2y + C367 /21
Thus, with Leb the Lebesgue measure and
U=U(a, B,7,d,7,C1,C%,C3) = {vy, CR¥: Leb(z : (7)) holds) > (1/3 — 2C52)dv},

the perturbation h has indeed vj, € U (because the set of x in the definition of U contains (1/3 —
2C5?)6n/2 intervals of length 2y/n). Putting together the above, we have obtained the following
claim.

7



Claim 4.3. Assume that vp, € E. Then for any g with ||g||l2 < T we have vp,14 € U. In other
words,

{V € 02" dy(E.,v) < T\/%} cUu.

We next turn to a probabilistic argument. To apply concentration of measure, we will show that
P(vp, € U) < 1/2. Indeed, let T, denote the collection of x € T which can be n~1*87 approximated
by rational numbers of bounded height (see Condition [1, here we choose 7 = 1/64). Thus T, is a
union of a bounded number of intervals of length n='*37. For each P,, let B(P,) (and B.(P,)) be
the measurable set of z € T (or = € T¢ respectively) such that {|P,(z)] < &'} A{|P.(z)| < f'n}.
Then the Lebesgue measure of B(P,), Leb(B(P,)), is bounded by Leb(B.(P,))+O(n~'+87), which
in turn can be bounded by

ELeb(B.(Fy)) = /eTC P({|Pu(2)] < o'} AM{|P(2)| < np'})dz = O(a'B),

where we used Theorem [3.1| for each z. It thus follows that ELeb(B(P,)) = O(«/f') + O(n=1187).
So by Markov inequality,

®) P(vp, € U) < P(Leb(B(P,) > (1/3 — 205)67) = O(a!f'/67) < 1/2
if a, 8 are as in @ and then ~, 7 are chosen appropriately, for instance as

(9) v = 64 7 < 82,

Proof. (of Theorem Let A = Q?*"\U. By Claim if v e & then dp(v, A) > 7v/2n. Also, by
(8), we have P(v,, € A) > 1/2. Hence Theorems and applied to A imply that

P(v, € &) <8 ",
where ¢ = 1/16C§ in the case of Theorem [2.5|and ¢ = 1/16C) in the case of Theorem @ u

5. ROOTS OVER UNSTABLE INTERVALS

In this section we show the following deterministic lemma.

Lemma 5.1. Let € < e~ be given as in Theorem . Assume that the parameters o, 5,7 are
chosen as in @ and @ Assume that a trigonometric polynomial P, has at least en/2 roots over
on disjoint intervals of length R/n, where

Co€
(10) WG]

with co = 1/1024eR. Then there is a set A C T of measure at least 155 on which

< ! < Bn.
max |/(2)| < @ and max|f'(2)| < fn

Before proving this result, we deduce a key consequence that non-exceptional polynomials cannot
have too many roots over the unstable intervals.

Corollary 5.2. Let the parameters e, «, 8,7,0 and R be as in Lemmal5.1. Then a non-exceptional
P, cannot have more than en/2 roots over any én intervals I; from Section . In particularly, P,
cannot have more than en/2 roots over the unstable intervals.
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Proof. If P, has more than en/2 roots over some on intervals I;, then Lemma implies the
existence of a set A = A(P,,) that intersects with the set of stable intervals so that max,e4 | Py ()| <
« and maxge4 | P, (x)] < Bn (because, recall Definition the unstable intervals have measure at
most 0R, and £/(1024e) > dR). However, this is impossible because for any z in the union of the
stable intervals we have either |P,(z)| > « or |P.(z)| > fn. O

We now give an elemantary proof of Lemma The main idea is that if P, has many roots over
a small union of intervals, then we can use Hermite interpolation (Lemma [2.4) to show that | P,
and |P)| are small over a set A of non-negligible measure.

Proof of Lemma[5.1. Among the given dn intervals we first throw away those of less than e§—!/4
roots, hence there are at least en/4 roots left. For convenience we denote the remaining intervals
by Ji,...,Ju, where M < dn, and let my,..., my; denote the number of roots over each of these
intervals respectively.

In the next step (which is geared towards the use of and of Lemma , we expand the
intervals J; to larger intervals J; (considered as union of consecutive closed intervals appearing
at the beginning of Section |4) of length [em;/R] x (R/n) with ¢ = 1/(16e). Furthermore, if the
expanded intervals J_Z(I, e Jl{k of Jiy,..., jik form an intersecting chain, then we create a longer
interval J' of length [c(m;, + -+ +m;,)/R] x (R/n), which contains them and therefore contains
at least m;, + -+ + m;, roots. After the merging process, we obtain a collection Ji, ..., j]’\/[, with
the number of roots mj, ..., m),, respectively, so that > m} > en/2. Note that now J/ has length
[em)/R] x (R/n) ~ cm/;/n (because by assumption 6~ is sufficiently large compared to R) and
the intervals are R/n-separated.

Next, consider the sequence
dy:=2'e671 /4,1 > 0.
We classify the sequence {m/} into groups G; of intervals of m/ roots where
di <mj < dp1.

Assume that each group G; has k; = |G| distinct extended intervals. As each of these intervals has

between d; and d;y1 roots, we have
Zkldl > Zm;/Z > en/8.
l i

For given «, 5, we call an index [ bad if
(1/2)%(n/2k)Y? > XA = min{a/4, B/4}.

That is when
n

S Sy
The total number of roots over the intervals corresponding to bad indices can be bounded by

2dl n
Z kudi 1 < 2)\2 Z 4di — )\2285 17 §39e61 < en/32
[ bad index

where we used the fact that § < % for some small constant cy.

Now consider a group G of good index [. Notice that by definition these intervals have length
approximately between cd;/n and 2cd;/n. Let I be an interval among the k; intervals in G;. By
9



Lemma [2.4] and by definition we have

1 1 A 1

11 P < (Z)di(Z\d pld) < 2 (Zyd pldi)

1) w0 < G max P < P () ma P )

as well as

(12)  max|PL(2)] < n x (1)) max | PE (2)] < nx ——22 (1)t o | P ()
zel " - 2 n’ wzel " - (n/2k)Y/2 n" zer " " ’

where we used the fact that (1/2)% (n/2k;)"/? < .

On the other hand, as these k; intervals are R/n-separated (and hence 4/n-separated), by the large
sieve inequality (Theorem and by an iterated use of the Bernstein inequality (Theorem [2.1))
we have

max(P%) (2))? < n/

(P\) (2))2dz < n x n?® / (Py(x))%da < 2n%%+!,
jZ{GGl i zeT

zeT

Hence by averaging we see that for least k;/2 intervals J] in G| satisfy

max | P4 (z)| < 2(n/k;))"*n.

z€J]
It follows from (|11) and (12) that over these intervals
A 1.y 1
P < 2 (VU k) 2t < 4N
gleaf! n(2)] < (n/2k:l)1/2(n) (n/k)"/"n® <
and similarly,
A 1
/ < _ dl 1/2 dl < .
ineai/(\pn(x)] <nx 7(71/%1)1/2(”) 2(n/k;) ' n% < 4Xn

Letting A; denote the union of all such intervals J; of a given good index [, and letting A denote
the union of the A;’s over all good indices [, we obtain

Leb(A) > > (edi/n)ki/2 > > (¢/D)dipaki/n > Y (¢/4)my/n

l,good l,good l,good

> (¢/4)(en/8 —en/32)/n > ﬁ.

Finally, notice that by definition of A we have

max | P, (z)] < 4\ < a and max |P),(z)| < 4 \n < Bn,
z€A z€EA

concluding the proof. O

We conclude the section by a quick consequence of Lemmal5.1] For each P, that is not exceptional
we let Ny = Ng(P,) and Nyus = Nyus(P,) be the number of roots of P, over the set of stable and
unstable intervals respectively.

Corollary 5.3 (Roots over stable intervals). With the same parameters as in Corollary we
have

P(Nslpnegec <EN, — 5n) = o(1)

and
E(Ns1pnegg) > EN,, — 2:n/3.
10



Proof. For the first bound, by Corollary if Ns1p,eec < ENp—en then Nylp,cee < EN,—en/2.
Thus

P(Nslp,cec <EN, —en) < P(Nylp,cee < EN, —en/2)
<P(EAN, <EN, —en/2) + P(&) = o(1),
where we used and Theorem

For the second bound regarding E(Ng1p,cec), by Corollary for non-exceptional P, we have
that Nys < en/2, and hence trivially E(Nyslp,cee) < en/2. Because each P, has O(n) roots, we
then obtain

E(Nsaneeg) > EN,, — E(Nusanegg) - E(anPnEEe)
> EN, —en/2 — O(n x 67”4") > EN,, — 2en/3.

6. PROOF OF THE MAIN RESULTS

We first give a deterministic result (see also |21, Claim 4.2]) to control the number of roots under
perturbation.

Lemma 6.1. Fix strictly positive numbers p and v. Let I = (a,b) be an interval of length greater
than 2u/v, and let f be a C'-function on I such that at each point x € I we have either | f(x)| > u
or |f'(z)| > v. Then for each root x; € I with x; —a > p/v and b — x; > p/v there exists an
interval I(z;) = (a’,b") where f(a’)f(b') < 0 and |f(a")] = |f(V)| = p, such that z; € I(x;) C
(x; — p/v,z; + p/v) and the intervals I(x;) over the roots are disjoint.

Proof. We may and will assume that f is not constant on I. By changing f(z) to A\;f(Aax) for
appropriate A1, Ao, it suffices to consider 4 = v = 1. For each root z;, and for 0 < ¢t < 1 consider
the interval I;(x;) containing x; of those points x where |f(z)| < t. We first show that for any
0 < t1,to < 1 and distinct roots z1,xo € I satisfying the assumption of the lemma, we have that
It (x1) N Iy (z2) = 0. Assume otherwise, then because f(x1) = f(z2) = 0, there exists 1 < z < x9
such that f'(z) = 0 and |f(z)| < min{¢1,t2}, which contradicts the assumption of the lemma.
We will also show that I;(z;) C (z; — 1,z; + 1). Indeed, assume otherwise for instance that
x;—1 € I1(x;), then for all z; — 1 < z < x; we have |f(z)| < 1, and so | f'(z)| > 1 over this interval.
Without loss of generality we assume f’(x) > 1 for all x over this interval. The mean value theorem
would then imply that |f(z; — 1)| = |f(x; — 1) — f(x;)| > 1, a contradiction with z; — 1 € I (z;).
As a consequence, we can define I(z;) = I1(z;), for which at the endpoints the function behaves as
desired. 0

Corollary 6.2. Fiz positive i and v. Let I = (a,b) be an interval of length at least 2u/v, and let
f be a Cl-function on I such that at each point x € I we have either |f(z)| > p or |f'(z)| > v. Let
g be a function such that |g(z)| < p over I. Then for each root x; € I of f with z; —a > /v and
b—x; > pu/v we can find a root x}, of f+ g such that x}, € (x; — p/v,x; + p/v), and also the x); are
distinct.

Proof. For each root z; € I of f such that ; —a > p/v and b — x; > p/v we consider the

interval I(x;) = (a/,b") defined in Lemma Without loss of generality, assume that f(a') = —p

and f(b') = p. Then as |g(x)| < p over I, we have f(a') + g(a’) < 0 < f(b') + g(b'). Hence
11



by the mean value theorem there exists x; € (a/,0') such that f(z}) + g(z}) = 0. We note that
I(%;) C (zi — p/v, @i + p/v). O

Now we prove Theorem by considering the two tails separately.

6.3. The lower tail. We need to show that for some constant ¢
/-9

(13) P(N, <EN, —en)=0(e ")
Here (and in (16])) ¢ depends on Cj. For instance it suffices to assume ¢ to be of order 1/C{ in
the case of Theorem and of order 1/Cj in the case of Theorem [2.6

With the parameters «, 5,6, 7, R chosen as in Corollary our key deterministic observation is
that the number of roots in stable intervals of non-exceptional polynomials is not significantly
decreased by small perturbations, as stated in the following.

Claim 6.4. Let P, be a non-exceptional polynomial such that P, has at least EN,, — 2en/3 roots
over the stable intervals. Then for any trigonometric polynomial g of degree n with ||g|l2 < T, the
polynomial P, + g has at least EN,, — en roots over T.

Proof. Let g be a trigonometric polynomial of degree n such that ||g|l2 < 7. We first notice that
the number of stable intervals I; over which max,e3;s, [g()| > a is at most O(dn). Indeed, assume
that there are M such intervals I; of length R/n. Then we can choose at least, say M /6, such
intervals so that 31; are R/n-separated. By Theorem we have

(M/6)a* < nr?,
which implies M < 6n(ra~1)? = O(dn).

As P, is non-exceptional, there are at least (%” — 0)n stable intervals I;. We will focus on the set
Sy, of stable intervals I; on which max,e3;, [g(z)| < a, for which we have learned from the above

argument that

2

Ssal = (5 = OGO

Notice furthermore that because P, is non-exceptional and P, has at least EN,, — 2en/3 roots over
the stable intervals, by Corollary with appropriate choice of the parameters, P, has at least
EN,, — en roots over the stable intervals I; € S, .

Continuing with the proof of the claim, for each I; € S, , by Corollary (applied to I = 31,
with 4 = a and v = fn, note that a/f =< §%* < R and maxge3z; |9(7)| < @), the number of roots
of P, + g over I; is at least as that of P,. As a consequence, as P, has at least EN,, —en roots over
the stable intervals I; € S o, the perturbed polynomial P, + g also has at least EN,, — en roots
over these stable intervals I of S, . In particularly P, + g has at least ENN,, —en roots over T. [

We next turn to the probabilistic part of the argument, uses the above stability over perturbations.
Let U'%¢" he the collection of v p, in Q2" from non-exceptional P, that have at least EN,, — 2en /3
roots over the stable intervals. Then by Corollary

(14) P(vp, €Uy > 1 - P(E) — P(Nslp,eec < EN, —2en/3) > 1/2.

We can now complete the proof of (13). By Claim the set {v € Q%" dy(v,U'"v") < 7v/2n}
is contained in the set of having at least EN,, — en roots. Furthermore, says that P(vp, €
12



u'ewery > 1/2. Hence by Theorems [2.5/ and
(15) P(N, > EN, —en) > P(an € {V IS an,dg(v,ulomr) < T\/Qn}) >1-— 2exp(—c’69n),

where we used the fact that 7 =< §2 from @ and that ¢ satisfies ((10). Here we can take ¢’ to be of
order 1/C{ in the case of Theorem El, and of order 1/Cj in the case of Theorem Iﬁl O

6.5. The upper tail. Our goal here is to justify the upper tail

/-9

(16) P(N, > EN, +en) = O(e~=").

Let U"PP¢" denote the set of vp, in O%" for which N,, > EN,, + en and P, is non-exceptional. By
Theorem for it suffices to show that

(17) P(vp, € UPPT) = O(e°°

9

).

Proof. (of Equation ((17))) Assume that for a non-exceptional P, we have N,, > EN,, +en. Then by
Lemma (Corollar the number of roots of P,, over the stable intervals is at least EN,,+2en/3.
Arguing as in the previous subsection (with the same parameters of «, 3, 7,0), Corollary and
Corollary imply that h = P, + ¢g with any g satisfying ||g||2 < 7 has at least EN,, +&n/2 roots.
On the other hand, we know by that the probability that P, belongs to this set of trigonometric
polynomials is smaller than 1/2. It thus follows by Theorems and that

/-9

(18) P(vp, eU"PP") =O(e “° M),
where we again used that 7 = 6% and ¢ satisfies , and where ¢’ depends on Cj as in . O

We conclude this section with some comments regarding Remark Note that Theorem 3.1 and
all other deterministic results still work under this setting. Choose Cy = n“ where the positive
constant ¢ is chosen to be small enough (depending on the exponent of the sub-exponential tail, or
on C). It then suffices to establish the result for || < n®. We next choose the parameters «, 3, §
as in Theorem where say 6 = n~%. With these parameters, we note that Theorem still
holds with sub-exponential decay of rate O(exp(—n!'~12%)) and Equations and still hold
with sub-exponential decay of rate O(exp(—n!=4%g%)).

APPENDIX A. CONCENTRATION RESULTS

Proof. (of Theorem Consider the function F(£) := d;(&,.A), which measures the L;-distance.
This function is 2Cp-Lipschitz (coordinatewise), so by McDiarmid’s inequality, with p = EF(§)

P(IF(€) — ul = A) < 2exp(—A2/2nC).
This then implies that
P(F(&) = 0)P(F(§) > A) < dexp(—A?/4nCp).
Indeed, if A < p then
P(F(€) = 0) < P(F(€) — 11 < —p) < 2exp(—p2/2nC2) < 2exp(—A2/2nC),
while if A > p then
P(F(&) =0)P(F(§) 2 A) <P(F(§) —p < —p)P(F(§) —p=A—p)
< dexp(—(p® + (A = )?)/2nCF) < 4exp(=A? /4nC3).
13



Now because of boundedness (where we recall that A C Q" = [-Cp, Cp|" ), for any y € A,
€ — €113 < 2Coll€ — &'
So if dg(€&,.A) > ty/n then dy (€, A) > t?n/2Cy. We thus obtain
P(¢ € A)P(da(§, A) > ty/n) <P(& € AP(di (€, A) > t2n/2Co) < dexp(—t'n/16Cy).
O

Proof. (of Theorem Let A :=ty/n and F(§) := min{da(&,.A), \}. Then F is 1-Lipschitz, and
EF(€) < (1- P(€ € A)

It is known (see for instance [19]) that for distributions satisfying log-Sobolev inequality we have
that

P(F(§) 2 EF(§) +1) < exp(~t*/4Cp).
Thus, since EF(§) = P(§ ¢ A)E(F(£)|§ ¢ A) < AP(§ ¢ A),

P(d2(§,A) 2 \) =P(F(§) = A\) <P(F(§) 2 EF(x) + P(§ € A)N)
< exp(—P?(§ € A)N?/4Cy).

Finally, to see the last claim in Theorem we let A = {a,da(a, A) > ty/n}. By the theorem’s
main conclusion, because P(€ € A") > 1/2, we have

P(dy(€, A') > ty/n) < 2exp(—t*n/16Cy).

To this end, we just observe that if a € A then da(a, A’) > ty/n (otherwise there would exist a’ € A’
such that da(a,a’) < ty/n, which would imply ds(a’, A) < ty/n, a contradiction with the definition
of A".) O
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