
EXPONENTIAL CONCENTRATION FOR THE NUMBER OF ROOTS OF
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Abstract. We show that the number of real roots of random trigonometric polynomials with i.i.d.
coe�cients, which are either bounded or satisfy the logarithmic Sobolev inequality, satisfies an
exponential concentration of measure.

1. Introduction

Consider a random trigonometric polynomial of degree n

(1) Pn(x) =
1p
n

nX

k=1

ak cos(kx) + bk sin(kx),

where ak, bk are i.i.d. copies of a random variable ⇠ of mean zero and variance one. Let Nn denote
the number of roots of Pn(x) for x 2 [�⇡,⇡]. It is known from a work of Qualls [27] that when ⇠

is standard gaussian then

ENn = 2
p
(2n+ 1)(n+ 1)/6.

By a delicate method based on the Kac-Rice formula, about ten years ago Granville and Wigman
showed the following.

Theorem 1.1 ([15]). When ⇠ is standard gaussian, there exists an explicit constant cg such that

Var(Nn) = (cg + o(1))n.

Furthermore,
Nn �ENnp

cgn

d�! N(0, 1).

This confirms a heuristic by Bogomolny, Bohigas and Leboeuf. More recently, Azäıs and León
[4] provided an alternative approach based on the Wiener chaos decomposition. They showed
that Yn(t) = Pn(t/n) converges in certain strong sense to the stationary gaussian process Y (t) of
covariance r(t) = sin(t)/t, from which variance and CLT can be deduced.

These methods do not seem to work for other ensembles of ⇠. Under a more general assumption,
a recent result by O. Nguyen and Vu shows the following. Throughout, we use the standard O(·)
notation, see Section 1.6 for definition.

The first author is supported by National Science Foundation CAREER grant DMS-1752345. The second author
is partially supported by a US-Israel BSF grant. This work was initiated when both authors visited the American
Institute of Mathematics in August 2019. We thank AIM for its hospitality.
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Theorem 1.2 ([24]). Assume that ⇠ has a bounded (2 + "0)-moment for a positive constant "0.
Then, there exists a constant c > 0 such that

ENn = (2/
p
3 +O(n�c))n

and 1

Var(Nn) = O(n2�c).

Furthermore, assuming that |⇠| has finite moments of all order, under an anti-concentration estimate
on ⇠ of the form that there exists an r > 0 and a 2 R for which P(⇠ 2 A) � cLeb(A) for all
A ⇢ B(a, r), a special case of a recent result by Bally, Caramellino, and Poly [7] regarding the
number Nn([0,⇡]) of roots over [0,⇡]

2 reads as follows.

Theorem 1.3 ([7]). There exists a constant c0g such that

lim
n!1

1

n
Var(Nn([0,⇡])) = c

0
g +

1

30
E(⇠4 � 3).

This result has been generalized to more general ⇠ in [10]. Our goal in this note is rather di↵erent
from the results above, in that we are interested in the concentration (deviation) of Nn rather than
the asymptotic statistics. In some way, our work is motivated by a result by Nazarov and Sodin
[21] on the concentration of the number of nodal domains of random spherical harmonics, and by
the exponential concentration phenomenon of the number of zeros of stationary gaussian process
[5]. See also [14]. We will show the following.

Theorem 1.4. Let C0 be a given positive constant, and suppose that either |⇠| is bounded almost
surely by C0, or that its law satisfies the logarithmic Sobolev inequality (5) with parameter C0. Then
there exist constants c, c

0 such that for " � n
�c we have that

P(|Nn �ENn| � "n) = O(e�c0"9n).

The above result immediately implies that Nn
n ! 2p

3
almost surely. Note that the latter result has

also been obtained recently by Angst and Poly ([2, Theorem 6]) where the authors there used the
moment method to establish a polynomial-type speed of convergence 3.

In case ⇠ is Gaussian, Theorem 1.4 bears resemblance to [5]. Note however that it is not immediate
to read Theorem 1.4 from [5], since there is no direct relation between the length of the time interval
T in the latter and n. It is plausible that with some e↵ort, one could modify the proof technique
in [5] to cover this case. Our methods however are completely di↵erent and apply in particular to
the Bernoulli case.

We also remark that in the Gaussian case, by following [11] our result yields the following equi-
distribution interpretation. Consider the curve �(x) on the unit sphere S

2n�1 defined by our
polynomial,

�(x) =
1p
n

�
cos(x), sin(x), . . . , cos(nx), sin(nx)

�
, x 2 [�⇡,⇡].

For each x, let �(x)? be the set (known as “great hypercircles”) of vectors on S
2n�1 that are

orthogonal to �(x). Let �? be the region (counting multiplicities) swept by �(x)? when x varies
in [�⇡,⇡]. Then �? covers S

2n�1 uniformly in the sense that the Haar measure of those sphere

1See [10, Section 8].
2We remark that the authors of [7] work with roots over [0,⇡].
3The assumption of ⇠ in [2], on the other hand, is slightly more general.
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points that are covered k-times, where k /2 [(2/
p
3� ")n, (2/

p
3+ ")n], is at most e�c0"9n whenever

n
�c  ". In another direction, our result also implies an exponential-type upper bound for the

persistence probability that Pn(x) does not have any root (over [�⇡,⇡], and hence entirely).

Our overall method is somewhat similar to [21], but the situation for trigonometric functions seems
to be rather di↵erent compared to spherical harmonics, for instance we don’t seem to have the
analogs of [21, Claim 2.2] or [21, Claim 2.4] for trigonometric polynomials. Another di↵erent aspect
of our work is its universality, that the concentration phenomenon holds for many other ensembles
where we clearly don’t have any invariance property at hands. One of the main ingredients in the
proof is the phenomenon of root repulsion, which has also been recently studied in various ensembles
of random polynomials, see [9, 13, 23, 26] among others. Our method is robust, and seems to be
applicable to other models of random polynomials. In any case, it remains an interesting problem
to optimize the range of c in Theorem 1.4. Although our proofs give explicit values of c, c0, they
are far from being optimal.

Remark 1.5. Versions of Theorem 1.4 hold for other types of ⇠, which are neither bounded nor
satisfy the logarithmic Sobolev inequality. Specifically, the following holds for " � n

�c, for some
su�ciently small constant c > 0.

(i) Assume |⇠| has sub-exponential tail. Then, for some positive constant � depending on the tail
of |⇠|, we have the sub-exponential concentration

P(|Nn �ENn| � "n) = O(e�("n)�).

(ii) Fix C > 0. Assume that is E(|⇠|C0
) < 1 for some su�ciently large C

0 = C
0(C), then we have

the polynomial concentration

P(|Nn �ENn| � "n) = O(("n)�C).

Both cases can be established by taking C0 = n
c0 in Theorem 2.5 below, with an appropriate c0.

We refer the reader to the end of Section 6 for further details.

Before concluding this section we record here a corollary of Theorem 1.2 which will be useful later:
for ⇠ as in the theorem, for any " > 0 we have

(2) P(|Nn �ENn| � "n/2) = O("�2
n
�c).

1.6. Notation. We will assume n ! 1 throughout the paper. We write X = O(Y ), X ⌧ Y , or
Y � X if |X|  CY for some absolute constant C. If C depends on another parameter ⌧ , we will
write Y = O⌧ (X). We write X ⇣ Y if X � Y and Y � X. Also, if Yn/|Xn| ! 1 (as n ! 1)
then we write Xn = o(Yn). In what follows, if not specified otherwise, all of the norms on Euclidean
spaces are L2-norm (i.e. d2(.) distance). Finally, we use Leb to denote the Lebesgue measure on
T.

2. Some supporting lemmas and the proof method

In this section we gather several well-known results regarding trigonometric polynomials. We then
describe in Section 2.7 our proof strategy for Theorem 1.4.
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On the deterministic side, a useful ingredient is the classical Bernstein’s inequality in L2(T), where
T = [�⇡,⇡]. The proof is immediate from the orthogonality relations satisfied by the trigonometric
base.

Theorem 2.1. Let f(x) =
Pn

k=0 ak cos(kx) + bk sin(kx), x 2 T. Then,
Z

x2T
(f 0(x))2dx  n

2
Z

x2T
f(x)2dx.

Another crucial inequality we will be using is the so-called large sieve inequality.

Theorem 2.2. [16, Theorem 7.7][20, (1.1)] Assume that f is as in Theorem 2.1. Then for any
�⇡  x1 < x2 < · · · < xM  ⇡ we have

MX

i=1

|f(xi)|2 
2n+ �

�1

2⇡

Z

x2T
f(x)2dx,

where � is the minimum of the gaps between xi, xi+1 on the torus.

As a corollary, we obtain the following.

Corollary 2.3. Assume that kfkL2(T)  ⌧ . Then the set of x 2 T with |f(x)| � � or |f 0(x)| � �n

is contained in the union of 2M intervals of length 2�, where M  2n+��1

2⇡
⌧2

�2 .

Proof. Choose a maximal set of �-separated points xi for which |f(xi)| � �. Then by Theorem 2.2

we have M�
2  2n+��1

2⇡ ⌧
2. We can apply the same argument for f 0 where by Bernstein’s inequality

we have kf 0k2  nkfk2  n⌧ . ⇤

We next introduce an elementary interpolation result (see for instance [8, Section 1.1, E.7]).

Lemma 2.4. Assume that a trigonometric polynomial Pn has at least m zeros (counting multiplic-
ities) in an interval I of length r. Then

max
✓2I

|Pn(✓)|  (
4er

m
)mmax

x2I
|P (m)

n (x)|

as well as

max
✓2I

|P 0
n(✓)|  (

4er

m� 1
)m�1max

x2I
|P (m)

n (x)|.

Consequently, if Pn has at least m roots on an interval I with length smaller than (1/8e)m/n, then
for any interval I 0 of length (1/8e)m/n and I ⇢ I

0 we have

(3) max
✓2I0

|Pn(✓)|  (
1

2
)m(

1

n
)mmax

x2I0
|P (m)

n (x)|

as well as

(4) max
✓2I0

|P 0
n(✓)|  n⇥ (

1

2
)m�1(

1

n
)mmax

x2I0
|P (m)

n (x)|.

Proof. It su�ces to show the estimates for Pn because P
0
n has at least m� 1 roots in I. For Pn, by

Hermite interpolation using the roots xi we have that for any ✓ 2 I there exists x 2 I so that

|Pn(✓)| = |P
(m)
n (x)

m!

Y

i

(✓ � xi)|  max
x2I

|P (m)
n (x)|r

m

m!
.

⇤
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On the probability side, for bounded random variables we will rely on the following consequence of
McDiarmid’s inequality.

Theorem 2.5. Assume that ⇠ = (⇠1, . . . , ⇠n), where ⇠i are iid copies of ⇠ of mean zero, variance
one, taking values in ⌦ = [�C0, C0]. Let A be a set of ⌦n. Then for any t > 0 we have

P(⇠ 2 A)P(d2(⇠,A) � t
p
n)  4 exp(�t

4
n/16C4

0 ).

For random variables ⇠ satisfying the log-Sobolev inequality, that is so that there is a positive
constant C0 such that for any smooth, bounded, compactly supported functions f we have

(5) Ent⇠(f
2)  C0E⇠|rf |2,

where Ent⇠(f) = E⇠(f log f)� (E⇠(f))(logE⇠(f)), we use the following.

Theorem 2.6. Assume that ⇠ = (⇠1, . . . , ⇠n), where ⇠i are iid copies of ⇠ satisfying (5) with a given
C0. Let A be a set in Rn. Then for any t > 0 we have

P
�
d2(⇠,A) � t

p
n
�
 2 exp

�
�P2(⇠ 2 A)t2n/4C0

�
.

In particularly, if P(⇠ 2 A) � 1/2 then P(d2(⇠,A) � t
p
n)  2 exp(�t

2
n/16C0). Similarly if

P(d2(⇠,A) � t
p
n) � 1/2 then P(⇠ 2 A)  2 exp(�t

2
n/16C0).

For consistency with Theorem 2.5, we sometimes use ⌦n in place of Rn in various applications of
Theorem 2.6.

For completeness, the proofs of these well-known results will be presented in Section A.

2.7. Proof strategy. We now sketch our proof method, which broadly speaking, follows the per-
turbation framework of [21]. Our starting point is the input (2) that Nn(Pn) is moderately con-
centrated around its mean ENn. This will ensure that various sets have probability at least 1/2
so that the concentration estimates in Theorems 2.5 and 2.6 will give e↵ective bounds, see for an
example the proof of Corollary 5.3.

(i) Our first highlight is Section 4 where we show that it is highly unlikely that there is a large
set of unstable intervals where |Pn| and |P 0

n| are both small (see Definition 4.1 for this notion).
This is justified by relying on a repulsion estimate (Theorem 3.1), on Theorem 2.2, and also
on Theorem 2.5 and 2.6 to exploit exponential concentration. We call polynomials in this
unlikely set exceptional.

(ii) Additionally, we will show in Corollary 5.3 of Section 5 that the number of roots over the
unstable intervals is small for any non-exceptional Pn. We justify this deterministic result by
using the elementary tool of Lemma 2.4.

(iii) Building on these results, and with the stability result of Corollary 6.2, if Pn is not too
exceptional andNn(Pn) is close toENn thenNn(Qn) is also close toENn, as long as kPn�Qnk2
is small. As such, geometric concentration tools such as Theorem 2.5 and 2.6 can be invoked
once more to show that indeed Nn satisfies near exponential concentration, as desired.

3. Repulsion estimate

We show that the measure of t 2 [�⇡,⇡] where both |Pn(t)| and |P 0
n(t)| are small is negligible.

More precisely we will be working with the following condition.
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Condition 1. Let 0 < ⌧  1/64 be given, and let C 0
0 be a positive constant to be chosen su�ciently

large. Assume that t 2 [�⇡,⇡] is such that there do not exist integers k with |k|  C
0
0 satisfying

kkt/⇡kR/Z  n
�1+8⌧

.

Here k.kR/Z is the distance to the nearest integer.

Theorem 3.1. [10, Theorem 2.1] Assume that ⇠ has mean zero and variance one. Then as long
as ↵ > 1/n, � > 1/n and t satisfies Condition 1 with given ⌧, C

0
0 we have

P
�
|Pn(t)|  ↵ ^ |P 0

n(t)|  �n
�
= O⌧,C0

0
(↵�).

To see that Theorem 3.1 can indeed be deduced from [10], note that we can view the event in
Theorem 3.1 as a random walk event in R2

1p
2n

nX

i=1

(⇠ivi + ⇠
0
iv

0
i) 2 [�↵,↵]⇥ [��,�],

where ⇠i, ⇠
0
i are iid copies of the random variables ⇠, with

vi := (cos(it),� i

n
sin(it)) and v0

i := (sin(it),
i

n
cos(it)).

Remark 3.2. The full version of [10, Theorem 2.1] allows for ↵,� > n
�C (for any given C > 0).

As we only need here C = 1, a simpler and more direct proof can be given. We refer the reader to
the preprint version of this article [25], where the argument is detailed.

4. Exceptional polynomials are rare

This current section is motivated by the treatment in [21, Section 4.2]. We begin with a definition.
Let R > 0 be a su�ciently large constant. CoverT by 2⇡n

R open interval Ii of length (approximately)
R/n each. Let 3Ii be the interval of length 3R/n having the same midpoint with Ii.

Definition 4.1. Fix ↵,�, � > 0 and R as above. We call an interval Ii stable for a function f if
there is no point in x 2 3Ii such that both |f(x)|  ↵ and |f 0(x)|  �n. We call f exceptional if
the number of unstable intervals is at least �n. We call f not exceptional otherwise.

Note that the notion of exceptional f depends on the parameters ↵,�, �, R, n, but we will not
emphasize it in the notation.

For convenience, for each Pn(x) =
1p
n

Pn
k=1 ak cos(kx) + bk sin(kx) we assign a unique (unscaled)

vector vPn = (a1, . . . , an, b1, . . . , bn) in ⌦2n, which is a random vector when Pn is random.

Let Ee = Ee(R,↵,�; �) denote the set of vectors vPn in ⌦2n associated to exceptional polynomials
Pn. Our goal in this section is the following.

Theorem 4.2 (Exceptional polynomials are rare). Assume that ↵,�, � satisfy

(6) ↵ ⇣ �
3/2

,� ⇣ �
3/4

, � > n
�2/5

.

Assume that ⇠ is as in Theorem 1.4. Then we have

P
⇣
vPn 2 Ee

⌘
 e

�c�8n
,

where c is allowed to depend on C0 (one can take c = 1/16C4
0 in the setup of Theorem 2.5 and

c = 1/16C0 in the setup of Theorem 2.6.)
6



We now discuss the proof. The first part is deterministic. Assume that f (playing the role of Pn)
is exceptional, then there are K = b�n/3c unstable intervals that are R/n-separated (and hence
4/n-separated, as long as R is chosen larger than 4).

Now for each unstable interval in this separated family we choose xj 2 3Ij where |f(xj)|  ↵ and
|f 0(xj)|  �n and consider the interval B(xj , �/n) for some � < 1 chosen su�ciently small (given
�). Let

Mj := max
x2B(xj ,�/n)

|f 00(x)|.

By Theorem 2.2 and Theorem 2.1 we have

KX

j=1

M
2
j  2n+ (4/n)�1

2⇡

Z

x2T
f
00(x)2dx  n

5
Z

x2T
f(x)2dx.

Now we use randomness: in both the bounded and the log-Sobolev cases we have kfk2 � 2 with
exponentially small probability, so without loss of generality it su�ces to assume in what follows
that kfk2  2. We then infer from the above that the number of j for which Mj � C2�

�1/2
n
2 is at

most 2C�2
2 �n. Hence for at least (1/3� 2C�2

2 )�n indices j we must have Mj < C2�
�1/2

n
2.

Fix xj as the center of such interval B(xj , �/n). By Taylor expansion of order two around xj , we
obtain for any x in this interval,

|f(x)|  ↵+ �� + C2�
�1/2

�
2
/2 and |f 0(x)|  (� + C2�

�1/2
�)n.

So far we have dealt with one such exceptional polynomial. We now wish to perturb it and show that
an appropriate perturbation is also exceptional. Toward this end, consider a (perturbing) trigono-
metric polynomial g such that kgk2  ⌧ , of the form g(x) = 1p

n
(
Pn

k=1 a
0
k cos(kx)+ b

0
k sin(kx)), and

write h = f + g. Then, similarly to Corollary 2.3), as the intervals B(xj , �/n) are 4/n-separated,
by Theorem 2.2 we have X

j

max
x2B(xj ,�/n)

g(x)2  8nkgk22  8n⌧2

and X

j

max
x2B(xj ,�/n)

g
0(x)2  8nkg0k22  8n3

⌧
2
.

Hence, again by an averaging argument, the number of intervals where either maxx2B(xj ,�/n) |g(x)| �
C3�

�1/2
⌧ or maxx2B(xj ,�/n) |g0(x)| � C3�

�1/2
⌧n is bounded from above by (1/3� 2C�2

2 )�n/2 if C3

is su�ciently large. On the remaining at least (1/3� 2C�2
2 )�n/2 intervals, we have simultaneously

that

(7) |h(x)|  ↵
0 and |h0(x)|  �

0
n,

where

↵
0 = ↵+ �� + C2�

�1
�
2
/2 + C3�

�1/2
⌧ and �

0 = � + C2�
�1/2

� + C3�
�1/2

⌧.

Thus, with Leb the Lebesgue measure and

U = U(↵,�, �, �, ⌧, C1, C2, C3) = {vh ⇢ R2n : Leb(x : (7) holds) � (1/3� 2C�2
2 )��},

the perturbation h has indeed vh 2 U (because the set of x in the definition of U contains (1/3�
2C�2

2 )�n/2 intervals of length 2�/n). Putting together the above, we have obtained the following
claim.

7



Claim 4.3. Assume that vPn 2 Ee. Then for any g with kgk2  ⌧ we have vPn+g 2 U . In other
words, n

v 2 ⌦2n
, d2(Ee,v)  ⌧

p
2n
o
⇢ U .

We next turn to a probabilistic argument. To apply concentration of measure, we will show that
P(vPn 2 U) < 1/2. Indeed, letTe denote the collection of x 2 T which can be n�1+8⌧ approximated
by rational numbers of bounded height (see Condition 1, here we choose ⌧ = 1/64). Thus Te is a
union of a bounded number of intervals of length n

�1+8⌧ . For each Pn, let B(Pn) (and Be(Pn)) be
the measurable set of x 2 T (or x 2 Tc

e respectively) such that {|Pn(x)|  ↵
0} ^ {|P 0

n(x)|  �
0
n}.

Then the Lebesgue measure of B(Pn), Leb(B(Pn)), is bounded by Leb(Be(Pn))+O(n�1+8⌧ ), which
in turn can be bounded by

ELeb(Be(Pn)) =

Z

x2Tc
e

P({|Pn(x)|  ↵
0} ^ {|P 0

n(x)|  n�
0})dx = O(↵0

�
0),

where we used Theorem 3.1 for each x. It thus follows that ELeb(B(Pn)) = O(↵0
�
0) +O(n�1+8⌧ ).

So by Markov inequality,

(8) P(vPn 2 U)  P
�
Leb(B(Pn)) � (1/3� 2C�2

2 )��
�
= O(↵0

�
0
/��) < 1/2

if ↵,� are as in (6) and then �, ⌧ are chosen appropriately, for instance as

(9) � ⇣ �
5/4

, ⌧ ⇣ �
2
.

Proof. (of Theorem 4.2) Let A = ⌦2n\U . By Claim 4.3, if v 2 Ee then d2(v,A) � ⌧
p
2n. Also, by

(8), we have P(vn 2 A) � 1/2. Hence Theorems 2.5 and 2.6 applied to A imply that

P(vn 2 Ee)  8e�c⌧4n
,

where c = 1/16C4
0 in the case of Theorem 2.5 and c = 1/16C0 in the case of Theorem 2.6. ⇤

5. Roots over unstable intervals

In this section we show the following deterministic lemma.

Lemma 5.1. Let " < e
�1 be given as in Theorem 1.4. Assume that the parameters ↵,�, ⌧ are

chosen as in (6) and (9). Assume that a trigonometric polynomial Pn has at least "n/2 roots over
�n disjoint intervals of length R/n, where

(10) �  c0"

log(1/")

with c0 = 1/1024eR. Then there is a set A ⇢ T of measure at least "
1024e on which

max
x2A

|f(x)|  ↵ and max
x2A

|f 0(x)|  �n.

Before proving this result, we deduce a key consequence that non-exceptional polynomials cannot
have too many roots over the unstable intervals.

Corollary 5.2. Let the parameters ",↵,�, ⌧, � and R be as in Lemma 5.1. Then a non-exceptional
Pn cannot have more than "n/2 roots over any �n intervals Ii from Section 4. In particularly, Pn

cannot have more than "n/2 roots over the unstable intervals.
8



Proof. If Pn has more than "n/2 roots over some �n intervals Ii, then Lemma 5.1 implies the
existence of a set A = A(Pn) that intersects with the set of stable intervals so that maxx2A |Pn(x)| 
↵ and maxx2A |P 0

n(x)|  �n (because, recall Definition 4.1, the unstable intervals have measure at
most �R, and "/(1024e) > �R). However, this is impossible because for any x in the union of the
stable intervals we have either |Pn(x)| > ↵ or |P 0

n(x)| > �n. ⇤

We now give an elemantary proof of Lemma 5.1. The main idea is that if Pn has many roots over
a small union of intervals, then we can use Hermite interpolation (Lemma 2.4) to show that |Pn|
and |P 0

n| are small over a set A of non-negligible measure.

Proof of Lemma 5.1. Among the given �n intervals we first throw away those of less than "�
�1

/4
roots, hence there are at least "n/4 roots left. For convenience we denote the remaining intervals
by J1, . . . , JM , where M  �n, and let m1, . . . ,mM denote the number of roots over each of these
intervals respectively.

In the next step (which is geared towards the use of (3) and (4) of Lemma 2.4), we expand the
intervals Jj to larger intervals J̄j (considered as union of consecutive closed intervals appearing
at the beginning of Section 4) of length dcmj/Re ⇥ (R/n) with c = 1/(16e). Furthermore, if the
expanded intervals J̄

0
i1 , . . . , J̄

0
ik

of J̄i1 , . . . , J̄ik form an intersecting chain, then we create a longer
interval J̄ 0 of length dc(mi1 + · · ·+mik)/Re ⇥ (R/n), which contains them and therefore contains
at least mi1 + · · · +mik roots. After the merging process, we obtain a collection J̄

0
1, . . . , J̄

0
M 0 with

the number of roots m0
1, . . . ,m

0
M 0 respectively, so that

P
m

0
i � "n/2. Note that now J̄

0
i has length

dcm0
i/Re ⇥ (R/n) ⇡ cm

0
i/n (because by assumption "�

�1 is su�ciently large compared to R) and
the intervals are R/n-separated.

Next, consider the sequence
dl := 2l"��1

/4, l � 0.

We classify the sequence {m0
i} into groups Gl of intervals of m0

i roots where

dl  m
0
i < dl+1.

Assume that each group Gl has kl = |Gl| distinct extended intervals. As each of these intervals has
between dl and dl+1 roots, we have

X

l

kldl �
X

i

m
0
i/2 � "n/8.

For given ↵,�, we call an index l bad if

(1/2)dl(n/2kl)
1/2 � � = min{↵/4,�/4}.

That is when
kl 

n

2�24dl
.

The total number of roots over the intervals corresponding to bad indices can be bounded by

X

l bad index

kldl+1 
n

2�2

1X

l=0

2dl
4dl

 n

�22"��1 ⇣ n

�32"��1  "n/32

where we used the fact that �  c0"
log(1/") for some small constant c0.

Now consider a group Gl of good index l. Notice that by definition these intervals have length
approximately between cdl/n and 2cdl/n. Let I be an interval among the kl intervals in Gl. By

9



Lemma 2.4 and by definition we have

(11) max
x2I

|Pn(x)|  (
1

2
)dl(

1

n
)dl max

x2I
|P (dl)

n (x)|  �

(n/2kl)1/2
(
1

n
)dl max

x2I
|P (dl)

n (x)|

as well as

(12) max
x2I

|P 0
n(x)|  n⇥ (

1

2
)dl�1(

1

n
)dl max

x2I
|P (dl)

n (x)|  n⇥ 2�

(n/2kl)1/2
(
1

n
)dl max

x2I
|P (dl)

n (x)|,

where we used the fact that (1/2)dl(n/2kl)1/2 < �.

On the other hand, as these kl intervals are R/n-separated (and hence 4/n-separated), by the large
sieve inequality (Theorem 2.2) and by an iterated use of the Bernstein inequality (Theorem 2.1)
we have

X

J̄ 0
i2Gl

max
x2J̄ 0

i

(P (dl)
n (x))2  n

Z

x2T
(P (dl)

n (x))2dx  n⇥ n
2dl

Z

x2T
(Pn(x))

2
dx  2n2dl+1

.

Hence by averaging we see that for least kl/2 intervals J 0
i in Gl satisfy

max
x2J 0

i

|P (dl)(x)|  2(n/kl)
1/2

n
dl .

It follows from (11) and (12) that over these intervals

max
x2J 0

i

|Pn(x)| 
�

(n/2kl)1/2
(
1

n
)dl2(n/kl)

1/2
n
dl  4�

and similarly,

max
x2J 0

i

|P 0
n(x)|  n⇥ �

(n/2kl)1/2
(
1

n
)dl2(n/kl)

1/2
n
dl  4�n.

Letting Al denote the union of all such intervals J
0
i of a given good index l, and letting A denote

the union of the Al’s over all good indices l, we obtain

Leb(A) �
X

l,good

(cdl/n)kl/2 �
X

l,good

(c/4)dl+1kl/n �
X

l,good

(c/4)ml/n

� (c/4)("n/8� "n/32)/n � "

1024e
.

Finally, notice that by definition of A we have

max
x2A

|Pn(x)|  4�  ↵ and max
x2A

|P 0
n(x)|  4�n  �n,

concluding the proof. ⇤

We conclude the section by a quick consequence of Lemma 5.1. For each Pn that is not exceptional
we let Ns = Ns(Pn) and Nus = Nus(Pn) be the number of roots of Pn over the set of stable and
unstable intervals respectively.

Corollary 5.3 (Roots over stable intervals). With the same parameters as in Corollary 5.2, we
have

P
⇣
Ns1Pn2Ec

e
 ENn � "n

⌘
= o(1)

and

E
⇣
Ns1Pn2Ec

e

⌘
� ENn � 2"n/3.

10



Proof. For the first bound, by Corollary 5.2, if Ns1Pn2Ec
e
 ENn�"n then Nn1Pn2Ec

e
 ENn�"n/2.

Thus

P
�
Ns1Pn2Ec

e
 ENn � "n

�
 P

�
Nn1Pn2Ec

e
 ENn � "n/2

�

 P
�
Ec
e ^Nn  ENn � "n/2

�
+P(Ee) = o(1),

where we used (2) and Theorem 4.2.

For the second bound regarding E(Ns1Pn2Ec
e
), by Corollary 5.2, for non-exceptional Pn we have

that Nus  "n/2, and hence trivially E(Nus1Pn2Ec
e
)  "n/2. Because each Pn has O(n) roots, we

then obtain

E(Ns1Pn2Ec
e
) � ENn �E(Nus1Pn2Ec

e
)�E(Nn1Pn2Ee)

� ENn � "n/2�O(n⇥ e
�c⌧4n) � ENn � 2"n/3.

⇤

6. proof of the main results

We first give a deterministic result (see also [21, Claim 4.2]) to control the number of roots under
perturbation.

Lemma 6.1. Fix strictly positive numbers µ and ⌫. Let I = (a, b) be an interval of length greater
than 2µ/⌫, and let f be a C

1-function on I such that at each point x 2 I we have either |f(x)| > µ

or |f 0(x)| > ⌫. Then for each root xi 2 I with xi � a > µ/⌫ and b � xi > µ/⌫ there exists an
interval I(xi) = (a0, b0) where f(a0)f(b0) < 0 and |f(a0)| = |f(b0)| = µ, such that xi 2 I(xi) ⇢
(xi � µ/⌫, xi + µ/⌫) and the intervals I(xi) over the roots are disjoint.

Proof. We may and will assume that f is not constant on I. By changing f(x) to �1f(�2x) for
appropriate �1,�2, it su�ces to consider µ = ⌫ = 1. For each root xi, and for 0 < t  1 consider
the interval It(xi) containing xi of those points x where |f(x)| < t. We first show that for any
0 < t1, t2  1 and distinct roots x1, x2 2 I satisfying the assumption of the lemma, we have that
It1(x1)\ It2(x2) = ;. Assume otherwise, then because f(x1) = f(x2) = 0, there exists x1 < x < x2

such that f
0(x) = 0 and |f(x)|  min{t1, t2}, which contradicts the assumption of the lemma.

We will also show that I1(xi) ⇢ (xi � 1, xi + 1). Indeed, assume otherwise for instance that
xi�1 2 I1(xi), then for all xi�1 < x < xi we have |f(x)| < 1, and so |f 0(x)| > 1 over this interval.
Without loss of generality we assume f 0(x) > 1 for all x over this interval. The mean value theorem
would then imply that |f(xi � 1)| = |f(xi � 1) � f(xi)| > 1, a contradiction with xi � 1 2 I1(xi).
As a consequence, we can define I(xi) = I1(xi), for which at the endpoints the function behaves as
desired. ⇤
Corollary 6.2. Fix positive µ and ⌫. Let I = (a, b) be an interval of length at least 2µ/⌫, and let
f be a C

1-function on I such that at each point x 2 I we have either |f(x)| > µ or |f 0(x)| > ⌫. Let
g be a function such that |g(x)| < µ over I. Then for each root xi 2 I of f with xi � a > µ/⌫ and
b� xi > µ/⌫ we can find a root x0i of f + g such that x0i 2 (xi � µ/⌫, xi + µ/⌫), and also the x

0
i are

distinct.

Proof. For each root xi 2 I of f such that xi � a > µ/⌫ and b � xi > µ/⌫ we consider the
interval I(xi) = (a0, b0) defined in Lemma 6.1. Without loss of generality, assume that f(a0) = �µ

and f(b0) = µ. Then as |g(x)| < µ over I, we have f(a0) + g(a0) < 0 < f(b0) + g(b0). Hence
11



by the mean value theorem there exists x
0
i 2 (a0, b0) such that f(x0i) + g(x0i) = 0. We note that

I(xi) ⇢ (xi � µ/⌫, xi + µ/⌫). ⇤

Now we prove Theorem 1.4 by considering the two tails separately.

6.3. The lower tail. We need to show that for some constant c0

(13) P(Nn  ENn � "n) = O(e�c0"9n)

Here (and in (16)) c
0 depends on C0. For instance it su�ces to assume c

0 to be of order 1/C4
0 in

the case of Theorem 2.5, and of order 1/C0 in the case of Theorem 2.6.

With the parameters ↵,�, �, ⌧, R chosen as in Corollary 5.2, our key deterministic observation is
that the number of roots in stable intervals of non-exceptional polynomials is not significantly
decreased by small perturbations, as stated in the following.

Claim 6.4. Let Pn be a non-exceptional polynomial such that Pn has at least ENn � 2"n/3 roots
over the stable intervals. Then for any trigonometric polynomial g of degree n with kgk2  ⌧ , the
polynomial Pn + g has at least ENn � "n roots over T.

Proof. Let g be a trigonometric polynomial of degree n such that kgk2  ⌧ . We first notice that
the number of stable intervals Ij over which maxx23Ij |g(x)| > ↵ is at most O(�n). Indeed, assume
that there are M such intervals Ij of length R/n. Then we can choose at least, say M/6, such
intervals so that 3Ij are R/n-separated. By Theorem 2.2 we have

(M/6)↵2
< n⌧

2
,

which implies M < 6n(⌧↵�1)2 = O(�n).

As Pn is non-exceptional, there are at least (2⇡R � �)n stable intervals Ij . We will focus on the set
Sg,↵ of stable intervals Ij on which maxx23Ij |g(x)|  ↵, for which we have learned from the above
argument that

|Sg,↵| = (
2⇡

R
�O(�))n.

Notice furthermore that because Pn is non-exceptional and Pn has at least ENn� 2"n/3 roots over
the stable intervals, by Corollary 5.2, with appropriate choice of the parameters, Pn has at least
ENn � "n roots over the stable intervals Ij 2 Sg,↵.

Continuing with the proof of the claim, for each Ij 2 Sg,↵, by Corollary 6.2 (applied to I = 3Ij
with µ = ↵ and ⌫ = �n, note that ↵/� ⇣ �

3/4
< R and maxx23Ij |g(x)| < ↵), the number of roots

of Pn+ g over Ij is at least as that of Pn. As a consequence, as Pn has at least ENn� "n roots over
the stable intervals Ij 2 Sg,↵, the perturbed polynomial Pn + g also has at least ENn � "n roots
over these stable intervals Ij of Sg,↵. In particularly Pn+g has at least ENn�"n roots over T. ⇤

We next turn to the probabilistic part of the argument, uses the above stability over perturbations.
Let U lower be the collection of vPn in ⌦2n from non-exceptional Pn that have at least ENn� 2"n/3
roots over the stable intervals. Then by Corollary 5.3

(14) P(vPn 2 U lower) � 1�P
�
Ee
�
�P

�
Ns1Pn2Ec

e
 ENn � 2"n/3

�
� 1/2.

We can now complete the proof of (13). By Claim 6.4 the set {v 2 ⌦2n
, d2(v,U lower)  ⌧

p
2n}

is contained in the set of having at least ENn � "n roots. Furthermore, (14) says that P(vPn 2
12



U lower) � 1/2. Hence by Theorems 2.5 and 2.6

(15) P(Nn � ENn � "n) � P
⇣
vPn 2

�
v 2 ⌦2n

, d2(v,U lower)  ⌧
p
2n
 ⌘

� 1� 2 exp(�c
0
"
9
n),

where we used the fact that ⌧ ⇣ �
2 from (9) and that � satisfies (10). Here we can take c

0 to be of
order 1/C4

0 in the case of Theorem 2.5, and of order 1/C0 in the case of Theorem 2.6. ⇤

6.5. The upper tail. Our goal here is to justify the upper tail

(16) P(Nn � ENn + "n) = O(e�c0"9n).

Let Uupper denote the set of vPn in ⌦2n for which Nn � ENn + "n and Pn is non-exceptional. By
Theorem 4.2, for (16) it su�ces to show that

(17) P(vPn 2 Uupper) = O(e�c0"9n).

Proof. (of Equation (17)) Assume that for a non-exceptional Pn we have Nn � ENn+ "n. Then by
Lemma 5.1 (Corollary 5.2) the number of roots of Pn over the stable intervals is at least ENn+2"n/3.
Arguing as in the previous subsection (with the same parameters of ↵,�, ⌧, �), Corollary 5.2 and
Corollary 6.2 imply that h = Pn + g with any g satisfying kgk2  ⌧ has at least ENn + "n/2 roots.
On the other hand, we know by (2) that the probability that Pn belongs to this set of trigonometric
polynomials is smaller than 1/2. It thus follows by Theorems 2.5 and 2.6 that

(18) P(vPn 2 Uupper) = O(e�c0"9n),

where we again used that ⌧ ⇣ �
2 and � satisfies (10), and where c

0 depends on C0 as in (15). ⇤

We conclude this section with some comments regarding Remark 1.5. Note that Theorem 3.1, and
all other deterministic results still work under this setting. Choose C0 = n

c0 where the positive
constant c0 is chosen to be small enough (depending on the exponent of the sub-exponential tail, or
on C). It then su�ces to establish the result for |⇠|  n

c0 . We next choose the parameters ↵,�, �
as in Theorem 4.2, where say � = n

�c0 . With these parameters, we note that Theorem 4.2 still
holds with sub-exponential decay of rate O(exp(�n

1�12c0)), and Equations (13) and (16) still hold
with sub-exponential decay of rate O(exp(�n

1�4c0"9)).

Appendix A. Concentration results

Proof. (of Theorem 2.5) Consider the function F (⇠) := d1(⇠,A), which measures the L1-distance.
This function is 2C0-Lipschitz (coordinatewise), so by McDiarmid’s inequality, with µ = EF (⇠)

P(|F (⇠)� µ| � �)  2 exp(��
2
/2nC2

0 ).

This then implies that

P(F (⇠) = 0)P(F (⇠) � �)  4 exp(��
2
/4nC2

0 ).

Indeed, if �  µ then

P(F (⇠) = 0)  P(F (⇠)� µ  �µ)  2 exp(�µ
2
/2nC2

0 )  2 exp(��
2
/2nC2

0 ),

while if � � µ then

P(F (⇠) = 0)P(F (⇠) � �)  P(F (⇠)� µ  �µ)P(F (⇠)� µ � �� µ)

 4 exp(�(µ2 + (�� µ)2)/2nC2
0 )  4 exp(��

2
/4nC2

0 ).
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Now because of boundedness (where we recall that A ⇢ ⌦n = [�C0, C0]n ), for any y 2 A,

k⇠ � ⇠0k22  2C0k⇠ � ⇠0k1.
So if d2(⇠,A) � t

p
n then d1(⇠,A) � t

2
n/2C0. We thus obtain

P(⇠ 2 A)P(d2(⇠,A) � t
p
n)  P(⇠ 2 A)P(d1(⇠,A) � t

2
n/2C0)  4 exp(�t

4
n/16C4

0 ).

⇤

Proof. (of Theorem 2.6) Let � := t
p
n and F (⇠) := min{d2(⇠,A),�}. Then F is 1-Lipschitz, and

EF (⇠)  (1�P(⇠ 2 A))�.

It is known (see for instance [19]) that for distributions satisfying log-Sobolev inequality we have
that

P(F (⇠) � EF (⇠) + t)  exp(�t
2
/4C0).

Thus, since EF (⇠) = P(⇠ 62 A)E(F (⇠)|⇠ 62 A)  �P(⇠ 62 A),

P(d2(⇠, A) � �) = P(F (⇠) � �)  P(F (⇠) � EF (x) +P(⇠ 2 A)�)

 exp(�P2(⇠ 2 A)�2
/4C0).

Finally, to see the last claim in Theorem 2.6 we let A0 = {a, d2(a,A) � t
p
n}. By the theorem’s

main conclusion, because P(⇠ 2 A0) � 1/2, we have

P(d2(⇠,A0) � t
p
n)  2 exp(�t

2
n/16C0).

To this end, we just observe that if a 2 A then d2(a,A0) � t
p
n (otherwise there would exist a0 2 A0

such that d2(a,a0) < t
p
n, which would imply d2(a0,A) < t

p
n, a contradiction with the definition

of A0.) ⇤

Acknowledgements. The authors are grateful to O. Nguyen and T. Erdély for help with refer-
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