

Statistical Properties of the Positronium Lifetime Image Reconstruction

Z. Chen¹, L. An², C.-M. Kao³, **H.-H. Huang⁴**

¹ University of Arizona, Mathematics, Tucson, Arizona, United States of America

² University of Arizona, Agricultural and Biosystems Engineering, Tucson, Arizona, United States of America

³ University of Chicago, Radiology, Chicago, Illinois, United States of America

⁴ University of Central Florida, Statistics and Data Science, Orlando, Florida, United States of America

Abstract

Positronium Lifetime Image (PLI) reconstruction is a technique used in time-of-flight (TOF) Positron emission tomography (PET) imaging that involves measuring the lifespan of positronium, which is a metastable electron-positron pair that arises when a PET molecule releases a positron, prior to its annihilation. In our previous work, we demonstrated that our proposed maximum likelihood (ML) algorithm for PLI reconstruction can generate quantitatively accurate lifetime images for a 570 ps TOF PET system. In this study, we conducted further investigations into the statistical properties of the algorithm, including the variability of the reconstruction results, the sensitivity of the algorithm to the number of acquired PLI events and its robustness to hyperparameter choices. Our findings indicate that the proposed ML method produces sufficiently stable lifetime images to enable reliable distinction of regions of interest and the number of PLI events required to produce quantitatively accurate lifetime images is computationally plausible. These results demonstrate the potential of our ML algorithm for advancing the capabilities of TOF PET imaging.

Acknowledgment

The contents of this article are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health or the National Science Foundation. This work was partially supported by NSF grant DMS-1924792 and NIH grant R01-EB029948.