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Abstract—Accurately estimating muscle states, including fa-
tigue and contraction, holds significant potential in the fields of
rehabilitation and muscle-related disorder identification. How-
ever, conventional invasive methods such as intramuscular elec-
tromyography (EMG) entail risks and discomfort. This study
pioneers the integration of A-mode ultrasound (US) signals
from a wearable sparse array with machine learning (ML)
classification, advancing quadriceps muscle state estimation. A
novel wearable transducer, comprising a 16-element array with
a central frequency of 10 MHz, enables the capture of A-mode US
signals on curved skin surfaces. Three able-bodied participants
engaged in two experimental sets: voluntary knee extension
for contraction prediction, and a fatiguing protocol utilizing
functional electrical stimulation (FES). Employing US feature
extraction, followed by supervised ML classification, resulted
in an exceptional average accuracy of 93.66 % in contraction
classification and achieved 90.1 % in fatigue classification.

Index Terms—ultrasound transducers, wearable transducers,
flexible transducers, muscle activities detection, functional elec-
trical stimulation, machine learning classification

I. INTRODUCTION

Skeletal muscle monitoring holds significant potential for

evaluating lower-limb function across various applications,

including injury rehabilitation, sports medicine [1], and disease

management [2]. The accurate estimation of muscle state,

encompassing factors like fatigue and degree of contraction,

is of utmost importance in various domains such as identi-

fying muscle-related disorders [3]. Moreover, this estimation

assumes particular significance in advancing the utilization

of functional electrical stimulation (FES) [4] and hybrid ex-

oskeletons with integrated FES [5], especially within clinical

rehabilitation settings.

Traditional invasive measurement techniques such as intra-

muscular electromyography (EMG) carry risks of infections

and discomfort. Surface electromyography (sEMG) captures

the electrical activity of muscles from the skin’s surface [6],

serving as a crucial non-invasive technique to portray volun-

tary motion and movement intention [7], [8]. However, sEMG

has inherent limitations, including low signal-to-noise ratio

(SNR), inability to monitor deeper muscles reliably, signal

degradation due to fatigue, challenges in distinguishing muscle

firings among adjacent muscles (muscle crosstalk) [9], and

electromechanical delay (EMD) [10]. In contrast, non-invasive

methods like B-mode ultrasound (B-mode US) show promise

in muscle state estimation due to their non-invasiveness and

real-time capabilities [4], [5]. However, these techniques are

constrained by complex and cumbersome equipment and the

need for sophisticated signal processing such as beamforming,

for continuous monitoring applications.

To address the limitations associated with B-mode US, a

practical and cost-effective alternative is to acquire raw one-

dimensional Amplitude Mode (A-Mode) radio frequency (RF)

signals using US transducers. Unlike B-mode, these A-Mode

signals don’t require intricate processing such as beamforming

[11]. A-Mode US presents a more viable choice for affordable

and wearable muscle state recognition solutions, as evidenced

by its successful utilization in various domains, including

classifying muscle states using single elements [11], detecting

muscular morphological deformations [12], and recognizing
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hand gestures [13].

The primary objective of this study was to establish the

viability of employing an innovative sparse array-based wear-

able US device in muscle state detection. To this end, our de-

vice combines A-mode imaging, machine learning (ML), and

classification with US feature extraction for the estimation of

quadriceps muscle states. Our pioneering investigation builds

upon previous research, where wearable A-mode US was

successfully used to monitor muscle activities in the context

of assistive robotics applications [14], [15]. Distinguishing the

proposed work from prior literature that has predominantly

relied on single elements [11] or rigid multi-transducer setups

[12], this study introduces a distinctive approach. Herein, an

array of 4 × 4 PZT-5A transducers is coupled with a substrate

crafted from biomedical-grade polydimethylsiloxane (PDMS),

affording the system remarkable flexibility and wearability.

Notably, the innovation extends to the realm of muscle fatigue

detection as well. While extant literature [13] has explored

fatigue detection, it is noteworthy that the present work stands

out by incorporating FES-induced muscle fatigue as a unique

dimension.

II. MATERIALS AND METHODS

A. Transducer design and fabrication

The wearable transducer utilized in this study has been

documented in the previous works [14], [15]. The design and

photographs are illustrated in Figure 1 (a). Each element was

designed with 10 MHz center frequency for effective muscle

movement detection. The active layer, composed of PZT-

5A piezo-ceramic (Chengdu Chengyao Technology Co., Ltd.

Chengdu, Sichuan, China), was mechanically diced and lapped

to attain a thickness of 0.2 mm. Subsequently, the lapped active

layer was affixed to an acoustic matching layer employing

epoxy (EpoTek 301, Epoxy Tech. Inc., San Jose, CA, USA),

which had a thickness of 0.25 mm. This matching layer was

composed of aluminum oxide/epoxy with a particle size of 50

nm. On the back side of the active layer, electrically conductive

silver epoxy (E-Solder 3022, Von-Roll Inc., Cleveland, OH,

USA) formed the initial 0.28 mm thick backing layer. An

additional backing layer was then created by applying epoxy

blended with tungsten particles over the first backing layer.

The fabrication process involved four distinct steps, as

shown in Figure 1 (b). The matching, active, and backing

layers were bonded using EpoTek 301 epoxy. The bonded

stacks were diced into 1.4 mm elements. Each of these

elements was individually wired to coaxial cables, ensuring

protection against wire damage during motion. E-Solder 3022

epoxy established ground and positive connections on rear and

front active layer electrodes. Parylene-C (SCS Labcoter, PDS

2010, SCS, Indianapolis, IN) provided protective coating. The

individual elements were assembled into a 4x4 array using a

circular 3D-printed mold. PDMS was poured into the mold to

form the flexible substrate, which was cured at 50 ◦C for six

hours.

Fig. 1. (a) Schematic demonstration of the wearable US transducer design.
(b) The fabrication process for the wearable US transducer

B. Experimental Setup for Quadriceps Muscle States Estima-

tion

1) Subjects: The experimental protocol was approved by

the Institutional Review Board (IRB) at North Carolina State

University (IRB number: 23630). A total of three able-bodied

(AB) subjects, without any neuromuscular conditions, partici-

pated in the study. The group consisted of three males with an

average age of 32 years. All participants provided informed

consent prior to engaging in the experimental procedures.

2) Experimental protocols: Two distinct experimental pro-

tocols were executed to acquire A-mode US signals from

the quadriceps muscle, encompassing voluntary knee re-

lax/contraction and FES-induced pre/post-muscle fatigue sce-

narios.

For the initial experiment, participants were seated com-

fortably on a BIODEX system (Biodex Medical Systems,

Inc., Shirley, New York, USA) with their leg secured to the

knee extension device. The wearable array was affixed to the

quadriceps muscle, and participants were instructed to perform

voluntary knee extensions, as illustrated in Fig. 3 (a). In the

subsequent experiment, participants were positioned on the

same BIODEX system with their legs securely fastened to the

knee extension device. Two 2”×2” PALS electrodes (Axel-

gaard Manufacturing Co., CA, USA) were strategically placed

on the proximal and distal ends of the subject’s quadricep to

facilitate the stimulation pulse trains (30 mA, 20 Hz, 1.5 s

on/0.5 s off) from an FES stimulator (Rehastim1, HASOMED

GmbH, Germany). The wearable array was positioned between

these electrodes. The experimental arrangement is detailed in

Fig. 3 (b). In both experiments, A-mode US signals were

acquired using the oscilloscope. Additionally, muscle torque

data was collected using the Biodex system during the second

experiment.
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Fig. 2. Schematics of the experimental setups for test protocols: (a) Knee
relax/contraction tests; (b) FES induced pre/post-muscle fatigue tests

3) Data Collection: In the voluntary knee

relaxation/contraction experiment, three sets of A-mode US

data were acquired for both contracted and relaxed positions,

using each of the four transducer elements. Following a

3-minute rest period for each participant, the FES-induced

pre/post-muscle fatigue experiment was initiated. A 2-minute

FES pulse train was applied to the subject’s quadriceps,

during which A-mode data was manually collected using

a single transducer element for every alternate contraction

cycle. Muscle torque data was concurrently collected using

the Biodex system throughout the duration of the experiment.

This process constituted a single trial, with a 15-minute

resting interval between consecutive trials. A total of three

trials was conducted. The representation of the data collection

process is illustrated in Fig. 3.

Fig. 3. Experimental Data Collection Process for Voluntary Contraction and
FES-Induced Muscle Fatigue Trials

4) A-mode US signals analysis and processing: In the vol-

untary knee relaxation/contraction experiment, A-mode data

was systematically categorized and labeled as ”relax” and

”contraction,” corresponding to the leg position during the

data acquisition. For the FES-induced pre/post-muscle fatigue

experiment, the fatigue state was identified when contraction

torques dropped below 80 % of the maximum contraction

torque (averaged from three peak contraction torques). This

criterion was used to assign labels of ”pre-fatigue” and ”post-

fatigue”. Since each participant’s muscle shape is distinct, data

for each subject was kept separate.

Prior to the application of machine learning algorithms for

muscle state classification, a series of US feature extraction

steps were undertaken. This extraction process followed the

procedure established in previous works such as [13], [16],

[17]. A concise overview of the procedure is provided herein.

The raw A-mode US data underwent essential processing steps

including time gain compensation (TGC), Hilbert transfor-

mation, and log compression, aimed at noise reduction and

enhancement of meaningful information. Within each A-mode

US data frame, a total of 1000 sample points were recorded.

The initial 20 and final 20 data points were excluded as they

did not contribute relevant information [17]. Subsequently, the

remaining 960 data points were divided into 48 segments,

and the mean and standard deviation were computed for

each segment, collectively forming the mean and standard

deviation (MSD) feature [16]. The MSD features from the four

transducer elements were averaged for subsequent analysis.

For classification utilizing machine learning algorithms, 90

% of the dataset was employed for training, while the remain-

ing 10 % was allocated for testing and validation purposes.

The muscle state classification involved logistic regression,

support vector machines (SVM), neural networks (NN), and K-

Nearest Neighbors (KNN) algorithms. MATLAB’s Classifica-

tion Learner (R2022b, MathWorks, MA, USA) was employed

for training and validating estimation accuracy. The process

of A-mode US data analysis, its processing, and the machine

learning model is visually outlined in Fig. 4.

Fig. 4. Visualization of A-mode US Data Analysis, Processing, and Machine
Learning Model

III. RESULTS

A. Transducer characterizations

The transducer’s characterization involved conducting

pulse-echo and electrical impedance tests. Details of the ex-

perimental setup for these tests can be found in previous works

[14], [15]. In this section, we present the experimental results

to establish the completeness and accuracy of the work. The

central frequency’s average value is 10.78 MHz, accompanied

by a -6 dB fractional bandwidth of 61 %. The loop sensitivity

demonstrates an average of -40 dB. Moreover, the electrical

impedance test yields an average capacitance of 289.04 pF, an

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on August 19,2024 at 18:16:03 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
AVERAGE CROSS-VALIDATION ACCURACY OF EACH MACHINE

LEARNING MODEL ACROSS ALL DATA

Voluntary Contraction Experiment Cross-Validation Accuracy(%)

ML models Subject 1 Subject 2 Subject 3 Average

SVM 98.48 89.47 84.21 90.72

NN 97.22 83.55 84.21 88.33

KNN 98.73 92.11 90.13 93.66

Logistic Regression 78.23 68.42 65.13 70.59

FES induced muscle fatigue Experiment Cross-Validation Accuracy(%)

ML models Subject 1 Subject 2 Subject 3 Average

SVM 89.7 92.9 87.4 90

NN 88.5 92.9 87.4 89.6

KNN 89.7 96.4 84.2 90.1

Logistic Regression 77 89.3 73.7 80

average loss of 12.86 mU at 1 kHz, and an average impedance

of 63.85 Ω at 10 MHz.

B. In-vivo results

We obtained 192 labeled data points for both con-

tracted/relaxed states and 96 data points for pre-fatigue/post-

fatigue states from each participant. The results of cross-

validation for each employed algorithm are elaborated in Table

I. Notably, the KNN model exhibited outstanding performance,

achieving an average accuracy of 93.66 % for contraction

classification and 90.1 % for fatigue classification. These

accuracies surpass those reported in recent literature, which

documented 84 % accuracy for fatigue classification and 85

% for contraction classification using A-mode US signals from

a single element. It is noteworthy that the proposed machine

learning models required notably shorter training times, with

each model completing training in less than one minute, in

contrast to the 20 minutes reported in previous studies.

IV. CONCLUSION

In conclusion, this study introduces a novel approach that

integrates wearable A-mode US with machine learning (ML)

classification to accurately estimate quadriceps muscle states.

This research pioneers the design of a wearable 16-element

sparse array with a central frequency of 10 MHz, enabling

A-mode signal capture even on curved skin surfaces. Exper-

imental trials encompassed voluntary knee relax/contraction

scenarios and FES-induced fatigue protocols. Results demon-

strate the effectiveness of the proposed approach, achieving

remarkable accuracy through ML models. The KNN model

exhibited outstanding performance, achieving an average ac-

curacy of 93.66 % for contraction classification and 90.1 %

for fatigue classification. These outperformances of recent

literature benchmarks underscore the potential of this inte-

grated technology for continuous and non-invasive muscle

state monitoring. In the future, we plan to focus on leveraging

advanced ML techniques and larger datasets to further enhance

accuracy and applicability in clinical and research domains.
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