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Abstract—Accurately estimating muscle states, including fa-
tigue and contraction, holds significant potential in the fields of
rehabilitation and muscle-related disorder identification. How-
ever, conventional invasive methods such as intramuscular elec-
tromyography (EMG) entail risks and discomfort. This study
pioneers the integration of A-mode ultrasound (US) signals
from a wearable sparse array with machine learning (ML)
classification, advancing quadriceps muscle state estimation. A
novel wearable transducer, comprising a 16-element array with
a central frequency of 10 MHz, enables the capture of A-mode US
signals on curved skin surfaces. Three able-bodied participants
engaged in two experimental sets: voluntary knee extension
for contraction prediction, and a fatiguing protocol utilizing
functional electrical stimulation (FES). Employing US feature
extraction, followed by supervised ML classification, resulted
in an exceptional average accuracy of 93.66 % in contraction
classification and achieved 90.1 % in fatigue classification.

Index Terms—ultrasound transducers, wearable transducers,
flexible transducers, muscle activities detection, functional elec-
trical stimulation, machine learning classification

I. INTRODUCTION

Skeletal muscle monitoring holds significant potential for
evaluating lower-limb function across various applications,
including injury rehabilitation, sports medicine [1], and disease
management [2]. The accurate estimation of muscle state,
encompassing factors like fatigue and degree of contraction,
is of utmost importance in various domains such as identi-
fying muscle-related disorders [3]. Moreover, this estimation
assumes particular significance in advancing the utilization
of functional electrical stimulation (FES) [4] and hybrid ex-
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oskeletons with integrated FES [5], especially within clinical
rehabilitation settings.

Traditional invasive measurement techniques such as intra-
muscular electromyography (EMG) carry risks of infections
and discomfort. Surface electromyography (sSEMG) captures
the electrical activity of muscles from the skin’s surface [6],
serving as a crucial non-invasive technique to portray volun-
tary motion and movement intention [7], [8]. However, sSEMG
has inherent limitations, including low signal-to-noise ratio
(SNR), inability to monitor deeper muscles reliably, signal
degradation due to fatigue, challenges in distinguishing muscle
firings among adjacent muscles (muscle crosstalk) [9], and
electromechanical delay (EMD) [10]. In contrast, non-invasive
methods like B-mode ultrasound (B-mode US) show promise
in muscle state estimation due to their non-invasiveness and
real-time capabilities [4], [5]. However, these techniques are
constrained by complex and cumbersome equipment and the
need for sophisticated signal processing such as beamforming,
for continuous monitoring applications.

To address the limitations associated with B-mode US, a
practical and cost-effective alternative is to acquire raw one-
dimensional Amplitude Mode (A-Mode) radio frequency (RF)
signals using US transducers. Unlike B-mode, these A-Mode
signals don’t require intricate processing such as beamforming
[11]. A-Mode US presents a more viable choice for affordable
and wearable muscle state recognition solutions, as evidenced
by its successful utilization in various domains, including
classifying muscle states using single elements [11], detecting
muscular morphological deformations [12], and recognizing
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hand gestures [13].

The primary objective of this study was to establish the
viability of employing an innovative sparse array-based wear-
able US device in muscle state detection. To this end, our de-
vice combines A-mode imaging, machine learning (ML), and
classification with US feature extraction for the estimation of
quadriceps muscle states. Our pioneering investigation builds
upon previous research, where wearable A-mode US was
successfully used to monitor muscle activities in the context
of assistive robotics applications [14], [15]. Distinguishing the
proposed work from prior literature that has predominantly
relied on single elements [11] or rigid multi-transducer setups
[12], this study introduces a distinctive approach. Herein, an
array of 4 x 4 PZT-5A transducers is coupled with a substrate
crafted from biomedical-grade polydimethylsiloxane (PDMS),
affording the system remarkable flexibility and wearability.
Notably, the innovation extends to the realm of muscle fatigue
detection as well. While extant literature [13] has explored
fatigue detection, it is noteworthy that the present work stands
out by incorporating FES-induced muscle fatigue as a unique
dimension.

II. MATERIALS AND METHODS

A. Transducer design and fabrication

The wearable transducer utilized in this study has been
documented in the previous works [14], [15]. The design and
photographs are illustrated in Figure 1 (a). Each element was
designed with 10 MHz center frequency for effective muscle
movement detection. The active layer, composed of PZT-
5A piezo-ceramic (Chengdu Chengyao Technology Co., Ltd.
Chengdu, Sichuan, China), was mechanically diced and lapped
to attain a thickness of 0.2 mm. Subsequently, the lapped active
layer was affixed to an acoustic matching layer employing
epoxy (EpoTek 301, Epoxy Tech. Inc., San Jose, CA, USA),
which had a thickness of 0.25 mm. This matching layer was
composed of aluminum oxide/epoxy with a particle size of 50
nm. On the back side of the active layer, electrically conductive
silver epoxy (E-Solder 3022, Von-Roll Inc., Cleveland, OH,
USA) formed the initial 0.28 mm thick backing layer. An
additional backing layer was then created by applying epoxy
blended with tungsten particles over the first backing layer.

The fabrication process involved four distinct steps, as
shown in Figure 1 (b). The matching, active, and backing
layers were bonded using EpoTek 301 epoxy. The bonded
stacks were diced into 1.4 mm elements. Each of these
elements was individually wired to coaxial cables, ensuring
protection against wire damage during motion. E-Solder 3022
epoxy established ground and positive connections on rear and
front active layer electrodes. Parylene-C (SCS Labcoter, PDS
2010, SCS, Indianapolis, IN) provided protective coating. The
individual elements were assembled into a 4x4 array using a
circular 3D-printed mold. PDMS was poured into the mold to
form the flexible substrate, which was cured at 50 °C for six
hours.
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Fig. 1. (a) Schematic demonstration of the wearable US transducer design.
(b) The fabrication process for the wearable US transducer

B. Experimental Setup for Quadriceps Muscle States Estima-
tion

1) Subjects: The experimental protocol was approved by
the Institutional Review Board (IRB) at North Carolina State
University (IRB number: 23630). A total of three able-bodied
(AB) subjects, without any neuromuscular conditions, partici-
pated in the study. The group consisted of three males with an
average age of 32 years. All participants provided informed
consent prior to engaging in the experimental procedures.

2) Experimental protocols: Two distinct experimental pro-
tocols were executed to acquire A-mode US signals from
the quadriceps muscle, encompassing voluntary knee re-
lax/contraction and FES-induced pre/post-muscle fatigue sce-
narios.

For the initial experiment, participants were seated com-
fortably on a BIODEX system (Biodex Medical Systems,
Inc., Shirley, New York, USA) with their leg secured to the
knee extension device. The wearable array was affixed to the
quadriceps muscle, and participants were instructed to perform
voluntary knee extensions, as illustrated in Fig. 3 (a). In the
subsequent experiment, participants were positioned on the
same BIODEX system with their legs securely fastened to the
knee extension device. Two 2”x2” PALS electrodes (Axel-
gaard Manufacturing Co., CA, USA) were strategically placed
on the proximal and distal ends of the subject’s quadricep to
facilitate the stimulation pulse trains (30 mA, 20 Hz, 1.5 s
on/0.5 s off) from an FES stimulator (Rehastim1, HASOMED
GmbH, Germany). The wearable array was positioned between
these electrodes. The experimental arrangement is detailed in
Fig. 3 (b). In both experiments, A-mode US signals were
acquired using the oscilloscope. Additionally, muscle torque
data was collected using the Biodex system during the second
experiment.
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Fig. 2. Schematics of the experimental setups for test protocols: (a) Knee
relax/contraction tests; (b) FES induced pre/post-muscle fatigue tests

3) Data  Collection: In the  voluntary  knee
relaxation/contraction experiment, three sets of A-mode US
data were acquired for both contracted and relaxed positions,
using each of the four transducer elements. Following a
3-minute rest period for each participant, the FES-induced
pre/post-muscle fatigue experiment was initiated. A 2-minute
FES pulse train was applied to the subject’s quadriceps,
during which A-mode data was manually collected using
a single transducer element for every alternate contraction
cycle. Muscle torque data was concurrently collected using
the Biodex system throughout the duration of the experiment.
This process constituted a single trial, with a 15-minute
resting interval between consecutive trials. A total of three
trials was conducted. The representation of the data collection
process is illustrated in Fig. 3.
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Fig. 3. Experimental Data Collection Process for Voluntary Contraction and
FES-Induced Muscle Fatigue Trials

4) A-mode US signals analysis and processing: In the vol-
untary knee relaxation/contraction experiment, A-mode data
was systematically categorized and labeled as relax” and
“contraction,” corresponding to the leg position during the
data acquisition. For the FES-induced pre/post-muscle fatigue
experiment, the fatigue state was identified when contraction
torques dropped below 80 % of the maximum contraction
torque (averaged from three peak contraction torques). This

criterion was used to assign labels of “pre-fatigue” and “’post-
fatigue”. Since each participant’s muscle shape is distinct, data
for each subject was kept separate.

Prior to the application of machine learning algorithms for
muscle state classification, a series of US feature extraction
steps were undertaken. This extraction process followed the
procedure established in previous works such as [13], [16],
[17]. A concise overview of the procedure is provided herein.
The raw A-mode US data underwent essential processing steps
including time gain compensation (TGC), Hilbert transfor-
mation, and log compression, aimed at noise reduction and
enhancement of meaningful information. Within each A-mode
US data frame, a total of 1000 sample points were recorded.
The initial 20 and final 20 data points were excluded as they
did not contribute relevant information [17]. Subsequently, the
remaining 960 data points were divided into 48 segments,
and the mean and standard deviation were computed for
each segment, collectively forming the mean and standard
deviation (MSD) feature [16]. The MSD features from the four
transducer elements were averaged for subsequent analysis.

For classification utilizing machine learning algorithms, 90
% of the dataset was employed for training, while the remain-
ing 10 % was allocated for testing and validation purposes.
The muscle state classification involved logistic regression,
support vector machines (SVM), neural networks (NN), and K-
Nearest Neighbors (KNN) algorithms. MATLAB’s Classifica-
tion Learner (R2022b, MathWorks, MA, USA) was employed
for training and validating estimation accuracy. The process
of A-mode US data analysis, its processing, and the machine
learning model is visually outlined in Fig. 4.
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Fig. 4. Visualization of A-mode US Data Analysis, Processing, and Machine
Learning Model

US feature extraction process

III. RESULTS
A. Transducer characterizations

The transducer’s characterization involved conducting
pulse-echo and electrical impedance tests. Details of the ex-
perimental setup for these tests can be found in previous works
[14], [15]. In this section, we present the experimental results
to establish the completeness and accuracy of the work. The
central frequency’s average value is 10.78 MHz, accompanied
by a -6 dB fractional bandwidth of 61 %. The loop sensitivity
demonstrates an average of -40 dB. Moreover, the electrical
impedance test yields an average capacitance of 289.04 pF, an
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TABLE I
AVERAGE CROSS-VALIDATION ACCURACY OF EACH MACHINE
LEARNING MODEL ACROSS ALL DATA

Voluntary Contraction Experiment Cross-Validation Accuracy(%)

ML models Subject 1 ~ Subject 2 Subject 3 Average
SVM 98.48 89.47 84.21 90.72
NN 97.22 83.55 84.21 88.33
KNN 98.73 92.11 90.13 93.66
Logistic Regression 78.23 68.42 65.13 70.59

FES induced muscle fatigue Experiment Cross-Validation Accuracy(%)

ML models Subject 1 ~ Subject 2 Subject 3 Average
SVM 89.7 92.9 87.4 90
NN 88.5 92.9 87.4 89.6
KNN 89.7 96.4 84.2 90.1
Logistic Regression 77 89.3 73.7 80

average loss of 12.86 mU at 1 kHz, and an average impedance
of 63.85 Q at 10 MHz.

B. In-vivo results

We obtained 192 labeled data points for both con-
tracted/relaxed states and 96 data points for pre-fatigue/post-
fatigue states from each participant. The results of cross-
validation for each employed algorithm are elaborated in Table
I. Notably, the KNN model exhibited outstanding performance,
achieving an average accuracy of 93.66 % for contraction
classification and 90.1 % for fatigue classification. These
accuracies surpass those reported in recent literature, which
documented 84 % accuracy for fatigue classification and 85
% for contraction classification using A-mode US signals from
a single element. It is noteworthy that the proposed machine
learning models required notably shorter training times, with
each model completing training in less than one minute, in
contrast to the 20 minutes reported in previous studies.

IV. CONCLUSION

In conclusion, this study introduces a novel approach that
integrates wearable A-mode US with machine learning (ML)
classification to accurately estimate quadriceps muscle states.
This research pioneers the design of a wearable 16-element
sparse array with a central frequency of 10 MHz, enabling
A-mode signal capture even on curved skin surfaces. Exper-
imental trials encompassed voluntary knee relax/contraction
scenarios and FES-induced fatigue protocols. Results demon-
strate the effectiveness of the proposed approach, achieving
remarkable accuracy through ML models. The KNN model
exhibited outstanding performance, achieving an average ac-
curacy of 93.66 % for contraction classification and 90.1 %
for fatigue classification. These outperformances of recent
literature benchmarks underscore the potential of this inte-
grated technology for continuous and non-invasive muscle
state monitoring. In the future, we plan to focus on leveraging

advanced ML techniques and larger datasets to further enhance
accuracy and applicability in clinical and research domains.
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