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A B S T R A C T   

Ecometric analyses use the relationships between functional traits and the environment at the community level 
to quantitatively estimate past climatic and environmental variables at fossil sites. Hypsodonty (tooth crown 
height) in North American rodent and lagomorph (Glires) communities is correlated with mean annual tem
perature and annual precipitation. Here, we examine the community hypsodonty of African Glires to test if this 
relationship translates to a continent with more extreme climates and to quantify paleoprecipitation at important 
fossil sites. Categorical hypsodonty values were gathered from the literature and museum collections for 94 
modern African taxa (88%). We used maximum likelihood to model the ecometric relationship between hyp
sodonty and annual precipitation. We then produced trait-based estimates of paleoprecipitation for 26 well- 
sampled fossil localities from eastern Africa over the last 5.7 Ma. We confirmed other regional studies by 
identifying increasing aridity and decreasing annual precipitation (824 mm to 480 mm) in the Late Miocene of 
Kenya. From the Ethiopian Shungura Formation, we estimated temporal fluctuations in precipitation that 
correspond with the presence or absence of paleolakes and rivers. Small mammal community hypsodonty il
lustrates that east African communities have converged towards mesodont means and high standard deviations 
in response to climate change.   

1. Introduction 

Changes in temperature and precipitation will cause certainenvir
onments to become unrecognizable and uninhabitable by some of the 
taxa found there today. Anthropogenic climate change has led to 
warming that is predicted to continue accelerating over the next 100 
years (Westerhold et al., 2020). Humans have altered the landscape 
through expanding resource use, which in turn, has led to habitat loss 
and increased severity of many natural disasters, like hurricanes, floods, 
and wildfires (Nagy et al., 2018; Pielke et al., 2005). Biodiversity is 
greatly threatened by the outcome of these trends, with species being 
forced to quickly adapt to new climates or attempt to track preferable 
climates across a fragmented landscape (McGuire et al., 2016). Species 
unable to efficiently disperse or adapt will face extirpation, or total 

extinction, and will alter community assembly and functioning across 
ecosystems. By examining the relationships between fauna and climate 
through time, we can better anticipate how communities may respond to 
present and future climatic changes (Barnosky et al., 2017). 

While Africa has experienced a range of past climatic events 
including periods of fluctuating temperatures and precipitation (Couv
reur et al., 2021; Diamond and Hamilton, 1980; Tierney et al., 2015), the 
continent is now facing rapid, diverse, nonuniform changes in temper
atures, sea-level rise, and extreme droughts and floods, (Tierney et al., 
2015; World Meteorological Organization, 2020). Africa’s landscape 
hosts the largest desert in the world, tropical rainforests, savannas, and 
glaciated mountains creating incredibly diverse faunal assemblages 
across the continent (Burgess et al., 2007a, 2007b; Couvreur et al., 2021; 
Goldblatt, 1978; Jenkins et al., 2013; Linder et al., 2012). Within each of 
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these regions, fauna and flora have become uniquely adapted to these 
extreme climate conditions (Bigalke, 1968; Cloudsley-Thompson, 1989; 
Heslop-Harrison, 2011). Therefore, future climate trends pose a great 
risk to these specialized taxa. 

Africa contains a rich fossil history of floral and faunal assemblages 
across a variety of environments through deep time, making it an 
excellent study system for investigating past faunal responses, both 
spatially and temporally (Bobe, 2006a; Louchart et al., 2009; Manthi 
and Winkler, 2020; Reed, 2008; Rowan et al., 2016; Werdelin and 
Sanders, 2010; Wood and Leakey, 2011). Some sites also preserve well- 
sampled continuous stratigraphic layers, like the Shungura Formation, 
which documents changes through time from a single location (Bibi 
et al., 2013; Boisserie et al., 2008). The fossil record of eastern Africa has 
been extensively studied in the context of community assembly and 
hominin evolution, with sites spanning the Late Pleistocene (Bedaso 
et al., 2010) to the Pliocene (Bobe et al., 2007; Clark Howell et al., 1987; 
Faith et al., 2015; Gibert et al., 2022; Reed and Geraads, 2012; Su and 
Harrison, 2015) and containing records of early hominins, large and 
small mammals, amphibians, and reptiles (Brochu and Storrs, 2012; 
Head and Müller, 2020; Rage and Bailon, 2011). In addition to faunal 
records, isotopic analyses (Bedaso et al., 2010; Faith et al., 2015; Su and 
Harrison, 2015), phytoliths, and pollen records (Adeleye et al., 2022) 
have been used as proxies for understanding past environments at 
certain sites. While a variety of proxies have been used to piece together 
the environment at these sites, there is still a need for generating 
quantitative paleoclimate estimates that can be easily compared across a 
range of African localities. 

Ecometric analyses make use of the quantitative relationships be
tween functional traits and the environment at the community level. 
Species are able to live in environments that are suited to their specific 
functional traits (Messier et al., 2010). When traits are no longer suitable 
for an environment, species must either adapt, relocate, or risk extir
pation and, eventually, extinction (Polly and Head, 2015). Ecometrics is 
a unique method because it allows for analyses across sites with varying 
environments and throughout time (Eronen et al., 2010a, 2010b; Faith 
et al., 2020; Fortelius et al., 2014; Lawing et al., 2017; Lawing et al., 
2017; Polly et al., 2011; Polly and Head, 2015; Schap et al., 2021; Short 
and Lawing, 2021; Vermillion et al., 2018; Žliobaitė et al., 2018). Pre
vious ecometric studies have explored the relationship between tem
perature and leaf shape and size (Box, 1996; Royer et al., 2005), 
precipitation and herbivore dental morphology (Eronen et al., 2010b, 
2010c; Evans, 2013; Fortelius et al., 2016; Fortelius et al., 2002; Schap 
et al., 2021; Short et al., 2021; Žliobaitė et al., 2018), vegetation cover 
and limb proportions in artiodactyls and carnivorans (Barr, 2017; Dunn 
and Avery, 2021; Polly, 2010; Short et al., 2023; Short and Lawing, 
2021), and microvegetation and vertebral proportions and tail length in 
snakes (Lawing et al., 2012). Estimates of paleoclimate generated from 
this method can complement estimates from isotopes or pollen and help 
to parse out environmental variables from sites previously described as 
mosaic sites, which are sites described as having a wide range of habitats 
(i.e. a mosaic of Acacia savanna and scrub, savanna woodlands, grass
lands, and moist woodlands (Manthi and Winkler, 2020). Ecometric 
models of these relationships provide useful tools for bridging the gap 
from the paleontological record to modern communities (Eronen et al., 
2010a). 

Tooth crown height, or hypsodonty, has been extensively studied 
because of its correlations with vegetation consumption and climatic 
changes (Davis and Pineda-Munoz, 2016; Fortelius et al., 2002; Galbrun 
et al., 2018; Janis, 2008; Janis, 1988; Liu et al., 2012; Pineda-Munoz and 
Alroy, 2014; Žliobaitė et al., 2018). Originally, an increase in tooth 
crown height was tied to the spread of fibrous silica-rich grasslands 
(Damuth and Janis, 2011; MacFadden, 1997; Stirton, 1947; Strömberg, 
2002; Webb, 1977), however, it has also been suggested that the rela
tionship is more nuanced and may also be associated with increased 
exogenous grit and dust settling on vegetation in arid climates (Damuth 
and Janis, 2014; Damuth and Janis, 2014; Janis, 1988; Jardine et al., 

2012; Jernvall and Fortelius, 2002; Semprebon et al., 2019; Williams 
and Kay, 2001). Taller tooth crown heights with larger surface areas 
reduce the negative impacts of wear caused by an abrasive diet in spe
cies that are consuming large amounts of exogenous grit and other 
abrasives (Damuth and Janis, 2014; Janis, 1988; Semprebon et al., 2019; 
Strömberg, 2002). Due to the slow morphological shifts required to alter 
tooth crown heights and the exceptional preservation of teeth in the 
fossil record, hypsodonty is a dietary proxy that is useful on an evolu
tionary time scale (Davis and Pineda-Munoz, 2016) and therefore, can 
be used to estimate paleoclimate from local fauna preserved in paleon
tological records. 

As an ecometric trait, hypsodonty has been successfully used to 
explore the relationship between tooth crown height and precipitation 
in herbivorous mammals (Eronen et al., 2010b, 2010c; Fortelius et al., 
2016; Fortelius et al., 2014; Schap et al., 2021; Short et al., 2021). 
Studies of large mammals found that communities containing species 
with higher tooth crown heights inhabit drier environments (Eronen 
et al., 2010b, 2010c; Fortelius et al., 2016; Fortelius et al., 2014; Short 
et al., 2021). However, recent work found that hypsodonty in North 
American small mammal communities is associated with mean annual 
temperature in addition to precipitation (Schap et al., 2021). Africa 
contains highly diverse, abundant, and unique small mammal commu
nities, with 95% of the rodent species found in Africa being endemic to 
the continent (Kingdon, 2014). With a deep and rich evolutionary his
tory, across many extreme climatic regions not found in North America 
(Bigalke, 1968), Africa is an ideal location to expand on previous work. 

Rodents and Lagomorphs, or Glires, are an ideal study group for 
ecometric analyses because they can respond in situ to environmental 
changes (Badgley et al., 2014; Badgley and Finarelli, 2013; Montuire 
et al., 2006). These groups have high abundances in modern and fossil 
communities, small home ranges, limited dispersal ability (Bowman 
et al., 2002; Sandel et al., 2011; Schloss et al., 2012; Tucker et al., 2014), 
and relatively short life spans (Badgley et al., 2014; Badgley and 
Finarelli, 2013; Samuels and Hopkins, 2017; Schap et al., 2021). These 
life history characteristics are beneficial to ecometric studies because 
they allow for a more localized relationship between trait development 
and environmental changes as well as decreased lag time between 
environmental change and trait change when examining these re
lationships in deep time (Samuels and Hopkins, 2017). Despite these 
advantages, small mammals are still a relatively underutilized group 
when it comes to ecometric analyses and offer opportunities to supple
ment large mammal findings and expand the use of these methods to 
localities depauperate of large mammals. 

Here, we first test if the ecometric relationships between hypsodonty 
and climate found in small mammals (Schap et al., 2021) persist in Af
rican communities. It is expected that the trait environment relationship 
of African small mammal communities will behave similarly to those in 
North America, as has been found with trait environment relationships 
of large mammals globally (Eronen et al., 2010b; Faith et al., 2020; 
Fortelius et al., 2016; Fortelius et al., 2002; Short et al., 2023; Žliobaitė 
et al., 2018), and will be characterized by communities with higher 
crown heights occurring in areas with colder and drier environments 
and communities dominated by lower crown taxa living in warmer and 
wetter environments. We then apply these relationships to the fossil 
record of eastern Africa, which hosts numerous well-studied fossil sites, 
to highlight the utility of ecometrics in temporal analyses at a singular 
site through time and spatial analyses comparing paleoclimate estimates 
across the landscape at contemporaneous fossil sites at various time 
periods over the last six million years. Lastly, we examine the commu
nity trait composition of the fossil communities and compare those to 
modern communities found at those localities today to understand the 
magnitude and direction of change in trait composition through time. 
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2. Materials and methods 

2.1. Generating modern community data 

We first compiled spatial data. The range maps of all African Glires 
species were generated from the IUCN Red List (IUCN Red List of 
Threatened Species, 2023). Next, modern climate variables including 
mean annual temperature (◦C) and annual precipitation (mm) were 
gathered from the WorldClim Database at 0.5 × 0.5-degree resolution 
(Fick and Hijmans, 2017). Climate variables were transformed to be 
normally distributed by cubing mean annual temperature and logging 
annual precipitation. A 50-km equidistant point grid was overlaid across 
Africa (Lawing et al., 2012; Polly, 2010; Short et al., 2021; Short and 
Lawing, 2021) (n = 12,046). Species range maps and climate layers were 
sampled at each grid point to generate a dataset of small mammal 
communities with corresponding climate data. 

We also compiled hypsodonty data for 94 (88%) modern African 
Glires genera (Table S1). To do so, we assembled published data on 
small mammal hypsodonty (n = 87), and additional specimens were 
measured from museum collections (the University of California 
Museum of Paleontology (UCMP) = 18 specimens across 14 genera; 
Texas A&M Biodiversity Research and Teaching Collections = 2 speci
mens across 2 genera; and Nairobi National Museum (KNM) = 5 speci
mens across 2 genera). If any taxa with published data were available to 
be measured at museums, those taxa were still measured to add confi
dence to their designation. 

A Hypsodonty Index (HI) was calculated following methods from 
Janis (1988) and Fortelius et al. (2002) where hypsodonty is measured 
as a ratio of the unworn molar crown height divided by the occlusal 
width (Janis, 1988) or length of the same tooth (Fortelius et al., 2002; 
Van Valen, 1960). For museum specimens measured for this study, HI 
was calculated using the lower second molar (m2) following Fortelius 

et al. (2002). Based on the HI, teeth were placed categorically into 
brachydont, low crown teeth, with an HI < 0.8; mesodont being 0.8 <
HI < 1.2; or hypsodont, high crown teeth, with an HI > 1.2 (Fortelius 
et al., 2002). For analyses, HI was ordinated so that brachydont taxa 
were given a value of 1, mesodont taxa a value of 2, and hypsodont taxa 
a value of 3. Some rodents and lagomorphs have ever-growing teeth, 
hypselodont, which in this study are grouped with hypsodont taxa 
following Fortelius et al. (2002) and Short et al. (2021). To determine 
the relationship between hypsodonty and climate, each taxon in a 
community was represented by the ordinated value of its tooth crown 
height. Then, a community-level trait value was generated by calcu
lating the mean and standard deviation of the community hypsodonty 
(Fig. 1b). 

Previous ecometric studies using large mammals, including carni
vores or ungulates, have run analyses on communities consisting of 
three or more taxa (Short et al., 2023; Short and Lawing, 2021). There 
are a greater number of small mammal taxa present in and across 
communities so we increased our community size to five or more taxa 
(Short et al., 2021). We ran linear models of community mean hyp
sodonty against climate and found negligible differences between 
communities with a minimum of three species and those with a mini
mum of five species (Table S2, Fig. S1). For the remaining analyses, we 
report on communities with five or more taxa, resulting in 10,374 
communities. We did not correct for phylogeny because it has been 
found that the ecometric relationship is not sensitive to phylogenetic 
differences between communities (Lawing et al., 2017; Polly et al., 
2017; Short and Lawing, 2021). All analyses were conducted in RStudio 
(R Core Team, 2023). 

2.2. Modern analyses 

We initially visualized our data using scatterplots of hypsodonty 

Fig. 1. Ecometric model inputs and outputs. (a) Observed precipitation and (b) observed hypsodonty data are used to generate (c) the ecometric model, shown as an 
ecometric trait space, which shows the maximum likelihood annual precipitation values for all communities with a given mean and standard deviation crown height. 
The ecometric model is projected onto Africa to generate (d) an estimated precipitation map. (a) Observed precipitation minus (d) the estimated precipitation gives 
(e) the precipitation anomaly. Black boxes on the ecometric trait space represent bins where fossil sites were placed. 
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versus annual precipitation and mean annual temperature. Linear 
models were then used for variable selection and to approximate the 
variance explained for each climate variable (Table S2, Fig. S1). Linear 
models showed there was not a strong relationship between community- 
level mean hypsodonty and mean annual temperature (Fig. S1, Table S2 
y = −5457× + 23,655, r2 = 0.09, r = −0.30, p < 0.001). However, there 
was a strong relationship between community-level mean hypsodonty 
and annual precipitation (Fig. S1, Table S2, y = −15.7× + 43.3, r2 =

0.61, r = −0.78, p < 0.001), so further analyses focus only on annual 
precipitation. A functional relationship between hypsodonty and aridity 
is clear and established, resulting from ingested grit. However, in diverse 
landscapes and among taxa with diverse dietary habits, there will often 
be diversity in the hypsodonty exhibited by different species. This can be 
captured by the standard deviation of the community. 

An ecometric model was constructed using a maximum likelihood 
approach. We first binned communities into a 25 × 25 matrix based on 
the mean and standard deviation of their community hypsodonty 
(Fig. 1c) (Lawing et al., 2012; Short and Lawing, 2021; Vermillion et al., 
2018). For each bin, we estimated a probability density function using 
kernel density estimation with a Gaussian smoothing kernel, and the 
precipitation value where the curve was at its maximum is the most 
likely annual precipitation value, following Short and Lawing (2021) 
and Vermillion et al. (2018). We assessed the transferability of our 
model through a sensitivity analysis (Fig. S2) (Short et al., 2023). We 
randomly down-sampled our 10,374 communities ranging from 100 to 
9100 communities at intervals of 1000. The randomly down-sampled 
community was iterated 20 times for each sample size. Every iteration 
of every sample size was divided so that 80% of the data was used as 
training data for the model and the remaining 20% was used to test the 
model. 

To assess how well our ecometric model estimates precipitation, we 
calculated anomaly maps (Fig. 1e), which identify the environments 
where our model estimated annual precipitation well and the environ
ments where the model did not. Maps of estimated precipitation were 
generated using the maximum likelihood estimates based on community 
hypsodonty values and the ecometric model (Fig. 1d). Anomaly maps 
display the differences between the estimated precipitation maps 
(Fig. 1d) and the observed precipitation maps from WorldClim (Fig. 1a) 
(Fick and Hijmans, 2017; Short and Lawing, 2021; Vermillion et al., 
2018). As anomaly maps depict the difference between observed climate 
and estimated climate, areas where the model overestimates will have a 
negative anomaly value while areas where climate is underestimated 
will have a positive anomaly value (Fig. 1e). 

2.3. Generating Fossil Community Data 

Once the modern relationship was established, we created a list of 
fossil localities in eastern Africa where we could estimate paleo
precipitation (Fig. 3; Table S3). Some taxa at these sites are extinct and 
not included in our dataset of modern taxa. Data for three extinct taxa 
were collected from the literature. Taxa not available in the literature 
were measured from specimens in museum collections (UCMP = 3 
specimens across 2 genera; National Museum of Kenya (NMK) = 8 
specimens across 4 genera). Overall, hypsodonty data for 9 extinct 
genera were collected (Table S1). Taxa were placed into brachydont, 
mesodont, or hypsodont following the methods used for modern taxa. As 
the linear models of modern correlations between hypsodonty and 
annual precipitation in communities of three or more taxa and five or 
more taxa showed negligible differences (Table S2), fossil localities with 
at least three taxa were used in our analyses resulting in 26 fossil sites 
across Kenya (n = 10), Ethiopia (n = 11), and Tanzania (n = 6) (Fig. 3; 
Tables S3, S4). One locality, Shungura, had four nonoverlapping strat
igraphic layers spanning from 1.9 Ma to 3.44 Ma that allowed for the 
examination of changes in the precipitation levels at one locality 
through time. 

2.4. Fossil analyses 

Fossil communities were analyzed using our ecometric model, based 
on the mean and standard deviation of their community mean crown 
height (Fig. 1c). Paleoprecipitation estimates for each site were pro
duced from the maximum likelihood annual precipitation value of the 
trait bin in which the site fit. Confidence intervals for precipitation 
values were calculated at the 5% limits on either side of the maximum 
value of the Gaussian curve for each community’s assigned ecometric 
bin. We then utilize our fossil sites to highlight the variety of ways 
ecometrics can contribute to paleoecology. First, we compared changes 
in precipitation and community trait means in one location through the 
four well-sampled microfauna layers from Shungura Members B, C, F, 
and G (Fig. 2a). We also examined the heterogeneity of precipitation on 
a spatial scale by grouping our fossil sites into Late Miocene (6.12–5.7 
Ma), Pliocene (4.5–2.5 Ma), and Early Pleistocene (2.36–1.2 Ma) time 
bins and comparing the estimated precipitation at contemporaneous 
sites located across eastern Africa (Fig. 3). Finally, we compared modern 
communities to those of the past to show the direction and magnitude of 
change through time. To do this, we gathered modern precipitation from 
a sampling point nearest to each of the fossil sites and examined these 
modern communities alongside the fossil communities in trait space 
(Fig. 2b). 

3. Results 

3.1. Modern Relationships 

Our ecometric model, visually depicted as an ecometric trait space 
(Figs. 1c), reveals an overall trend of higher precipitation values for 
communities with lower tooth crown heights, with means between 1 and 
2, and lower precipitation values for communities with higher mean 
tooth crown heights between approximately 2 and 2.5. No communities 
had a mean tooth crown height of 3. The standard deviation of 
community-level tooth crown height ranged from 0.4 to 1.2 but did not 
have a clear relationship with precipitation in trait space. With a 
sensitivity analysis, we found that the correlations between crown 
height and precipitation of the testing data stabilized at 0.76 around a 
sample of 2500 communities (Fig. S2). For the testing data, residuals 
between our observed precipitation and estimated precipitation, often 
referred to as anomalies in ecometrics, stabilized around 3 log mm with 
a sample of 2500 communities. Our ecometrics model was run using all 
10,374 communities, which is well above the number of communities 
needed according to our sensitivity analysis to accurately capture the 
trait-environment relationship between crown height and precipitation. 

Our maps of estimated precipitation encompass most of Africa except 
where there are no communities with at least 5 small mammal taxa 
available, such as the Sahara Desert and Madagascar (Fig. 1a). Estimated 
precipitation (Fig. 1d) closely follows trends seen in observed precipi
tation (Fig. 1a) with lower precipitation values across the northern re
gion associated with higher community mean hypsodonty (Fig. 1b) and 
high precipitation values in the central region associated with lower 
community mean hypsodonty (Fig. 1b). Observed precipitation from 
climate data and estimated precipitation from the ecometric model have 
a strong positive relationship (y = 0.7887× + 4.11, r2 = 0.68, r = 0.83, 
P < 0.001) (Fig. S4). 

Anomalies, or residuals, are relatively low across Africa (Fig. 1e), 
indicating the model estimates have high accuracy. Negative anomalies 
are more frequent than positive anomalies (Fig. S3). Areas with positive 
anomaly values, or where precipitation was underestimated, are mostly 
in northern coastal regions, the central region, and along the east coast 
of Madagascar. Areas with negative anomalies, or where precipitation 
was overestimated, are in the Nubian Desert, the border of the Sahara 
Desert and the Sahel, the Namib and Kalahari Deserts, and east of the 
Great Rift Valley (Fig. 1e). 
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3.2. Fossil Site estimates 

The 26 fossil sites are associated with 19 ecometric trait bins, and 
modern communities from the geographic locations of each fossil site 
are associated with 6 bins, illustrating homogenization into the modern 
(Fig. 2b). Fossil sites have a range of mean crown heights from 1.25 to 
3.00 and standard deviations of 0–1.15. Modern communities have a 
range of 1.91 to 2.31 and a standard deviation of 0.85–0.95 (Fig. 2b). Of 
the 26 fossil localities, we report estimated paleoprecipitation values for 

16 of them (Table S4). The other 10 sites have community hypsodonty 
mean and standard deviation values outside of the modern trait space, 
and therefore, we cannot estimate the annual precipitation at those sites 
using the ecometric model (Fig. 1b). Most fossil localities with paleo
precipitation estimates have high estimated precipitation values, hyp
sodonty means of two or less, and hypsodonty standard deviations 
between 0.5 and 1 (Fig. 1c, Table S4). Fossil localities where paleo
precipitation estimates are not available typically have high mean 
crown heights of two or more and a bimodal distribution of standard 

Fig. 2. (a) The ecometric model. The four fossil layers of the Shungura site are represented by black boxes around their trait bin and the modern trait bin for 
Shungura is represented by a dark blue box. (Center) Shifts in precipitation values at Shungura with the layers being stacked stratigraphically from the oldest layer 
(Mb B) at the bottom and modern precipitation at the top. (b) A comparison of modern and past trait spaces. All fossil site trait bins are represented by an open brown 
circle with a brown line extending towards the modern trait space for that locality. We can see homogenization of the fossil sites onto six modern trait bins. His
tograms on the x and y axes show the distribution of modern and fossil sites with a given mean and standard deviation of tooth crown height. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. All fossil localities grouped based on geologic time, with Late Miocene sites on the left, Pliocene sites in the middle, and Early Pleistocene sites on the right, 
showing spatial heterogeneity of precipitation through time regardless of proximity between sites. Sites with more than one layer in a given time period are rep
resented by a black dot that branches out to show the two layers lined up stratigraphically. The color of the circle corresponds with the precipitation value using the 
legend in Fig. 3, with yellows being drier and blues being wetter. 
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deviations of zero or over one. Fossil sites occur in bins with precipita
tion estimates ranging between 5 and 1617 mm whereas the modern 
communities occur in bins that are generally drier with precipitation 
estimates ranging between 302 and 599 mm. 

Temporally, we examine estimated annual precipitation values for 
the four stratigraphic layers preserved at Shungura. Estimated precipi
tation decreases from 994 mm at Member B, the oldest layer, to 555 mm 
at Member C, then increases to 1044 mm at Member F, and greatly 
decreases to 170 mm at Member G, the youngest layer (Fig. 2a). 
Spatially, we investigate fossil sites across East Africa in three time bins. 
The Late Miocene time bin contains the Lemudongo, Kapcheberek, and 
Lukeino fossil localities from Kenya, and estimated annual precipitation 
values range from 480 mm at the central Kapcheberek to 824 mm at the 
northern Lemundongo. The Pliocene time bin contains Aramis (lower), 
Shungura Members B and C, Kanapoi, Tabarin, Upper Ndolanya, and the 
Upper Laetolil Beds across Ethiopia, Kenya, and Tanzania with esti
mated annual precipitation ranging from 404 mm at the southern Upper 
Ndolanya to 1127 mm at the central Kanapoi. The Early Pleistocene time 
bin contains A.L. 894, Boolihinan, Shungura Members F and G, Upper 
Bed II, and Lower Bed II across Ethiopia and Tanzania with estimated 
annual precipitation values ranging from 5 mm at the northern Booli
hinan to 1583 mm at A.L. 894, which is geographically similar to Boo
lihinan (Fig. 3). 

4. Discussion 

4.1. Modern relationships 

Examination of the ecometric relationship between small mammal 
hypsodonty and climate revealed different results from the previous 
North American study. Similarly to North America (Schap et al., 2021), 
there was a strong relationship with annual precipitation. However, 
unlike in North America (Schap et al., 2021), there was no relationship 
found between community-level hypsodonty and mean annual temper
ature in Africa (Fig. S1). We suggest the continental discrepancies be
tween the relationship with mean annual temperature and hypsodonty 
are due to less variation in mean annual temperature across Africa (95% 
CI: 15.7 to 29.2 ◦C) compared to North America (95% CI: −19.0 to 
23.9 ◦C). In contrast, the stronger relationship between community-level 
hypsodonty and annual precipitation could be because annual precipi
tation varies more widely across Africa (95% CI: 3 to 1954 mm) than in 
North America (95% CI: 115 to 1802 mm), and Africa has more variation 
in precipitation seasonality (95% CI: 26.7 mm to 161.8 mm) compared 
to North America (95% CI: 13.7 to 95.5 mm). 

Taxa in Africa could be less constrained by temperature but rather, 
would need to be adapted to changes in precipitation during the dry 
season. The timing of rainfall is important to primary productivity and 
vegetation types, and it contributes to the crown height of the commu
nity (Janis et al., 2004). Dust and grit settling on vegetation during the 
dry season would necessitate more hypsodont dentition in a community 
whereas those communities in environments with adequate precipita
tion, even in the dry season would be more prone to less hypsodont 
dentition. Small mammals, with limited dispersal ability, show 
morphological adaptations in response to changing climate rather than 
community reassembly through dispersal (Bowman et al., 2002; Hei
kinheimo et al., 2007; Samuels and Hopkins, 2017). With the majority of 
the small mammal taxa in Africa being endemic specialized taxa, it could 
explain why the relationship between community-level crown height 
and annual precipitation was so strong as small mammals are uniquely 
suited to their particular environment. 

Of the taxa we were able to gather hypsodonty data for, an almost 
equal number of brachydont (n = 41) and hypsodont (n = 37) taxa were 
found across Africa while there are roughly half the number of mesodont 
taxa (n = 17). Many brachydont (= 1) and hypsodont (= 3) taxa produce 
means of 2 but create a wide range in standard deviation (Fig. 2c). The 
North American study found that the percent of brachydont taxa and the 

number of hypselodont taxa within a community were two of the most 
important variables in building regression equations of climate (Schap 
et al., 2021) and attributed that to these taxa being more specialized for 
particular climates and environments. 

Anomalies are highest in the wettest and the driest areas, as is seen 
across ecometric studies (Schap et al., 2021; Short et al., 2023; Short 
et al., 2021; Short and Lawing, 2021; Vermillion et al., 2018), due to our 
maximum likelihood method that takes the most likely climate value for 
a given trait bin to estimate climate for all communities within that trait 
bin. Anomaly maps from North America found the highest anomalies 
along elevational gradients, like the Rocky Mountains, and along the 
coasts (Schap et al., 2021). In Africa, the Turkana basin between the East 
African Dome and Ethiopian Dome has a high negative anomaly, 
possibly because of the area’s complex topography. Some mountainous 
areas, like the Atlas Mountains, had highly positive anomalies. Highly 
negative anomalies were found mostly in deserts, including the Sahara, 
Kalahari, Ogaden, and Namib, and in areas of transitional precipitation, 
for example, in the Sahel between the Sahara Desert and the Congo Basin 
(Fig. 1e). Taxa in the Sahel are largely brachydont (Fig. 1b) and are 
having to adapt to an area that has experienced prolonged drought 
brought on by increased anthropogenic impacts like overgrazing, con
verting woodland to agriculture, and large scale atmospheric circulation 
changes (Zeng, 2003); perhaps the taxa found in the Sahel region are too 
specialized in their tooth crown heights to accurately estimate 
precipitation. 

4.2. Fossil relationships 

Application of our model to fossil localities adds additional infor
mation to previous interpretations of local environments and biota 
across time and space. For example, we highlight trends in precipitation 
and community crown height in relation to the presence or absence of 
lakes in the East African Rift System (EARS) and local rivers through 
time. At Olduvai Basin, we illustrate effects of deep freshwater lakes 
during intensification of the Walker Circulation (Trauth et al., 2007). 
Our model generates a high precipitation estimate of 1127 mm at Lower 
Bed II, which has a mean hypsodonty of 1.5, from 1.79 to 1.74 Ma fol
lowed by a decrease in estimated precipitation to only 149 mm at Upper 
Bed II from 1.74 to 1.2 Ma, corresponding with the drying up of the 
Olduvai paleolake and an increase in mean hypsodonty to 2.25 
(Kovarovic et al., 2013; Maslin et al., 2014; Trauth et al., 2007; Trauth 
et al., 2005) (Table S4). 

We also track shifting precipitation patterns at one site over 
approximately 1.5 Ma at the well-dated and well-sampled Shungura 
Formation (Fig. 2a) (Bibi et al., 2013; Boisserie et al., 2008; Levin et al., 
2011; Plummer et al., 2015). Member B, with an estimated annual 
precipitation of 994 mm from our models, aligns with periods of large 
deep lakes in the area as well as the presence of a river (Maslin et al., 
2014; Trauth et al., 2007; Trauth et al., 2005; Wesselman, 1984). 
Member C, with a decrease in estimated annual precipitation to 555 mm, 
spans a period of increasing aridity with no paleolakes and no local river 
(Bibi et al., 2013; Maslin et al., 2014; Trauth et al., 2007; Trauth et al., 
2005). Member F, with an estimated annual precipitation of 1044 mm, 
does not fall within the presence of paleolakes in eastern Africa but does 
have a local river nearby, confirming the presence of surface water 
associated with higher precipitation (Maslin et al., 2014; Trauth et al., 
2007, Trauth et al., 2005; Wesselman, 1984). Member G, with an esti
mated annual precipitation of 170 mm is not associated with a river 
environment but does fall during the presence of shallow lakes in the 
EARS (Maslin et al., 2014; Plummer et al., 2015; Trauth et al., 2007; 
Trauth et al., 2005). The low level of precipitation estimated by high 
hypsodonty (Table S4) at Member G reflects the expansion of edaphic 
grasslands (Table S3) (Plummer et al., 2015). This suggests that shallow 
lakes in the EARS, rather than widespread deep lakes, are not a strong 
enough influence to alter community trait composition. 

Shungura is a useful example to point out the complexities in trait- 
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environment relationships as a proxy for past climate. While the small 
mammal taxa responded to changes in their local environment, their 
local environment, namely the vegetation they consume, in the Turkana 
Basin was influenced by hydrological events happening hundreds of 
kilometers away in the Ethiopian Highlands (Maslin et al., 2014; Trauth 
et al., 2007, Trauth et al., 2005). This mismatch of scale is also seen at 
sites where there has been regional volcanic activity generating abrasive 
ash that covered the landscape and altered climate patterns, such as in 
the Columbia River Valley during the Middle Miocene (Kürschner et al., 
2008; Retallack, 2007; Zachos et al., 2001) and in the Ethiopian Rift at 
45–33 Ma (Trauth et al., 2007, Trauth et al., 2005). Hypsodonty might 
also reflect water availability in the local environment rather than just 
the amount of precipitation itself. The hydrological and geological 
context of fossil sites allows us to identify other factors that might be 
influence the relationship between hypsodonty and precipitation. 

Eastern African climate has long been understood to be variable 
across landscapes and punctuated by periods of increased drought and 
aridity or increased temperatures (Bobe, 2006b; Lukich and Ecker, 
2022; Maslin et al., 2014). This is evident at fossil sites through the 
Pliocene ranging from oldest to youngest: 830 mm at Tabarin, 666 mm 
in Aramis (Lower), 1127 mm in Kanapoi, 1044 mm in Upper Laetolil 
Beds, 994 mm at Shungura Member B, 404 mm at Upper Ndolanya, and 
555 mm at Shungura Member C (Fig. 3; Table S4). Similar fluctuations 
through time are seen at our Early Pleistocene sites from Tanzania to 
Ethiopia (Fig. 3; Table S4). Even today, rainfall in eastern Africa is 
largely influenced by inter-annual variability caused by large-scale 
climate forcing and changes in sea surface temperatures leading to 
droughts and floods (Gebrechorkos et al., 2019; Niang et al., 2014). 
However, with ecometrics, we are able to highlight some paleoclimate 
trends, such as increasing aridity and decreasing annual precipitation 
from 824 mm to 480 mm in the Late Miocene of Kenya, mirroring what 
has been found from other regions of the continent (Bobe, 2006b; Ja
cobs, 2004). 

Fossil communities were often dominated by low-crowned brachy
dont taxa with few hypsodont taxa found at these sites in the past 
(Table S3). An exception is Upper Ndolanya, which has the highest mean 
tooth crown height recorded until that time at 2.66 Ma with a subse
quent decrease until 2.33–1.9 Ma at Shungura Mb G. Upper Ndolanya 
has been described as semi-arid scrub or bushland (Kovarovic et al., 
2002) and corresponds with Ngorongoro volcanism (Maslin et al., 2014; 
Trauth et al., 2005). Volcanism leads to selection for higher crown taxa 
as they can better withstand an increase in ash and grit in their diet. 

Modern communities at fossil localities are more evenly split be
tween high-crowned and low-crowned taxa, causing mean community 
trait values to average around 2.0 with standard deviation near 1.0. 
Homogenization of mean hypsodonty across small mammal commu
nities in eastern Africa is consistent with previous studies of other 
functional traits and taxa (Short and Lawing, 2021; Tóth et al., 2014). 
Africa has many endemic taxa that are highly specialized to their envi
ronments (Bigalke, 1968; Cloudsley-Thompson, 1989; Heslop-Harrison, 
2011) and our communities are therefore composed of many specialist 
taxa driving standard deviation changes. Overall, an increase in the 
modern presence of hypsodont taxa generates lower precipitation esti
mates than were seen in the past. Decreasing precipitation across eastern 
Africa into the modern has also been found over the last 6 million years 
from the Turkana Basin using hypsodonty and loph count of large 
mammals (Fortelius et al., 2016). 

One shortcoming of our ecometric analysis is that we are only able to 
generate paleoprecipitation for communities with trait compositions 
found in modern communities. Ten of the fossil sites were composed of 
non-analog trait compositions that were not represented in our modern 
ecometric model, meaning we could not generate paleoprecipitation 
estimates for those sites. With an expected increase in no-analog com
munities as species reassemble in response to changing climates (Hobbs 
et al., 2018), perhaps some of these fossil communities will have the 
same trait values as future communities. Future work should incorporate 

the presence of non-analog communities from the past because these 
will be increasingly important for understanding heightened variation in 
modern communities. 

5. Conclusions 

These results help expand upon the use of ecometrics in small 
mammal communities and aid in understanding global relationships 
between fauna and their environment. We also show that ecometrics is a 
useful and easily applied method that allows us to quantitatively study 
climate trends from a wide range of fossil sites both spatially and 
temporally. While some fossil sites have paleoclimate reported from 
local or regional proxies, no single proxy has been applied easily and 
cost-effectively to compare past climate across multiple fossil sites. 
Paleoclimate estimates generated from our model can be applied to any 
African fossil site where there are at least 3 small mammal taxa present 
and can be useful at sites where pollen or isotope data may not be 
available. Our estimates can also help to add more nuance to previously 
described sites and highlight how the fauna themselves are influenced 
by climate. Over the last six million years, the small mammal fauna has 
been highly specialized to their local environments. As climate change 
continues to reshape what our modern landscapes and climates look 
like, the strong modern trait-environment relationships of these 
specialized communities may begin to weaken, as we are already seeing 
in areas like the Sahel. Future directions of this work should examine 
whether these specialized taxa are in danger given future expected 
climate, or if they will continue to adapt or move quickly enough to 
maintain a stable trait-environment relationship. 
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Fortelius, M., Žliobaitė, I., Kaya, F., Bibi, F., Bobe, R., Leakey, L., Leakey, M., 
Patterson, D., Rannikko, J., Werdelin, L., 2016. An ecometric analysis of the fossil 
mammal record of the Turkana Basin. Philos. Trans. R. Soc. B Biol. Sci. 371, 
20150232. https://doi.org/10.1098/rstb.2015.0232. 

Galbrun, E., Tang, H., Fortelius, M., Žliobaitė, I., 2018. Computational biomes: the 
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