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ARTICLE INFO ABSTRACT

Editor: Howard Falcon-Lang Ecometric analyses use the relationships between functional traits and the environment at the community level

to quantitatively estimate past climatic and environmental variables at fossil sites. Hypsodonty (tooth crown

Keywords: height) in North American rodent and lagomorph (Glires) communities is correlated with mean annual tem-
Ec?metrlcs perature and annual precipitation. Here, we examine the community hypsodonty of African Glires to test if this
ghres dont relationship translates to a continent with more extreme climates and to quantify paleoprecipitation at important
Tg;};:-i:n(\)rrilrz,nment relationships fossil sites. Categorical hypsodonty values were gathered from the literature and museum collections for 94
Paleoprecipitation modern African taxa (88%). We used maximum likelihood to model the ecometric relationship between hyp-

sodonty and annual precipitation. We then produced trait-based estimates of paleoprecipitation for 26 well-
sampled fossil localities from eastern Africa over the last 5.7 Ma. We confirmed other regional studies by
identifying increasing aridity and decreasing annual precipitation (824 mm to 480 mm) in the Late Miocene of
Kenya. From the Ethiopian Shungura Formation, we estimated temporal fluctuations in precipitation that
correspond with the presence or absence of paleolakes and rivers. Small mammal community hypsodonty il-
lustrates that east African communities have converged towards mesodont means and high standard deviations
in response to climate change.

1. Introduction extinction, and will alter community assembly and functioning across

ecosystems. By examining the relationships between fauna and climate

Changes in temperature and precipitation will cause certainenvir-
onments to become unrecognizable and uninhabitable by some of the
taxa found there today. Anthropogenic climate change has led to
warming that is predicted to continue accelerating over the next 100
years (Westerhold et al., 2020). Humans have altered the landscape
through expanding resource use, which in turn, has led to habitat loss
and increased severity of many natural disasters, like hurricanes, floods,
and wildfires (Nagy et al., 2018; Pielke et al., 2005). Biodiversity is
greatly threatened by the outcome of these trends, with species being
forced to quickly adapt to new climates or attempt to track preferable
climates across a fragmented landscape (McGuire et al., 2016). Species
unable to efficiently disperse or adapt will face extirpation, or total
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through time, we can better anticipate how communities may respond to
present and future climatic changes (Barnosky et al., 2017).

While Africa has experienced a range of past climatic events
including periods of fluctuating temperatures and precipitation (Couv-
reur et al., 2021; Diamond and Hamilton, 1980; Tierney et al., 2015), the
continent is now facing rapid, diverse, nonuniform changes in temper-
atures, sea-level rise, and extreme droughts and floods, (Tierney et al.,
2015; World Meteorological Organization, 2020). Africa’s landscape
hosts the largest desert in the world, tropical rainforests, savannas, and
glaciated mountains creating incredibly diverse faunal assemblages
across the continent (Burgess et al., 2007a, 2007b; Couvreur et al., 2021;
Goldblatt, 1978; Jenkins et al., 2013; Linder et al., 2012). Within each of
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these regions, fauna and flora have become uniquely adapted to these
extreme climate conditions (Bigalke, 1968; Cloudsley-Thompson, 1989;
Heslop-Harrison, 2011). Therefore, future climate trends pose a great
risk to these specialized taxa.

Africa contains a rich fossil history of floral and faunal assemblages
across a variety of environments through deep time, making it an
excellent study system for investigating past faunal responses, both
spatially and temporally (Bobe, 2006a; Louchart et al., 2009; Manthi
and Winkler, 2020; Reed, 2008; Rowan et al., 2016; Werdelin and
Sanders, 2010; Wood and Leakey, 2011). Some sites also preserve well-
sampled continuous stratigraphic layers, like the Shungura Formation,
which documents changes through time from a single location (Bibi
et al., 2013; Boisserie et al., 2008). The fossil record of eastern Africa has
been extensively studied in the context of community assembly and
hominin evolution, with sites spanning the Late Pleistocene (Bedaso
et al., 2010) to the Pliocene (Bobe et al., 2007; Clark Howell et al., 1987;
Faith et al., 2015; Gibert et al., 2022; Reed and Geraads, 2012; Su and
Harrison, 2015) and containing records of early hominins, large and
small mammals, amphibians, and reptiles (Brochu and Storrs, 2012;
Head and Miiller, 2020; Rage and Bailon, 2011). In addition to faunal
records, isotopic analyses (Bedaso et al., 2010; Faith et al., 2015; Su and
Harrison, 2015), phytoliths, and pollen records (Adeleye et al., 2022)
have been used as proxies for understanding past environments at
certain sites. While a variety of proxies have been used to piece together
the environment at these sites, there is still a need for generating
quantitative paleoclimate estimates that can be easily compared across a
range of African localities.

Ecometric analyses make use of the quantitative relationships be-
tween functional traits and the environment at the community level.
Species are able to live in environments that are suited to their specific
functional traits (Messier et al., 2010). When traits are no longer suitable
for an environment, species must either adapt, relocate, or risk extir-
pation and, eventually, extinction (Polly and Head, 2015). Ecometrics is
a unique method because it allows for analyses across sites with varying
environments and throughout time (Eronen et al., 2010a, 2010b; Faith
et al., 2020; Fortelius et al., 2014; Lawing et al., 2017; Lawing et al.,
2017; Polly et al., 2011; Polly and Head, 2015; Schap et al., 2021; Short
and Lawing, 2021; Vermillion et al., 2018; Zliobaité et al., 2018). Pre-
vious ecometric studies have explored the relationship between tem-
perature and leaf shape and size (Box, 1996; Royer et al., 2005),
precipitation and herbivore dental morphology (Eronen et al., 2010b,
2010c; Evans, 2013; Fortelius et al., 2016; Fortelius et al., 2002; Schap
et al., 2021; Short et al., 2021; Zliobaite et al., 2018), vegetation cover
and limb proportions in artiodactyls and carnivorans (Barr, 2017; Dunn
and Avery, 2021; Polly, 2010; Short et al., 2023; Short and Lawing,
2021), and microvegetation and vertebral proportions and tail length in
snakes (Lawing et al., 2012). Estimates of paleoclimate generated from
this method can complement estimates from isotopes or pollen and help
to parse out environmental variables from sites previously described as
mosaic sites, which are sites described as having a wide range of habitats
(i.e. a mosaic of Acacia savanna and scrub, savanna woodlands, grass-
lands, and moist woodlands (Manthi and Winkler, 2020). Ecometric
models of these relationships provide useful tools for bridging the gap
from the paleontological record to modern communities (Eronen et al.,
2010a).

Tooth crown height, or hypsodonty, has been extensively studied
because of its correlations with vegetation consumption and climatic
changes (Davis and Pineda-Munoz, 2016; Fortelius et al., 2002; Galbrun
et al., 2018; Janis, 2008; Janis, 1988; Liu et al., 2012; Pineda-Munoz and
Alroy, 2014; Zliobaité et al., 2018). Originally, an increase in tooth
crown height was tied to the spread of fibrous silica-rich grasslands
(Damuth and Janis, 2011; MacFadden, 1997; Stirton, 1947; Stromberg,
2002; Webb, 1977), however, it has also been suggested that the rela-
tionship is more nuanced and may also be associated with increased
exogenous grit and dust settling on vegetation in arid climates (Damuth
and Janis, 2014; Damuth and Janis, 2014; Janis, 1988; Jardine et al.,
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2012; Jernvall and Fortelius, 2002; Semprebon et al., 2019; Williams
and Kay, 2001). Taller tooth crown heights with larger surface areas
reduce the negative impacts of wear caused by an abrasive diet in spe-
cies that are consuming large amounts of exogenous grit and other
abrasives (Damuth and Janis, 2014; Janis, 1988; Semprebon et al., 2019;
Stromberg, 2002). Due to the slow morphological shifts required to alter
tooth crown heights and the exceptional preservation of teeth in the
fossil record, hypsodonty is a dietary proxy that is useful on an evolu-
tionary time scale (Davis and Pineda-Munoz, 2016) and therefore, can
be used to estimate paleoclimate from local fauna preserved in paleon-
tological records.

As an ecometric trait, hypsodonty has been successfully used to
explore the relationship between tooth crown height and precipitation
in herbivorous mammals (Eronen et al., 2010b, 2010c; Fortelius et al.,
2016; Fortelius et al., 2014; Schap et al., 2021; Short et al., 2021).
Studies of large mammals found that communities containing species
with higher tooth crown heights inhabit drier environments (Eronen
et al., 2010b, 2010c; Fortelius et al., 2016; Fortelius et al., 2014; Short
et al., 2021). However, recent work found that hypsodonty in North
American small mammal communities is associated with mean annual
temperature in addition to precipitation (Schap et al., 2021). Africa
contains highly diverse, abundant, and unique small mammal commu-
nities, with 95% of the rodent species found in Africa being endemic to
the continent (Kingdon, 2014). With a deep and rich evolutionary his-
tory, across many extreme climatic regions not found in North America
(Bigalke, 1968), Africa is an ideal location to expand on previous work.

Rodents and Lagomorphs, or Glires, are an ideal study group for
ecometric analyses because they can respond in situ to environmental
changes (Badgley et al., 2014; Badgley and Finarelli, 2013; Montuire
et al., 2006). These groups have high abundances in modern and fossil
communities, small home ranges, limited dispersal ability (Bowman
et al., 2002; Sandel et al., 2011; Schloss et al., 2012; Tucker et al., 2014),
and relatively short life spans (Badgley et al., 2014; Badgley and
Finarelli, 2013; Samuels and Hopkins, 2017; Schap et al., 2021). These
life history characteristics are beneficial to ecometric studies because
they allow for a more localized relationship between trait development
and environmental changes as well as decreased lag time between
environmental change and trait change when examining these re-
lationships in deep time (Samuels and Hopkins, 2017). Despite these
advantages, small mammals are still a relatively underutilized group
when it comes to ecometric analyses and offer opportunities to supple-
ment large mammal findings and expand the use of these methods to
localities depauperate of large mammals.

Here, we first test if the ecometric relationships between hypsodonty
and climate found in small mammals (Schap et al., 2021) persist in Af-
rican communities. It is expected that the trait environment relationship
of African small mammal communities will behave similarly to those in
North America, as has been found with trait environment relationships
of large mammals globally (Eronen et al., 2010b; Faith et al., 2020;
Fortelius et al., 2016; Fortelius et al., 2002; Short et al., 2023; Zliobaite
et al., 2018), and will be characterized by communities with higher
crown heights occurring in areas with colder and drier environments
and communities dominated by lower crown taxa living in warmer and
wetter environments. We then apply these relationships to the fossil
record of eastern Africa, which hosts numerous well-studied fossil sites,
to highlight the utility of ecometrics in temporal analyses at a singular
site through time and spatial analyses comparing paleoclimate estimates
across the landscape at contemporaneous fossil sites at various time
periods over the last six million years. Lastly, we examine the commu-
nity trait composition of the fossil communities and compare those to
modern communities found at those localities today to understand the
magnitude and direction of change in trait composition through time.
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2. Materials and methods
2.1. Generating modern community data

We first compiled spatial data. The range maps of all African Glires
species were generated from the IUCN Red List (IUCN Red List of
Threatened Species, 2023). Next, modern climate variables including
mean annual temperature (°C) and annual precipitation (mm) were
gathered from the WorldClim Database at 0.5 x 0.5-degree resolution
(Fick and Hijmans, 2017). Climate variables were transformed to be
normally distributed by cubing mean annual temperature and logging
annual precipitation. A 50-km equidistant point grid was overlaid across
Africa (Lawing et al., 2012; Polly, 2010; Short et al., 2021; Short and
Lawing, 2021) (n = 12,046). Species range maps and climate layers were
sampled at each grid point to generate a dataset of small mammal
communities with corresponding climate data.

We also compiled hypsodonty data for 94 (88%) modern African
Glires genera (Table S1). To do so, we assembled published data on
small mammal hypsodonty (n = 87), and additional specimens were
measured from museum collections (the University of California
Museum of Paleontology (UCMP) = 18 specimens across 14 genera;
Texas A&M Biodiversity Research and Teaching Collections = 2 speci-
mens across 2 genera; and Nairobi National Museum (KNM) = 5 speci-
mens across 2 genera). If any taxa with published data were available to
be measured at museums, those taxa were still measured to add confi-
dence to their designation.

A Hypsodonty Index (HI) was calculated following methods from
Janis (1988) and Fortelius et al. (2002) where hypsodonty is measured
as a ratio of the unworn molar crown height divided by the occlusal
width (Janis, 1988) or length of the same tooth (Fortelius et al., 2002;
Van Valen, 1960). For museum specimens measured for this study, HI
was calculated using the lower second molar (m2) following Fortelius
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et al. (2002). Based on the HI, teeth were placed categorically into
brachydont, low crown teeth, with an HI < 0.8; mesodont being 0.8 <
HI < 1.2; or hypsodont, high crown teeth, with an HI > 1.2 (Fortelius
et al., 2002). For analyses, HI was ordinated so that brachydont taxa
were given a value of 1, mesodont taxa a value of 2, and hypsodont taxa
a value of 3. Some rodents and lagomorphs have ever-growing teeth,
hypselodont, which in this study are grouped with hypsodont taxa
following Fortelius et al. (2002) and Short et al. (2021). To determine
the relationship between hypsodonty and climate, each taxon in a
community was represented by the ordinated value of its tooth crown
height. Then, a community-level trait value was generated by calcu-
lating the mean and standard deviation of the community hypsodonty
(Fig. 1b).

Previous ecometric studies using large mammals, including carni-
vores or ungulates, have run analyses on communities consisting of
three or more taxa (Short et al., 2023; Short and Lawing, 2021). There
are a greater number of small mammal taxa present in and across
communities so we increased our community size to five or more taxa
(Short et al., 2021). We ran linear models of community mean hyp-
sodonty against climate and found negligible differences between
communities with a minimum of three species and those with a mini-
mum of five species (Table S2, Fig. S1). For the remaining analyses, we
report on communities with five or more taxa, resulting in 10,374
communities. We did not correct for phylogeny because it has been
found that the ecometric relationship is not sensitive to phylogenetic
differences between communities (Lawing et al., 2017; Polly et al.,
2017; Short and Lawing, 2021). All analyses were conducted in RStudio
(R Core Team, 2023).

2.2. Modern analyses

We initially visualized our data using scatterplots of hypsodonty
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Fig. 1. Ecometric model inputs and outputs. (a) Observed precipitation and (b) observed hypsodonty data are used to generate (c) the ecometric model, shown as an
ecometric trait space, which shows the maximum likelihood annual precipitation values for all communities with a given mean and standard deviation crown height.
The ecometric model is projected onto Africa to generate (d) an estimated precipitation map. (a) Observed precipitation minus (d) the estimated precipitation gives
(e) the precipitation anomaly. Black boxes on the ecometric trait space represent bins where fossil sites were placed.
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versus annual precipitation and mean annual temperature. Linear
models were then used for variable selection and to approximate the
variance explained for each climate variable (Table S2, Fig. S1). Linear
models showed there was not a strong relationship between community-
level mean hypsodonty and mean annual temperature (Fig. S1, Table S2
y = —5457x + 23,655, = 0.09,r=—0.30, p < 0.001). However, there
was a strong relationship between community-level mean hypsodonty
and annual precipitation (Fig. S1, Table S2, y = —15.7x + 43.3, 12 =
0.61, r = —0.78, p < 0.001), so further analyses focus only on annual
precipitation. A functional relationship between hypsodonty and aridity
is clear and established, resulting from ingested grit. However, in diverse
landscapes and among taxa with diverse dietary habits, there will often
be diversity in the hypsodonty exhibited by different species. This can be
captured by the standard deviation of the community.

An ecometric model was constructed using a maximum likelihood
approach. We first binned communities into a 25 x 25 matrix based on
the mean and standard deviation of their community hypsodonty
(Fig. 1c) (Lawing et al., 2012; Short and Lawing, 2021; Vermillion et al.,
2018). For each bin, we estimated a probability density function using
kernel density estimation with a Gaussian smoothing kernel, and the
precipitation value where the curve was at its maximum is the most
likely annual precipitation value, following Short and Lawing (2021)
and Vermillion et al. (2018). We assessed the transferability of our
model through a sensitivity analysis (Fig. S2) (Short et al., 2023). We
randomly down-sampled our 10,374 communities ranging from 100 to
9100 communities at intervals of 1000. The randomly down-sampled
community was iterated 20 times for each sample size. Every iteration
of every sample size was divided so that 80% of the data was used as
training data for the model and the remaining 20% was used to test the
model.

To assess how well our ecometric model estimates precipitation, we
calculated anomaly maps (Fig. 1e), which identify the environments
where our model estimated annual precipitation well and the environ-
ments where the model did not. Maps of estimated precipitation were
generated using the maximum likelihood estimates based on community
hypsodonty values and the ecometric model (Fig. 1d). Anomaly maps
display the differences between the estimated precipitation maps
(Fig. 1d) and the observed precipitation maps from WorldClim (Fig. 1a)
(Fick and Hijmans, 2017; Short and Lawing, 2021; Vermillion et al.,
2018). As anomaly maps depict the difference between observed climate
and estimated climate, areas where the model overestimates will have a
negative anomaly value while areas where climate is underestimated
will have a positive anomaly value (Fig. le).

2.3. Generating Fossil Community Data

Once the modern relationship was established, we created a list of
fossil localities in eastern Africa where we could estimate paleo-
precipitation (Fig. 3; Table S3). Some taxa at these sites are extinct and
not included in our dataset of modern taxa. Data for three extinct taxa
were collected from the literature. Taxa not available in the literature
were measured from specimens in museum collections (UCMP = 3
specimens across 2 genera; National Museum of Kenya (NMK) = 8
specimens across 4 genera). Overall, hypsodonty data for 9 extinct
genera were collected (Table S1). Taxa were placed into brachydont,
mesodont, or hypsodont following the methods used for modern taxa. As
the linear models of modern correlations between hypsodonty and
annual precipitation in communities of three or more taxa and five or
more taxa showed negligible differences (Table S2), fossil localities with
at least three taxa were used in our analyses resulting in 26 fossil sites
across Kenya (n = 10), Ethiopia (n = 11), and Tanzania (n = 6) (Fig. 3;
Tables S3, S4). One locality, Shungura, had four nonoverlapping strat-
igraphic layers spanning from 1.9 Ma to 3.44 Ma that allowed for the
examination of changes in the precipitation levels at one locality
through time.
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2.4. Fossil analyses

Fossil communities were analyzed using our ecometric model, based
on the mean and standard deviation of their community mean crown
height (Fig. 1c). Paleoprecipitation estimates for each site were pro-
duced from the maximum likelihood annual precipitation value of the
trait bin in which the site fit. Confidence intervals for precipitation
values were calculated at the 5% limits on either side of the maximum
value of the Gaussian curve for each community’s assigned ecometric
bin. We then utilize our fossil sites to highlight the variety of ways
ecometrics can contribute to paleoecology. First, we compared changes
in precipitation and community trait means in one location through the
four well-sampled microfauna layers from Shungura Members B, C, F,
and G (Fig. 2a). We also examined the heterogeneity of precipitation on
a spatial scale by grouping our fossil sites into Late Miocene (6.12-5.7
Ma), Pliocene (4.5-2.5 Ma), and Early Pleistocene (2.36-1.2 Ma) time
bins and comparing the estimated precipitation at contemporaneous
sites located across eastern Africa (Fig. 3). Finally, we compared modern
communities to those of the past to show the direction and magnitude of
change through time. To do this, we gathered modern precipitation from
a sampling point nearest to each of the fossil sites and examined these
modern communities alongside the fossil communities in trait space
(Fig. 2b).

3. Results
3.1. Modern Relationships

Our ecometric model, visually depicted as an ecometric trait space
(Figs. 1c), reveals an overall trend of higher precipitation values for
communities with lower tooth crown heights, with means between 1 and
2, and lower precipitation values for communities with higher mean
tooth crown heights between approximately 2 and 2.5. No communities
had a mean tooth crown height of 3. The standard deviation of
community-level tooth crown height ranged from 0.4 to 1.2 but did not
have a clear relationship with precipitation in trait space. With a
sensitivity analysis, we found that the correlations between crown
height and precipitation of the testing data stabilized at 0.76 around a
sample of 2500 communities (Fig. S2). For the testing data, residuals
between our observed precipitation and estimated precipitation, often
referred to as anomalies in ecometrics, stabilized around 3 log mm with
a sample of 2500 communities. Our ecometrics model was run using all
10,374 communities, which is well above the number of communities
needed according to our sensitivity analysis to accurately capture the
trait-environment relationship between crown height and precipitation.

Our maps of estimated precipitation encompass most of Africa except
where there are no communities with at least 5 small mammal taxa
available, such as the Sahara Desert and Madagascar (Fig. 1a). Estimated
precipitation (Fig. 1d) closely follows trends seen in observed precipi-
tation (Fig. 1a) with lower precipitation values across the northern re-
gion associated with higher community mean hypsodonty (Fig. 1b) and
high precipitation values in the central region associated with lower
community mean hypsodonty (Fig. 1b). Observed precipitation from
climate data and estimated precipitation from the ecometric model have
a strong positive relationship (y = 0.7887 x + 4.11, = 0.68, r = 0.83,
P < 0.001) (Fig. S4).

Anomalies, or residuals, are relatively low across Africa (Fig. le),
indicating the model estimates have high accuracy. Negative anomalies
are more frequent than positive anomalies (Fig. S3). Areas with positive
anomaly values, or where precipitation was underestimated, are mostly
in northern coastal regions, the central region, and along the east coast
of Madagascar. Areas with negative anomalies, or where precipitation
was overestimated, are in the Nubian Desert, the border of the Sahara
Desert and the Sahel, the Namib and Kalahari Deserts, and east of the
Great Rift Valley (Fig. 1e).
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3.2. Fossil Site estimates 16 of them (Table S4). The other 10 sites have community hypsodonty
mean and standard deviation values outside of the modern trait space,

The 26 fossil sites are associated with 19 ecometric trait bins, and and therefore, we cannot estimate the annual precipitation at those sites
modern communities from the geographic locations of each fossil site using the ecometric model (Fig. 1b). Most fossil localities with paleo-
are associated with 6 bins, illustrating homogenization into the modern precipitation estimates have high estimated precipitation values, hyp-
(Fig. 2b). Fossil sites have a range of mean crown heights from 1.25 to sodonty means of two or less, and hypsodonty standard deviations
3.00 and standard deviations of 0-1.15. Modern communities have a between 0.5 and 1 (Fig. 1c, Table S4). Fossil localities where paleo-
range of 1.91 to 2.31 and a standard deviation of 0.85-0.95 (Fig. 2b). Of precipitation estimates are not available typically have high mean
the 26 fossil localities, we report estimated paleoprecipitation values for crown heights of two or more and a bimodal distribution of standard
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deviations of zero or over one. Fossil sites occur in bins with precipita-
tion estimates ranging between 5 and 1617 mm whereas the modern
communities occur in bins that are generally drier with precipitation
estimates ranging between 302 and 599 mm.

Temporally, we examine estimated annual precipitation values for
the four stratigraphic layers preserved at Shungura. Estimated precipi-
tation decreases from 994 mm at Member B, the oldest layer, to 555 mm
at Member C, then increases to 1044 mm at Member F, and greatly
decreases to 170 mm at Member G, the youngest layer (Fig. 2a).
Spatially, we investigate fossil sites across East Africa in three time bins.
The Late Miocene time bin contains the Lemudongo, Kapcheberek, and
Lukeino fossil localities from Kenya, and estimated annual precipitation
values range from 480 mm at the central Kapcheberek to 824 mm at the
northern Lemundongo. The Pliocene time bin contains Aramis (lower),
Shungura Members B and C, Kanapoi, Tabarin, Upper Ndolanya, and the
Upper Laetolil Beds across Ethiopia, Kenya, and Tanzania with esti-
mated annual precipitation ranging from 404 mm at the southern Upper
Ndolanya to 1127 mm at the central Kanapoi. The Early Pleistocene time
bin contains A.L. 894, Boolihinan, Shungura Members F and G, Upper
Bed II, and Lower Bed II across Ethiopia and Tanzania with estimated
annual precipitation values ranging from 5 mm at the northern Booli-
hinan to 1583 mm at A.L. 894, which is geographically similar to Boo-
lihinan (Fig. 3).

4. Discussion
4.1. Modern relationships

Examination of the ecometric relationship between small mammal
hypsodonty and climate revealed different results from the previous
North American study. Similarly to North America (Schap et al., 2021),
there was a strong relationship with annual precipitation. However,
unlike in North America (Schap et al., 2021), there was no relationship
found between community-level hypsodonty and mean annual temper-
ature in Africa (Fig. S1). We suggest the continental discrepancies be-
tween the relationship with mean annual temperature and hypsodonty
are due to less variation in mean annual temperature across Africa (95%
CI: 15.7 to 29.2 °C) compared to North America (95% CI: —19.0 to
23.9 °C). In contrast, the stronger relationship between community-level
hypsodonty and annual precipitation could be because annual precipi-
tation varies more widely across Africa (95% CI: 3 to 1954 mm) than in
North America (95% CI: 115 to 1802 mm), and Africa has more variation
in precipitation seasonality (95% CI: 26.7 mm to 161.8 mm) compared
to North America (95% CI: 13.7 to 95.5 mm).

Taxa in Africa could be less constrained by temperature but rather,
would need to be adapted to changes in precipitation during the dry
season. The timing of rainfall is important to primary productivity and
vegetation types, and it contributes to the crown height of the commu-
nity (Janis et al., 2004). Dust and grit settling on vegetation during the
dry season would necessitate more hypsodont dentition in a community
whereas those communities in environments with adequate precipita-
tion, even in the dry season would be more prone to less hypsodont
dentition. Small mammals, with limited dispersal ability, show
morphological adaptations in response to changing climate rather than
community reassembly through dispersal (Bowman et al., 2002; Hei-
kinheimo et al., 2007; Samuels and Hopkins, 2017). With the majority of
the small mammal taxa in Africa being endemic specialized taxa, it could
explain why the relationship between community-level crown height
and annual precipitation was so strong as small mammals are uniquely
suited to their particular environment.

Of the taxa we were able to gather hypsodonty data for, an almost
equal number of brachydont (n = 41) and hypsodont (n = 37) taxa were
found across Africa while there are roughly half the number of mesodont
taxa (n = 17). Many brachydont (= 1) and hypsodont (= 3) taxa produce
means of 2 but create a wide range in standard deviation (Fig. 2c). The
North American study found that the percent of brachydont taxa and the
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number of hypselodont taxa within a community were two of the most
important variables in building regression equations of climate (Schap
et al., 2021) and attributed that to these taxa being more specialized for
particular climates and environments.

Anomalies are highest in the wettest and the driest areas, as is seen
across ecometric studies (Schap et al., 2021; Short et al., 2023; Short
etal., 2021; Short and Lawing, 2021; Vermillion et al., 2018), due to our
maximum likelihood method that takes the most likely climate value for
a given trait bin to estimate climate for all communities within that trait
bin. Anomaly maps from North America found the highest anomalies
along elevational gradients, like the Rocky Mountains, and along the
coasts (Schap et al., 2021). In Africa, the Turkana basin between the East
African Dome and Ethiopian Dome has a high negative anomaly,
possibly because of the area’s complex topography. Some mountainous
areas, like the Atlas Mountains, had highly positive anomalies. Highly
negative anomalies were found mostly in deserts, including the Sahara,
Kalahari, Ogaden, and Namib, and in areas of transitional precipitation,
for example, in the Sahel between the Sahara Desert and the Congo Basin
(Fig. 1le). Taxa in the Sahel are largely brachydont (Fig. 1b) and are
having to adapt to an area that has experienced prolonged drought
brought on by increased anthropogenic impacts like overgrazing, con-
verting woodland to agriculture, and large scale atmospheric circulation
changes (Zeng, 2003); perhaps the taxa found in the Sahel region are too
specialized in their tooth crown heights to accurately estimate
precipitation.

4.2. Fossil relationships

Application of our model to fossil localities adds additional infor-
mation to previous interpretations of local environments and biota
across time and space. For example, we highlight trends in precipitation
and community crown height in relation to the presence or absence of
lakes in the East African Rift System (EARS) and local rivers through
time. At Olduvai Basin, we illustrate effects of deep freshwater lakes
during intensification of the Walker Circulation (Trauth et al., 2007).
Our model generates a high precipitation estimate of 1127 mm at Lower
Bed II, which has a mean hypsodonty of 1.5, from 1.79 to 1.74 Ma fol-
lowed by a decrease in estimated precipitation to only 149 mm at Upper
Bed II from 1.74 to 1.2 Ma, corresponding with the drying up of the
Olduvai paleolake and an increase in mean hypsodonty to 2.25
(Kovarovic et al., 2013; Maslin et al., 2014; Trauth et al., 2007; Trauth
et al., 2005) (Table S4).

We also track shifting precipitation patterns at one site over
approximately 1.5 Ma at the well-dated and well-sampled Shungura
Formation (Fig. 2a) (Bibi et al., 2013; Boisserie et al., 2008; Levin et al.,
2011; Plummer et al., 2015). Member B, with an estimated annual
precipitation of 994 mm from our models, aligns with periods of large
deep lakes in the area as well as the presence of a river (Maslin et al.,
2014; Trauth et al.,, 2007; Trauth et al.,, 2005; Wesselman, 1984).
Member C, with a decrease in estimated annual precipitation to 555 mm,
spans a period of increasing aridity with no paleolakes and no local river
(Bibi et al., 2013; Maslin et al., 2014; Trauth et al., 2007; Trauth et al.,
2005). Member F, with an estimated annual precipitation of 1044 mm,
does not fall within the presence of paleolakes in eastern Africa but does
have a local river nearby, confirming the presence of surface water
associated with higher precipitation (Maslin et al., 2014; Trauth et al.,
2007, Trauth et al., 2005; Wesselman, 1984). Member G, with an esti-
mated annual precipitation of 170 mm is not associated with a river
environment but does fall during the presence of shallow lakes in the
EARS (Maslin et al., 2014; Plummer et al., 2015; Trauth et al., 2007;
Trauth et al., 2005). The low level of precipitation estimated by high
hypsodonty (Table S4) at Member G reflects the expansion of edaphic
grasslands (Table S3) (Plummer et al., 2015). This suggests that shallow
lakes in the EARS, rather than widespread deep lakes, are not a strong
enough influence to alter community trait composition.

Shungura is a useful example to point out the complexities in trait-
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environment relationships as a proxy for past climate. While the small
mammal taxa responded to changes in their local environment, their
local environment, namely the vegetation they consume, in the Turkana
Basin was influenced by hydrological events happening hundreds of
kilometers away in the Ethiopian Highlands (Maslin et al., 2014; Trauth
et al., 2007, Trauth et al., 2005). This mismatch of scale is also seen at
sites where there has been regional volcanic activity generating abrasive
ash that covered the landscape and altered climate patterns, such as in
the Columbia River Valley during the Middle Miocene (Kiirschner et al.,
2008; Retallack, 2007; Zachos et al., 2001) and in the Ethiopian Rift at
45-33 Ma (Trauth et al., 2007, Trauth et al., 2005). Hypsodonty might
also reflect water availability in the local environment rather than just
the amount of precipitation itself. The hydrological and geological
context of fossil sites allows us to identify other factors that might be
influence the relationship between hypsodonty and precipitation.

Eastern African climate has long been understood to be variable
across landscapes and punctuated by periods of increased drought and
aridity or increased temperatures (Bobe, 2006b; Lukich and Ecker,
2022; Maslin et al., 2014). This is evident at fossil sites through the
Pliocene ranging from oldest to youngest: 830 mm at Tabarin, 666 mm
in Aramis (Lower), 1127 mm in Kanapoi, 1044 mm in Upper Laetolil
Beds, 994 mm at Shungura Member B, 404 mm at Upper Ndolanya, and
555 mm at Shungura Member C (Fig. 3; Table S4). Similar fluctuations
through time are seen at our Early Pleistocene sites from Tanzania to
Ethiopia (Fig. 3; Table S4). Even today, rainfall in eastern Africa is
largely influenced by inter-annual variability caused by large-scale
climate forcing and changes in sea surface temperatures leading to
droughts and floods (Gebrechorkos et al., 2019; Niang et al., 2014).
However, with ecometrics, we are able to highlight some paleoclimate
trends, such as increasing aridity and decreasing annual precipitation
from 824 mm to 480 mm in the Late Miocene of Kenya, mirroring what
has been found from other regions of the continent (Bobe, 2006b; Ja-
cobs, 2004).

Fossil communities were often dominated by low-crowned brachy-
dont taxa with few hypsodont taxa found at these sites in the past
(Table S3). An exception is Upper Ndolanya, which has the highest mean
tooth crown height recorded until that time at 2.66 Ma with a subse-
quent decrease until 2.33-1.9 Ma at Shungura Mb G. Upper Ndolanya
has been described as semi-arid scrub or bushland (Kovarovic et al.,
2002) and corresponds with Ngorongoro volcanism (Maslin et al., 2014;
Trauth et al., 2005). Volcanism leads to selection for higher crown taxa
as they can better withstand an increase in ash and grit in their diet.

Modern communities at fossil localities are more evenly split be-
tween high-crowned and low-crowned taxa, causing mean community
trait values to average around 2.0 with standard deviation near 1.0.
Homogenization of mean hypsodonty across small mammal commu-
nities in eastern Africa is consistent with previous studies of other
functional traits and taxa (Short and Lawing, 2021; Toth et al., 2014).
Africa has many endemic taxa that are highly specialized to their envi-
ronments (Bigalke, 1968; Cloudsley-Thompson, 1989; Heslop-Harrison,
2011) and our communities are therefore composed of many specialist
taxa driving standard deviation changes. Overall, an increase in the
modern presence of hypsodont taxa generates lower precipitation esti-
mates than were seen in the past. Decreasing precipitation across eastern
Africa into the modern has also been found over the last 6 million years
from the Turkana Basin using hypsodonty and loph count of large
mammals (Fortelius et al., 2016).

One shortcoming of our ecometric analysis is that we are only able to
generate paleoprecipitation for communities with trait compositions
found in modern communities. Ten of the fossil sites were composed of
non-analog trait compositions that were not represented in our modern
ecometric model, meaning we could not generate paleoprecipitation
estimates for those sites. With an expected increase in no-analog com-
munities as species reassemble in response to changing climates (Hobbs
et al., 2018), perhaps some of these fossil communities will have the
same trait values as future communities. Future work should incorporate
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the presence of non-analog communities from the past because these
will be increasingly important for understanding heightened variation in
modern communities.

5. Conclusions

These results help expand upon the use of ecometrics in small
mammal communities and aid in understanding global relationships
between fauna and their environment. We also show that ecometrics is a
useful and easily applied method that allows us to quantitatively study
climate trends from a wide range of fossil sites both spatially and
temporally. While some fossil sites have paleoclimate reported from
local or regional proxies, no single proxy has been applied easily and
cost-effectively to compare past climate across multiple fossil sites.
Paleoclimate estimates generated from our model can be applied to any
African fossil site where there are at least 3 small mammal taxa present
and can be useful at sites where pollen or isotope data may not be
available. Our estimates can also help to add more nuance to previously
described sites and highlight how the fauna themselves are influenced
by climate. Over the last six million years, the small mammal fauna has
been highly specialized to their local environments. As climate change
continues to reshape what our modern landscapes and climates look
like, the strong modern trait-environment relationships of these
specialized communities may begin to weaken, as we are already seeing
in areas like the Sahel. Future directions of this work should examine
whether these specialized taxa are in danger given future expected
climate, or if they will continue to adapt or move quickly enough to
maintain a stable trait-environment relationship.
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