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Traditional approaches to data visualization have often focused on comparing
different subsets of data, and this is reflected in the many techniques developed
and evaluated over the years for visual comparison. Similarly, common workflows
for exploratory visualization are built upon the idea of users interactively applying
various filter and grouping mechanisms in search of new insights. This paradigm
has proven effective at helping users identify correlations between variables that
can inform thinking and decision-making. However, recent studies show that
consumers of visualizations often draw causal conclusions even when not
supported by the data. Motivated by these observations, this article highlights
recent advances from a growing community of researchers exploring methods that
aim to directly support visual causal inference. However, many of these approaches
have their own limitations, which limit their use in many realworld scenarios. This
article, therefore, also outlines a set of key open challenges and corresponding
priorities for new research to advance the state of the art in visual causal inference.

ata visualzation has become a ubiquitous

D tool for data exploration and communication
for a wide range of audiences. Interactive vis-
uvalizations now can be found in everything from GUI-
based visual analysis tools for everyday office workers
{eg., Tableau) to websites produced by major media
companies (e.g, FveThirtyEight or the New York
Times), and in notebook computing environments
used by data scientists (e.g, RStudio, JupyterLab, and
Observable). Visualizations have also become key
components in tools ranging from consumer-focused
mobile apps to manage health and wellbeing (e.g,
Apple's Health app) to expert-focused information sys-
tems such as electronic health record software used
at most major hospitals (e.g, Epic) Visualizations
have been used to help engineers diagnose and
improve machine leaming models, to help factories
optimize manufacturing processes, and to share news
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with the general public about the spread and risk of
disease during the recent COVID-19 pandemic.

In each of these applications, visualizations are
leveraged to communicate data to a human consumer
who then interprets what they see and draws conclu-
sions based on the data. Often, these conclusions
then motivate action. For instance, an analyst devel
oping deep leaming models might choose to adjust a
parameter of their model after seeing a strange pat-
temn in avisualization of model outputs. A manufactur-
ing expert might decide to adjust a machine’s settings
to optimize production after visually analyzing data
from sensors placed along an assembly line. A traveler
may decide it is safer to travel on vacation to one city
versus another after viewing infection and hospitaliza-
tion data on a COVID-19 dashboard.

Ineach of these cases, users are making inferences
about relationships between the variables displayed in
a visualization and using those inferences to guide
their decision-making process. The correctness of a
user's decisions, therefore, is clearly contingent upon
the correctness of the inferences that they make about
the meaning of their visualized data. Along these lines,
recent studies™™ have shown that people often
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FIGURE 1. Example causal graphs: (a) a simple causal graph in which social media use decreases happiness, (b) a graph with a
confounder, in which the apparent causal relationship between social media use and happiness is in fact caused by a thind fac-
tor, number of coworker friends, that has a causal effect on both, and (c) a graph with a collider, in which the apparent causal
relationship between social media use and happiness is due to both having a causal effect on this third factor. In this case, the

collider also exhibits a cycle.

interpret visualized pattems as indicators of causal
relationships between visualized variables Critically,
this inference of causality occurs even when such con-
clusions are not supported by the data or visualization.

One aspect of this problem is that users often
draw conclusions that do not properly account for
sample size.'** This challenge can be partly mitigated
by enhancing visual representations of key informa-
tion such as sample size or confidence intervals.

Mare difficult to solve, however, is a more funda-
mental issue: Visualizations are generally designed to
communicate comelation and not causation. More
specifically, there could be mismatches between 1) a
human user's tendency to draw causal conclusions,
and 2) the design of a typical visualization which pro-
vides simplified overviews andfor narrowly filtered
views of complex multivariate datasets.® These types
of visualizations generally fail to communicate the
many interactions that can exist between explanatory
variables, and—more importantly—fail to help users
understand the effects of these interactions on pat-
tems that are in fact visualized. The result is that visu-
alizations can dramatically mislead users into drawing
erroneous causal inferences.

For example, imagine two groups of individuals
where group A is active on social media and group B is
not. Presented with a chart showing that group A is
overall unhappier, one might infer that social media
activity determines individual levels of happiness. This
relationship is depicted in Figure 1{a). The absence of
visual cues about the effect of other attributes of the
two groups which may actually be causing the differ-
ence in happiness (eg, that group A may also have
closer friendships at work and in their local

neighborhood) can lead to users making unsupported
assumptions about social media as a causal factor in
a person’s happiness. Some possible causal relation-
ships taking frendships at work into account are
depicted in Figure 1{b) and (c).

Counterfactual reasoning is a central pillar in
casual analysis that has been developed to assist in
thinking about these types of scenarios.®® Counter-
factuals are hypothesized scenarios that enable us to
examine potential outcomes across different scenar-
ios in which only a particular factor is altered. lsolating
this factor enables improved reasoning about and
understanding of causal relationships involving this
factor (eg., whether or not an individual has coworker
friends in the example above), and can be helpful to
better understand causal relationships. Previous work
has shown that counterfactuals can help improve
causal inferences from visualizations.”

In this article, we provide an overview of recent
research examining causal inference from visualiza-
tions as well as key areas of related work. We then
argue for research exploring new approaches that
help mitigate the risks of incorrect causal inferences
during exploratory analysis and data-driven decision-
making. More specifically, we argue for research
exploring a new approach to visualization, which lever-
ages the concept of counterfactual reasoning as a
means to help users draw more robust and generaliz-
able inferences from modem data visualizations.

The expression “correlation does not imply causation®
is an oft-repeated phrase waming against drawing
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causal conclusions based only on an observation of
correlation between variables. As the statement sug-
gests, there are many reasons correlations can appear
in data that do not provide direct evidence of a causal
relationship. Yet despite this warning, previous
research has shown repeatedly that people do in fact
tend to impropery assign causal meaning to correla-
tions they observe when using data visualization.

This effect was perhaps most directly described by
Xiong et al.® who studied the ilusory effect of visual-
izations to imply causal relationships across a number
of different types of classical statistical charts (e.g,
bar charts, line graphs, and scatter plots). They
reported illusions of causality across all chart types,
with users confusing correlation with causality.

The results from Xiong et al's study showed that
the magnitude of the illusion of causality differed
between different chart types. More specifically, the
results suggested that the magnitude of the causal
illusion was influenced both by the type of visual
encoding employed in a chart as well as the level of
aggregation. In general, the authors found that higher
levels of aggregation tend to increase the implication
of a causal relationship. Similarly, they found that line
and dot encodings implied higher levels of causality
than bar-based encodings. These findings provide
some insights into how design choices influence per-
ceived causality, but it remains that the illusion was
present across all chart types and therefore cannot be
easily ameliorated just by avoiding certain types of
charts.

Another recent study conducted by Kale et al.’ pro-
vided further insights into perceived causality from
visualizations by leveraging mathematical psychol
ogy' and a causal support model. The study design
adopted by Kale et al. included a ground truth for the
level of causal support behind the data used in the
study. This design allowed, in contrast to other studies
(eg. Kaul et al?, Xiong et al.®) a comparison between
that ground truth and a users’ perceptions. Their study
shows variances by participants when evaluating
directed acyclic graphs (DAGs) that either incorporate
or omit a causal linkage between two varables Users'
assessments frequently deviated from the probabili-
ties assigned to each causal explanation, with instan-
ces of both overestimation and underestimation of
the likelihood of causal relationships. These findings
further highlight the challenge of accurately gauging
the extent of evidential support that a specific dataset
provides for a given causal explanation.

Adding to this growing body of data, we published
results from our own study” which also gathered
empirical evidence that users tend to assign causal
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effects to variables used to group data within simple
bar charts and line graphs. Interestingly, our study
also hinted at some approaches to partially mitigate
the effect which we will discuss in more detail later in
this article.

In the same year, Hullman and Gelman® argued for
grounding the design of interactive exploratory visuali-
zation tools within formal theories of graphical infer-
ence. Their argument recognized the importance of
accounting for how people draw inferences when they
consume visualizations of data. Without this ground-
ing, visual analytics tools would be at greater risk of
inadvertently leading users to invalid inferences from
their data.

Together, these studies provide compelling evi-
dence that users of visualizations tend to assign
(often incorrectly and without valid statistical support)
causal explanations to visualizations of correlated
data. This tendency to perceive causal effect repli
cates across a variety of tasks using different widely
used chart types, and puts users of visualizations at
risk of drawing invalid causal inferences from their
data even when current best practices are followed
for constructing the visualizations.

As described in the prior section, users tend to infer
the existence of causal relationships when interpret-
ing even basic statistical charts based on correlations.
These causal inferences are often incorrect and not
supported by the data or the corresponding visualiza-
tion designs.

However, it is also true that causal inference is in
fact a critical requirement in many use cases. For this
reason, a number of efforts have been made to build
visual analytics tools that directly support visual
causal inference by adopting workflows analogous to
classic statistical approaches to causal inference.

In statistics, a causal structure model is a mathe-
matical representation that is applied to describe the
causal relationships between a set of variablea These
relationships are typically structured into nodedink
causal diagrams where nodes are variables and links
indicate the possible causal relationships (see Figure 1).
The most common representation is the DAG, which is
restricted to directed edges and no cycles. It assumes
that each variable (node) is influenced by its direct par-
ent nodes inthe graph and that there are no hidden con-
founders or feedback loops. Altematives relax the
acyclic constraint, adopting a directed causal graph
(DCG) structure that permits cycles, which can repre-
sent more complex causal relationships.
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Typical visual analytics systems that take causality
into account employ DCGs as their underying model
of causality. These may exist intemally to generate
causal inference statistics which are then visualized,
or the DCGs may be visualized directly via node-link
diagrams. Existing visual analytics systems that
employ causal graphs for user display and interaction
imludE‘“'lIl‘rM

The gold standard for exploring causal effects is the
randomized control tral, in which hypothesized causal
structures are typically defined a prior based ontheoret-
ical understanding or prior evidence. Such studies are
common in medical research'® Altematively, statistical
mining methods are commonly applied to find the struc-
ture of causal models from datasets (eg. Jin et al com-
puted Hawkes processes™ while Xie et al.” employed
the F-GES" model). Regardless of a causal structure’s
construction method, the use of DCGs within visualiza-
tion and visual analytics can be a useful approach for
both confirmatory and exploratory analysis.

Yet despite their value, these types of causal mod-
els also have key limitations. For example, manual
construction methods rely heavily on the assumptions
and expertise of the person defining the model'®
Moreover, they typically result in small DCGs with rela-
tively few variables.” Statistical DCG models, mean-
while, have been reported to have difficulty scaling to
large and complex datasets without introducing signif-
icant errors and bias?” Some approaches, such as
Exploratory Factor Analysis™ have been proposed to
overcome the scalability limitations of DAG-based
applications, but they are only partial solutions.

More details about limitations are discussed in the
remainder of this section, and these limitations in part
motivate the proposed directions outlined in this article.
However, we emphasize that counterfactuatbased
approaches can lead to additional methods to support
visual causal inference that work as a complement
to traditional DCG-based approaches and not as a
replacement.

Data Quality

Data quality is one of the most crucial concems that
could impact the peformance of statistical models.
Most datasets are not originally created for causal
inference tasks and can exhibit many quality issues
that raise questions about the validity of any automat-
ically constructed graphical causal model. More spe-
cifically, statistical models of any kind—including
graphical causal models—can be quite sensitive to
noisy, incomplete, missing, invalid, confounded, or
unrecorded data Sadly, these limitations are common

in realworld datasets. Furthermore, statistical causal
inference requires wel-defined interventions and suffi-
cient variation in the data to overcome confounders
and identify meaningful causal effects This makes it
even harder to apply effectively to general datasets,

Data Complexity
The rapid development of the Big Data era introduces
another major challenge—data complexity. Many data-
sets contain a very large number and variety of variables.
For example, in data-driven healthcare applications, a
single dataset can contain hundreds of thousands of
unique variables™ including demographics, drugs, find-
ings from imaging diagnoses, clinical test results etc. In
these realworld scenarios, statistical causal models
face enormous computational challenges in terms of
scalability. Calculating meaningful and comprehensive
causal graphs from such a vast number of variables,
interactions, and potential feedback loops Is not pract-
cally achievable in most cases

For this reason, most applications of causal graph
modeling focus on relatively small graphs with a very
limited number of variables and interactions in which
the computational complexity can be effectively man-
aged. Once the problem is reduced to a small enough
complexity, computational methods for mining causal
graphs (or workflows that require manual specifica-
tion of the causal graph) become possible.

Unfortunately, however, this reduction of the prob-
lem also means that the resulting models are often
insufficiently complex to capture realworld interac-
tions accurately. Meanwhile, the ever-increasing com-
plexity of datasets (and the exponentially increasing
number of potential variable interactions that result)
means that this problem will continue to grow even
more difficult for traditional graphical model-based
methods to overcome,

Direction of Causal Relationships

In graphical causal models, detecting the presence of a
causal relationship between variables is not the only
goal. Causal models must also capture the direction of
node links to represent the direction of causal relation-
ships (e, the “from” nodes have a causal effect uponthe
“to” nodes for each link). This directionality adds to the
complexity challenge mentioned earlier, with similar
results: causal graph modeling approaches are typically
limited to very small numbers of variables and potential
causal relationships, and the applicability of these meth-
ods to complex realworld problems is limited unless the
scope of the problem is dramatically narrowed and
simplified.
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Limited Inference Levels

Previous work has classified causal inferences along
three progressive levels®: prediction, intervention, and
counterfactual reasoning However, existing visual
analytics systems primarily focus on the two lower lev-
els of this framework—prediction and intervention,
while neglecting the third level of inference: counter-
factual reasoning.

This limitation may be in part related to the wide-
spread use of DAG models, which do not explicitly
capture reciprocal and counterfactual effects. DAGs
assume unidirectional and acyclic causal relationships
between two variables. However, even for DCGs which
allow cycles, graphical approaches largely focus on
deriving and communicating the existence and magni-
tude of pairwise causal relationships rather than coun-
terfactual reasoning about what would happen under
alternative conditions which is the hallmark of coun-
terfactual reasoning.

Some aspects of the challenges outlined in the prior
section, such as data quality, are ones that can be
addressed in part with better data gathering and
archiving practices. However, the remainder deal with
issues of scale and complexity, which render tradi-
tional graphical causal model-based approaches
impractical for many realworld problems. Instead, we
argue that an alternative approach which builds on
the foundational concept of counterfactual reasoning
can provide many key benefits in the context of sup-
porting causal reasoning while offering a more practi-
cal solution for dealing with data complexity.

What is a Counterfactual

Counterfactuals are a core philosophical construct
that underpins modem causality theory.””* Counter-
factual thinking posits that if A causes B, then in an
alternative, “counterfactual” scenario where A does
not occur, B should not oceur. Counterfactual think-
ing also asks us to investigate possible scenarios in
which A does not occur but B occurs nonetheless.
Such a scenario suggests that B may in fact be caused
by factors other than A. Byme® adds that counterfac-
tuals can serve an explanatory function, amplifying
causal judgment. For instance, if one could know that
an alternative scenario that eliminates 4 would not
lead to B, it would amplify one's judgment of a causal
relationship between 4 and B. In contrast, knowing
that an altemative scenario eliminates A, but also
leads to B would weaken confidence in the causal
influence of A on B.

VISUALIZATION VIEWPOINTS

As a concrete version of this idea consider the
example from this article’s introduction about the hap-
piness of those active on social media versus the hap-
piness of those who do not use social media. If those
without social media are identical to those who do
use social media in every way except for their social
media usage (they have the same number of close
friendships at work, the same connections to neigh-
bors, etc.), then that group serves as a counterfactual
to the social media users. This gives us confidence
that in fact the only remaining difference between the
populations—the degree of social media use—is caus
ally linked to the differences in happiness.

The caveat to this approach, of course, is that true
counterfactuals must be identical in every way except
for the factor being considered for causal effect (ie.,
identical in every way except for their use of social
media). This is possible, perhaps, in philosophical dis-
cussions of causality. However, in practice, we are typ-
ically limited to “highly similar” instead of identical, as
many factors are unobserved. Moreover, even those
factors that are accurately captured within a dataset
typically exhibit some degree of variance.

Yet despite these practical limitations, counterfac-
tuakbased approaches are widely used in machine learn-
ing for tasks such as prediction (e.g, Prosperi et al.™),
explainable Al (eg, Gomez et al®®), and faimess (eg,
Kusner et al™). In contrast, counterfactuals have been
less commonly used within the visualization community.
Moreover, we argue that there could be opportunities to
leverage this concept in new ways for visualizations to
support users' improved causal reasoning.

Visualizing Counterfactuals

To explore the potential benefits of leveraging counter-
factual-based reasoning within the context of visualiza-
tion, we recently conducted a study using an early
prototype—named CoFact—that leveraged similarity-
based counterfactuals” This pilot project, a screenshot
of which can be seen in Figure 2, explored how counter-
factuals could be used when filters are applied to narmow
the focus of analysis during exploratory visualization.
More specifically, this project proposed the definition of
several important subsets when visualizing data for a
given combination of filtering constraints,

First, CoFact defined the included data subset asthe
portion of a dataset that meets the inclusion criteria.
Second, it defined the excluded data subset as the por-
tion of a dataset that did not meet the inclusion criteria.
In a classic design, a visualization system might visualize
both the included data and the excluded data to enable
users to compare the two subgroups. Forexample, inour
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FIGURE 2. The CoFact visualization system? leverages counterfactuals to help better communicate the relationship between
variables of interest. In this figure's example, the user has applied a filter constraint on square footage (a) to a multidimensional
house sales dataset. In response, they are shown the resulting included, counterfactual, and excluded subsets (b), along with
their corresponding distributions for a selected outcome feature of interest: house sale price (c). Additional feature-to-outcome
relationships can be explored with supplementary visualizations (di-(i. The tool supports comparisons between an included
subset (data points that match user-specified indusion criteria) and a counterfactual subset containing similar data points
selected from those data points that do not meet the inclusion criteria.

motivating social media scenario, a visualization might
show happiness levels for social media users (the
included subgroup) against those who do not use social
media (the excluded subgroup). In this classic design,
users might incorrectly assign a causal effect to the
inclusion criteria (use of social media) to explain visual-
ized differences in happiness.

CoFact then went beyond this classic approach to
additionally define the counterfoctual subset as the por-
tion of the excluded subset that s mast similar to the
included subset. CoFact computed a Euclidean distance
measure from each data point in the excluded subset to
all data points in the included subset to determine a
counterfactual subset that contains the closest data
points. This process is illustrated in Fgure 3. In our exam-
ple scenarig, the counterfactual subset would be people
from the excluded “do not use social media” subset who
are most similar to people from the included “social
media users” subset across all other dimensions in the
data. In other words, the counterfoctual subset would

include only the excluded people who could best serve
as counterfactuals to the included subset Various other
matching methods have been proposed inthe statistical
causal inference Iterature such as propensity score
matching®® and Mahalanobis distance matching.™ Such
methods could also be applied within CoFact to deter-
mine the counterfactual subset.

CoFact automatically derived and wisualized this
counterfactual group for comparison against the
included subset during exploratory analysis. When study-
ing the effect of this use of counterfactual information
during visualization, we found that users presented with
a visualization of the counterfactual subset were signifi-
cantly more successful at identfying spurious correla-
tions (Le, correlations unlikely to be indicative of a
causal relationship) that were more accurately explained
by relationships to other variables within the dataset.
When using a control version of the system that did not
present counterfactual data, users were significantly
more likely to incorrectly assign causal effects to these
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FIGURE 3. Counterfactual subset contains data points from the excluded set that are the most similar to those in the included
set. Prior work® has shown that a visualization that allows usersto compare the counterfactual subset against the included sub-
set (c) supports more accurate causal inferences compared to a more traditional approach (b).

same spurious relationships. A more detailed presenta-
tion of the study results and a discussion of its implica-
tions are available in the original publication

Advantages and Limitations
Counterfactual visualizations such as those used in
CoFact offer several advantages over altematives
such as visual causal analysis using causal graphs.
First, unlike causal graph mining, counterfactuals
can be scalably calculated and used with both high
volume and high-dimensional data. Second, the
implementation required to compute counterfactual
subsets is relatively simple and straightforward
making it more transparent and explainable. More-
over, the approach lends itself to easy integration
into many existing visualization workflows without
requiring that users leam about causal graphs and
other advanced concepts.

It is also important to note that this approach is
not tied to any specific visualization type, but rather
can be used in conjunction with a wide variety of rep-
resentations including basic statistical graphics (e.g,
bar charts, line charts, scatter plots) as well as more
complex or bespoke visual designs. Moreover, coun-
terfactuals are not limited to scenarios where causal
structures are computationally derived from data.
They can offer significant value in contexts where
causal models are predefined as well, such as in con-
trolled experimental settings Counterfactual analysis
can be used to help confirm or refute prior causal
assumptions, providing a powerful means to assess
existing models.

However, counterfactual visualizations also have
some important limitations to consider. First, the
entire approach requires data subsets (in order to
form subsets for comparison). As aresult, they are not
useful when looking at overviews of entire datasets.
Second, the approach depends on the identification of
a “good” counterfactual subset, which can be difficult
to quantify and at times may not be present in the
data. This remains an open challenge, though alterna-
tive similarity methods based on information-theoretic
metrics such as entropy, or topological metries, could
be investigated as tools to help identify “good” sub-
sets. Fnally, adding counterfactuals to visualizations
can make the visual representation more difficult to
interpret and cause analysts to work more slowly, as
there is more information to process.

While our work on CoFact and the other related stud-
ies presented in this article have started to answer
several interesting questions related to visual causal
inference, they have alko introduced several new
opportunities for future research and experimenta
tion. Informed by both our own work as well as related
research from many others, we have identified several
important topics that demand further attention in
future research. Advances on these topics would both
help address some of the limitations we enumerated
in the prior section as well as help advance our ability
to create better visual analytics tools that help users
draw improved causal inferences from complex data
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Better Cognitive Models of Causal
Inference With Visualization
As noted previously, multiple studies (g, Kaul et al,>®)
have shown that users draw causal inferences even
from traditional visualization designs. In addition, a pre-
liminary theoretical model from mathematical psychol-
ogy has been applied to help understand how these
causal inferences are made. These studies suggest that
aspects of avisualization’s design can have an effect on
the magnitude of the causal relationships that users per-
ceive. However, we still lack a wellgrounded high-level
understanding of how human cognition forms causal
inferences in complex contexts.” Furthermore, cognitive
biases and illusions can affect the assessment of causal
relationships ™

For these reasons, a grand challenge in this area is
the development of a rigorous and comprehensive
model that accurately captures the way in which users
cognitively approach analytical questions and draw
causal conclusions. Such a model would need to incor-
porate aspects of a visualization's design, the data that
users have access to, the users’ levels of expertise, cogni-
tive states and biases, as well as other related factors. If
achieved, such a model would greatly advance our
understanding of how users think about causal relation-
ships and help guide the creation of a new generation of
visual analytics tools.

Improving Communication of
Counterfactual Visual Representations
Our initial research on exploring counterfactual visual
izations, embodied in our CoFact system,” has demon-
strated that even relatively naive approaches to
incorporating counterfactuals into visualization work-
flows can help improve the accuracy of users’ causal
inferences. However, our evaluations also showed
that the additional information could increase the
complexity of a visual analytic tool's inteface and
require extra time to interpret This can result in
slower analytic performance and, potentially, confu-
sion about what is being visualized. This is in part
because the concept of counterfactuals is not neces-
sarily familiar to many users of wvisual analytics
software,

Advances in our understanding of how best to com-
municate counterfactual information within a visualiza-
tion is a research question that requires additional
attention. Improvements in how we communicate coun-
terfactual information will make counterfactuakbased
methods more accessible to a larger audience, and will
potentially help users work more quickly while maintain-
ing the quality of theirvisual causal inferences.

Advances in Measures for Evaluating
the Quality of Counterfactual Subsets
Another open question centers on what makes a “good”
counterfactual subset. This wil require a deeper under-
standing of how to identify similar subsets within com-
plex high-dimensional data We note that this is an
especially difficult problem because similarity s inher-
ently both a task- and data-dependent question. Bven for
the same dataset, the “most similar” data points may be
different depending upon which analytical question is
being asked. Moreover, even if the most similar data
points can be reliably identified, we must also understand
what constitutes “good enough” to justify a given conclu-
sion about the causal relationship between variables,

Improving Guided Exploration
Counterfactualbased visualizations have an additional
potential benefit in the context of guided exploration.
We have already discussed how counterfactuals have
the potential to help users make better causal interpre-
tations of their data. This is accomplished by providing
users with the counterfactual subset as a more appropri-
ate comparison for the included set. We believe that this
approach could potentially serve as the basis for
improved techniques that help guide users toward more
statistically interesting subspaces of their data for future
analysis. Currently, many guidance approaches rely on
correlation. However, incorporating counterfactual con-
cepts may help researchers develop more effective guid-
ance techniques which help users avoid spurious
correlations and instead navigate toward visualizations
that depict more meaningful causal relationships.

The tendency for consumers of visualizations to draw
causal inferences based on noncausal relations and
incomplete evidence is unavoidable. This inclination
can lead to incorrect conclusions being drawn from
data along with subsequent impaired decision-mak-
ing. Visualization designers who care about the accu-
racy of user interpretations should, therefore, employ
methods to improve causal inferences. Although a
body of work exists integrating statistical causal
models, such as DAGs, into visual analytics tools to
aid in causal reasoning, there are shortcomings to
such approaches, especially with respect to dataset
size and complexity.

Recent work investigating the use of counterfac-
tuals with visualization and visual analytics systems
has shown promise as a practical, general-purpose
method that scales well and integrates easily with
common visualization workflows and visual designs.
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Counterfactuals can encourage users to think more
deeply about a dataset and investigate relationships
between variables that can help confirm or deny
assumptions of causality. However, there remain sew-
eral open challenges that must be solved for counter-
factual approaches to reach their full potential. The
visualization community should take these challenges
on through new research that enables both advances
in foundational theories of counterfactual visualiza-
tion as well as applications that depend on more accu-
rate and reliable visual causal inference.

This work was supported in part by Award 2211845
from the National Science Foundation.
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