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Abstract
Counterfactuals – expressing what might have been true under different circumstances – have been widely
applied in statistics and machine learning to help understand causal relationships. More recently, counterfac-
tuals have begun to emerge as a technique being applied within visualization research. However, it remains
unclear to what extent counterfactuals can aid with visual data communication. In this paper, we primarily
focus on assessing the quality of users’ understanding of data when provided with counterfactual visualiza-
tions. We propose a preliminary model of causality comprehension by connecting theories from causal infer-
ence and visual data communication. Leveraging this model, we conducted an empirical study to explore how
counterfactuals can improve users’ understanding of data in static visualizations. Our results indicate that
visualizing counterfactuals had a positive impact on participants’ interpretations of causal relations within
datasets. These results motivate a discussion of how to more effectively incorporate counterfactuals into data
visualizations.
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Introduction

Visualization has become an indispensable tool to help
gain insights into increasingly large and complex multi-
dimensional datasets. However, effectively communicat-
ing meaningful causal relationships in such datasets
remains challenging.1–3 To help address this issue,
researchers have explored the use of causal analysis the-
ory to inform visualization design.4,5 One approach that
has gained popularity is the use of counterfactual reason-
ing,6,7 a fundamental tool in statistical causal inference
that uses hypothetical scenarios to investigate causal
relationships. For example, an investigation of the effect
of hunger on student test scores may involve considering
the counterfactual where students ate lunch before sit-
ting for an exam. Counterfactuals have been applied in
a number of visual analytics systems for machine learn-
ing explanation8,9 and exploratory visual analysis.10

While some effective use cases have been reported
in previous work, it remains unclear how and to what

extent counterfactuals can help users gain a deeper
understanding of visualized data. Prior empirical stud-
ies in visual causal inference and counterfactual visua-
lization focused on assessing spurious causal
correlations,11 modeling treatment effects and con-
founding factors,12 and exploring users’ confidence in
feature-to-outcome relations.10 However, this existing
body of work has mainly evaluated self-reported confi-
dences and preferences in specific contexts. As a
result, there remains a lack of general understanding
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of how applying counterfactuals to data visualization
can benefit users’ causal inferences.

In this paper, we explore whether and how counter-
factuals in general-purpose visualizations can help
users gain a deeper understanding of causal relation-
ships within their data. Drawing inspiration from
research on the cognitive process behind visual data
communication,13–15 we first propose a novel visual
causality comprehension model – capturing how we
expect people to read and comprehend causal infor-
mation from visualizations – that includes four pro-
gressive levels: recognizing, understanding, analyzing,
and recalling.

Based on this preliminary model we conducted an
empirical study employing four tasks derived from the
corresponding comprehension levels. Motivated by
prior work that examined how people can draw causal
inferences from simple visualizations10–12,16, three
common visualization types – line charts, bar charts,
and scatterplots – were used as stimuli to present vari-
ous datasets. For each dataset, a corresponding set of
counterfactual-based visualizations was constructed
based on the methodology used in prior work.10 In
each phase of our study, participants were randomly
shown different combinations of chart sets displaying
different levels of counterfactual information. They
were then asked to answer questions related to three
design objectives: recognizing correlations, making
predictions, and identifying causal relationships.
Additionally, participants were asked to report how
much they could recall about the datasets 10 min after
completing the study.

The study found that using counterfactuals in
visualization design significantly improved partici-
pants’ ability to understand and draw inferences from
datasets, while also improving recall. Moreover, parti-
cipants reported that counterfactuals helped them rea-
son about hypothetical scenarios and identify causal
relationships that were not immediately apparent. The
study results also suggest that counterfactual designs
do not impair users’ ability to read charts. However,
counterfactuals did require longer response times for
answering questions. Based on these findings, we pro-
pose a set of design heuristics to guide the integration
of counterfactuals into data visualizations. These
guidelines can assist researchers and designers in cre-
ating effective counterfactual visualizations to aid in
enhancing users’ comprehension of complex data.

In summary, the contributions of this paper include:

! A preliminary model of visual causality
comprehension that characterizes the human
cognition processes used to understand visuali-
zations in the context of causal inference theory.

! Results from an empirical study evaluating
the impact of counterfactual visualizations on
the interpretation of datasets along a progres-
sion of communication levels.

! A set of design heuristics to help guide future
work with counterfactual visualizations in light
of existing visual design guidelines.

Related work

This section introduces key definitions and provides
an overview of relevant previous work, including prior
research on visual data communication, the use of
counterfactuals in visual analytics, and human visual
perception of causality.

Definitions for counterfactual visualization

As briefly described in the introduction of this paper,
counterfactual reasoning6,7 is a fundamental concept in
statistical causal inference. This methodology involves
analyzing what might happen under alternative scenarios
in which only a specific condition is different with the
aim of understanding the causal effect of that specific
condition. Many visual analytics workflows involve the
creation of data subsets for focused analysis, as exem-
plified by the Zoom and Filter step of Shneiderman’s
Mantra.17 The counterfactual approach integrates well
with such analyses, and can be operationalized through
the creation of four different subsets: the included (IN)
subset, the excluded (EX) subset, the counterfactual
(CF) subset and the remainder (REM) subset.10 These
are defined as follows:

! IN: The data subset of interest, specified via cer-
tain inclusion criteria.

! EX: The rest of the dataset that has been
excluded based on the inclusion criteria. This
contains all data not included in IN.

! CF: Selected to include data points from EX
that are similar to those in IN across all dimen-
sions other than the inclusion criteria for IN.
The CF subset therefore aims to enable coun-
terfactual reasoning with respect to the data
points in IN, as the user can investigate alterna-
tive scenarios based on subsets that are similar to
IN except for the fact that the inclusion criteria
is not satisfied.

! REM: The remaining data points from EX that
are not included in CF. In other words, the
excluded data points that are also dissimilar
from IN.

These subsets are illustrated in Figure 1(a), (c) and
(e), and the method for selecting them for the
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purposes of the user study presented in this paper is
described in Stimuli.

Counterfactual visualization aims to provide com-
parisons of useful combinations of data subsets that
can provide additional information to improve reason-
ing about causal relationships in the data. Following
Kaul et al.,10 we refer to a counterfactual visualization
as a combination of three charts showing the IN, CF,
and REM subsets (Figure 1(f)). A traditional visualiza-
tion of a chart showing just the IN subset is treated as
a control group in our study (e.g. a scatter plot show-
ing positions of only data points in IN).

However, since counterfactual visualizations include
a comparison across multiple charts (IN+CF+
REM), a second control group with two charts show-
ing the IN and EX subsets (e.g. Figure 1(d)) is also
included in the study design reported in this paper.
The charts for this second control group display all
data points as is the case with counterfactual visualiza-
tion designs, but they only show the EX subset rather
than the similarity-driven subsets CF and REM.

The purpose of visualizing CF is to show the user
data points that are similar to IN across all dimensions
in the data other than the inclusion criteria for IN, thus
helping them confirm or deny any causal relationships
they may assume from looking at IN alone, based on
the inclusion criteria for IN. For example, in the stu-
dent test scores example from the introduction, if IN
contains students who ate lunch after taking a test, and
a visualization shows that they have low test scores,

users might assume a causal relationship between hun-
ger and test scores (see Figure 1(d)). In this case, CF
would contain students who ate lunch before taking
the test, but who are similar to IN in all other respects.
If the students in CF also have low test scores, that
would weaken the evidence for a causal link between
hunger and test scores (see Figure 1(f)). On the other
hand, if the students in CF have high test scores, that
strengthens the evidence of a causal relationship. The
EX and REM subsets contain individuals dissimilar to
IN across all dimensions of the data, providing further
context to help with causal inference. Figure 1(b), (d)
and (f) show visualizations for the student test scores
example.

Human cognitive processes and visual data
communication

One stated advantage of visualization is that it ‘‘forces
us to notice what we never expected to see’’18,19 within
datasets quickly and easily.20,21 Designers aim to pres-
ent information to users in the most effective way.
However, achieving these goals is not always easy, as
the efficiency of visualizations can be influenced by
various factors such as visual encodings, data type,
and even designers’ own biases.2,15

Existing research has examined various factors
impacting the comprehension and communication of
data in visualizations. Task-based analyses are a com-
mon approach, in which researchers explore and

Figure 1. The four types of data subsets used in our study, illustrated with the student test scores example from the
introduction. (a and b) are all data points in the dataset and corresponding traditional bar chart visualization of the
average test score for all students. When the students who ate launch after the test are selected as IN, (c and d) shows
the subset relations and visualizations between the IN and EX subsets, and (e and f) shows the relations and
visualizations between the IN, CF, and REM subsets.
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summarize how to design visualizations to aid under-
standing for specific tasks, such as low-level graphical
perception22,23 and color design.24,25 In addition to
task-based studies, researchers have also investigated
how to assess and model users’ understanding and
ability to communicate visualizations through evaluat-
ing study strategy design,26,27 and visual quality mea-
sures.28,29 Interdisciplinary insights have also been
proposed, such as Bae et al.’s assessment of how curi-
osity and play in physicalizations improve data visuali-
zation literacy in children’s education.30

Moreover, Adar and Lee13,15 built on previous stud-
ies to develop an affective learning objective framework
that aligns with Bloom and Krathwohl’s affective tax-
onomy.31 They conceptualized the visual data commu-
nication problem between designers and users as a
learning problem in a teacher-student relationship. By
doing so, they summarized insights in human cogni-
tion objectives that enable designers to describe their
visualizations’ goals and compare their communication
ability with users to those goals in a formalized way.

In this paper, we gain insights from prior insights on
human cognition objectives in visual data communica-
tion to counterfactual visualization. We aim to explore
how people comprehend counterfactuals in visualiza-
tions, taking into account the specific demands of
counterfactual reasoning.

Counterfactuals in visual analytics

Counterfactual reasoning is a fundamental concept in
statistical causal inference.6,7 It involves constructing
hypothetical scenarios that deviate from reality and
making inferences about what would happen under
those counterfactual conditions. For example, we
might ask, ‘‘What would the sales figures have been if
we had lowered our prices by 10% last year?’’ to assess
the causal relations between price and sales figures.
Counterfactual reasoning has been widely recognized
for its importance and has recently gained traction in
the deep learning community, where it has been
applied for tasks like model testing32 and narrative rea-
soning.33 While most of these studies are non-visual
and result in natural language output, we focus here
on the application of counterfactual reasoning in the
context of visual analytics.34

The vast majority of existing work on counterfactual
visualizations has focused on improving explanations for
and the interpretability of machine learning models. For
instance, the What-If Tool35 provides a basic visualiza-
tion of the nearest counterfactual point to the target data
point, ViCE9 uses counterfactuals to illustrate minimal
edits required to modify the output of the visualized
model, DECE8 enables the visualization of counterfac-
tual examples from different data subsets for decision-

making, and INTERACT 36 allows what-if analysis to
improve model explainability and prototyping under
industrial contexts. Although these studies present effec-
tive use cases for their systems, they focus primarily on
machine learning model explanations rather than pro-
viding insights for general-purpose visualizations.

The potential uses of counterfactuals are not limited
to the problem of explaining machine learning mod-
els.34 In recent work, Kaul et al.10 presented CoFact,
the first counterfactual-based interactive visualization
system designed for general datasets. CoFact enables
users to explore high-dimensional datasets via pairwise
visualization of features, prioritized based on associa-
tion with an outcome variable. Counterfactual visuali-
zations of selected data subsets provide additional
information about feature-to-outcome relationships.
Although this work provided initial findings on the use-
fulness of counterfactual visualization in the context of
an interactive visual analytics tool, there remains a gap
in understanding the impact of counterfactuals for
more general data visualization and communication.

Kaul et al.10 further assessed how the CoFact system
helped users learn feature-to-outcome relationships
from datasets. Their results provided preliminary evi-
dence that, with counterfactual visualization enabled,
users showed greater confidence in strong outcome
relationships and lower confidence in weak outcome
relationships. The post hoc analysis of interviews found
that CoFact could be useful for data exploration and
decision-making. However, their study mainly focused
on the proposed visual analytic system and lacked
insights for more general visualizations. Furthermore,
they did not assess the quality of causal inferences gen-
erated by users with the help of counterfactuals. The
study in this paper aims to address both of these issues.

Human visual perception of causality

Properly designed visualizations can help users avoid
making spurious assumptions about causal relation-
ships, leading to improved decision-making.37 Thus,
understanding how human perceptions of causal infer-
ence are processed and impacted by visualizations is
important for visualization research.

Xiong et al.11 explored how various graphs can cre-
ate an illusion of causality, that is, how they can lead
to incorrect interpretations of data. They introduced
some preliminary insights for visualization design,
such as causal inference results for text descriptions
and bar graphs being better than those for scatterplots.
Another crucial finding from their work is that the
data aggregation level of visualizations might be posi-
tively associated with users’ self-reported confidence
in causal inferences. However, their study focused on
assessing users’ self-reported ratings of pre-designed
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causality statements, thus lacking insights of users’
actual causal inference results.

Further, Kale et al.12 introduced an empirical study
for evaluating causal inferences via the causal support
model from mathematical psychology.38 Their results
indicate that user capability for causal inferences is
insensitive to sample size. They also reported that using
different visual encodings would not be significantly
better than tables for causal inference. However, their
second finding is inconsistent with most existing visual
causal analytics systems all of which indicate that visua-
lization would benefit causal inference.8–10,39–41 This
difference may be related to different design strategies
between the empirical study and interactive visual ana-
lytics systems, but still needs to be further studied.

Network visualizations such as Bayesian Belief
Networks42 are often employed for causal inference
tasks. However, a number of prior studies10–12,16 have
shown that users also draw causal inferences from
common visualizations including scatterplots, line
charts, and bar charts, even if they were not intended
to show causal relationships. Moreover, starting from
simplified and easy-to-understand tasks is a common
and important approach to exploring complex con-
cepts in empirical studies.43,44 For these reasons, our
study primarily focused on these three common visua-
lization types.

In this study, we aim to systematically evaluate and
model the impact and effectiveness of counterfactuals
in helping users understand data at different data com-
munication levels13 for general-purpose charts, build-
ing upon the previous definition of counterfactual
visualization.10 Compared to existing studies, we pri-
marily focus on evaluating the quality of users’ causal
inference results instead of just assessing self-reported
confidence or preference levels, and discuss the design
space of how to use and understand counterfactuals in
visualization. By doing so, we intend to provide empiri-
cal evidence supporting the use of counterfactuals in
visual analytics.

Modeling causality comprehension

Existing empirical studies on causality in visualiza-
tion11,12 have not explored the perceptual data commu-
nication process underlying visual causal inference. To
advance our understanding of how counterfactuals can
enhance users’ comprehension of data, we propose a
preliminary causality comprehension model for visuali-
zation scenarios. The proposed model aims to decom-
pose this process and shed light on the potential benefits
of using counterfactuals in data communication.

According to statistical causal inference theory,6,7

causalities can be classified into three levels:

association, intervention, and counterfactual. In this
paper, we propose a model of users’ progressive under-
standing of causalities in visualization by connecting
these three causal inference levels with four important
cognitive objectives that occur when users communi-
cate with visualizations13,15,23,45– Recognize, Understand,
Analyze, and Recall – resulting in four comprehension
levels:

! Association ! Recognize: At the preliminary
level of causal inference, association involves
identifying statistical correlations between vari-
ables,6,7 for example, ‘‘what does this survey tell
us about the election results?’’ Such correlations
can be directly expressed in a simple chart, for
example, showing the monotonic relation of
two axes in a scatterplot. Users can typically
identify these correlations by directly reading a
chart. This ability is closely related to the recog-
nize process in human cognition.

! Intervention ! Understand: The second
level, intervention, involves manipulating one
variable to observe the effect on another variable
in a dataset, for example, ‘‘will my headache be
cured if I take aspirin?’’ This level requires users
to interpret the meaning of variables, summarize
and compare their trends, and make relevant
predictions. These aspects are expressed as the
cognitive ability to understand.

! Counterfactual ! Analyze: The highest cau-
sal inference level, counterfactual, involves pre-
dicting what would have happened if a different
intervention had been made in the past, for
example, ‘‘what if I hadn’t gone to college in the
past?’’ Counterfactual thinking involves thinking
about the impact of other related variables in
this dataset. It is more complex than interven-
tion and requires distinguishing the interaction
effects of different variables, integrating cross-
variable insights, and deconstructing their
impact across the whole dataset. We therefore
connect it to an advanced cognitive ability in
visual data communication – analyze.

! Counterfactual ! Recall: In addition to the
above connections, we include the cognitive
ability of recall, which describes the memorabil-
ity of visual communication and is a component
complementary to recognize.13 We therefore also
connect counterfactual with recall. We placed it as
the last step of causality comprehension because
recall appears in the final stage of visual under-
standing in general.45,46

In summary, we define a preliminary model of the
visual causality comprehension process of human
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perception as a progression from recognizing, to
understanding, to analyzing, and finally recalling,
connecting the theory of causal inference and users’
cognitive processes of visual data communication.
Figure 2 illustrates an overall picture of our model.

Methodology

To assess how counterfactual visualizations impact
people’s ability to reason about and comprehend caus-
ality in real-world datasets, we ran a user study that
was approved by the UNC Institutional Review Board.
This study enabled us to characterize the effect of
counterfactuals in different types of static visualiza-
tions, including to what extent they help users infer
causal relationships. The datasets and example infra-
structure applied in our study are available in the
Supplemental Material.

Participants

We recruited 32 participants (19 male and 13 female,
based on a power analysis47 of pilot studies) via
recruitment flyers, department mailing lists, and con-
tacts within professional networks. All participants
were at least 18 years old, reported normal or cor-
rected to normal vision, and were either pursuing or
had earned a university degree. Participants were from
a broad spectrum of academic and professional
domains. Our experiment took 45 min on average,
and each of the participants was compensated $10 for
their time.

Hypotheses

Based on the proposed causality comprehension
model, we hypothesized that:

H1: Counterfactuals would not hurt people’s
ability to recognize features of data.

As the most basic level of communication, the
recognizing process always appears in low-level visual
tasks.48 Visual complexities and design choices within
a chart could impact its performance.49,50 However,
previous work suggests that counterfactual visualiza-
tions can be integrated into a visual analytics system
without decreasing system usability.10 In addition, we
chose a juxtaposition visual comparison model that has
been employed by many existing studies51–53 to main-
tain a low visual complexity for visualizations of each
data subset (Figure 3(b) and (c)).

H2: Counterfactuals would help people’s
understanding of datasets.

In existing visual analytic systems,8–10 counterfac-
tuals are shown to be effective in understanding com-
plex algorithms and judging feature-to-outcome
relationships. We expect that counterfactuals will also
be beneficial to help understand data using general-
purpose charts.

H3: Counterfactuals would help people better
find and analyze causal relationships in
datasets.

An obvious advantage of counterfactuals is to make
apparent underlying causalities in data.7,12 We expect
their impact to be similar to that of insight explora-
tions which also aim at finding hidden relations in
data. Insight exploration methods have been demon-
strated to be useful in deeper data analysis.54–56 Such
findings indicate that we may see similar advances
with counterfactuals, that is, improved analyses and
causal inferences.

H4: Counterfactuals would improve the per-
formance of recalling data.

Perceptual studies demonstrate that additional infor-
mation and encodings can help people better commu-
nicate and recall data.45 Counterfactual visualizations
provide extra information to users, and we anticipate
that such counterfactual information will help people
remember and recall findings from data more easily.

Figure 2. Framework of the proposed causality
comprehension model. The left dashed box shows the
causal inference theory,6,7 connected to cognitive
objectives in visual data communication on the right.
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Stimuli

Our stimuli were created from commonly used real-
world multi-dimensional datasets found in prior
studies, such as the UCI Credit Card dataset (https://
archive.ics.uci.edu/ml/datasets/default+ of+ credit+
card+ clients)57 and the Census Income dataset (https://
archive.ics.uci.edu/ml/datasets/adult).58 We followed
the process of the CoFact system10 for generating the
data subsets for visualization, as it is currently the only
counterfactual-based system for exploratory visual
analysis.

We generated the data subsets as follows:

! Picking an included (IN) data subset based on
the variables of top-recommended insights com-
puted by a dataset insight exploration algo-
rithm,54 for example, all individuals with one
child from a family-income dataset. This selec-
tion also results in an excluded (EX) data subset
(individuals that do not have one child).

! Creating the counterfactual (CF) data subset
from EX following previous work10 by (i) com-
puting the Euclidean distance from each point

in EX to each point in IN, and (ii) selecting the
n points from EX that have the shortest total
distance, where n= jIN j.

! Denoting the remaining data (neither in IN nor
CF) as the remainder (REM) data subset,
resulting in four subsets (IN, EX, CF, and
REM) for each dataset (See Figure 1).

The stimuli were separated into three groups con-
taining different subsets to be visualized:

! IN group – IN subset only (e.g. Figure 3(a)),
! EX group – IN+EX subsets (e.g. Figure 3(b)),

and
! CF group – IN+CF+REM subsets (e.g.

Figure 3(c)).

We chose three common visualization types to dis-
play the data subsets: line charts (for time-series data),
bar charts (for categorical data), and scatterplots (for
continuous data). In total, we generated 27 groups of
visualizations and employed them in a within-subject
study. Figure 3 shows examples of the three groups of
data subset visualizations with different chart types.

Figure 3. Three examples of data subset visualizations seen by participants in the user study: (a) IN subset scatterplot
visualization of the Health Insurance dataset, showing only data in the IN subset. (b) EX subset line charts visualization of
the Census Income dataset, showing data in both the IN and EX subsets. (c) CF subset bar charts visualization of the UCI
Credit Card dataset, showing data in the IN, CF, and REM subsets.
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Tasks

We derived four tasks based on our causality compre-
hension model:

T1: Describe anything of interest noticed by look-
ing at the current visualization.
T2: Predict changes in a variable if a different vari-
able were to be manipulated.
T3: Make broader predictions about what will hap-
pen if a particular variable from the current chart
were to be changed or replaced with another one.
T4: Report recall of tested visualizations.

Participants were required to answer three ques-
tions for each task from T1 to T3, and were shown
each subset combination group (as introduced in
Stimuli) once for each task. For questions asked in
T2, we hid the last 5% of the dataset to serve as the
ground truth, following the approximate percentage
for the validation set in the Microsoft COCO data-
set,59 to use as validation for users’ answers. Table 1
shows examples of specific questions asked for the dif-
ferent tasks.

Procedure

Our experiment consisted of five phases: (1) informed
consent, (2) term introduction and task description,
(3) formal study for T1-T3, (4) post-study feedback
and preference questionnaire, and (5) answering the
recall question for T4.

Participants were shown and agreed to the informed
consent with our IRB protocol at the beginning of the
study. We then explained any unfamiliar terms and
provided examples appropriate for a general audience
– we explained the definition of different subsets, pro-
vided examples of counterfactuals with narrative expla-
nation (similar to examples in Counterfactuals in
Visual Analytics), and encouraged users to imagine

hypothetical assumptions during the study – before
introducing the required tasks in the study.

After completing the study introduction, each parti-
cipant was required to view visualizations and answer
questions for tasks T1-T3 in a random order, while
avoiding back-to-back questions for the same task, to
account for learning effects. Participants provided
their answers in a textbox. In addition, they provided
their confidence for each answer via a 5-point Likert
scale. During the study, each participant completed
three questions for each task – 13 IN group, 13EX
group, and 13CF group – and was shown a particu-
lar data set+ visualization group combination once.
See Stimuli for definitions of the three subset groups.

After completing T1-T3, each participant com-
pleted a questionnaire reporting their experience
including usefulness, confidence, preference, and any
additional feedback. We extended the feedback session
by 10 min by chatting with participants and finally
asked them to report their recall of any information
remembered from the viewed visualizations. The recall
list was ranked from the most memorable to the least
memorable by each user.

Result encoding

We collected participants’ thinking and completion
time, verbal and textual responses, and reported confi-
dence in each question. For natural language input, we
encoded them as quantities using axial coding60 (see
Table 2 for details about the evaluation metrics). We
received 320 responses in total, with 288 for tasks T1
to T3, and 32 responses for task T4. The responses
were encoded into four different types following our
proposed tasks and the model defined in Modeling
Causality Comprehension.

For task T1, we extracted the statistical descriptions
and findings from reported responses, computed the
number of findings in each response, and verified the
correctness of the findings. Note that since T1 was
focused on the ability to recognize, users were
requested to describe findings without inferring any
correlations between variables. For T2, we collected

Table 1. Examples of questions per task.

Task Example question

T1 Look at the charts and describe anything you can
recognize from the visualization.

T2 What will the remaining loan value change
(increase, decrease, or remain similar) if
people’s credit limits become higher?

T3 What will the data change in the above-shown
chart if people’s marital status changes to
divorce? For example, think about average
values, trends, and distributions.

T4 Describe visualizations that you can still
remember.

Table 2. Evaluation metrics for each task.

Task Evaluation metric

T1 Number of findings, correctness rate
T2 Correctness rate
T3 Correctness rate, relative impact ratio

(see Analyzing Causality for its mathematical
definition)

T4 Number of recalled datasets
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the prediction results and validated their correctness
based on the remaining 5% of the dataset, as described
in Tasks. For T3, we collected findings and predictions
from users’ responses and computed the average cor-
rectness. Meanwhile, for both T2 and T3, we also col-
lected the evidence or reason to support the answer to
each question if it was reported. Finally, we recorded
the number of recalled datasets per visualized subset
type from each response for T4. Table 2 describes the
selected evaluation metrics for each task.

Results

We present our analysis methodologies, statistical anal-
ysis, and significant results based on the independent
factors considered in this paper (see Analysis) using
both traditional inferential measures and 95% boot-
strapped confidence intervals (6 95% CI) for fair sta-
tistical communication.61

Analysis

The overall goals of our analysis were to test the pro-
posed hypotheses and to validate related findings from
previous studies. To achieve these goals, we analyzed
performance using the following quantitative evalua-
tion metrics: completion time, reported confidence,
number of reported findings or variables, correctness
rate, and recall rate. For each task, we assessed the
resulting data using a 3 (visualized subset groups: IN,
EX, and CF) factors ANOVA, where the chart types,
inter-participant differences, and trial order are treated
as random covariates, with Tukey’s honestly significant
difference test (Tukey’s HSD) with a= 0:05 and
Bonferroni correction as post hoc analysis. Further, we
explored details of participants’ qualitative responses
to find additional potential insights into the effects of
counterfactual visualizations.

Recognizing association

Our results for task T1 support H1: we found that
additional visualized subsets do not have an obvious
negative impact on users’ recognition ability.

During this task, users were asked to focus on find-
ings from the data shown in the IN subset chart. Our
analysis shows that there is no significant impact
between the visualized subsets and users’ recognition
results for the number of findings and correctness rate.
We found users always responded to similar findings
for the same dataset. For example, in the CO2 emis-
sion dataset,62 one user answered ‘‘The CO2 emission
goes higher and then reaches peak in 10-ish years and goes
down.’’ after seeing the IN group and another user
answered ‘‘The emissions subsequent climb through the

end point of 2010, and then slowly go back down.’’ after
seeing the CF group. Additionally, the overall correct-
ness rate is near 100% regardless of visualization type,
as shown in Figure 4(a).

Understanding intervention

Our results for T2 may also support H2: counterfac-
tual visualizations could improve users’ interpretation
of interventions behind data variables.

No overall significant difference was found between
visualized subsets for users’ correctness rate when pre-
dicting changes to a variable after manipulating another
variable. Figure 4(b) shows the correctness rate of users’
predictions based on subset visualization type. Although
the overall statistical significance was not found at the
0.05 level, a higher average correctness rate for the CF
group (IN+CF+REM) was observed visually, as was
a larger variance for the EX group.

We therefore further explored the statistical signifi-
cance at a more fine-grained level. We found a signifi-
cant difference p= 0:01,h2 = 0:07ð Þ when only
comparing the results from the IN and CF groups. It
could suggest that counterfactuals may have the
potential to communicate variable relations more
effectively for users by comparing against the IN sub-
set, whereas the EX subset may introduce more ran-
dom effects to such judgments. Further study is
necessary to confirm or deny these relationships,
however.

Analyzing causality

Our results for T3 support H3: we found that counter-
factual visualizations significantly improved users’
analysis of causalities.

Our analysis reveals a significant impact between
visualized subsets and users’ overall correctness rate of

Figure 4. The box plots show correctness rates for each
visualized subset group for tasks T1 (a) and T2 (b).
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causality results F(2, 24)= 8:71, p= 0:001,h2 = 0:12ð Þ.
Other than the correctness rate, we further evaluated
the results using a relative impact ratio; the relative
impact ratio r for user i for a specific question x is
defined as:

ri(x)=
Numi(x)

max
j2users

(Numj(x))
, ð1Þ

where Numi(x) is the number of correct predictions in
user i’s response and max

j2users
(Numj(x)) refers to the maxi-

mum number of correct predictions made among
every user that answered this question.

Figure 5 shows the results for correctness rate and
relative impact ratio per visualized subset group.
Counterfactual visualizations achieved the highest
average correctness (Figure 5(a)) and relative impact
ratio (Figure 5(b)). The distribution of the CF group’s
results is also more compact compared to the EX
group, implying that counterfactuals may be able to
improve user’s causal inference, whereas the EX group
may in fact be a hindrance (similar to the results of T2
in Figure 4). Although we do not specifically test these
hypotheses in our study, our results could provide gui-
dance on which combinations of data subsets to pres-
ent to users.

Recall

Our results for task T4 support H4: we found that
counterfactual visualizations led to better recall rates
for users.

We recognized all responses linked to a specific
dataset as a successful recall; descriptions that could
not be associated with a specific dataset were not
recognized as a recall. For example, one user said ‘‘I
remember poor countries with life expectancy vs money,’’
which was recognized as a recall because it could be
directly linked to the life expectancy dataset,63 while
another user said ‘‘I remember the scatterplots which are
easiest to use when visualizing data,’’ which we did not
recognize as a recall because it could not be associated
with a specific dataset.

We found a significant impact between visualized
subsets and users’ recall of datasets F(2, 24)=ð
1:12, p\:0001,h2 = 0:36Þ. Figure 6 shows the average
recalled numbers of datasets per visualized subset
group.

As shown in Figure 6, the CF (avg. 1.78 per user)
group had a higher average number of recalls, followed
by EX (avg. 0.69 per user) and IN (avg. 0.38 per
user). This finding could be due to counterfactuals
causing users to perform a more careful causal analysis
of data.10 The effect could also be due to the

additional information (for both EX and CF groups),
which is in line with findings from Borkin et al.45

Exploratory analysis

To better analyze other potential impacts in our study,
we conducted an exploratory analysis using Tukeys
HSD with Bonferroni correction of the other evalua-
tion metrics and random covariates. Here we report
significant results from this analysis.

First, we report that counterfactuals led to an
impact on the response time for users. Our results
reveal significant impacts on tasks T2 F(2, 24)=ð
29:56, p\:0001,h2 = 0:51Þ and T3 F(2, 24)= 36:44,ð
p\:0001,h2 = 0:47Þ of visualized subset types on the
response time. Table 3 provides the average response
time of T2 and T3 for the three visualized subset groups.
This finding indicates that visualizing counterfactuals

Figure 6. The violin plots show the numbers of recalls per
visualized subset group type.

Figure 5. The box plots show correctness rates (a) and
relative impact ratios (b) of each visualized subset group
for task T3.
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may lead to longer response and analysis times for users
in reading charts. We assume this is because the CF
group introduced additional charts and information
which require users to think deeply and more carefully
compared to the original IN group.10 However, future
work should be conducted more systematically to assess
this hypothesis.

In addition, we found most of the users’ reported
confidences are at a moderate level, but they varied for
both visualized subsets and chart types. The results in
Figure 7(a) and (b) show users’ average confidence
per visualized subset group when answering T2 and
T3 and reveal that the CF group got the highest aver-
age confidence compared to the other two groups for
both tasks. This finding is consistent with the above
analysis of these tasks where we found counterfactual
visualizations would lead to better performance in T2
and T3. It also indicates users’ average confidence for

T2 is higher than T3 which is consistent with the pro-
posed causality comprehension model, implying that
T3 requires a higher level of comprehension than T2
(Modeling Causality Comprehension). However, our
users also provided additional feedback about how
counterfactuals may sometimes reduce their original
confidence, which is consistent with.10 See User
Feedback for details.

Figure 7(c) and (d) indicate that users’ confidence
for both T2 and T3 is lower for scatterplots compared
to bar and line charts. This finding is consistent with
previous work investigating causality illusions, which
found that users provided weaker causality ratings for
scatterplots than bar charts.11 However, this finding
shows that high user confidence did not necessarily
indicate improved performance and this phenomenon
needs to be studied in more detail.

To better explore the inverse relationship between
users’ confidence and performance, we further com-
puted and evaluated correct-confidence and incorrect-
confidence to measure how users’ confidence aligns
with their correct and incorrect responses. The
correct-confidence is users’ confidence in correct
responses while incorrect-confidence refers to confi-
dence in incorrect responses, as shown in Figure 8.
The results indicate that the differences in correct-

Table 3. The average response time (seconds) per
visualized subset group type for T2 and T3.

Visualized subset group IN EX CF

Response Time for T2 (s) 72 117 155
Response Time for T3 (s) 131 170 232

Figure 7. The violin plots show the confidence (reported on a 5-point Likert scale) per visualized subset group for T2 (a)
and T3 (b) and per chart type for T2 (c) and T3 (d).
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confidence in the three chart types do not vary much
(see Figure 8(a) and (b)). However, the incorrect-
confidence of scatterplots is noticeably lower than the
other two chart types (see Figure 8(c) and (d)). This
finding reveals that the relatively low confidence of
scatterplots might be explained by correctly having
low confidence in incorrect causal inferences. Thus
scatterplots may be positively correlated to the
strength of causal evidence behind data, that is, users
would have higher confidence for more significant
causal evidence and lower confidence for less signifi-
cant causal evidence. These impacts may also be
related to the aggregation level of visual design11

which was not considered in our study. Future work
should explore these differences in more detail.

User feedback

In addition, we reported a crucial insight into decision-
making uncertainty from participants’ feedback. By
summarizing participant feedback regarding chart-
reading strategies, most users reported that counter-
factuals were helpful in finding implicit causal relation-
ships and reasoning about hypothetical scenarios.

However, we also found potential limitations to
counterfactuals.

Figure 9 shows a conceptual model illustrating how
a number of participants described their decision-
making strategy and process. During the study, parti-
cipants might generate multiple original inferences
when looking at the IN chart, where they cannot verify
which is correct, but may make an assumption or have
a preference among these inferences. In most cases,
when looking at the CF chart, they are then able to
confirm or reject the original assumptions. However,
users felt that sometimes the CF chart might ‘‘muddy
the waters,’’ adding additional information that could
be difficult to reconcile with their previous assump-
tions, and potentially leading to confusion and lack of
confidence. Additionally, users also mentioned that
the current study lacks explorations of the whole data-
set, due to visualizing sets of static charts, which made
their decision-making more difficult.

This situation is similar to the impact of users’
decision-making uncertainty found in previous
research,64–66 while an ideal causal inference process
should be able to convey the most correct possible
decision and reduce users’ uncertainty. The proposed

Figure 8. The violin plots show the correct-confidence per chart type for T2 (a) and T3 (b) and the incorrect-confidence
per chart type for T2 (c) and T3 (d).
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conceptual model could also be helpful to explain how
counterfactuals can counter Simpson’s paradox in
one-dimensional datasets,67 in which case users may
have only one inference initially, and visualizing coun-
terfactuals can counter the inference that a paradox
exists. However, since the evidence for causality is
uncertain, increasing uncertainty may also be desir-
able. Thus, further analysis is necessary to understand
the cognitive processes involved in decision-making in
the context of uncertainty and causal inference.

In summary, our study results offer evidence largely
confirming our proposed hypotheses, and provide pre-
liminary findings of the impact of visualizing counter-
factuals, thus providing insights to support the
proposed causality comprehension model in Modeling
Causality Comprehension.

Discussion

Our study primarily evaluated the impact of counter-
factual visualizations in helping people understand
data at different communication levels. Our results
offer a new perspective on findings from prior studies
and provide preliminary design guidance and action-
able insights for future research.

Critical reflection within the context of prior
studies

Our study demonstrates that integrating counterfac-
tual information with visualization can significantly
improve users’ interpretation of complex datasets,

enabling them to operate at a higher data communica-
tion and causal inference level. Next, we discuss the
connections between our reported results and insights
from prior studies.

Our first major finding reported that counterfac-
tuals do no harm with respect to users’ ability to
recognize relevant features in visualizations. This is
consistent with Kaul et al.’s study10 where they
showed that counterfactuals neither decreased the per-
formance of a visual analytic system nor did they nega-
tively impact user experience. Similarly, Kale et al.12

did not find obvious differences in performance when
conducting causal inferences with different charts.

Further, our results demonstrate that counterfac-
tuals can significantly help people understand associa-
tions and analyze causalities within data. This finding
can be connected with some related insights. Kaul
et al.10 found that counterfactual visualizations signifi-
cantly impact users’ inferences drawn from charts.
Our results confirm such beneficial impacts. Xiong
et al.11 found that for the same dataset, different visua-
lization choices could result in differences in users’
causal inferences, and that some visualizations could
trigger stronger causal relations. Our results confirm
that cognitive reasoning affordances vary for both
visualized subsets and chart types, and visualizing
counterfactuals can improve users’ causal reasoning.

Additionally, our findings indicate that visualizing
counterfactuals can help with dataset recall. By treat-
ing counterfactual information as additions to the
original visualization, this finding could be consistent
with the guidelines from Borkin et al.,45 in which they
found that additional encodings can improve the effec-
tiveness of visual data communication.

We also reported specific insights about task com-
pletion time, chart types, and users’ confidence. Our
finding about completion time confirmed the previous
assumption that counterfactual visualizations could be
more complex for users to understand.10 This finding
also fits with traditional graphical perception prob-
lems,19,22,68 where users spend more time understand-
ing as chart complexity increases. However, this may
not necessarily be a negative if taking a longer time
leads to more correct inferences, as indicated by exist-
ing work on cognitive load and memorability.69

Finally, our results also suggest that there may be
performance differences among chart types. Overall,
scatterplots may afford improved causal inferences
versus bar or line charts. This finding fits with previ-
ous studies showing that scatterplots may better con-
vey causal relationships in datasets,16 and can more
effectively communicate correlations.70 Combined
with the results of both performance and confidence,
our results additionally show that compared to bar
and line charts, users’ confidence with scatterplots was

Figure 9. Proposed uncertainty-aware decision-making
flow based on participants’ reports. The top arrow shows
that users may make three inferences A, B, and C when
looking at the IN chart, but may not immediately
determine which one is the most likely. The bottom arrow
indicates that after looking at the CF charts, it could be
possible that the strength of users’ inference B is
increased while inferences A and C are decreased.
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more closely aligned with the strength of causal evi-
dence (i.e. positively correlated to their causal infer-
ence performance).

Some existing studies, however, also show that scat-
terplots might convey more uncertainty and be sensi-
tive to different visual encodings,71,72 and uncertainty
may lead to poor decision-making performances.65,73

Similarly, users’ feedback reported in User Feedback
provided some possibilities about how CF could
impact uncertainty in their decision-making. Our
study was not designed to investigate the impact of
uncertainties in decision-making, however, so this
relationship needs to be further explored.

Design implications for counterfactual
visualizations

Compared to previous work,10 our results go farther
in providing preliminary insights about how visualizing
counterfactuals effectively can help with data interpre-
tation. Additionally, we extended previous work on
visual causal inference,11,12 connecting causal infer-
ence to multiple data communication levels. In this
way, our results indicate preliminary guidelines for
how to use counterfactuals:

! Visualize counterfactual subsets to convey causalities
in datasets.

Our study indicates that people can infer causal rela-
tions using counterfactual subset visualization, achiev-
ing better performance than showing the IN chart only,
as described in Results. In real-world applications, how-
ever, counterfactuals have mostly been conveyed via
natural language.74 We therefore recommend that
designers consider showing counterfactual subsets of
data simultaneously with the originally designed chart,
if their design objectives include helping their audience
find important causalities in the data.

! Use less scalable visualization types to help convey
causality.

As shown in Exploratory Analysis, our exploratory
analysis on chart types suggests that there may be evi-
dence that the scalability of charts might impact causal
inference. Combined with prior similar findings about
the impact of aggregation levels11 and rankings,70 we
anticipate that users might be able to find more causal-
ities in less scalable chart types. Thus, we would rec-
ommend designers consider using charts with less
scalability if they’re unsure about the visualization
choices for datasets containing complex causalities.
Specifically, our results in Exploratory Analysis

indicate that scatterplots can be positively correlated
to the strength of causal evidence within datasets.

Study limitations

Our study was able to evaluate the impact of visualiz-
ing counterfactuals for visual data communication
using static charts. Some limitations of the study are
discussed below.

First, the hypotheses and task designs of our study
are primarily based on the proposed causality compre-
hension model. The study results provide some support
for this model, but further research is required to
explore how broadly the preliminary model can be
applied across a wider range of scenarios. For example,
although we have connected important insights from
causal inference and human cognition in visual data
communication, other possible impact factors also exist,
such as how the potential uncertainty within visualizing
counterfactuals will impact users’ decision-making.75,76

Second, we focused primarily on analyzing whether
counterfactuals can help, but do not address what con-
stitutes a ‘‘good’’ counterfactual subset. Different
aggregations and selections of data subsets may signifi-
cantly impact the performance77,78 and introduce
potential bias79–82 in exploratory analysis. We adopted
the basic counterfactual generation method from pre-
vious work,10 and did not explore any parameter
adjustments for creating the counterfactual subset,
thus limiting our findings with respect to the impact of
visualizing different counterfactual subsets.

Meanwhile, our study employed the IN chart as a
typical visualization, along with counterfactual (IN+
CF+REM) and control (IN+EX) groups as compre-
hensive views of the whole dataset. However, these
visualizations show different numbers of charts which
may also impact users’ perception results. Additionally,
we studied only three basic static visualization types:
bar, line, and scatterplot charts. We did not evaluate
user understanding of more complex visual designs,
such as interactive dashboards and graph representa-
tions such as Bayesian Belief Networks42 that aim to
capture multidimensional probabilistic causal relations.
Such interfaces and data representations can be challen-
ging to evaluate,83,84 and can include different chart
aggregation levels and multidimensional relations, which
might complicate the analysis of perceived causality.11

Additionally, our evaluation employs measures like
correctness rate and a number of findings that are usu-
ally applied in low-level task evaluation. However, a
limitation common to our work and most existing
studies is the lack of a ground truth of human percep-
tion of causal relations among variables within data-
sets, which makes it unclear whether users really judge
correlation or causation. Unlike most traditional
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visualization tasks such as identifying the number of
classes, a user’s causal inference is subjective, which
means even for the same pair of variables, different
people may have different inference criteria. In addi-
tion, user performance for causal inference could also
be evaluated by higher-level measures. For example,
the designers’ objectives would significantly impact
users’ comprehension, such as information esthetics
and clarity.85 Further, many other aspects such as
individual cognitive factors and personality psychology
would have a crucial influence on high-level visual
understanding.86 In addition, our participant recruit-
ment was biased toward users attending university,
who may be more familiar with statistics and visualiza-
tions than a more general population.

Moreover, Kale et al.12 reported users’ causal infer-
ences with common visualizations do not perform sig-
nificantly better than those visualizing textual
contingency tables. However, our work and several
existing visual analytics systems8–10,39–41 show that
visualization of counterfactual and causal relations
would benefit users’ interpretation and analyses of
data. We anticipate that this finding could be impacted
by the types of chosen charts and the representation of
causal information. It might also be related to the scal-
ability of charts, where scatterplots usually are less
scalable and can represent lower variance.70,87,88

However, this difference definitely needs to be further
studied to get a more concrete answer.

Future opportunities

Based on the aforementioned limitations, it is neces-
sary to assess counterfactual visualizations with more
evaluation. This includes understanding metrics such
as decision-making uncertainty (as shown in User
Feedback), a wider variety of, and control over, coun-
terfactual subset selection criteria, and more complex
visual encodings and chart designs such as network-
based representations. We plan to conduct further
experiments to understand how different parameters
for specifying counterfactual subsets would impact
users’ interpretations. We hope to design different
counterfactual visualization techniques that can the
show same amount of data samples but with different
numbers of charts to further explore the impact of the
number of charts on users’ perceptions in the future.
We also would like to design more reliable evaluation
measures, considering designers’ objectives, and
extend our study to include a broader population.

In addition, to provide clearer justifications for par-
ticipants’ interpretations of causal relations within
datasets, we further plan to conduct a large-scale study
judging common inference results across diverse popu-
lations for causal inference questions. Results from

such studies could potentially provide a ground truth
corpus of causal relations of data variables that would
not only benefit counterfactual studies, but also work
as baselines for more diverse causality-related empiri-
cal experiments.

Further, according to our current results, it would
be reasonable to assume that visualizing counterfactuals
can significantly benefit people’s ability to conduct
exploratory data analysis. As a consequence, we hope
to explore how users will use and interpret counterfac-
tuals and whether they fit our causality comprehension
model for exploratory tasks in interactive visualization
systems. Additionally, our study focused on how users
can find causalities, but lacked an understanding of
how counterfactuals can guard against making false
assumptions of causality, although this is hinted at by
the incorrect-confidence result for scatterplots in
Exploratory Analysis. Future work should explore this
area of counterfactual visualization more thoroughly.

Our results suggest that low-level data communica-
tion is not obviously impacted by counterfactuals, as
all subset visualization groups achieved an overall high
accuracy rate in T1. However, existing findings indi-
cate that demographics can influence the accuracy of
understanding associations, such as in climate change
visual analytics.89 Future work could further investi-
gate the impact of users’ demographics in understand-
ing counterfactuals for more complicated tasks with
lower overall correctness rates.

In addition, visualization recommendation and
insight characterization methods90–92 have already been
a fruitful and insightful research topic. However, unlike
with NLP models, it remains difficult to apply those
methods in real-world applications.93,94 In the future,
we would like to extend counterfactuals into more com-
plex application scenarios, distil empirically supported
counterfactual generation methods, and explore the pos-
sibilities for applying counterfactuals in visualization rec-
ommendations to provide causality-enhanced insights.

Conclusion

In this paper, we proposed a method to model the com-
prehension of causalities from visualizations by combin-
ing causal inference theory and cognitive processes of
the visual data communication framework. We explored
how counterfactuals impacted people’s ability to under-
stand data at different levels for static visualizations via
a user study. Our results indicate that people can inter-
pret and infer relations with counterfactuals. We provide
preliminary evidence that visualizing counterfactuals can
improve performance in understanding interventions,
analyzing causalities, and recalling features of datasets.
Based on the results evaluation, we discussed the
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connections and reflections between our results and
prior findings to explore more insights. We further
derived design implications for using counterfactuals in
visualizations. We believe our findings could benefit a
broad range of visual comprehension demands and
tasks, and we hope our work will inform further studies
to explore further detailed guidance on how to use and
interpret counterfactuals.
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