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A framework to improve causal
inferences from visualizations
using counterfactual operators

Arran Zeyu Wang'®, David Borland?® and David Gotz>

Abstract

Exploratory data analysis of high-dimensional datasets is a crucial task for which visual analytics can be
especially useful. However, the ad hoc nature of exploratory analysis can also lead users to draw incorrect
causal inferences. Previous studies have demonstrated this risk and shown that integrating counterfactual
concepts within visual analytics systems can improve users’ understanding of visualized data. However, effec-
tively leveraging counterfactual concepts can be challenging, with only bespoke implementations found in
prior work. Moreover, it can require expertise in both counterfactual subset analysis and visualization to
implement the functionalities practically. This paper aims to help address these challenges in two ways.
First, we propose an operator-based conceptual model for the use of counterfactuals that is informed by prior
work in visualization research. Second, we contribute the Co-op library, an open and extensible reference
implementation of this model that can support the integration of counterfactual-based subset computation
with visualization systems. To evaluate the effectiveness and generalizability of Co-op, the library was used to
construct two different visual analytics systems each supporting a distinct user workflow. In addition, expert
interviews were conducted with professional visual analytics researchers and engineers to gain more insights
regarding how Co-op could be leveraged. Finally, informed in part by these evaluation results, we distil a set
of key design implications for effectively leveraging counterfactuals in future visualization systems.
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signals within the data. This last step can be challen-
ging, however, as it can be difficult to distinguish
between visual patterns that are consequential for a

Introduction

Visual analytics systems have had a significant impact
across numerous application domains, ranging from
healthcare! to event sequence analysis® to decision-
making.? Building on the rich history of visualization

and exploratory data analysis,®> a primary goal of
many visual analytics systems is the exploration of data
to facilitate pattern discovery and generate new
insights. Such systems aim to enable users to quickly
generate new views of data and to explore the relation-
ships between variables in ad hoc ways. This can result
in many different visualizations of various data sub-
sets, each quickly created as part of the exploratory
analysis process.®® Users view these visual depictions
in an attempt to identify and interpret meaningful
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given task from those that might result only from noise
or spurious correlations.

This challenge becomes even more difficult with
the increasing complexity of large-scale datasets and
visual designs which can make it even more difficult
for users to properly comprehend and interpret the
views created within visualizations and visual analytics
systems.” !!  Substantial efforts from visualization
researchers have thus been made to find new
approaches that can aid people in better understand-
ing data and avoiding false findings.'*!> These efforts
include research that has studied how people draw
potentially unsupported causal conclusions about
visualized data relationships, along with proposed
methods to mitigate this effect.!* Despite these
efforts, however, the creation of visualization tools that
can support the reliable identification of causal rela-
tionships remains a significant and critical challenge.'’

This challenge is closely related to the topic of cau-
sal inference as studied within the statistics commu-
nity. One core theory in this area of statistics is
counterfactual reasoming,'® an approach to thinking
about causation from the perspective of considering
hypothetical scenarios (i.e. counterfactual scenarios)
in which alternative conditions that differ from an
original observation were to have occurred. For exam-
ple, an analysis of data related to students’ academic
performance without adequate sleep might consider
the counterfactual scenario in which similar students
had in fact slept the fully recommended amount of
time. This approach provides the conceptual basis for
analysts to reason about causal relationships between
factors by isolating and examining “what-if” condi-
tions for specific variables.

Counterfactual approaches have been more broadly
adopted beyond the statistics community in recent
years as data-driven applications have become more
ubiquitous. One such domain is the burgeoning
machine learning community, which has demon-
strated several useful applications of counterfactual
concepts including model fairness'” and evaluations.'®

Within the visualization community, recent studies
have assessed the impact of visualization on the quality
of causal inferences'®'® and shown that integrating
counterfactuals with visualizations and visual analytics
systems can improve users’ understanding of causal
relationships and overall data interpretation.®?° 22
These approaches have shown great promise in studies
of users’ analytical behavior. However, they have
depended upon bespoke implementations and proof-
of-concept prototypes that make wider adoption of
these techniques more difficult.?? Specifically, adopt-
ing counterfactual techniques is reliant on developers
to design the data model, workflows, and algorithmic

modules required to integrate these concepts within
an exploratory visualization environment.?

Motivated by lessons learned from prior studies of
counterfactual visualizations such as CoFact,’ this paper
derives a set of general design motivations and introduces
a formal model of counterfactual operators. This model is
designed to provide a deeper conceptual foundation for
the use of counterfactual reasoning via subset computa-
tions within the context of visualization and visual analy-
tics. At the core of this approach is a data subset-based
mathematical computation model and a classification of
counterfactual operators that reflect a range of key con-
cepts important to the use of counterfactuals within
visualization systems.®?> These operators transform or
derive values from the underlying sets in various ways
which, when used in combination, can support a range
of counterfactual-based visualization workflows. This
generalized approach to a counterfactual-based subset
computation model can be leveraged by a range of
visualization designs even beyond those from the prior
work that informed its design.

As an instantiation of the proposed model, this
paper also presents the Co-op library. Co-op imple-
ments the core counterfactual operators and corre-
sponding set-based data structures proposed in our
model. This library enables accelerated development
of new counterfactual-based visualizations, and pro-
vides an extensible framework via which developers
can apply and extend the core set of operators intro-
duced in this paper. With Co-op, developers can easily
design and implement visualizations integrating coun-
terfactual subsets.

The effectiveness and versatility of Co-op is demon-
strated through the development of two visualization
systems, along with expert interviews. The first system
is a re-implementation of the CoFact system® created
using Co-op operators in place of the system’s original
computational methods. This workflow of CoFact,
however, only uses a portion of the capabilities offered
by the Co-op library. A second novel exploratory visual
analysis system, CoExplorer, was created by utilizing a
wider range of Co-op’s functionality to facilitate a new
exploratory workflow incorporating counterfactual
visualization that has not been reported in prior work.
Further, we conducted an interview with six visual
analytics researchers and professional engineers. They
provided valuable feedback on the design goals, Co-op
model, as well as potential benefits and drawbacks of
practical aspects of the library.

Together, these two systems—developed with the
same Co-op library at their core—and the expert inter-
view help demonstrate the versatility of the counterfac-
tual operator model. They also showcase the utility of
the Co-op library itself as a tool for creating a diverse
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range of counterfactual visualizations that provide a
variety of interactive functions and support various
data types.

Finally, this paper offers general guidance on the
effective usage of Co-op. This guidance distils key
design implications that can aid researchers and
practitioners in the visualization community in devel-
oping improved counterfactual-based visual analytics
systems.

Related work

The counterfactual operators model introduced in this
paper builds on prior research developed in several
areas of related work. This includes foundational work
that has developed the theory of counterfactual rea-
soning to support causal inference, causal inference
visualizations, and how mathematical models can con-
tribute to visualization.

Counterfactuals in causal inference

Causal inference techniques aim to support the
understanding of relationships of cause and effect
between factors in a system. Pearl'® established a
three-level causal inference hierarchy that describes
progressively more powerful — and more difficult to
attain — levels of understanding: association, inter-
vention, and counterfactual.

Within this hierarchy each level builds upon the pre-
vious, with counterfactuals (providing the highest level
of evidence for causation) as the apex. Counterfactuals
enable the exploration of “what if” scenarios given
changes to variables, and reasoning about “why”
changes in the expected outcomes occur in response.
In this way, counterfactuals offer a window to imagine
hypothetical situations that did not necessarily occur in
reality.

Take, for instance, a students poor performance on
assessments after a sleepless night. A counterfactual
analysis might probe scenarios where the student had
adequate sleep, helping examine if lack of sleep is
indeed a causal factor in poor assessment performance.
There are many methods for estimating and comput-
ing counterfactuals in causal modeling such as instru-
mental variables,?* machine learning approaches,*
and matching methods.?°*® For a more comprehen-
sive overview of counterfactual-based causal inference,
we refer the reader to Glymour et al.?’

Counterfactual analyses, through the identification
and/or simulation of unobserved scenarios, enhance
our exploration of how certain factors may influence
outcomes, enabling the examination of possible causal
links, including those that were not directly observed
within the data.

Visualization for causal inference

Understanding causal relations from complex data has
long been an important goal for the visual analysis
community.’® Counterfactuals are emerging as a pro-
mising approach toward achieving this analytical
need.??

Past efforts have often centered around the use of
graphical causal models, for example, domain
knowledge-enhanced visual exploration,>'>*? algorithm
interpretation,®> and DAG-based causal representa-
tion.?* Visualizations using graphical models have been
designed for specific application scenarios, such as
supporting decision-making workflows,>”> urban time
series exploration,’® and event sequence analysis.?

Most relevant, Kaul et al.® introduced CoFact, the
first use of counterfactuals in the context of general-
purpose exploratory visual analysis scenarios with
high-dimensional datasets. It includes a filter-con-
straint-based counterfactual computation method to
dynamically create ad hoc comparator groups for
improved user inference of causal relationships. Wang
et al.?? explored the use of counterfactuals in static
visualizations and found that it helped users better
infer relationships in datasets. These studies demon-
strate the utility of visualizing counterfactuals, but have
limited flexibility to extend beyond their proposed
application scenarios and make no attempt to define a
more generalizable framework that could enable the
broader adoption of this type of approach.>?

Inspired by these early steps, this paper proposes a
formal operator-based model that provides a general-
ized approach to counterfactual computations that can
support a unified approach to a wide range of visual
analysis system designs.

Mathematical computation models in
visualization

Mathematical computation models play a crucial role
in enhancing the understanding and effectiveness of
visualizations.?” Widely-employed mathematical mod-
els in visualizations including discrete mathematics,
such as network centrality measures”>>° and graph-
theoretic measures,*>*! and statistical methods, such
as dimensionality reduction***> and Bayesian model-
ing.***> Further, mathematical models have been
applied to describe general visualization frameworks.
For example, concepts and measurements from infor-
mation theory such as entropy can be employed to
qualify visual information®*® algebraic mathematical
structures can help characterize data and encodings in
visualization design,?” and visualization tasks can be
generalized into computational operations and pipe-
lines.*® By leveraging mathematical concepts, these
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models provide generalizable approaches based on
theoretical foundations that can offer easier computa-
tion of data characteristics and enable more effective
representations in visualizations. In a similar manner,
our operator-based conceptual model and reference
implementation are designed to enable more efficient
and effective counterfactual-based visualization.

Counterfactual subset

The basic process of counterfactual-based analysis is
built upon a foundation of sets, set manipulation, and
set comparison. This section introduces core set-
related concepts and essential terminology that form
the basis for the design of the Co-op model described
later in this paper.

Data subset selection

In high-dimensional datasets, processing or visualizing
the entire dataset can be challenging, and generating
data subsets becomes crucial to provide users with at-
a-glance information.*® Similarly, data subset selection
methods are widely employed in various machine
learning tasks, including enhancing model robust-
ness’’ and reducing the size of training data.’!
Meanwhile, in exploratory data analysis, analysts often
manually create subsets by filtering data based on spe-
cific drill-down choices.’? For instance, assuming a
user chooses a constraint such as brand = Ford in a car
model dataset, a subset can be created and visualized
by filtering all data points that correspond to Ford
cars.

As the usage scenarios above highlight, the subset
selection process is typically used to identify a smaller,
more focused, subset of data from a larger data collec-
tion. The selection criteria for this process are often
referred to as inclusion criteria, and we refer to the
resulting subset (the data points that fit the inclusion
criteria) as the ncluded subset, Siycr .

Critically, the selection process implicitly creates a
second complementary subset that contains the
remaining data points: the portion of the dataset that
did not meet the inclusion criteria. We refer to this as
the excluded subset, Spyxcy. For instance, using the
brand = Ford example from earlier in this section, the
excluded subset would include all non-Ford vehicles.

Mathematically, S;yc;, can be defined as follows:

Siver = {x € Surr|F(x)}, (1)

where S,;; is the complete dataset, x represents the
individual data points, and F(x) denotes the filtering of
data to enforce the inclusion criteria. Similarly, Sgyc,
can be defined as follows:

Sexcr = {x € Surlx & Siver }- (2)

Throughout a user’s exploratory analysis session,
the values for Sjycz and Seyc; evolve through changes
to the filter function F(x) that reflect the user’s
dynamic analytic focus.

Counterfactual subset filtering

In many visual analytics systems, data from S;yc; is
visualized in isolation to enable users to focus their
analysis on a specific subset of their choice. This is
reflected in the zoom and filter step of the oft-cited
visualization mantra “Overview first, zoom and filter,
then details-on-demand.””> In other systems, Syycy. can
be visualized together with data from Sgy; to facilitate
comparison between the two subsets.

In exploratory analysis settings, the subset Syyc; will
change interactively in response to a user’s changes in
analysis focus. Traditionally, these changes would be
driven in response to a user’s explicit requests. More
recently, a number of semi-automated approaches
have also been proposed to help users more effectively
explore complex datasets and find more meaningful
insights. These include, for example, contextualizing
selection bias®* 7 and aggregating data subsets.”®®°

For both manual exploration and semi-automated
approaches, the choices for Sjy¢c;, and the comparisons
with Sgxc; that inform a user’s insights are often based
on correlations between variables that are either
visually presented or algorithmically computed.
Relying on correlations, however, can result in mis-
leading representations and incorrect causal inferences
on the part of the user.'® Hence the well-known axiom
that correlation does not imply causation.

Counterfactuals can provide a mechanism for more
effectively contextualizing the correlations discovered
in traditional exploratory analysis. As demonstrated in
earlier work, comparing the data from S;y; with a
subset of data points from Sgyc; that are similar to the
point in Syyc, across all dimensions other than the
constraints can lead to more accurate user judgments
of causal relationships.® These similar data points
from Sgycr serve as a counterfactual subset S for
Sincr, providing more information about potential
causal relationships in the data. One challenge for this
approach is identifying an appropriate subset of data
points to place within Scx.

Mathematically, Scr is defined as follows:

Scr = {x € Sgxcy|Similar(x, Siver)} (3)

where Similar (x, Sincr)denotes the computational
process of determining if x is one of the most similar
data points in Sgycy to Sivey-
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Figure 1. The subsets Sinci, Sexct, Scr, and Sgem are derived from Sy as illustrated in this figure. (a) Say contains all data.
Applying a filter creates (b) the included subset Sjy¢. and a corresponding excluded subset Sgxq . Selecting
counterfactuals from the excluded set divides Sexc into (c) the counterfactual subset S¢r (closest to Sne ) and the

remaining excluded data points Sgem.

We note that this definition partitions Sgyc; into two
subsets: (a) Scr, and (b) the remainder of the excluded
subset that is not part of the counterfactual subset. We
refer to this remainder as Skg); which we define mathe-
matically as follows:

Srem = Sexcr — Scr (4)

The relationships between Sy, Sivcrs Sexcrs Scrs
and Sgg)s are illustrated in Figure 1.

This definition of S¢r sidesteps a critical question:
What is meant by similarity and how do we define the
Similar function? A wide variety of similarity metrics
have been proposed in the literature. For example,
Cofact® employed a simple Euclidean distance measure
as the similarity metric for subset computation.
However, in many real-world applications such a sim-
plistic approach is often insufficient. The demands of
different analytical goals vary widely,’®°! which may
necessitate a variety of similarity computation methods.
Moreover, similarity is context-dependent. Consider a
health example focused on the similarity between two
patients. The two patients may be more similar with
respect to cardiac questions but less similar with
respect to dermatological questions. These considera-
tions mean that calculations of similarity are necessarily
application and context specific.

In this paper, instead of making a fool-hardy
attempt to explicitly solve this problem by introducing
“the right metric” for all cases, we define similarity
flexibly based on an extensible set of measures that
can describe the relations between data points and
subsets. These can then be used individually or in
combination to express more sophisticated concepts of
similarity as appropriate for specific scenarios.

Design motivation

To highlight the various ways in which visualization
developers can leverage counterfactual reasoning, we

introduce a series of usage scenarios and discuss the
key design considerations that those scenarios raise.
We then outline a set of design goals for our work
based on those considerations.

Usage scenarios

To help illustrate the wide variety of ways in which
counterfactuals can be useful within the context of
visualization, we describe four different usage scenar-
ios. For each scenario, a number of key design consid-
erations drawn from previous work are highlighted in
bold.

Algorithm Explanation with Visual Analytic Effective
graphical inference is an important consideration for
the design of explanatory visualizations as it is crucial
that such systems help users draw valid conclusions
from their data exploration and analytical focus.'®%?
In model explanation, which is the most widely applied
counterfactual usage scenario for model developers,
counterfactuals have been incorporated with visual
analytics systems to provide improved graphical infer-
ence.?%21:63:6% These analytic systems leverage coun-
terfactuals to provide intuitive explanations for model
decisions by creating synthetic or modified data points
that demonstrate how small alterations in input fea-
tures affect a model’s predictions, enabling users to
better understand the inner workings of machine
learning models, including which features had the
most influence on a specific prediction.®® Therefore,
such applications require counterfactual computation
to exhibiting the following: (i) Interpretability and
Transparency — mechanisms for clear and intuitive
explanations of model decisions and behaviors using
counterfactuals, (ii) Integration with Visualization
Tools — APIs or frameworks that enable seamless inte-
gration of counterfactual computations with existing
visual analytic systems, and (iii) Performance and
Scalability- efficient computation of counterfactuals,
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ensuring responsiveness even with large and complex
models.

Visual Data Sphitting and Cleaning For developers,
data splitting and cleaning are crucial in evaluating
and improving the performance of machine learning
and statistics models.®®> Moreover, previous research
has found that visualization can provide benefits dur-
ing this process.®® This task requires examining the
entirety of, random portions of, or specific data sam-
ples from a dataset, and selecting points of interest
(i.e. the S subset) through explicit criteria.®’
Under this scenario, counterfactual computation
should exhibit: (i) Flexible and Accurate Subset
Identification — accurate and efficient operators to
filter and compute counterfactual subsets based on
different user interests, such as missing values, out-
liers, or feature quality, (ii) Subset Comparisons —
enable comparison of distributions and statistics
between the Sy and Scr subsets based on various
criteria such as data integrity, anomalies, and feature
quality, and (iii) Subset Modification— enable users
to create, modify, and combine different data subsets
for more fine-grained splitting and cleaning.

Guided Exploratory Data Analysis Existing studies
suggest that counterfactual information can help peo-
ple reason about data within visual analytics sys-
tems.®2%?! However, relatively little work has focused
on the use of counterfactuals as the basis for offering
guidance to users performing exploratory data analy-
sis. For example, counterfactual information could
serve as an artificial agent® to inform users’ exploration
strategy and help support decision-making. By provid-
ing a unified framework for generating counterfactual
scenarios, a counterfactual computation model could
reduce the development requirements in such systems.
It would also help developers easily integrate counter-
factual reasoning into their existing visualization sys-
tems without requiring extensive domain knowledge.
Specifically, the system should be able to support (i)
Exploratory Workflows — enable the creation of a
complete pipeline to direct analysts in exploratory data
analysis, from data selection to counterfactual visuali-
zation, for generating and managing counterfactual
scenarios, (ii) User-Friendly Explorations — utilize
counterfactual information incorporating various dif-
ferent measures to help explain current exploration
results to users in refining their exploration strategies
and support more informed decision-making, and (iii)
Domain-Neutral Applications — enable analysts to
apply counterfactuals across various visualization sys-
tems and domains without extensive domain-specific
knowledge.

Visualizarion Recommendation Counterfactuals have
been used within NLP algorithms'® and recommender

systems,’® to improve explainability and model

performance. However, existing visualization recom-
mendation algorithms, have given limited attention to
the counterfactual approach. For example, prior
research has employed existing design theories,®
behavioral models,”® or content-based insights71 as
the basis for recommendations. Counterfactuals could
be useful to help find causal relations between differ-
ent data variables,®!® and therefore visualizations
revealing these relations. A counterfactual computa-
tion model could lower the barrier for wusing
counterfactuals within such visualization recommen-
dation systems, and should support: (i) Diverse
Recommendation Space - provide visualizations to
expand the potential recommendation space, (ii)
Seamless Integration — enable existing visualization
recommendation toolkits to incorporate counterfac-
tual computation with little effort, and (iii)) User-
Driven Recommendations — enable analysts to
influence the generation of visualization recommenda-
tions based on specific measurements or preferences.

Design goals

Based in part on the considerations introduced in the
above usage scenarios, we derived a set of practical
design goals to help shape the design of the operator-
based counterfactual model presented in The Co-op
Model. These include efficiency, transparency, com-
prehensibility, flexibility, and compatibility.

At the same time, the motivation to follow an
operator-based approach in the first place is informed
by previous studies*”*®72 which demonstrate the ben-
efits of mathematical and algebraic frameworks for
efficiently representing complex and diverse concepts
in a formal way that can be translated to practical
implementations for developers. The operator-based
model that we propose provides a unified way of repre-
senting a diverse set of operators and measures that
can support core design considerations such as Subset
Modification and Exploratory Workflows.

Efficiency: The proposed model should be scalable
and efficient to handle large and complex datasets.”” It
supports the consideration of Performance and
Scalability and Flexible and Accurate Subset
Identification.

Transparency: The proposed model should be trans-
parent and explainable to show the processes of
underlying mechanisms,”* that is, how counterfactual
subsets are generated and why they are relevant or
interesting. It is crucial to enable Interpretability and
Transparency and User-Friendly Explorations.

Comprehensibility: The proposed model should be
easy to understand and use by developers with
different levels of expertise and background knowl-
edge.” Good comprehensibility can benefit building
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Domain-Neutral Applications and reduce the
knowledge requirement to guide User-Driven
Recommendations.

Flexibiliry: The proposed model should be general-
izable and flexible enough to handle different types of
data and visualization tasks.”® High flexibility could be
able to support Subset Comparisons and Diverse
Recommendation Space.

Comparibility: The proposed model should be com-
patible and interoperable with existing visualization
tools and frameworks.”” This is necessary for
Integration with Visualization Tools for visual ana-
lytics systems and Seamless Integration for visuali-
zation recommendations.

The Co-op model

This section introduces Co-op, an operator-based
model for counterfactuals that is designed for explora-
tory visual analytics workflows. Building upon the set-
based concepts introduced in the previous section, Co-
op formalizes the computational model for counterfac-
tuals using two broad categories of algorithmic build-
ing blocks: measures and operators. Within the Co-op
model, operators represent logical units that take one
or more sets as input and return one or more sets as
output. Measures, in contrast, represent functions
which map input data points and/or sets to a scalar
value. For some operators, measures can be provided
as additional inputs to control how the operator per-
forms. The model described in this section provides a
formal framework for the general-purpose counterfac-
tual software library described in Co-op as A Library.
Table 1 summarizes all symbols and notations.

Measures

As described in sec-subsets, the identification of the
counterfactual subset Scr requires the identification of
the data points in Sgyc, that are most similar to Sycy.
This process can involve a variety of different calcula-
tions which derive scalar values from different forms
of data. These quantities can be used for different pur-
poses such as similarity assessment (e.g. “how similar
is a data point to a given set”), thresholding (e.g.
“which data points are considered mosz similar”), qual-
ity assessment (e.g. “how similar is one subset to
another”), and more. Specifically, in this model, the
similarity is computed by calculating or accumulating
the distance between different combinations of points
and sets, for example, equations (5) and (7).

The Co-op model supports these types of calcula-
tions with measures. At its most generic, a measure is a
function of some input that resolves to a scalar value.
Different types of measures can be used to quantify

Table 1. A summary of the notation used throughout this
paper.

Symbol Definition

SaLL The overall dataset
SIncL The included subset
Sexcl The excluded subset

Scr The counterfactual subset

SREM The remaining subset

S, S An arbitrary set of data points

x, b, q Individual data points

pd(---) A point-distance P2P measure

pdy(--+) A weighted point-distance P2P
measure

Pdayg(- - ) An average-distance P2S measure

Pduwag(- - ) A weighted average-distance P2S
measure

sd(---) A subset-distance S2S measure

sdy (- ) A weighted subset-distance S2S
measure

Sdene(- - *) An entropy-based S2S measure

SAwent(-  *) A weighted entropy-based S2S

measure

An intra-subset variance measure
A weighted intra-subset variance
measure

variance(- - )
variance,(- - -)

entropy(- - -) An intra-subset entropy measure

entropy,(- - ) A weighted intra-subset entropy
measure

My A distance function, for example,

euclidean or hamming

weights A weight vector for specifying variable
importance

Filter(- - -) Filter operator

GroupBy(- - -) GroupBy operator

Counterfactual(---)  Counterfactual operator

Resize(- - -) Resize operator

C, Dim Filter constraints, a data dimension

Measures Vector of measures for similarity for

use within a counterfactual operator

various properties of the input data, and measures can
be broadly classified based on the types of input to
which they can be applied. Co-0p specifies four cate-
gories of measures including point-to-point, point-to-
subset, subset-to-subset, and intra-subset. This section
defines these measurement classes and provides exam-
ples of common measures in each category.

Point-to-Point Measures Point-to-point (P2P) mea-
sures describe relations between two individual data
points. In this way, P2P measures represent the finest
granularity of measurement in the Co-0p model. Two
specific variants of P2P measures are included in the
model: pomnt distance and weighted point distance.

Point  distance: Similarity assessments are often
framed as a distance calculation between pairs of
points. Reflecting this basic framing of data similarity,
the first P2P measure in Co-o0p is a point distance mea-
sure, noted as pd. This measure evaluates the distance
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between two data points p and ¢ using a given distance
function M, as follows:

pd(paqud) = Md(p’q)a (5)
M, € {custom, euclidean, hamming, ...}

This basic pd measure is made flexible and extensi-
ble by abstracting the distance function M, from the
overall measure. The generic pd can be used to note
the distance calculation as part of larger expressions
that use the model’s notation independent of the
underlying details of the specific distance function M,,
which instead would be provided to pd as an addi-
tional parameter. M, could be any pointwise distance
formulation.

For example, the reference software implementation
of the Co-op model is described in as A Library. In that
Co-op software library, the default for M, is the com-
monly used Euclidean distance.”® Beyond that default,
the Co-op library provides an extensive list of other dis-
tance metrics reflecting those supported by the Scipy
Python library.”® This includes other well-known dis-
tances such as the Hamming distance®® and the
Mahalanobis distance.®! For applications that require
it, developers can extend beyond these pre-defined
options by implementing a custom M, function.

In the Co-op library, pd is the default P2P similarity
measure in Co-op, and Euclidean distance is the default
option for M.

Weighted point distance: In many real-world usage
scenarios, the impact and significance of different
dimensions and variables can vary widely.®! Moreover,
this variance can occur by application, analysis task/
topic, or time.

For example, in a survey dataset about a large pop-
ulation of people, an analysis of financial status would
likely place more importance on variables related to
income when compared to variables about weight or
height. In such a scenario, measurements of similarity
would want to give more weight to financial variables
when determining which people can serve as counter-
factual examples. An analysis of health outcomes from
the same data, however, would likely result in a very
different notion of what it means to be similar.

Reflecting this notion of relative importance
assigned to individual variables, the Weighted Point
Distance pd,, measure provides an alternative to the
default pd. This P2P variant incorporates the concept
of a per-variable weight which can be used to shape
the underlying distance function’s calculations. More
specifically, we define the weighted distance measure
pdw(p, q, weights, M;) which the same arguments as pd
with an additional weight vector weights. As imple-
mented in the Co-op library, this measure enables
developers to customize the importance of different

data variables based on weight calculated using their
own bespoke application-specific logic.

Point-to-Subset  Measures Point-to-Subset (P2S)
measures describe relations between a single data point
x and a set S. This type of measure can, for example,
provide an overall assessment of how similar x is to the
members of S. We note that this formulation is equally
applicable for both x € S and x ¢ S. Therefore, a P2S
measure can provide data to help guide decisions such
as “should x be added to set S” as well as “should x be
removed from set S”.

The overall assessment can utilize a variety of aggre-
gation functions such as maximum, minimum, or aver-
age. Reflecting the most common usage scenario in
the counterfactual workflow, measures defined below
introduce two variants based on an average distance
calculation.

Average distance: We extend the definition of point
distance (see equation (5)) to fit the point-to-subset
relation. The average distance pd,,, is computed as the
mean of all pairs of point distances from the target
point p to each point in the target subset S:

Pdave(x, S, My) = |S| Zpd X, i, My). (6)

ieS§

Weighted average distance: Similarly, the weighted
average distance pd,,,, is an extension of the point-to-
point pd,, measure based on the mean of all point-to-
point distances from the target point x to each point in
the target subset S. As in the P2P case, this weighted
P2S measure enables differentiation in the importance
given to individual variables in the distance
calculation.

Subset-to-Subser Measure Subset-to-Subset (S2S)
measures describe relations between two sets of data
points. For example, this type of measure can capture
the overall similarity between two subsets of data (e.g.
Siver and S¢r as described in Counterfactual subsets).
Reflecting common use cases in counterfactual-based
workflows, three different S2S measures are defined
below.

Subset distance: The most basic S2S measure, subset
distance, is an extension of the original point distance
measure defined in equation (5). For two data subset
S7 and S,, the subset distance sd can be expressed as:

R D M

i€S) jes

sd(S1, 82, Mg) =

Connecting this formulation with prior work, this
measure is mathematically equivalent to the set simi-
larity measure adopted in the CoFacr system® except
for the normalization factor which makes the distance
comparable across subsets of different sizes.
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Entropy-based similariry: An alternative S2S similar-
ity measure builds on the information theory concept
of entropy, commonly used in many machine learning
and statistical applications. Following the canonical
entropy formulation proposed by Shannon,®* we first
define the entropy of a given subset S as follows:

N
entropy(S) = — ZP(X:‘) - log(P(x:)), (8)

i=1

where P(x) is the probability of x given the distribu-
tion of subset S. Adopting this definition of entropy,
we employ the KullbackLeibler divergence®® as the
default entropy-based S2S similarity metric Sdensropys
which computes the differences in the entropy of two
subsets’ probability distributions:

N
$den(S1,82) = D Pr(xi) - (log(P1(x:)) — log(P2(x:)),

©)

where P;(x) is the probability distribution of subset S;.

Weighted subset-to-subset similarity: As in the P2P and
P2S measures, weighted versions of these measures
enable the assignment of importance to different vari-
ables based on the application context. This leads to a
weighted subset distance measure sd,,, and a weighted
entropy-based similarity measure sd,, ;-

Intra-Subset Measure Intra-Subset (IS) measures are
the final category required for the counterfactual-
based approach described in Counterfactual Subset.
IS measures describe relations between points within a
single subset.

Variance: The variance IS measure is constructed
using the traditional variance statistic and captures the
expected deviation from the mean for a typical data
point x in subset S. Variance is a widely used measure-
ment and has shown utility as an assessment for coun-
terfactual subsets.®* Generally speaking,
counterfactual subsets with lower variance are desired
because they reflect a more homogeneous set of data
points. The variance measure is defined as follows:

2

. 1 .1 .

variance(S) = 5 XS: i— EXS:J , (10)
e JjE

1
Relevance = E(Ml +\/M1*M2), (11)

|CF|

Subset = —————
(ICF| + |IN|)

(12)

Entropy: Similar to the S2S measures, we further
introduced the entropy IS measure. Compared to var-
iance, entropy has an obvious advantage that its value

is independent of the scale of data variables and is only
associated with the probability of data points (as shown
in equation (8)). Thus it could be easier to capture the
impact of variables with smaller value ranges for com-
puting counterfactual subsets. Just as entropy was used
as the basis for an S2S measure in Subset-to-Subset
Measure, a similar approach can be taken for assessing
the disorder within a single set. In fact, the entropy
equation introduced in equation (8) (first introduced
as a building block for sd.,,) is defined as a function of
a single subset S. This same equation can be directly
used as an IS measure.

Weighted wvariance and entropy: As with the other
measure types, weighted versions of the IS measures
can be defined to account for differing importance for
each variable given a particular application context.
This is reflected in weighted formulations of the var-
iance and entropy measures: variance, (S, weights) and
entropy,(S, weights), respectively.

Operators

Operators are logical units that take one or more sets
as input and return one or more sets as output. Many
operators include additional inputs beyond sets, such
as measures, which help determine how the operator
behaves. Prior mathematical models of visualizations
exhibit operators with different capabilities, including
operators that apply constraints to produce data sub-
sets,®® specific operators tailored to achieve the mod-
el’s core features,®® and more generic dyadic set
operators.?® In a similar way, we use three general
categories of operators that comprise the Co-op model:
constraint operators, counterfactual operators, and
functional operators.

Constraint Operators Constraint operators are used
to manipulate the data points included within a given
subset based on the inclusion or organizational cri-
teria. These operators would typically be used in
response to user interaction to manipulate S;yc;, such
that it reflects the user’s analytic focus. Two common
constraint operators are defined in this section: Filzer
and GroupBy.

Filter: The most basic constraint operator, Filter,
enables users to apply one or more constraints as inclu-
sion criteria. The Filter operator produces as output a
revised S;yc; based on the new criteria, as well as a cor-
responding Sgyc;. The Filter operator can be formally
expressed as follows:

. x € Sivets Ix € Sar,x EC
Filter(C) = {x € Sexcrs otherwise (13)
C = [{Dimy, cstr1 },{Dimy, cstra }, .. .|, (14)
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where x is a data point, and C is the filter constraints.
The constraints consist of dimension names Dim; and
constraint functions cstr;.

GroupBy: Similar to Filter, the GroupBy operator
manipulates a set of data points based on criteria
defined over one or more dimensions. However, rather
than filtering to determine included and excluded sub-
sets, the GroupBy operator turns a set into one or
more subsets (i.e. groups) as determined by the cri-
teria. Each of these can then be processed by further
operators to identify per-group counterfactual subsets,
for example. The GroupBy operator can be expressed
as:

x €8y,
dx € Surz,
x.Dim € Dim|0]
GroupBy(S, Dim|]) = X €Sy,
dx € Syrz,
x.Dim € Dim[l]
(15)

where S is the initial set to be grouped, Dim is the user-
chosen grouping dimension, Dim[n] is the n-th group-
ing value range in Dim, x.Dim is the value in Dim of
data point x, and S; is i-th resulting group.

Counterfactual Operators Counterfactual operators
are used to identify the points in an excluded subset
that best serve as counterfactuals for a given included
subset. More formally, counterfactual operators derive
a Scr (and corresponding Skgy,) from excluded subset
Sexcr (or a specific subset of Sgycz) to best match a
given S)yc; according to a given measure. There are
two common operator types within this category:
Counterfactual and Resize.

Counterfactual: The Counterfactual operator is the
most critical in the Co-op model as it is responsible for
the core feature of identifying the S subset for a given
Sincr by selecting data points from the excluded subset
Sexcr- The output of the Counterfactual operator is a
new counterfactual group Scr and the corresponding
remainder Sggy. As introduced in Subset Filtering,
Counterfactual Counterfacrual operates using a combi-
nation of similarity measures which can be configured
to control the behavior of this operation. Formally, we
note the Counterfactual operator as follows:

Counterfactual (Sivcr, Sexcr, Measures)
= Scr + Sreum,

Measures = [{wy, Mg },{wa, Mpo}, .. ],

(16)
(17)

where Measures is the input similarity measure vector,
consisting of one or multiple similarity measures M;
and (where appropriate) corresponding weights w.

Resize: The Resize operator enables users to modify
an existing counterfactual subset by increasing or
decreasing the number of data points. For example,
when a small S¢r is produced by a Counterfactual oper-
ator, the Resize operator can be used to adjust the
threshold such that more data points are included.
The change in size can be driven by the original mea-
sures used to create the Scr or by a new set of measures
used specifically for the resize process. The Resize
operator is defined as follows:

Resi%e(SCF,/S NcLs Srem » Size, Measures) (18)
= Scr t Sren

where Size is the anticipated number of data points in
the new S¢r subset; Measures is optional; and S’CF and
Sy are the updated CF and REM subset.

Functional Operators The final group of operators
are functional operators. These are designed to sup-
port dyadic set operations®” and provide basic set
manipulation capabilities. Previous studies have
demonstrated the effectiveness of dyadic operations in
visual analytic system design,*® and the concept of sets
is a foundational element in the counterfactual work-
flow. The Co-op model therefore adopts the three most
common dyadic set operations: union, intersection,
and difference. Other set operators, such as comple-
ment or symmetric difference, can be constructed as a
combination of these as needed.

Union: The Union of two subsets S} and S, is the set
of all those elements which are in S}, S,, or both:

Union(Sy, S,, Dims) = S) U S, (19)
where Dims is the vector of target dimension names to
be employed to compute the union set.

Intersection: The Intersection of two subsets S; and S,
is the set of all elements which are in both S} and S5:

Intersection(S1, S, Dims) = 81 N S,. (20)

Difference: The Difference of two subsets S; and S,
is the set of all those elements which are in S; but not
in Sz:

Difference(S1, Sy, Dims) = S; — (S1N.Sy). (21)

Co-op as a library

The Co-0p model of measures and operators provides
a formal foundation for counterfactual-based
workflows within visual analytics systems. Building
on this model, we have developed a general-purpose
software library for counterfactual-based exploratory
visual analysis.
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Implementation

Given the widespread use of Python for statistical
computing and data science, the initial core version of
the Co-op library has been implemented as a Python
library and is available as open-source software. The
library implements all measures and operators follow-
ing algorithms described in The Co-op Model-opera-
tors and provides an extensible API that enables the
easy integration of custom components such as special
measures for a given application domain. The library
builds on the widely-used NumPy®*® and SciPy”’
packages for measures, along with Pandas®® operators.
The default input data structure is the Pandas
DataFrame. The Co-op library is organized around
two packages: measure and operator. These packages
are further organized as modules that reflect the
groupings outlined in The Co-op Model (P2P, P2S,
S28S, and IS measures; constraint, counterfactual, and
functional operators). The source code is available at
https://github.com/VACLab/Co-op.

Parameter settings

Defaults are provided for all measures and operators
as suggested by a previous study® and other empirical
guidance of measure computation.* See Choosing
proper parameter settings for more detailed discus-
sions and implications of parameter settings. However,
developers can modify the default behaviors by imple-
menting their own components. In particular, mea-
sures and distance functions are abstracted from the
design as outlined in the model. This enables custom
new parameters of measure or distance implementa-
tions which can be “plugged in” to the library to custo-
mize the behavior for a given application. When
adding plugins, developers can first implement new
measures in the measures package, which should out-
put a condensed distance matrix, like pdist from
SciPy,”® and then simply input the desired new mea-
sure or measures into the Measures parameter of the
Counterfactual operator from the operators package as
introduced in Counterfactual Operators.

Demonstration

The Co-op model and corresponding library have sev-
eral potential uses, as outlined in the previous section.
However, the motivation for developing this approach
and the primary usage scenario for the library is in
support of counterfactual visualizations within the
exploratory visual analysis process as a mechanism for
improving users’ inferences from visualized data. To
demonstrate how the Co-op model provides a flexible
set of general-purpose capabilities, this section

describes the workflows of two visual analytics systems
built using the Co-op library, along with expert inter-
views regarding the library.

Re-implementing CoFact

As a first demonstration of utility, we used the Co-op
library to re-implement an existing counterfactual-
guided visual analytics system that had been created as
a bespoke application. For this effort, we re-
implemented CoFac® and its counterfactual-based
workflow for improving the accuracy of users’ causal
inferences from charts.

Workflow The original CoFact enables analyses of
numerical and categorical feature outcomes. Users of
the system perform variable filtering (e.g. Houses
where YearConstructed <2015) via user interactions to
identify subsets of interest. The system then computes
counterfactual subsets based on an Euclidean distance
measure.

Design Space To faithfully support the same func-
tionality in our re-implementation, we also support
categorical and continuous data types in our re-design.
Using Co-op, constraint operators support the filtering
process while the counterfactual operator is used to
compute the counterfactual subset. For the
Counterfactual operator, we selected the P2S distance
as the measure type of our implementation, using the
default Euclidean distance just as described in the
original CoFact paper. This approach resulted in
essentially a feature-by-feature replication of the origi-
nal system design.

CoExplorer: using additional Co-op features

The re-implemented CoFact system, like the original
design, uses only a small portion of Co-0p’s expressive
power. To help validate a broader range of features of
the library, we developed a new exploratory visual
analysis platform called CoExplorer which leverages
source code from the Voyager system.®?°

Workflow While enabling all functionalities in
CoFact, the workflow of CoExplorer enables more
exploratory processes. Users are required to perform
variable filtering to get the Syy¢; (top view in Figure 2)
at first, meanwhile, CoExplorer will show the corre-
sponding visualizations of Scr (bottom left view) and
Sexcr (bottom right view). Other than the default mea-
sures from CoFact, users can further specify supported
distance and measures from Co-op to compute the
Scr. For more exploration, users can click S¢r to
replace the Sj;y¢; to start a new round of analysis and
can iteratively add new filter constraints to explore
more insights within Scz.
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Figure 2. A screenshot from CoExplorer. The top panel
shows Sinc, while the bottom left and right show S¢r and
SexcL, respectively. Users can select S¢r as the new
included subset to start a new round of analysis.

Design Space Existing exploratory visual analysis
systems enable users to conduct a variety of data analy-
ses and interactions with heterogeneous data types.’!
The CoExplorer design therefore supports categorical,
continuous, and time-series data. CoExplorer employs
both distance and entropy-based similarity measures
to compute data subsets using the counterfactual oper-
ator. Figure 2 shows a counterfactual view within the
CoExplorer system. This is combined with a filtering
panel (not shown) that adopts the design found in the
original Voyager.®

Performance analysis

We present the results of a preliminary performance
analysis of the two prototype systems.

CoFact Analysis We evaluated the performance of
computing counterfactuals between the original
CoFact’s algorithm (from the CoFact source code) and
the new Co-op-supported approach. We tested the sys-
tem’s performance on 12 high-dimensional datasets
applied in the previous study6, such as House Price
and College Majors datasets. To normalize performance
times across datasets of different sizes and complexity
in our performance analysis, we computed the relative
ratio of time required by the two systems (original

H THl HIH

0 02 04 06 08 1 10 11 12 13 14 15
CoFact CoExplorer

(a) ®)

Figure 3. (a] When comparing computation times between
Co-op and the previously published CoFact system, Co-op
was faster as evidenced by relative ratios below one. (b) In
the new CoExplorer prototype, comparing computation
times with and without Co-op’s counterfactual
computation enabled shows a relatively small
performance overhead for that capability.

CoFact, and our re-implementation). The relative
Time(Reimplemented CoFact)

Time(Original CoFact)
each dataset. In this formulation, a smaller ratio repre-
sents better performance (lower time) when using the
Co-op library.

Figure 3(a) illustrates the relative ratios for compu-
tation time when creating counterfactual subsets
within the original CoFact and the Co-op-supported re-
implementation of CoFact. The overall results show
that the average relative ratio is about 0.79, which
means Co-op achieves 20% better performance on
average in computing counterfactuals compared to the
original CoFact’s computation method.

CoExplorer Analysis To better understand the time
required to compute counterfactual subsets using Co-
op, we compared the performance of CoExplorer in two
modes: (a) with counterfactual subset calculations and
(b) without. Using the same datasets used in the per-
formance evaluation for CoFact (see section), we
employed a similar relative ratio measure to evaluate
the computational resources required in the two
modes.

Figure 3(b) shows the resulting relative ratios across
the 12 datasets with and without counterfactual com-
putations. The data shows that including the counter-
factual computations using Co-op introduces about 9%
additional compute time on average, and no >20% for
the tested datasets.

Limitations of Performance Analysis While the com-
putational overhead in these examples shows a rela-
tively modest overhead in compute time, however,
since our demonstrations mainly focused on showing
the functionality of Co-0p, this preliminary-level analy-
sis is inadequate to provide further insights into the
source of the performance advantage or deficit.
Therefore, it is not clear how these delays in respon-
siveness would impact users’ experience in analysis
tasks and broader exploratory usage scenarios and

ratio is defined as
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whether the performance gain is due to which specific
measures or operators in the model. In addition, the
compute time is dependent on dataset size as well as
available computational resources. A deeper perfor-
mance analysis that more systematically studies these
parameters is an important topic for future work.

Additionally, existing user interfaces provided
advanced abilities such as layered or faceted views,’
future work should focus on employing Co-op to those
advanced functionalities.

Expert interviews

To demonstrate the usability of Co-op to visualization
developers, we conducted 30-min qualitative inter-
views with six experts. These experts comprised three
visualization researchers (denoted as R1-R3) and three
data visualization engineers (denoted as E1-E3). R1
and R2 had prior experience in creating counterfactual
visual analytics systems.

We first provided a brief introduction of counterfac-
tual visualizations using examples from prior stud-
ies.®?*°2 Then we asked them to think about what
their requirements would be to incorporate a counter-
factual library into their own visualization systems.
Further, we introduced and provided the details and
workflows of our model and prototypes, and asked for
their opinions on the benefits and limitations of this
model, and to what extent it would meet their
demands.

Here we revisit the set of design goals (presented in
Design Goals) after considering the two prototype sys-
tems and experts’ responses.

Efficiency: All experts agreed that the library in
Python would be able to provide higher computational
capability through efficient Python statistical libraries
in computational tasks. R1 and R2 specifically talked
about the drawback in JavaScript that they needed to
implement distance and subset computations manually
when using counterfactuals in their systems. E1 appre-
ciated that we primarily provided a Python library
which is the most common for analysts. Our prelimi-
nary performance analyses (see Performance Analysis)
also suggest that the computational efficiency of Co-o0p
outperformed an existing algorithm® and added rela-
tively little overhead to a non-counterfactual-based sys-
tem. However, further studies of performance and
issues of scale are still needed and the computational
capacity at scale must be further studied to improve
efficiency.

Transparency: R1 and R3 agreed that the mathemat-
ical formulations of the model and the open-source
software for the library make the operation of the soft-
ware quite transparent to developers and system
designers. R2 said the JavaScript appendix would be

able to help people without Python knowledge see
how the model computes counterfactuals. In addition,
E3 pointed out concerns about entropy which they felt
was a concept that might not be general knowledge for
many data visualization software engineers. This
implies that the entropy measure may require addi-
tional effort to learn before it can be used effectively.

Comprehensibility: The operator-based model that
underpins the Co-op library provides a relatively logical
organization of the library’s capabilities and behaviors.
All three engineers agreed that the provided examples
make it easy to understand counterfactuals, and the
definitions of measures and operators should be easy
for people with an engineering background to under-
stand. However, this paper did not focus on evaluating
human cognition of counterfactual visualizations or
developer understanding of the library’s APIL
Additional studies are required to help answer these
questions.

Flexibiliry: The proposed prototypes demonstrate
that Co-op can work with multiple kinds of data (e.g.
categorical, continuous, time-series), visualization
types, and exploratory workflows. However, E2 men-
tioned that presenting counterfactuals in spatial data
may provide great value for causal inference as well,
providing an example that viewing counterfactuals
may help easily find the poison pump in John Snow’s
broad street pump map of the 1854 cholera out-
break,”®> however Co-op currently does not directly
support spatial data.

Companbiliry: The CoExplorer prototype shows that
Co-0p can be integrated with pre-existing code from
the Voyager system.® In addition, we used Co-0p to
implement the CoFacr system.® These examples show
that the library is interoperable in a practical way to
provide capabilities for a variety of existing systems.
R1 appreciated our reimplementation of CoFact which
maintained the functionalities while significantly
reducing the programing workload of creating
counterfactual-supported visual systems. E3 men-
tioned that counterfactual computations in Co-0p can
be regarded as an advanced step of data filtering, thus
the computation flow is obviously generalizable and
compatible with most visual analytics systems.

Lowering Implementation Barriers The experts
offered insights into how Co-0p can help overcome or
mitigate implementation barriers when creating new
counterfactual-based visualization systems. First, pro-
viding robust implementations of core capabilities
within an open-source library naturally makes technol-
ogies easier to use by eliminating the need for others
to re-implement algorithms or design new computa-
tional models. For this reason, leveraging reliable
libraries where they exist is a recognized best prac-
tice.”* All experts agreed that Co-op can ease the
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implementation burden for developers who want to
add counterfactual computations into visualizations,
since they would not need to learn the details of com-
plex counterfactual concepts or design a new calcula-
tion pipeline. Further, data visualization engineers E1-
E3 concurred that the functions that comprise the API
for Co-op are simple and easy to understand, even for
junior-level developers. Specifically, R1, based on her
own experience working without the benefits of Co-op,
pointed out that she spent a long time determining
parameters and measures when computing counter-
factuals. In contrast, Co-op offers a range of choices of
established measures that can typically provide good
results and adhere to best practices, often using
default parameters. However, R1 also mentioned that
there is no magic solution for all situations. That is to
say, to achieve the best comparison of counterfactual
subsets, developers still need to understand and com-
pare the parameters across different measures. This
suggests that additional work to better characterize
how subset distributions are impacted by different
parameter settings could be a valuable addition in the
future development of Co-op. Another concern was
raised from R2 that Co-op did not provide a visualiza-
tion configuration panel, which could make it more
difficult for developers to easily compare the results of
different parameters.

Discussion

The operator-based model and corresponding Co-op
library provide application developers with a rich set of
capabilities for developing counterfactual-based visual
analytics systems. As shown by Demonstration, the
library can be leveraged in different ways to support a
variety of user experiences. This section presents some
reflections regarding the design considerations out-
lined earlier in this paper, discusses implications for
system developers, highlights key limitations, and iden-
tifies opportunities for future work.

General discussion

Co-op and visualization As discussed in the expert inter-
views, Co-op abstracts the complexities of implement-
ing counterfactual computations, which in turn
enables visualization developers to focus on design and
user experience rather than low-level technical details.
In this way Co-0p can accelerate visualization develop-
ment and ease the integration of counterfactual-based
capabilities in a manner similar to other libraries
designed to support the development of visualization
software. Its open-source nature encourages collabora-
tion and engagement with real-world use cases. This
can help in soliciting feedback from the community to

advance its development, including the contribution of
new operators, sharing best practices, and collectively
advancing its capabilities.’*

Choosing proper parameter settings To maintain the
structures and provide proper framing of Scr subsets,
it can be useful to set up some restrictions on comput-
ing counterfactuals. Existing evidence showing that
simpler counterfactual explanations that are compara-
ble with input data might lead to easier understanding
for users®® Thus we recommend developers select the
default size of Scr to be equal to S;yc;. However, for
cases where Syyc.‘s size approaches the size of Sgycy,
this becomes problematic. Therefore, the size of Scp
should generally not grow to be larger than half the
size of Sgycr. This methodology is also seen in prior
work.®

Prior studies also suggest that counterfactual sets
should have low variance to minimize bias.”® Other
related prior work focused on financial and commod-
ity applications also suggests benefits from lower
entropy.”’ We therefore suggest using measures of var-
iance and entropy to validate the computed Scr sub-
sets following the above guidelines. Our goal is to
minimize the similarity metrics while maintaining the
major counterfactual structures by providing low var-
iance and entropy. Empirically, we recommend devel-
opers initially use the lower bound of the interquartile
range (IQR)* of variance and entropy among the data
subsets as the default threshold settings for computing
counterfactual subsets, as this has been demonstrated
to be effective in existing quality metrics.***!

Adding interactions with Co-op-supported systems
Interaction plays a fundamental role in visualization
and has the potential, when correctly designed, to
improve the quality of analytics systems.’® Researchers
have defined a number of interaction types in informa-
tion visualization.’® Though the prototypes in this
paper exercise only a small number of examples of
possible interactions, CoExplorer can still provide more
exploratory ability than CoFacr by simply clicking on
Scr to replace the S;ycr. The rich variety of interaction
types and design methodologies developed by the
visualization community can be used in combination
with Co-op to enable a wide variety of potential
applications.

Fitting with the user’s goals, data types, tasks, and
preferences In real-world usage scenarios, varying tasks
and user demands require different types of outputs
and insights®®'% and result in different levels of
comprehension.’’ A task-aware approach to data
communication and exploratory visualization design is
required to maximize the utility of a given sys-
tem.'>?>% Therefore, the prototype applications in
this paper are simply exemplars of possible counterfac-
tual workflows. Co-op should be used in the context of
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designers’ specific application objectives to best sup-
port user performance.

Limitations

Though the Co-0p model and library can enable a wide
range of counterfactual-based visualization usage sce-
narios, there remain some limitations that pose chal-
lenges. For instance, while the Co-op library provides
default settings and we recommend certain best prac-
tices for creating Scr subsets (see Choosing proper
parameter settings), these are based on our empirical
observations and other related work. However, there
remains little evidence-driven guidance on how to best
select the ideal counterfactual subset during explora-
tory analysis. This remains an important open problem
for future study. Moreover, Co-op currently cannot
process spatial datasets, a common data type that
many applications require.

The current model also does not make any attempt
to unify the various measures into a comprehensive
framework which could be the basis for automation.
Usage of Co-op as currently described therefore still
requires manual configuration and design to yield the
best results. Moreover, the prototypes presented as
examples of Co-op-enabled applications both adopted
existing visualization designs without any attempt to
improve or optimize how the counterfactual informa-
tion is presented to users. Therefore this paper does
not make suggestions for how to best visualize coun-
terfactuals in an intuitive and effective way.

Finally, while we preliminarily measured the perfor-
mance of the prototypes, no analysis was done to study
how the library works at scale. The performance of the
system as datasets grow very large, along with the
impacts of potentially slow computations on user expe-
rience, remains unstudied.

Future work

In future work, we aim to address a number of the lim-
itations outlined above. First, we aim to extend Co-op
to support spatial data and the potential for other addi-
tional data types. We also hope to conduct broader
user studies to help build an evidence base for best
practices when designing counterfactual-based visual
analysis systems. This includes a better understanding
of users’ ability to interpret counterfactual information
and preferences for how that information is displayed.
Improving computational performance and scalabil-
ity, as well as providing a richer set of measures and
operators for specific contexts is also an important
future direction. Related to this goal, we aim to expand
and promote the usage of counterfactuals in a wider

variety of visualization algorithms and designs, such as
using counterfactuals to guide visualization recom-
mendations and data subset selection in dashboard
design. By expanding the variety of applications and
domains in which these approaches are used, the com-
munity will more quickly overcome limitations and
learn about best practices.

Conclusion

This paper presented an operator-based model to
enable counterfactual-based subset computation in
visual analysis. The model included a variety of mea-
sures and operators that combine to support a coun-
terfactual workflow which has been shown to improve
users’ inferences from visualized data. This model was
instantiated within the Co-op library, an open-source
Python library for bringing general counterfactual-
based subset computation algorithms to exploratory
visualization workflows. Co-op can be used by develo-
pers to easily incorporate counterfactual workflows
into their visual analytics systems, and the library’s
design enables developers to extend and customize its
behavior to meet application needs. The general utility
of the model was demonstrated through its use in two
prototype systems with different workflows, including
both a re-implementation of an existing system and a
new exploratory one, and an interview for experts in
visualization research and engineering. Informed by
these experiences, the paper concluded with a discus-
sion of implications on system design, limitations, and
areas for future work.
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