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1 | INTRODUCTION
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Abstract

The genome-wide association studies (GWAS) typically use linear or logistic
regression models to identify associations between phenotypes (traits) and
genotypes (genetic variants) of interest. However, the use of regression with the
additive assumption has potential limitations. First, the normality assumption of
residuals is the one that is rarely seen in practice, and deviation from normality
increases the Type-I error rate. Second, building a model based on such an
assumption ignores genetic structures, like, dominant, recessive, and protective-risk
cases. Ignoring genetic variants may result in spurious conclusions about the
associations between a variant and a trait. We propose an assumption-free model
built upon data-consistent inversion (DCI), which is a recently developed measure-
theoretic framework utilized for uncertainty quantification. This proposed DCI-
derived model builds a nonparametric distribution on model inputs that propagates
to the distribution of observed data without the required normality assumption of
residuals in the regression model. This characteristic enables the proposed DCI-
derived model to cover all genetic variants without emphasizing on additivity of the
classic-cGWAS model. Simulations and a replication GWAS with data from the
COPDGene demonstrate the ability of this model to control the Type-I error rate at
least as well as the classic-GWAS (additive linear model) approach while having
similar or greater power to discover variants in different genetic modes of
transmission.

KEYWORDS

COPD, data-consistent inversion, genome-wide association study, inverse problem,
uncertainty quantification

between single-nucleotide polymorphisms (SNPs) and phe-
notypes. However, these assumptions are sometimes not

We develop and establish the credibility of a novel method
for genome-wide association studies (GWAS). The usual
GWAS utilizes regression, requiring multiple assumptions,
such as normality of errors and specifying the genetic model

met, causing inflation in false positives and diminished
power. We propose a substantial modification to the
traditional GWAS. We use a similar linear model framework
to preserve features like interpretability and ability to add
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covariates, while removing many of the usual linear
assumptions. However, instead of least squares estimation,
we estimate the sampling distribution of mean effects related
to SNPs using data-consistent inversion (DCI), a new
method from a field of mathematics known as uncertainty
quantification.

The following work is organized in distinct sections in an
attempt to provide detailed discussion for each key element
of the problem, but also allow those with sufficient
background to feel confident in skipping a section.
Section 2 reviews the history of GWAS along with technical
details of the linear model it uses. This includes a description
of the limitations of the usual GWAS to set up the context for
how DCI can be used to overcome these. Section 3 provides
an overview of uncertainty quantification before delineating
DCI and the specifics of how we implement it. Section 4 is a
rigorous simulation experiment comparing the classic
GWAS to our DCI-based GWAS. Section 5 applies this
approach to real data from the COPDGene Project where we
replicate and extend a GWAS done in that setting. Section 6
contains a summarizing discussion.

2 | GENOME-WIDE ASSOCIATION
STUDIES (GWAS)

Identifying associations between genetic variation and
disease engenders opportunities to develop interventions
to help those affected by the disease. GWAS is a
regression-based approach used to find an association
between SNPs, and phenotypes of interest. GWAS
involves hypothesis testing of all available SNPs individ-
ually across the genome with one specific phenotype.
Regression coefficients provide an estimate of the mean
effect of the SNP's alleles on the phenotype; thus,
coefficients significantly different than zero identify
possible genotype-phenotype associations. The validity
of these results depends on the appropriateness of the
underlying linear model and assumptions.

2.1 | GWAS limitations

GWAS results have been constrained by the inherent
limitations of linear regression. Moreover, flexibility regard-
ing (or even removing) the linear model assumptions has the
potential to enhance the ability of GWAS to discover new
SNPs-phenotype associations. If the linear model uses a
different genetic structure than the true underlying model of
transmission, then the rates of spurious associations are
possibly inflated (Ray & Chatterjee, 2020). Furthermore, the
classic incorrectly treating variables (e.g., ordinal factors) as

continuous increases bias and decreases power in GWAS
(Verhulst & Neale, 2021). A consequence of ignoring
dominance effects is a biased estimation and an increase
in false-positive rates (Monir & Zhu, 2017). It is not feasible
to individually specify the genetic model when analyzing
millions of SNPs, thus, defaulting to the least problematic
additive form is reasonable, but this will inevitably lead to
false conclusions about the associations between nonadditive
SNPs and a phenotype. Replacing the additive model with
the full genetic model (Monir & Zhu, 2017) coupled with
limiting the proportion of false-positive results among all
positives to some small value by Bayesian GWAS (Fernando
& Garrick, 2013) are suggested as ways to control false-
positive results. Ideally, though, a method would not need
any genetic model to be specified, no matter if a Bayesian or
frequentist approach is used. Our adaptation is not affected
by this underlying structure.

At its core, GWAS is a regression-based method that uses
Ordinary Least Squares (OLS) to estimate the coefficients
(the SNP's mean effect) of the linear model. For OLS to be
best, linear, unbiased, and estimator, the Gauss-Markov
theorem requires errors to be uncorrelated, have equal
variances and mean of zero to guarantee the (OLS) estimator
has the lowest sampling variance within the class of linear
unbiased estimators. Furthermore, there is an implicit
assumption that the residuals, the error between the
observed and predicted phenotype values, follow a normal
distribution. The validity of the ¢ test for each SNP depends
on the normality of residuals; otherwise, we cannot ensure
the normality of the sampling distribution for our estimate of
the SNP's mean effect @SNP). On the basis of the residual
assumptions, ,éSNP is normally distributed with mean
(hence unbiased) and the standard deviation of o Borp® that is,

Bsxp ~ N (6SNP’ U%SNP)- 1)

Although the central limit theorem mitigates deviations
from normality, it is an asymptotic result. Consequently, it
may require a potentially unobtainable sample size to
guarantee that the sampling distribution is close enough to
normality for accurate conclusions at the genome-wide
significance threshold (@ = 5 x 1078). Even small violations
of this innocuous normality assumption have the potential to
severely and adversely affect both the Type-I error rate (false
positives) and the power of the hypothesis test to correctly
identify SNPs associated with a phenotype (increase the
Type-II error rate) or false-negative. Phenotypes often have
markedly non-normal distributions, and the central limit
theorem approximation is unreliable for GWAS regression
p values (Connor & O'Neill, 2017). To provide one example
relevant to our simulation study: right-skewed and non-
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normal ﬁ’SNP s increase the mean () and the estimate of the
standard deviation (SD) becomes inflated by the small
proportion of observations in the drawn-out upper tail. The
resulting inflation in the estimated standard error (SE) leads
to a deflated value for the ¢ statistic, causing Type-II errors
(Fayers, 2011). Although the regression-based ¢ test has
Type-I error that is robust to deviations from normality for
reasonably sized samples, the robustness of the power of the
t test in the presence of non-normality is not as well-
guaranteed as the robustness of the Type-I error
(Feingold, 2002). Our proposed method adapts the linear
structure to the non-normality anywhere in the model.

Multiple statistical procedures exist to address the
problem of non-normality. Transformation is a common
method used to remedy the problem of non-normality of
phenotypes. Another strategy is to perform a parametric
transformation to approximate the normality of quanti-
tative traits (Goh & Yap, 2009). Previous research,
however, has demonstrated that transformation may
not solve non-normality issues in the regression model
(Pires & Rodrigues, 2007).

Other methods have attempted to handle the viola-
tions of normality and the incorrect specification of the
genetic model. Robust regression methods have been
successful in handling outliers, but performed poorly in
real data settings where results were expected to be
replicated (Lourenco et al., 2011). Generalized Estimating
Equations are another natural choice, but they can be
more appropriate when there is a correlation among the
observations, for example, from a pedigree study
(Murabito et al., 2007) or a longitudinal phenotype (Sitlani
et al, 2015). To remove the dependency on these
assumptions, nonparametric methods have been devel-
oped. One such method applies a Marcus-like contrast
matrix to represent three modes of inheritance (dominant,
recessive, and additive) where the contrasts allow testing
of a nonparametric estimation of SNP-phenotype associa-
tion for all three modes (Konietschke et al., 2012). The
method is effective except that it must test for the three
models, and is impacted by multiple testing constraints.
Moreover, the method does not allow for adjustments for
covariates. We retain the linear structure to, among other
reasons, allow covariates. Lastly, newer methods increase
power by pooling SNPs from a gene for a single phenotype
such as the method of multivariate multiple linear
regression (RMMLR) (Basu et al, 2013) or pooling
suspected related traits for a single SNP, such as the
scaled multiple-phenotype association test (SMAT)
(Schifano et al., 2013). However, our goal is to maximize
the power with respect to discovery in the GWAS single
SNP setting. We also borrow from nonparametric
methods, but without the requirement to test for multiple
possible genetic structures.

On a technical note, linear regression has an additional
assumption of equal variance of the random errors, which is
also referred to in the literature as homoscedasticity.
Stratification is one remedy if this assumption is violated
(Behrens et al., 2011). Thus, we also employ stratification in
our real data analysis, specifically in the case of hetero-
scedasticity across our two populations.

2.2 | In Section 3

We show how we remove these assumptions while
maintaining the linear framework, which is desirable given
its ease of interpretations (means) and ability to be easily
applied genome-wide. Specifically, we build a computational
mathematics-based GWAS that does not require the usual
regression assumptions, which we now explain as back-
ground for our GWAS adaptation. The exact form of the SNP
used in the linear regression varies depending on the
investigator's assumptions about the way a genotype affects a
trait. The genotypes (or minor allele counts) for an SNP can
also be grouped into genetic classes or models, the most
common being dominant, recessive, and additive models.
Briefly, to describe these genetic models, assume A and a are
the two possible alleles for an SNP (let a denote the minor, or
less frequent, allele). A dominant model (for A) assumes that
having one or more copies of the A allele increases the risk
for a disease compared with a (i.e., aA or AA genotypes have
approximately an equivalent higher risk than aa). The
recessive model (for A) assumes that two copies of the A
allele are required to alter risk. The additive model (for A)
assumes that there is a uniform, linear increase in risk for
each copy of the A allele. A common practice for GWAS is to
assume additive model are correct for every SNP, as the
additive model has reasonable power to detect both additive
and dominant effects (Bush & Moore, 2012).

3 | UNCERTAINTY
QUANTIFICATION AND DCI

As computational models are increasingly relied upon to
describe biological systems and genetics, quantifying the
uncertainties in model inputs that influence solution is
critical. Inverse propagation problems use observable output
data to infer the model input parameters that likely
generated those data and calibrate the parameters for
distributions related to those inputs. Uncertainties in
observable data often necessitate the formulation of a
stochastic inverse problem where the solution is a computa-
tionally simple methodology based on density estimation. In
this work, we apply a recently developed measure-theoretic
framework and its density-based solution methodology,
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which is referred to as DCI to solve a stochastic inverse
problem for GWAS. Formally, DCI constructs a probability
measure on model input parameters whose predicted
outcome matches (is consistent with) a probability measure
on the observable outputs of the model. We summarize
some details below and direct the interested reader to Butler
et al. (2020; and the references therein) for more details
related to a stochastic mapping version of DCI that is most
pertinent to this work.

The main goal of DCI is to infer information about the
parameters of a model from observations. DCI is a data-
adaptive computational method to determine the distribu-
tion of possible model parameter values which reproduce a
distribution of model outputs associated with a distribution
of observed values. More rigorous details are provided
shortly. To motivate the general idea, the process starts
with a user specifying the model and initial distributions of
the model parameters. A “predicted” distribution of model
outputs is obtained by propagating the initial distribution
through the model. DCI then reconciles the differences
between the predicted and observed distributions to update
the initial parameter distribution in a specific probabilistic
way such that propagating this updated distribution back
through the model reproduces the observed distribution
associated with model outputs. This “reproduction” of a
distribution of model outputs is what is referred to as the
“consistency criteria” in DCI. In other words, if the
specified distribution of model outputs comes from an
associated distribution of observed data, then the DCI
result is a distribution that is “data-consistent” in the sense
that the model maps the result onto the distribution of
observed data.

This recently developed measure-theoretic framework
for solving a stochastic inverse problem has been used in
models of material science to determine process—
structure-property linkages, one of the key objectives in
material science, and infer a distribution of acceptable
(consistent) microstructures, which expands the range of
feasible designs in a probabilistic manner (Tran &
Wildey, 2021). It has been also used to describe and quantify
the impact of measurement error on predictions of lung
function in the COPDGene cohort (Zachary et al., 2022).

3.1 | Connection between GWAS model
and DCI

As previously mentioned, linear or logistic regression
models are utilized within GWAS to test for associations
between variants and traits, depending on whether the
phenotype is quantitative (such as height, blood pressure,
or body mass index) or dichotomous (such as the

presence or absence of a trait), respectively. Covariates
such as age, sex, and ancestry are included to avoid
confounding effects from these or other factors.

The classic-GWAS model utilized in this study is a linear
regression model. Thus, it is considered as a solution to a
type of stochastic inverse problem because the observed
output data, the phenotype of interest, supervises input data
to estimate the coefficient parameter of the SNP in the linear
model. In this work, we use the same linear model for the
DCI-based solution except that we only assume the linear
form and nothing about the distribution of the errors or
correctness of the additive genetic model assumption. Our
contention is that we can retain the value of the linear form,
but provide an alternative way to estimate its parameters that
is not dependent on potentially false assumptions. Thus, our
method is in essence replacing OLS with DCI in the classic-
GWAS model, resulting in, we believe, more defensible and
likely more accurate estimates of SNP effects.

3.2 | How DCI addresses the non-
normality problem

To translate the regression-based GWAS into DCI notation,
we emphasize a key change in that DCI assumes the SNP's
coefficients may vary (i.e., are treated as random variables
from a particular uncertain distribution). In the DCI
notation, Q denotes a quantity of interest, which is an
uncertainty quantification term usually defined as the
mapping from model parameters to model outputs associ-
ated with observable data. The linear form in the classic-
GWAS model is used in this study for Q. This is done
because our goal is to enhance and not replace the usual
GWAS approach. Next, assume Q takes parameter values in
the parameter space, denoted by 4 (8,yp), and uncertain (but
knowable) variables, x, as the model inputs (Xsyp) and then
maps them to the space of estimated outputs (¥). In
summary, Q(x, A) is the map between the parameter space
Benp and the output space Y given values for Xsnp. The five
steps taken by DCI to formulate and solve the stochastic
inverse problem, resulting in estimates of Sg,,, are given
below.

Step 1: Make initial assumptions about the parameter
distributions, which we denote 7;,; (x, A1), of the
GWAS model parameters, such as gy, based on
the background knowledge of the model.
Because the traditional GWAS model is a
regression-based model, we initially assume a
normal distribution for the for parameter S\,
that is approximately the asymptotic distribution
of ﬁSNP from OLS. This highlights one of the
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strengths of our DCI approach. Specifically, the
initial assumptions are essentially those that
would lead to the same conclusions as classic
GWAS. That is, we start our method by
assuming GWAS is correct; for example, there
are no issues with normality. We then use DCI
to change, or update, to other distributions if the
actual (observed) data is not compatible (i.e.,
inconsistent) with these assumptions.

Step 2: Use the GWAS linear model (denoted by Q) to
create a set of initial predictions for the observed
data based on the parameter distribution assump-
tions made in the first step. Specifically, generate a
large number of samples from the initial parameter
distributions; for example, 10,000 samples are
generated from our initial normal distribution for
the parameter [§SNP. Each ﬁSNP randomly drawn
from the initial normal distribution defines a
unique candidate model, leading to a set of
predicted outputs ¥ for our given values for x,

which are predictions of the observed output (Y).
Step 3: Construct density estimates of the observed data Y,

label it 7z, (Q(x, 1)), and the set of predictions of
the observed data, Y, label it Topredict (Q (X, 1)). In
this work, we utilize a standard Gaussian kernel
density estimator (GKDE) to construct non-
parametric distribution estimates of both these
densities. In other words, Step 3 in this work is to
use a GKDE to construct an estimate of the
distributions that produced both the observed data
and the “push-forward” of the samples drawn from
the initial density (referred to as the predicted
density) generated in Step 2.

Step 4: Construct a “discrepancy ratio” r(x, 1) defined
as the ratio between the observed and predicted
densities found in the previous step that are both
evaluated on the model. This ratio is used to
rescale the likelihoods of the initial distributions
of parameters and the predicted data.

Tlobs (Q (x’ /1))

reed) = Tlpredict (Qx, 1))

()

Step 5: Update the initial distributions of parameters
3SNP and in turn the predicted data Y.

This reweighting process improves the fit of the
associated predicted distribution of ¥ to the true distribu-
tion of observed outputs of Y. During this process,
parameter values associated with predicted quantities of

interest Q(x, 4), where ﬁpredict(Q(x’ 1)) > mops (Q(x, 1))
are functionally down-weighted in the updated distribu-
tions, although parameter values associated with Q(x, 1),
where ﬂpredicl(Q (x; /1)) < Tlobs (Q (x; /1)) are uP‘Weighted
in the updated distributions. Through the updated
distribution, we assign new likelihoods to gy, as the true
parameter value; that is, we have functionally created a
distribution for 3SNP (and will switch to this notation going
forward). At a computational level, an updated density,
Tlupdate> is immediately obtained after constructing the ratio
r(x, 1) from Step 4. The updated density usually is written
in the form

ﬂupdale(xa A) = Tiie (x, 1 (x, ). 3)

Equation (3) is not merely a formal construction as it
also allows us to utilize standard rejection sampling
techniques to produce samples that follow this updated
distribution as a subset of the samples drawn from the
initial distribution. Specifically, we utilize the ratio r to
perform rejection sampling on the parameter values
[§5Np s. This occurs in the data space, that is, the rejection
sampling is applied on the set of predicted outcomes, Y's,
which ensures that we keep parameter samples associ-
ated with predictions that are from a distribution
consistent with the observed outputs. See Butler et al.
(2020) for more details.

In summary, DCI concentrates on the distribution of
model inputs and parameters that generate exactly the
distribution of observed outputs. It begins with plausible
distributions of parameter values, and then reweights
them based on their compatibility with the observed data,
creating an updated distribution reflecting the relative
consistency between a candidate parameter and the
observed data. The updated density is the solution to the
stochastic inverse problem (Butler et al., 2020). Here, we
specifically use DCI to create an alternate distribution of
ﬁSNP, one that shows how inputs such as SNPs could lead
to outputs such as phenotypes by tuning the model
parameters to be consistent with what we know for sure,
which is the data we possess. All of this is done without
any of the assumptions needed for classic-GWAS infer-
ence despite the utilization of these assumptions to create
plausible initial distributions on model parameters.
Moreover, the advantage of DCI over methods using a
Bayesian framework is to establish a distribution on model
inputs that exactly propagates to an observed distribution on
model outputs although the Bayesian methods focus on a
single point estimate of model inputs instead of a
distribution on model inputs that propagates to the
distribution of observed data (Zachary et al., 2022).
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3.3 | How DCI addresses the additive
assumption

We use the cell means model for the linear structure. The
cell means model does not fit an overall mean effect for
each additional minor allele. Instead, we estimate an
individual mean effect for each of the SNP levels defined
by minor allele counts of 0, 1, or 2, in effect treating the
minor allele count as a categorical variable. More
specifically, we identify the distribution of mean effects
within three groups, one for each SNP level. This imposes
no assumption about the underlying genetic model,
which is conceptually how we allow DCI to remove the
additive assumption in the classic-GWAS model. Specific
mathematical details are given below.

The mathematical model that describes the relation-
ship between the observed outcome Y and the SNP
vector Xgyp for the cell means model corresponding to
the GWAS study with 0, 1, and 2 SNP levels is given by

Yj = ,L{j + €, €j~ N(O, O'?Ij). (4)

Here, Yj is the vector of observed outcome or traits
corresponding to the SNP level j € {0, 1, 2} correspond-
ing to the number of minor alleles; j is the mean effect
for all observations of SNP level j; and ¢j is the vector of

random error for SNP level j; o3 is the variance of

J
observations of SNP level j; and I; is an n; X n; identity
matrix, where n; the number of observations with SNP
level j. We estimate the model for each of the three SNP
levels individually. That is, we use DCI to estimate the
distribution of /ftj for j € {0, 1, 2}. Note that the under-
lying genetic model is identifiable by simply comparing
these distributions. For example, a dominant model has
overlapping distributions for j =1 and j =2 that are
distinct from the distribution of f,.

Differences in the ﬁj indicate the SNP has an association

with the phenotype. To determine whether any differences
between the mean effect of the SNP levels are significant, we
need to define an appropriate hypothesis test with the null
and alternative hypotheses H, and H;. The null and
alternative hypotheses to test for any difference in the
mean effects of different levels are as follows:

Hy: u, = u, = u, indicates that three mean effects are
equal.
H,: Not all the mean effects are equal.

As with classic GWAS, a primary assumption for the
cell means model is that Y; is normally distributed. Thus,
this hypothesis test is done with F statistics, but inference
in this setting is similarly impacted by violations of the

normality assumption. Type-I error rates and power may
be adversely impacted. Therefore, for the DCI-GWAS
results we use the nonparametric Kruskal-Wallis test to
assess the statistical significance of differences in the three
distributions of H; . It is important to point out that we are
proposing that our method is finding alternative sampling
distributions for the mean effects of the different minor
allele counts; thus, no testing on outcomes would be
appropriate for this question. We did, though, confirm
(results not shown) that our conclusions from testing the
DCI-GWAS derived parameter distributions held even
versus testing the DCI-GWAS derived updated (or even
original) outcomes.

We summarize the three major elements of our methods
as follows. First, we replace the classic-GWAS linear model
with the cell means model to overcome the additive genetic.
Second, we use DCI to estimate the distribution of the mean
effect of each specific number of minor alleles. There is no
normality assumption for DCI. Finally, we use non-
parametric statistics to test for differences in these distribu-
tions to identify differential effects on the phenotype of the
different numbers of minor alleles, hence, finding an
association between the SNP and trait in an assumption-
free model. The DCI algorithm is also summarized in a step-
by-step visual after the real data COPDGene section;
however, the simulation section describes the generation of
our simulation data, and then we applied the DCI method as
described in the visual.

4 | SIMULATION

In this section, we report on our comparison of the
performance of the classic-GWAS additive model to our
alternate DCI-estimated cell means model in a range of
simulated scenarios. We compare our method to the
GWAS additive model and not a cell-means linear model
(such as analysis of variance) because we are proposing
our approach as a replacement for what is currently most
frequently used in practice. To be sure, though, we
confirmed (not shown here) that our conclusions held
even if we compared with classic GWAS calculated in the
cell means framework. In addition, we compare Type-I
error rates in a scenario where there is no difference in
the mean effect on the trait for different minor allele
counts for the SNP. We then provide power comparisons
in five scenarios derived from our previous discussion of
additivity and normality:

1. the genetic model is Additive and the normality of
errors is true,

2. the genetic model is Additive and the normality of
errors is false,
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3. the genetic model is Non-Additive and the normality
of errors is false,

4. dominant,

5. heterozygote advantage.

4.1 | Data simulation

The simulation framework is designed to assess the false-
positive rate and the power for the two GWAS
approaches in our real data setting using genotype data
from the COPDGene project. The credibility of the data
with respect to studying variant to phenotype maps has
been repeatedly established by a range of domain experts,
letting us be sure any findings were more likely true and
not statistical artifact. More, those same domain experts
believed there was more information in the data that
novel methods might be able to exploit. We explain the
study in more detail in the COPDGene section. However,
for now the key detail is that we need to establish the
credibility of our method on a roughly standardized
continuous outcome for a biallelic SNP with minor allele
frequencies of at least 5% (and often much larger).
COPDGene also had approximately 10,000 participants
in total. From the point-of-view of DCI, covariates are
treated as constants simply adjusting the related obser-
vations; thus, we focus only on the SNP effects and
residual errors here. In our COPDGene replication we
adjust the two traits we are studying for necessary
covariates and explain why this is a valid extension of our
simulation conclusions. The model has the form for
i=1,..,10,000:

Y, = ﬁo + Xi,SNPﬁSNP + €,
€ ~ N(O, 0'2).

Our initial step in creating our synthetic data is to
randomly generate a vector of length 10,000 of minor
allele counts for an SNP or Xgnp. This results in
Xsnp = (X1, -y X10,000)7, Where X; is the count of minor
alleles for participant i. Specifically, this is done in two
stages. First, a random value is generated from a uniform
distribution from 5% to 50% to use as the minor allele
frequency (MAF). Next, this frequency was used to
simulate an allele count (0, 1, or 2) for each of the 10,000
simulated participants. Technically, the allele count was
generated from a binomial distribution for 2 outcomes
with this MAF as the probability.

The next step is to simulate the outcome or trait for
each of these 10,000 participants. These Y; are simulated
from the classic-GWAS model stated above in this
section. The Bgyp is one of three values of Sgy, depending

on the SNP level (j) for participant j. The BSNP]_ are chosen

to match the additivity or nonadditivity of the desired
genetic model. For example, in the additive case /SSNE is

the same for j € {0, 1, 2}, but in the dominant setting
Bsnp, = PBsyp, and these are both greater than Bgy,.
Moreover, to have challenging simulations, we set the
difference in Bgyps small to about % of the standard

deviation in the real data. Our real COPDGene data
outcomes were on residuals (that accounted for the
covariates like race and ethnicity PCAs, gender, etc.), and
simulation outcomes are treated as centered as the real
data example. Therefore we used SDs of the real data to
describe fqyps. Because our real data is standardized, we

assume 5, = 0 in our simulations. The specific values for
our 5SNP,~ in our five scenarios are given in the detailed
descriptions of the scenarios.

Last, we simulate ¢; from a normal or slightly
skewed distribution depending on whether our scenario
assumes the normality of the errors is true or false.
When we apply DCI to find our ﬁSNPs distribution, we
are implicitly assigning a variance to this distribution.
Consequently, the variance of the residuals is an
important element to consider in the context of the
variance related to Sy, Without an error term in our
simulated outcomes, the trait would be completely
determined by the SNP. If the SNP is truly associated
with the outcome, though, the magnitude of the errors
should be minimal (or the error would dominate the
predicted Y causing any estimation approach to fail). To
balance these concerns, we made the initial standard
deviation of our residuals 0.35 or approximately 20% of
our outcome's standard deviation. In this way, we give
the errors a meaningful variance while still linking the
majority of the changes in our outcomes to the SNP
values and their possible effect sizes. Because we
want to quantify power when there is in fact an
SNP-phenotype association, our simulations have to
allow this. We checked the robustness of this choice,
and the values were stable for values smaller and larger
than 0.35.

Each scenario was repeated with new random
variables 200 times. As appropriate, we provide the
Type-I error rate or the power and range of p values for
the 200 iterations of each scenario. False and true
positives are based on the GWAS threshold of 5 x 1078,
All data generation and analysis were conducted
using Python (version 3.8) and numpy, pandas,
sklearn.linear_model, statsmodels.a-
pi, scipy.stats, and matplotlib.pyplot
packages. We also used ggplot2 from RStudio
(version 2021.09.2) to create Miami plots.
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4.2 | Simulation scenarios

The first scenario is to consider additive cases that
deviate from normality. Figure 1 shows an example of
our first simulation scenario.

In Figure 1, YO are the outcomes for those with 0
minor alleles. Y1 and Y2 are the outcomes for those with
1 and 2 minor alleles, respectively. There is an increasing
and uniform shift in the distributions from Y0 to Y1 to
Y2 indicating the additive assumption holds. However,
the distributions of the outcomes are not normally
distributed as we generated our mean effects from a
very slightly skewed normal distribution. Moreover,
observe that there is severe overlap in the distributions.
This speaks to our motivation: can we update GWAS to
find these shifts (whether additive or not) in the presence
of uncertainty (whether normally distributed or not)?

To evaluate the classic-cGWAS model, we combine all
three different simulated outcomes Y, ¥, and ¥, into a
single continuous outcome vector Y and conduct the least
squares regression under the additive model assumption.
That is, we regress Y onto Xgnp, and perform the hypothesis
test for an association. As evident in Figure 2, the line that
represents the additive association between the SNP and the
observed outcome Y gives limited information about the
association between the observed data and the SNP vector
Xg. Our simulations will show that the DCI adaptation can
find this association in a comparable or better way than
classic GWAS.

The DCI-GWAS is done in stages. We partition the
data (simulated SNPs and outcomes) into three groups
depending on the minor allele count. Within each
partition, we then apply DCI as described in Section 3
to find a distribution for each ;. Our assumed initial
distributions are Normal(0,0.35%) for the errors (as
described above) and Normal(Y;, SE*(Y;)) for ;- The
second assumption implies that we are assuming that the
sampling distribution for &; found with least squares is
correct. This will only change if it is inconsistent with the
actual observed data. DCI is based on creating the range
and relative frequency of outcomes based on possible
values of ;. Thus, we sampled our initial distributions
equal to the number of 0s for 1, the number of 1s for u,
and the number 2s u, to have a sufficiently accurate
approximation to Normal(Y;, SE?(Y;)). DCI uses the
resulting predictions from this set of sampled parameters
(specifically their consistency with the observed out-
comes) to update the initial parameters and then use
these to create an updated set of predictions.

To see an illustration of this, refer to Figure 3. The three
panels show the observed, predicted based on the initial
parameter distribution assumptions, and DCI-derived

05 A — Y0
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-4 -3 -2 -1 0 1 2 3 4
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FIGURE 1 An example of the Additive Non-Normal scenario.
YO0, Y1, and Y2 are the outcomes for those with 0, 1, and 2 minor
alleles, respectively.
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FIGURE 2 Regressing observed outcome Y onto Xgyp under the
additive model assumption. SNP, single-nucleotide polymorphism.

updated outcomes for each minor allele count. For this
figure, the red curve is the density for the true or observed
outcomes. The blue curve is the density for the predicted
outcomes or the push-forward of the initial. The dotted black
curve is the density of the updated outcomes generated using
DCI for each SNP level. The initial distribution in blue is
different than the true red curve, indicating that the initial
parameter distributions do not accurately predict the
observed outcome. DCI reweights the parameters’ initial
distributions based on the degree of inconsistency between
the observed outcomes and the predictions resulting from
different values of the initial distribution. The dotted black
densities, the predictions from the updated parameter
distributions, are now near-perfect matches with the true.
When DCI updates the predicted outcomes 171-, it also
updates all the parameters included in the model like y;
and ¢j, keeping the parameter values that generate
predictions consistent with the observed outcomes while
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FIGURE 3 Observed, predicted based on the initial parameter distribution assumptions, and DCI-derived updated outcomes for each
minor allele count. The red curve is the density of the observed outcomes. The blue curve is the density for the predicted outcomes. The
dotted black curve is the density of the updated outcomes generated using DCI for each SNP level. DCI, data-consistent inversion; SNP,

single-nucleotide polymorphism.

rejecting parameter values that generate predictions
inconsistent with the observed outcome. If the updated
predictions are consistent with the true outcomes, then
the updated parameter distributions that caused these
predictions are a viable density-weighted set of estimates
of J7 that is, a data-consistent distribution for ;zj.
Figure 4 depicts plots of initial and updated distributions
for the mean effect of the SNPs for each minor allele
count, where the blue curve is the initial distribution and
the red curve is the DCI-derived updated distribution for
each y;. Notice that the updated distributions reflect how
the DCI distributions are minor (but important) data-
adaptive changes from the initial distributions, which
were based on the classic-GWAS assumptions were true.
This illustrates how DCI can use the data to adapt to

needed deviations from normality assumptions.
Our official test for an association was done by

applying the Kruskal-Wallis test to these three distribu-
tions u,, 4,, and u,. We conclude there is an association
between the SNP and outcome is the resulting p value is
less than the GWAS threshold of 5 x 1078,

We explored four more simulation scenarios. All used
the standard deviation of 0.35 for the residuals. Note,
below we provide the y; for each scenario, and 0.35 is
high in comparison to these values. This forced substan-
tial overlap in our scenarios. The overlap presents added
challenges in finding associations, but it also better
matches distributions in real data. The four scenarios are
pictured in Figure 5. In all the scenarios, the deviations
from normality are slight to ensure that our method
works in difficult settings (especially ones where the
deviation is not clear through observation so a researcher
would not use a t test anyway).

Plot (a) depicts the additive and normal scenario with
high SD. On the basis of the definition of the additive
model (for A), there is a uniform, linear increase in risk
for each copy of the A allele; the risk of having two copies

of the A (AA) is twice the risk of having one copy of the
A (Aa). In this case, we simulated the observed outcomes
Y, ¥4, and Y, from a normal distribution with a mean of
zero, one, and two, corresponding to the MAF of 0, 1, and
2, respectively.

Plot (b) shows a case scenario where both normality
and additivity assumptions are violated. To depict this
case, we simulated 200 iterations with Ys from a right-
skewed normal distribution with mean 0, ¥js from a
left-skewed normal with mean 0.1, and Y,s from a left-
skewed normal with mean 0.15 to break normality and
additivity assumptions. One subtle point is that in our
simple sampling approach, stratified by allele count,
non-normality in the outcomes directly indicates non-
normality in the errors.

The dominant case scenario is shown in Figure 5
part (c). A dominant model (for A) assumes that
having one or more copies of the A allele increases risk
compared with a (i.e., aA or AA genotypes have higher
risk). For this scenario, we generate simulated observed
outcomes Yy from a right-skewed normal with mean 0,
Y, from a left-skewed normal with mean 0.1, and Y,
from a left-skewed normal with mean 0.11, correspond-
ing to the MAF of 0, 1, and 2 to keep the model
dominant.

For that last case scenario, we consider the hetero-
zygote advantage case scenario shown in Figure 5 part
(d). In this special and rare case, having one minor allele
count (MAF = 1) increases the risk of a special phenotype
while having two minor allele counts (MAF=2)
decreases the risk of a special phenotype or has a
protective effect. For this scenario the observed outcomes
Yy, Y4, and ¥, were simulated from a slightly right-skewed
normal distribution with mean zero, a left-skewed
normal distribution with mean —0.1, and a right-
skewed normal distribution with mean 0.1, correspond-
ing to the MAF of 0, 1, and 2, respectively.
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Initial and updated distributions for the mean effect of the SNPs, y;s, for each minor allele count. The blue curve is the

initial distribution and the red curve is the DCI-derived updated distribution for each y;. DCI, data-consistent inversion; SNP, single-

nucleotide polymorphism.
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FIGURE 5 Examples of each simulation scenario. In each plot, Y0, Y1, and Y2 are the outcomes for those with 0, 1, and 2 minor alleles,
respectively. Plot (a) meets both additive and normal assumptions. Plot (b) deviates from both normality and additivity. Plot (c) depicts a

dominant case scenario. Plot (d) shows a heterozygote advantage case scenario.

Finally, we generated outcomes from the simulation
scenarios except where the null assumption of no variant
effect is true (no difference by allele count). We used
these to calculate the rate of rejecting the null hypothesis
to assess the Type-I error rate.

4.3 | Simulation results

With respect to false positives, classic (regression) GWAS
and our DCI-GWAS performed identically. Moreover, the
false rejection rate (Type-I error rate) was less than 0.05.
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In Table 1, we report details about the power of the
two approaches in our five scenarios. The scenario is in
the left-most column. The results for the classic GWAS
are in the next two columns, and the results for our DCI-
based approach are in the last two columns. The power,
provided as the percent of the 200 iterations of the
scenario in which we conclude there is an association
between the SNP and outcome, is given in the columns
labeled “Association.” The ranges of p values from the
200 tests (t test for GWAS and Kruskal-Wallis for DCI)
are shared in the “p value” columns.

The new DCI-GWAS had at least 90% in all
scenarios, whereas the classic GWAS had noticeably less
than this level of power for the “Dominant” and
“Heterozygote Advantage” scenarios. As the recessive
case is symmetric to the dominant case with respect to
how DCI estimates the mean effects, we believe this
conclusion is true for the recessive case as well. Our
approach is able to adapt to all the underlying genetic
models, but the classic GWAS is, as the literature
suggested, not able to similarly adapt.

Next, there is a pattern of how the performance of
DCI-GWAS compares to the classic GWAS. In the setting
that meets the linear model or least squares regression
assumptions, where additivity and normality are true,
both methods had extremely good power but the classic
GWAS had 1.5% more power than DCI-GWAS. This is
encouraging because it shows that DCI-GWAS performs
comparably to the classic GWAS even in the ideal
scenario for classic GWAS. More, the DCI approach is
using a nonparametric statistic in a situation where the

parametric is known to be valid. Thus, it is just as
encouraging that the power only decreased by such a
small amount (1.5%).

When the scenarios have even one violation of the
assumptions, then DCI-GWAS has superior power. If
there is non-normality of the errors, DCI-GWAS was
slightly better (1%) even if the underlying model was
additive. If the additivity was also invalid, the advantages
of DCI-GWAS were stronger. In the third scenario, the
model is neither additive nor dominant, and our method
outperformed classic GWAS by 5%. In the dominant
scenario, the improvement grew to nearly 20%. Finally,
in our unique Heterozygote Advantage scenario, we
confirmed that classic GWAS is unable to capture this
type of association, although our adapted version was
successful in more than 90% of our iterations; that is, we
attained at least 90% power.

Although the 10,000 sample size matched the
COPDGene data, we repeated the simulation with
n = 1, 000, 000 to show the reproducibility of the method
to more current GWAS sizes. Table 2 summarizes the
results for 1 M cases. The results show approximately the
same power as the results for 10, 000 sample size and
even more power in some of the scenarios. In all
scenarios, we had at least 90% power like the 10, 000
sample size. The classic GWAS had noticeably less power
for the “Dominant” and “Heterozygote Advantage”
scenarios for 1 M cases as well. Furthermore, the
same pattern in the performance of DCI-GWAS com-
pared with the classic GWAS is repeated here in
n =1, 000, 000. This shows DCI-GWAS outperforms

TABLE 1 Simulation results: The power of the classic-GWAS and DClI-based approach in five scenarios for 10K simulated cases.

Number of iterations = 200

Number of

cases = 10,000 GWAS
Simulation cases Association (%)
Additive normal 97.5

Additive non-normal 91.5
Nonadditive non-normal

Dominant 74.5
Heterozygote advantage 0

DCI

p Value Association (%) p Value

>1.68E — 36 96 >1.18E — 37
<8.49E — 07 <9.06E — 05
>2.28E — 36 92.5 >6.22E — 42
<5.33E — 05 <3.19E — 03
>5.38E — 33 94 >147E — 37
<5.99E - 05 <1.86E — 04
>1.08E — 27 93 >3.06E — 36
<9.29E — 04 <1.42E — 04
>7.38E — 8 90.5 >2.05E — 30
<9.81E -1 <3.09E — 04

Note: “Association” columns show the power provided as the percent of the 200 iterations of the scenario in which an association between the SNP and
outcome was concluded. “p Value” columns share the ranges of p values from the 200 tests (¢ test for GWAS and Kruskal-Wallis for DCI).

Abbreviations: DCI, data-consistent inversion; GWAS, genome-wide association study; SNP, single-nucleotide polymorphism.

ASUADI SUOWWO)) dANRAIY) d]qeat[dde ayy £q POUIdAOS a1e SI[OILIE Y() a8 JO SA[NI 10§ KIRIQIT AUI[UQ) AD[IAY UO (SUOHIPUOD-PUB-SULIA}/WOd" K[ 1M KIRIqI[auI[uo//:sd}Y) SUORIPUO)) PUE SWLId ], 3y} 23S “[$707/80/61] U0 AIRIqIT auljuQ) AJ[IA\ IOIUR)) AOULIOS [I[EAH OPEIO[0)) JO AluM) Aq 9677 1da8/7001 "0 1/10p/wiod’ Ka[im’ A1eiquaur[uo//:sdpy woly papeojumo( ‘0 ‘zL7z8601



JANANI ET AL.

2 | wiLey

the classic GWAS in more scenarios in the larger sample
sizes typically seen in GWAS today.

The allele frequencies used in the simulations were
chosen to allow the results to generalize to a wide
range of potential real scenarios. That is, we chose a large
enough number of simulation iterations (200) to test the
method robustly throughout the 0.05 to 0.50 interval of
Minor Allele Frequencies, an interval which encom-
passes many true SNP allele frequencies. In addition to
this, we reran all simulations with an allele frequency of
exactly 0.05 and then exactly 0.50. The results were the
same as those provided in the Simulation Results Table 1,
confirming that are conclusion held for the complete
interval of allele frequencies in [0.05, 0.50]. Although it
was outside the goal of our developing a method for
common variants, we still tested the method with an
MAF = 0.01; unfortunately, the method performed insuf-
ficiently for us to recommend using it for rare alleles.

To complete our results, Table 3 shows the rates of false
positives for the different distribution scenarios across the
classic and DCI versions of GWAS. For consistency, the
results are based on the same five simulation scenarios used
above except that the null hypothesis is now assumed to be
true. That is, we used the same simulation setup except with
zero difference in the effect of the outcome whether the
allele count was 0, 1, or 2. Encouragingly, the DCI method
controlled the Type-I error rate at the desired 0.05 threshold
for all scenarios, even exhibiting evidence of being slightly
conservative in the dominant and heterozygote advantage
settings. There was also no inflation in the rate for the DCI-
based GWAS compared with the traditional GWAS

approach. In fact, the rate for the DCI approach was
slightly lower in all but the additive normal setting (the
optimal one for classic GWAS). As there was no inflated
false-positive rate for the DCI-GWAS compared with classic
GWAS, the differences in the power results are even more
likely real and not driven by an understated true Type-I
error rate.

When removing assumptions from a model, there is
always concern about a trade-off in the model's performance
regarding statistical inference. Our simulation experiment
demonstrated that removing the normality and additivity
assumptions may not reduce our model's power. In the
perfect scenario where the true genetic structure is additive
and the errors are exactly normal, the classic GWAS may
still be the best choice. However, even in this setting the
power trade-off for our method was approaching negligible.
In our other scenarios, though, our DCI adaptation of
GWAS outperformed the classic GWAS, sometimes by a
significant amount. Considering that our method is agnostic
to the underlying genetic structure and that real data is
rarely perfectly additive or normal, the simulations suggest
that our GWAS tool has potential as an improvement over
the classic version.

44 | Computation time

Across all the simulations, the changes in computational
time for increased sample size were consistent. The time
complexity for the DCI-GWAS method increases qua-
dratically as a function of sample size.

TABLE 2 Simulation results for 1M cases: The power of the classic-GWAS and DCI-based approach in five scenarios for 1M cases.

Number of iterations = 200

Number of

cases = 1,000,000 GWAS
Simulation cases Association (%)
Additive normal 97.5

Additive non-normal 91.5
Nonadditive non-normal 89

Dominant 73.5
Heterozygote advantage 0

DCI

p Value Association (%) p Value

>2.45E — 38 96 >1.39E — 38
<1. 09E — 07 <1.03E — 05
>9.34E — 37 93 >1.13E — 43
<2.53E — 05 <1.09E — 03
>1.02E — 33 95 >1.76E — 38
<8.21E — 04 <5.23E - 05
>7.02E — 26 93.5 >1.02E — 37
<1.39E — 03 <5.23E — 03
>1.06E — 7 91 >1.31E — 31
<4.36E — 1 <1.02E — 04

Note: “Association” columns show the power provided as the percent of the 200 iterations of the scenario in which an association between the SNP and

outcome was concluded. “p Value” columns share the ranges of p values from the 200 tests (¢ test for GWAS and Kruskal-Wallis for DCI).

Abbreviations: DCI, data-consistent inversion; GWAS, genome-wide association study; SNP, single-nucleotide polymorphism.
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TABLE 3 False-positive rate: The false-positive discovery rates
for the different distribution scenarios across the classic and DCI
versions of GWAS.

Simulation cases GWAS DCI
Additive normal 0.045 0.05
Additive non-normal 0.05 0.047
Nonadditive non-normal 0.051 0.046
Dominant 0.054 0.04
Heterozygote advantage 0.067 0.038

Note: The results are based on the same five simulation scenarios.

Abbreviations: DCI, data-consistent inversion; GWAS, genome-wide
association study.

5 | APPLICATION TO
COPDGENE GWAS

Chronic obstructive pulmonary disease (COPD) was the
second most common cause of death (in terms of age-
standardized death rate) across the world in 1990. An
increase of 15.6% in the prevalence of COPD was reported
from 2007 to 2017 (Safiri et al., 2022). Now, it is the third
leading cause of death worldwide, causing 3.23 million
deaths in 2019 reported by WHO in May 2022 (WHO, n.d).
COPDGene is a multisite, longitudinal study with the
goal of identifying genetic and clinical determinants of
chronic pulmonary obstructive disease (COPD, n.d). The
study has been described in more detail previously (Regan
et al., 2011), including the study design and characteristics.
The processing of the data, the collection methods, and
informed consent descriptions are available in the cited
study design paper. One of the most significant findings is
that COPD is not one homogeneous disease, the long-held
consensus by previous researchers and clinicians. The
COPDGene data was used to identify COPD subtypes
particularly emphysema predominant disease (EPD) and
airway-predominant disease (APD) axes (continuous vari-
ables representing the strength of these subtypes) (Kinney
et al., 2018). To validate this finding, these COPD subtypes
identified individuals at risk for mortality (Young et al., 2019).
The subtypes were identified from linear combinations of
observable (measurable) variables related to a patient's
pulmonary function, inspiratory and expiratory computer-
ized tomography, and airway measurements (Kinney
et al., 2018). Genetic information was not used in identifying
patients with the EPD and APD subtypes of COPD.
Consequently, the natural next research goal was to
identify genetic variants associated with EPD and
APD. Young et al. (2016) performed the related GWAS,
finding SNPs associated on the AGER gene for EPD and
on CHRNA5/3/84 for APD within a Non-Hispanic
White (NHW) population (Young et al., 2016, 2019).

These GWAS, using the classic additive linear model
approach, also uncovered a number of marginal candi-
dates for the subtypes.

Our motivation is to apply our new DCI-GWAS to
this particular data set for multiple reasons. First, we
want to generally replicate the findings of the original
GWAS. Second, we want to see if we learn more about
the marginal candidate SNPs from our tool; for example,
our method may increase their significance if the most
likely genetic model was recessive or dominant. Finally,
we want to apply our tool in a setting (COPD) known to
present challenges when modeling the SNP-phenotype
maps; thus, we might learn beyond what our simulations
revealed about when our method has advantages and
when it does not. We will present the results using
DCI-GWAS as well as the classic GWAS for comparison
purposes.

COPDGene participants self-identified as either Afri-
can American (AA) or NHW. As we described before, we
perform our DCI-GWAS separately for these two
populations to minimize potential heterogeneity in our
residual variance. Note, DCI-GWAS could analyze the
combined sample by using it to estimate the distributions
of the variances in these two populations. Stratification is
used to improve the classic-GWAS model, and we will
use DCI-GWAS for the two groups individually to let us
compare the two methods' performances. This solution
will not address population stratification concerns,
though. Thus, we adjusted for the first five principal
components in our models. Finally, we included known
confounders for COPD: age, gender, and smoking status
(current or former). For computational ease and to align
with the structure of our simulations, we conducted
DCI-GWAS on the residuals from regressing EPD or
APD onto this set of variables. That is, we adjusted the
subtype outcomes for population stratification and
covariates before performing the association testing
through DCI-GWAS for the SNPs.

In total, our final samples included 2476 AA patients
and 5526 NHW patients. The average age was 60, 46.3%
were female, and 52.1% were current smokers. Our GWAS
included 540,687 SNPs for the AA-APD GWAS, 540,687
SNPs for the AA-EPD GWAS, 509,854 SNPs NHW-APD
GWAS, and 509,854 SNPs for the NHW-EPD GWAS.

5.1 | EPD and APD GWAS results

We applied our DCI-derived model to COPDGene data
and created Miami plots to compare DCI-derived and
classic-GWAS results for EPD and APD in AA, and NHW
populations. The Miami plot is a mirrored or paired set of
Manhattan plots, the top for DCI and bottom for classic
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GWAS. In each the —log,,(p value) for each GWAS SNP
is on the vertical axis, and the SNPs themselves are
organized by location (and chromosome) on the hori-
zontal axis. The GWAS thresholds for a significant SNP-
subtype association are the horizontal red lines (a
suggestive line for 1073 is also plotted).

Figure 6, the first Miami set of plots, is for the AA
COPDGene patients. Only one SNP reaches GWAS
significance, and only for EPD. There is no classic-
GWAS comparison for our one significant SNP to
establish a similar ability to detect correct associa-
tions. However, these GWAS provide a degree of
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FIGURE 6 Miami plots for the African American COPDGene populations. Plot (a) shows the results of the APD and plot (b) depicts the
results of the APD. The top panel shows the DCI-derived results, although the bottom panel shows GWAS results. In the Miami plot
—log,,(p) is plotted on the y-axis and chromosomal location is plotted on the x-axis. The genome-wide significance threshold (p < 5 x 10~%)
is indicated by a red dashed line, although suggestive significance (p < 5 X 107°) is indicated by a light gray line. (a) Miami plot for APD
and (b) Miami plot for EPD. APD, airway-predominant disease; COPD, chronic obstructive pulmonary disease; DCI, data-consistent
inversion; GWAS, genome-wide association study; EPD, emphysema predominant disease.
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FIGURE 7 Miami plots for the Non-Hispanic White COPDGene populations. Plot (a) shows the results of the APD and plot (b) depicts
the results of the APD. The top panel shows the DCI-derived results, although the bottom panel shows GWAS results. In the Miami plot
—log,,(p) is plotted on the y-axis and chromosomal location is plotted on the x-axis. The genome-wide significance threshold (p < 5 x 10~%)
is indicated by a red dashed line, although suggestive significance (p < 5 X 107°) is indicated by a light gray line. (a) Miami plot for APD
and (b) Miami plot for EPD. APD, airway-predominant disease; COPD, chronic obstructive pulmonary disease; DCI, data-consistent

inversion; GWAS, genome-wide association study; EPD, emphysema predominant disease.

confirmation that DCI-GWAS does not inflate the
Type-I error rate.

Figure 7, the second set of Miami plots, provides
the results of the APD and EPD in the NHW
COPDGene populations. The EPD can be similarly
interpreted as those of the AA results. The airway-

predominant results allow several key insights into
our method's potential.

Related to our primary hypotheses, first we replicated
the majority of the classic-GWAS findings. These SNPs
were all on chromosome 15, on the CHRNA3, CHRNAS5,
and HYKK genes. These three genes have been linked to
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COPD and smoking phenotypes in multiple independent
studies (Kaur-Knudsen et al, 2012; Nedeljkovic
et al., 2018; Pérez-Morales et al., 2018). To be specific,
DCI-GWAS reached the GWAS threshold for four of the
eight SNPs, but the p value for two more was 7 X 1078,
and 1 X 1077 and 2 x 10~° for the other two. Thus, we
replicated approximately three-quarters of the classic-
GWAS findings overall, and, importantly, found signals
on the key genes.

There were three other noteworthy findings. First, our
method identified an SNP on the IREB2 gene with a known
association with Post bronchodilator Forced Expiratory
Volume in 1s (FEV ;), a trait related to airway disease
(Lutz et al., 2015). Classic GWAS did not identify this SNP as
GWAS significant. Second, our method identified an SNP on
the EEFSEC gene in chromosome three for which classic
GWAS was only at the 2 X 1076 level. The EEFSEC gene
has been linked to COPD in more recent literature (Benway
et al, 2021; Hobbs et al., 2017). Further, the SNP was
identified by a GWAS of GOLD Stage (a commonly used
categorical classification of COPD severity) (Gold, n.d) in our
same COPDGene cohort. Figure 8 shows the distributions of
the airway disease trait by minor allele count. Notice the
overlap of the trait values for those with 0 and 1 minor
alleles, but a lower (more severe APD) distribution for those
with two copies of the minor allele. This recessive model
scenario as exactly our background literature and simula-
tions, could be successfully modeled with our DCI method
but difficult for classic GWAS. Remember that the discovery
of the subtypes (such as EPD and APD) revealed that COPD
was likely a collection of diseases and not a single disease.
GOLD stage treats COPD like a single disease; thus,
DCI-GWAS shows that our SNP is really affecting the
APD subtype and not EPD. Therefore, although a patient
may be exhibiting severe enough symptoms to be diagnosed

-4 -3 -2 -1 0 1 2 3 -
Observed Phenotypes

FIGURE 8 Distributions of the airway disease trait by minor
allele count for rs2811544 SNP on the EEFSEC gene SNP on the
EEFSEC gene in chromosome three. SNP, single-nucleotide

polymorphism.

by the GOLD stage, our results indicate therapies should
target APD.

Overall, DCI-GWAS in the COPDGene populations
confirmed the simulation findings. There was no evidence of
inflating the rate of false positive. DCI-GWAS identified the
majority of the SNPs found with classic GWAS and found
SNPs in all the key genes identified by the classic GWAS.
Perhaps most importantly, DCI-GWAS found two SNPs
related to airway disease that did not reach the GWAS
threshold with the classic approach. Both SNPs have been
directly linked to COPD or COPD traits related to airway
disease and both are on genes with known biologic function
that would impact airway disease. Before moving to the
Discussion, the following summarizes the steps used in this
section.

6 | DISCUSSION

GWAS has led to enormous numbers of important
discoveries that have enabled key scientific findings about
genetic effects on traits. Despite its success, we hypothesized
that its dependence on the correctness of the additive linear
model it uses was limiting the potential for new GWAS
discoveries. Further, although the linear model can be
robust to some extent to violations of normality in the
errors, there are times when the deviation is so subtle to be
hard to see in a Q-Q plot or not fully remedied by a
transformation. We hypothesized, that it is possible that in
some of these situations, the slight deviation could cause
classic approaches to miss true variant to disease associa-
tions. A method that was not dependent on the normality
assumption would thereby have the potential to identify
these associations and open up many new candidates for
further study. In the current work, we replaced least squares
estimation with a novel DCI (from the uncertainty
quantification and computational mathematics domains)
approach to remove this dependency. The result is a more
generalized, genetic model agnostic, and normality assump-
tionless version of GWAS. Although we have found a way to
remove many of the assumptions from GWAS, potentially
allowing it to make even more discoveries, our method still
has some limitations. Our method depends on a non-
parametric statistic; thus, there are even more potential
power gains possible with our method. We also have not
optimized our results by determining the best balance of
parameter and residual variance. We focused the current
work on stable results, but future work could improve
power by optimizing our approach. The method currently
focuses only on genotype data as this lets us apply it to the
promising COPDGene Project data. Future adaptations to
imputed dosage data are an important next step. Similarly,
as we are working in a linear model framework, future work
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accounting for nonindependence in the residuals, such as
that from related individuals, would be beneficial. One
exciting feature of DCI is the ability to provide distribution
estimates for any parameters in a model, as long as a
credible model framework is established and reasonable
initial assumptions about these distributions are possible.
The appropriateness of the linear model with dosage has
been established already in the literature; similarly, para-
meterizations of related individuals have been established.
Thus, we are hopeful that our method will naturally extend
in these settings.

Through simulation and replication of a COPDGene
GWAS, we established the credibility of our method. It
performs nearly identically to the classic GWAS even when
the linear model assumptions are valid, but it outperforms
when they are invalid. Of note, the new method was able to
correctly identify the underlying genetic model without user
input. In the COPDGene GWAS, the DCI-based GWAS
found an SNP with a plausible effect on the COPD trait we
were studying, and classic GWAS had not identified this
SNP. Therefore, we are hopeful that our new GWAS
approach can benefit those searching for new insights into
how variants impact phenotypes, especially for COPD as it
was shown to be successful using the COPDGene popula-
tion. Even more, with our freely available code, applying the
methodology to previous GWAS has exciting potential to use
already existing data to identify or replicate even more
genetic variants associated with diseases.

DCI procedure: Applying DCI method on
COPDGean data.

Inputs:

* A vector of SNPs, Xsnp.

* A vector of phenotypes or traits, Y.
Preprocessing computations:

1. Determine covariates of interest (Age, gender, smoking
status, and first five PC).

2. Create a linear model with Y as the outcome and all
covariates as variables.

3. Save the residuals as the vector of the observed outcome.

4. Separate Xgnp into three distinct vectors based on MAF
count 0, 1, and 2 with their corresponding vectors of observed
outcome.

Apply DCI method:

1. Make an initial normal distribution for parameter 8, with
mean and standard deviation of vectors of observed outcome.

(Continues)

DCI procedure: Applying DCI method on
COPDGean data.

2. Make an initial normal distribution with mean zero and a
standard deviation of 0.35 as the initial error for each MAF
count.

3. Add initial mean and initial error to create the vector of the
predicted outcome.

4. Use GKDE to construct nonparametric distribution estimates
of densities for both initial and observed outcomes.

5. Construct the ratio between the observed and predicted
densities.

6. Use this ratio to reweight and update the initial distributions
of the parameter and the predicted outcome.

7. Apply Kruskal-Wallis test on the updated parameters of each
group.
Output: The p value of the difference between the mean of three
MAF groups 0, 1, and 2.
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