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Concavity-Induced Distance
for Unoriented Point Cloud Decomposition

Ruoyu Wang ", Yanfei Xue

Abstract—We propose Concavity-induced Distance (CID) as a
novel way to measure the dissimilarity between a pair of points
in an unoriented point cloud. CID indicates the likelihood of two
points or two sets of points belonging to different convex parts of
an underlying shape represented as a point cloud. After analyzing
its properties, we demonstrate how CID can benefit point cloud
analysis without the need for meshing or normal estimation, which
is beneficial for robotics applications when dealing with raw point
cloud observations. By randomly selecting very few points for
manual labeling, a CID-based point cloud instance segmentation
via label propagation achieves comparable average precision as
recent supervised deep learning approaches, on S3DIS and Scan-
Net datasets. Moreover, CID can be used to group points into
approximately convex parts whose convex hulls can be used as
compact scene representations in robotics, and it outperforms the
baseline method in terms of grouping quality. Our project website
is available at: https://aidce.github.io/CID/.

Index Terms—QObject detection, segmentation and categoriza-
tion, computational geometry.

1. INTRODUCTION

ONVEXITY-BASED shape analysis has been widely used

in many robotics tasks. For instance, for collision detection
in path planning [1], non-convex-shaped obstacles need to be
decomposed into convex ones to accelerate the computation.
Another example is shape segmentation in 3D scene understand-
ing, where convex partitioning of objects is shown to be useful in
robotics [2]. It has also been used to help with object grasping [3]
and human gesture recognition [4].

In all those tasks, meshes [5] or volumetric 3D models [6]
of objects or scenes are standard input to convexity-based shape
analysis approaches such as approximate convex decomposition
(ACD) [7]. However, few of those approaches can be directly
applied to process unoriented point clouds that are widely used
in robotics. And it is non-trivial to obtain meshes or volu-
metric models from unoriented point clouds that are directly
captured by LiDAR or 3D cameras, which typically involves
time-consuming post-processing steps like normal estimation,
normal direction alignment, and surface reconstruction.
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Fig. 1. Visualization of CID vs. Euclidean distance. A is a point on the table
and B is a point on the wall. The images on the left (or right) column show the
CID (or the Euclidean distance) from A or B to each point in the scene (shown
as the center image). Blue/Red means a smaller/larger distance. This shows the
stronger discriminative power of CID than Euclidean distance.

Therefore, we are motivated to develop a convexity-based
shape analysis approach that is directly applicable to unoriented
point clouds. This requires us to first define shape convexity on
point clouds, which brings two challenges:

Defining convexity of a discrete set: A convex set requires
that each line segment joining every two points in this set is still
within this set. However, a point cloud is the discretization of a
continuous shape surface, i.e., a set of points sampled from the
surface. Therefore, the conventional convexity definition cannot
be directly used on a point cloud to evaluate the convexity of
the underlying shape. Note that although the volumetric 3D
model is also a discretized shape representation, its voxels are
organized and have volume, making the conventional definition
still applicable.

Discovering surface orientation via point clouds: To ad-
dress the above challenge, some convexity-based shape analysis
approaches are designed for point cloud sampled from CAD
models [8], [9] or captured by RGBD cameras [2], [10], [11].
To evaluate shape convexity, both cases leverage the information
about surface orientation such as oriented normals, which is triv-
ially obtained because these point clouds are naturally oriented.
Therefore, these approaches still cannot be directly applied to
unoriented point clouds.

We address these two challenges in this paper. For the first one,
we can define a function to capture the “concavity”, i.e., how
likely a line segment joining any two points on the point cloud
is outside of the underlying shape. This can be evaluated by the
distance from the line segment to the point cloud. Intuitively,
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the large that distance is, the more likely the line segment is
outside the underlying shape. For the second challenge, we
propose to simply ignore the surface orientation during the
analysis. This means that even if the above line segment lies
inside the underlying shape, the above function is still going to
output a large “concavity” value, as long as it is far from the
surface.

This leads us to define the Concavity-Induced Distance (CID)
between two points or two sets of points (see Fig. 1). CID does
not require surface orientation and can be calculated on a set of
discretized points coordinates without any additional informa-
tion. We show that the CID between two points exhibits some
ideal properties such as rotational and translational invariance,
which is useful for measuring point similarities for semantic or
instance segmentation tasks. Fig. 1 visualizes the CIDs and the
Euclidean distances between a selected point and all other points
in the point cloud. We can see that points on the same convex
partition (on the same wall, on the surface of the table) as the se-
lected point have smaller CID than those on the different convex
partitions. Therefore, CID has the potential to separate points
from different convex partitions in an unoriented point cloud.
Considering the boundaries between convex partitions usually
align with the boundaries between objects or object parts, this
makes CID useful for segmentation-based scene understanding.

In this work, we show the effectiveness of CID by applying
it to two scene understanding tasks: instance segmentation and
scene abstraction on unoriented point clouds. Nowadays, such
tasks are usually addressed by deep learning approaches, which
typically requires large-scale manually labeled datasets, espe-
cially for segmentation with point-wise labeling. For example,
the widely used S3DIS [12] dataset contains over 695 million
labeled points. As a complementary and orthogonal approach,
using CID to segment unoriented point clouds could make such
manual labeling much more efficient. In summary, our contribu-
tions are listed below:

® We propose concavity-induced distance (CID), anovel way
to measure the surface concavity between two points or two
point sets in an unoriented point cloud.

e We show a CID-based label propagation for point cloud
instance segmentation on unoriented scene-level point
clouds, which achieves comparable performance to recent
supervised deep learning methods, and thus can be used to
improve point-wise labeling efficiency.

® We show a CID-based scene abstraction, which can identify
nearly convex parts in an unoriented point cloud. The
abstracted scene is useful for robotics tasks like collision
detection in path planning.

II. RELATED WORKS

Convex shape decomposition: The idea of decomposing an
arbitrary shape into a set of convex or nearly convex partitions
has a long research history and is useful in many fields. Most
of the existing approaches can be categorized into two classes:
The first class of approaches does not directly evaluate the
concavity between two points on the shape [6], [13], [14],
[15], [16]. For example, [13] defines the part convexity over
a part of a shape, based on its distance to its convex hull. The
other class of approaches, including ours, requires evaluation
of the concavity between two points on the shape [5], [17].
For example, [17] computes this concavity based on the Reeb
graph [18]. However, these approaches require an organized data
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format with oriented normals, i.e., the mesh or the volumetric
model, while our approach works on unoriented point clouds
directly. The most related work to our approach is [5] since their
definition of concavity measurement has a similar formulation
as ours. However, their concavity is defined over two vertices
on a mesh, and it requires the connectivity information (edges)
between the vertices, just like other mesh-based approaches.

Convexity-based point cloud segmentation: The idea of using
convexity or concave boundaries for point cloud segmentation
has been investigated in both vision and robotics. Some of the
approaches take the point clouds sampled from CAD models [8],
[9], and others take the point clouds captured by the RGBD
sensors [2], [10], [11], [19]. Again, the oriented normals of point
clouds are needed by these approaches. Differently, our CID-
based approach does not require the input point cloud to have
oriented normals.

Convexity in 3D deep learning: Recently, with the rise of
3D deep learning, there are some approaches that introduce
convexity into 3D deep learning. Cvxnet [20] proposes to learn to
reconstruct 3D meshes with a set of convex primitives. However,
training the Cvxnet requires the ground truth Signed Distance
Function (SDF) for each 3D shape, while the SDF is not available
for unoriented point clouds. Besides, the number of convex parti-
tions for the Cvxnet is fixed, while our CID-based segmentation
allows a variable number of segments via a merging step. [21]
uses V-HACD to provide the self-supervision signal to achieve
label-efficient learning for point cloud segmentation. However,
V-HACD requires volumetric models, which are not directly
applicable to unoriented point clouds.

Learning-based compact 3D representation: Representing
complex 3D objects or scenes as compact and usually convex
geometric primitives is appealing for many tasks. [22] proposes
to learn a set of oriented boxes to represent a 3D shape. [23]
learns to generate 3D shapes represented by a sequence of
oriented boxes with recurrent neural networks (RNN). Similar
to Cvxnet, these approaches also require the SDF of the 3D
shape. Differently, without learning, CID can be used to obtain
convex hulls of convex parts as compact 3D representations of
unoriented point clouds of large scenes.

III. CONCAVITY-INDUCED DISTANCE

Next, we will first introduce our definition of Concavity-
Induced Distance (CID) between two points and two sets of
points. Then we will discuss the properties of CID.

Note that the meaning of concavity could be somewhat con-
fusing in geometry processing and optimization fields. The word
concavity in CID originates from “concave polygon” which
means non-convex shapes, following the convention in previous
convexity-based shape analysis works. This is different from the
meaning of a “concave function” which means the negative of
a convex function whose shape could still be convex.

A. CID Between Two Points

Definition 1 (C1D,): The CID, points p;,p; € S, given a
surface S C RP, which can be a single object or a scene with
multiple objects, is defined as the maximum distance from any
point on line segment p;p; to S:

CIDy(pi,pj1S) = max d(p;S). (1)

PEPiP;
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Fig. 2. CID and its approximation. The top row shows the calculation
of CID, in a four-arc-shaped point cloud. The bottom row illustrates that
of CI Dy. In the top row, the yellow dots p1, p2, and p3 are three points
selected. Top left: d12, d13 and dag show the CID),(p1,p2), CIDy(p1,p3)
and CID,(p2,p3) calculated by (1). Top right: d},, di5,d5; show the
approximation of C'I D, by discretizing the line segments D1 p2, p1p3 and p2p3’
(2). In the bottom row, the red dots (G';) and blue dots (G';) are two subsets of the
point cloud (S). (pm, qm ) and (p,,, q¢),) (m = 1,2) are example point pairs
between G; and G. Bottom left: smaller C1D,4(G;, G;|S). Bottom right:
larger CIDy(Gj, G;|S). Best viewed in color.

The intuition of definition 1 comes from the definition of the
mutex pair [17] in conventional convex shape decomposition:
Vpi,pj € S,if 3p € pipj, p & S, then p; and p; is called a mutex
pair, which means p; and p; are not in the same convex part.
However, the mutex pair definition does not work when S is
represented as a countable point set, i.e., point cloud, instead
of a continuous surface, because Vp;,p; € S, Ip € pipj,p € S
always holds, because of the “sampling gaps” on the object
surface. This limits the applicability of the mutex pair in point
cloud-related problems. Note that C'I D, (p;, p;|S) is also equiv-
alent to the Hausdorff distance between p;p; and S.

Therefore, instead of predicting whether p; and p; is a mutex
pair, CID,(p;,p;) is used to measure how likely p; and p; is a
mutex pair. Here, d(p; ) is the point to set the distance between
p and S. A higher d(p; S) means a lower likelihood that p € S.
Therefore, CID,, the maximum d(p; S) for p € p;p;, could
be used to quantify the likelihood that p; and p; are from the
same convex partition of .S, which is different from the original
definition of mutex pair that checks the existence of p.

Approximation of C'1D,,: In practice, S is usually represented
asapointcloud with N points: S = {pi|k € [0, N)}. Therefore,
d(p; S) can be calculated as:

d(p; §) = min lip — pxll
Besides, p;p; is discretized into a set of M points L = {p,|l €
[0,M),p; € pip; }. The discretization makes the calculation
easier to be implemented and parallelized. The CID,(p;, p;)
can be approximated as:
CIDy(pi;p;|S) ~ max min |l — pel. 2
(2) is used throughout our experiments.

Fig. 2 demonstrates CID,, and its approximation. In the
figure, it is clear that dy3 > dy2, which means that p; and p;
are more likely to be a mutex pair than p; and p,. This result
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also aligns with human intuition since the points between p; and
ps are more concavely aligned than those between p; and po.
Besides, the approximation (d}, and dj3) is very close to the
accurate C'ID,, (di2 and d;3).

B. CID Between Two Groups of Points

Definition 2 (CID,): The CID, between two groups of
points G, G; C S, given a point set S C RP is defined as the
average C'I D, for all pairs of points (p, ¢), where p € G;,q €
G, and n(-) is the number of points in a point set:

> peGi 2aqec; C1Dp(p, q|S)
n(Gi)n(Gj)

The definition of C'1 D, is a very natural extension of C'1D),,.
C1ID, captures the likelihood that two sets of points are in the
same convex partition. Higher C'I D, indicates lower likelihood
that two sets of points are in the same convex partition.

Approximation of CID,: To improve the computational
efficiency, we use uniformly downsampled point set G C
Gi, G C Gjtocompute C'1Dy (G}, GY|S) as an approximation
to CIDg(Gi, GJ|S)

CID,(Gi, G4|S) = CIDy(G;, G5|S) ©)

In Fig. 2, dy and dy (left) are smaller than d} and d,, (right),
which indicates that point pairs between G; and G; usually
have smaller C1D, in the left than in the right. Therefore,
CIDy4(G;,G;|S) is smaller on the left than on the right, which
means that G; and G; on the left are more likely to be in the
same convex partition.

CID,(Gi,G,|S) = 3)

C. Properties of CID
Property 1: C1D), is non-negative, symmetric, and reflexive:
CID(pi,p;|S) >0,
CID(pi,p;|S) = CID(p;,pilS),
CID(p;,pi|S) = 0.

Property 1 is obvious according to the definition 1. The
detailed proof is on our project website.

Property 2: CID,, does not satisfy the triangle inequality.

Property 2 can be illustrated by the counterexample in
Fig. 2. Obviously, CID,(p1,ps)> CID,(p1,p2) + CID,
(p2, ps3). Therefore, the triangle inequality does not hold for
CID,. The detailed proof is shown on our project website.

Note that not satisfying triangle inequality could be a desir-
able property for separating objects. Suppose p1,p2,p3 € S,
and 51,99 C S are two objects with slight overlapping in the
point cloud, i.e., p1,p2 € S, p2,p3 € Sa, p1 ¢ So, p3 §é S1.In
this case, po is on the boundary between the two objects (e.g., the
intersection between two walls). A segmentation-friendly dis-
tance D on points should output always less than a threshold for
any two points on the same object: D(p1,p2) < €, D(p2,p3) <
€. When using D to combine points into the same segment, the
smaller the € we can pick, the better the D is for segmentation.
Now, if D satisfies triangle inequality, just like Euclidean dis-
tance, then D(p1,p3) < D(p1,p2) + D(p2,ps) < 2¢. But this
creates a dilemma. The upper bound of D(p1, p3) is 2¢ which
gets smaller at the same speed as the threshold € used to combine
points on the same segment, which makes it harder to separate
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p1 and ps when scanning noise and sampling density affects
the distance calculation. Without the restriction of the triangle
inequality, CID(p;,p3) can get arbitrarily large and is not
bound by the largest intra-segment CID value, making it easier
to separate p; and ps.

Property 3: C'ID,, is invariant to rotation and translation.

Proof: According to (2), CID, is aggregated from L-2
norms, d(p;S), that is rotational and translational invariant,
which is preserved under the max operator. 0

Time and space complexity: According to (2). The time com-
plexity to compute C1D,, is O(M N). In practice, we usually set
M constant. In this case, the time complexity becomes O(N).
The space complexity is O(1).

IV. APPLICATION OF CID

Next, we demonstrate that CID can be used in two important
tasks for robotics. One is point cloud instance segmentation and
the other is scene abstraction. In the instance segmentation, a
small portion of points called seed points need to be proposed
and labeled. Then the instance segmentation is performed by
propagating the labels to the unlabeled points based on the
nearest CID neighbor. In the abstraction task, no label is needed.
A point cloud is decomposed into some approximate convex
parts based on the CID, and then the convex hull for each part is
calculated to abstract the point cloud into a set of convex hulls.

A. Point Cloud Instance Segmentation Via Label Propagation

Problem definition: Label propagation is a semi-supervised
machine-learning technique that propagates labels from a small
set of labeled data points to unlabeled ones based on some rules.
CID, can be used to define such rules in label propagation for
point cloud instance segmentation. Suppose S C R” is a point
set. S; C S is a seed point set with K points that needs to be
labeled. The complement set S, = S\ .S; is an unlabeled point
set with NV points. For any point p; € .S; with a label p;, a group
of unlabeled points GG; can be assigned with the same label if p;
is their closest point in Sy, in terms of CID,, i.e.,

Gi={q|pi=arg glinCIDp(p, q),q € Sy},
PES]

and S, = Ufil G;and G; NG = @,if i # j. The whole pro-
cess can be divided into three steps: seed-point proposal, point
grouping, and group labeling.

Seed-point proposal: The first step should be selecting seed
points that constitute S;. We found that the seed-point proposal
method has a significant influence on the performance of label
propagation. We chose to use CID-based Farthest Point Sam-
pling (CID-FPS) to propose seed points since we want the seed
points to be well-distributed into different convex partitions
of S. The process of CID-FPS is similar to the original FPS
proposed by [24], while the only difference is that we replace the
Euclidean distance with C'I D,,. More details are demonstrated in
Algorithm 1. K is a hyper-parameter that determines the number
of seed points. Usually, K should be no less than the number
of convex partitions in .S. More complex scenes usually need a
larger K. In Fig. 3, the green dots indicate the proposed seed
points.

Point grouping: Once K seed points are proposed, the final
N x K CID matrix D is calculated, as shown in Algorithm 1.
D contains C'ID,, between all pairs of labeled and unlabeled
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Seed point proposal Point grouping Label propagation

Scene abstraction

Adaptive group merging

Fig.3. Pointcloud instance segmentation (top branch) and point cloud abstrac-
tion (bottom branch). Green dots are proposed seed points. Different groups of
points are color-coded.

Algorithm 1: Seed-Point Proposal by CID-FPS.

Input: point cloud .S, number of seed point K
Output: seed points .S; C .9, remaining points .S, C S,
CID matrix D
randomly pick a point p* € S
Si<=Ap'}, Su S\ {p'}
while |S;| < K do
forallp € S, q € S, do
Dlp,q] <= CID,(p,q)
matrix
end for

Dmin < min D )
[p] min [p, 4]

pk <— arg max Dyin[p]
PESy

Sp <+ S U{p*}, Su<« Su\{p*}
end while

>a random start

> cache the C1D,,

points (p, q), wherein p € S;, ¢ € S,,. Each point in S; will be
labeled. Each ¢ can be then assigned to its C'I D,,-closest seed
point p, which can be implemented as a row-wise argmin in
D. Therefore, all points in S can be segmented into K groups.
In Fig. 3’s point grouping step, different groups are color-coded
with different colors.

Group labeling: After grouping, each group of points G; is
assigned with the same label p; from its corresponding seed
point. In Fig. 3’s label propagation step, points are color-coded
by their propagated labels.

B. Convexity-Based Point Cloud Abstraction

Problem definition: When labels are not provided, a point
cloud can also be decomposed into several approximately con-
vex partitions based on CID. The boundaries between the convex
partitions are highly correlated with the boundaries between the
object instances. Then the point cloud can be abstracted by a set
of convex hulls of all partitions.

The first two steps of point cloud abstraction are the same as
Section IV-A (seed-point proposal and point grouping). Because
there is no ground truth label in the point cloud abstraction task,
after point grouping, the initial & (K is also the number of seed
points) groups {G;|i € [0, K)} will be adaptively merged to K’
(K" < K) new groups {G'; } to alleviate over-segmentation.

Group merging: We use a similar iterative greedy merging
strategy as in [9], [25], as shown in Algorithm 2. For each
merging iteration, we calculate CI1D,(G;, G,|S) for each pair
of (G, G;), wherein ¢ # j. Then we merge the pair with the
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Algorithm 2: Group Merging.

Input: point cloud S, point group set V' with K groups,
number of iterations 7.
Output: point group set V' with K’ groups
n<+0
while n < 7" end
forall G;,G; € Vandi < j do
D[G“ G]} — CIDg(Gi, Gj |S)
CID,
end for
G+, Gj + arg min(D[G;, G])

i,j
Gix — GZ* U Gj*
groups
V<« V\{G;}
n+<n—+1

end while

> cache

> Merge the two closest

lowest C'I D4, among all pairs. Then the C'1 D, between each pair
of the new groups is recalculated and the merging step is repeated
until the number of steps reaches 7. T" is a hyper-parameter that
is determined by the final number of segments needed by the
user. It can also be replaced by a distance threshold. Note that
one and only one pair of point groups will be merged in each
iteration.

V. EXPERIMENTS

To demonstrate the effectiveness of CID we conduct sev-
eral comprehensive experiments for the applications of CID
explained in Section IV on the S3DIS [26] and ScanNet [27].

A. Point Cloud Instance Segmentation Via Label Propagation.

Experiment setup: We randomly downsampled each scene
to 20,000 points as S. Then we use CID-FPS to propose K =
100 seed points as \S; for each point cloud and set M = 100
for approximating CID. For these seed points, the ground truth
semantic and instance labels are given. The labels are propagated
to the 20,000 points via our approach. We then further propagate
the labels of the 20,000 points to all of the remaining points based
on the nearest neighbor in Euclidean space. To account for the
randomness in CID-FPS, we run our experiment 5 times with 5
different random initial seed points. The reported performance
is an average result.

Baseline methods: There have been many approaches for
point cloud segmentation in recent years, such as [28], [29],
and [30]. We choose SGPN [31] and PointGroup [32] as the
two baseline methods because SGPN is a classical instance
segmentation neural network and PointGroup is a more recent
instance segmentation neural network.

Evaluation: We follow the same evaluation criteria as in
SGPN [31] and PointGroup [32]. The IoU between each pre-
dicted instance segment and its corresponding ground truth
instance segment is calculated. Then the average precision (AP)
is calculated using three IoU thresholds (APss5, AP5g, AP7s)
for our method. More details about AP can be found in [33].
The evaluation is performed individually for each semantic
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category,' and the mean AP among all categories is also reported.
Since our method does not follow the train-test setup as the
learning-based methods, the evaluation for our method is over
all scenes in the two datasets, while the evaluation for the
baseline methods is on their testing datasets. In the two baseline
methods, only APy was reported for each individual semantic
category.

Results: Tables I and II shows the quantitative results of CID-
based label propagation for instance segmentation. Note that,
although our method does not use color information of the point
cloud that is used in both baseline methods, our method still
outperforms the two baseline methods in most of the semantic
categories. The reason that our method has lower AP on walls,
doors, and boards is that these objects are sometimes overlapped
with each other, which is difficult to be distinguished only using
convexity without any color information (see Fig. 4).

Discussion: We want to emphasize that our purpose here
is not to propose a new state-of-the-art instance segmentation
approach. The comparison is not really apple-to-apple. Although
our approach only needs a small portion of labeled points and
does not require the training process, the seed points need to
be proposed and labeled for any new point clouds, while the
supervised learning approaches do not need labeling in the
inference phase. The main purpose of this experiment is to show
the potential of reducing manual labeling efforts via CID, such
as an interactive labeling tool based on CID.

B. Convexity-Based Point Cloud Abstraction

Experiment setup: We also use S3DIS [26] dataset for this
experiment, and the same settings as in V-A. The only difference
is that, in point cloud abstraction, there is no ground truth label.
Therefore, the group indices are propagated to the whole point
cloud from the 20,000 points instead of ground truth labels.

Baseline methods: To the best of our knowledge, existing
convexity-based point cloud decomposition approaches cannot
be directly applied to the unoriented point cloud. Therefore, we
choose [9], which is the closest one to our approach, as the
baseline approach. One difference between the two approaches
is that ours does not need the oriented normals while the baseline
does. Therefore, before sending the point clouds to the baseline
approach, we first estimate and orient the normals for the unori-
ented point clouds via the method provided by Open3D [34].

Evaluation: There could be different evaluation metrics for
point cloud decomposition depending on different criteria. Con-
sidering scene understanding applications, the object instances
should be preserved after the decomposition. Therefore, we
define the following two evaluation metrics (in addition to the
notations in IV-B, assume that there are K ;; unique ground truth
instance labels for the point cloud S; in each group, G;, the
number of majority points with the same ground truth instances
label is m;):

e Compactness: It is the ratio between the number of ground

truth instances and the number of final groups:

Compactness = Kg/K'. 5)

e Purity: The purity is defined by the sum of the number of
majority points with the same ground truth instance label

IThe category-wise evaluation results for PointGroup are provided by the
authors of that work.
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TABLE I

CID-BASED LABEL PROPAGATION FOR INSTANCE SEGMENTATION ON S3DIS [26].

‘ Ceiling  Floor Wall Beam Column Window Door Chair Table Bookcase Board Sofa Stairs Clutter Mean
0.956 0.995 0.903 0.979 0.955 0.963 0.768 0.877 0.917 0.926 0.833 0.958 0.883 0.842 0911
Ours* 0.867 0.971 0.645 0.861 0.702 0.814 0.525 0.722 0.654 0.697 0.136 0.708 0.845 0.524 0.691
0.639 0.780 0.300 0.539 0.147 0.248 0.176 0.402 0.234 0.260 0.024 0.361 0.568 0.180 0.347
SGPN [31] | 0.794 0.663 0.888 0.780 0.607 0.666 0.568 0.408 0.470 0.476 0.111 0.064 N/A N/A 0.541
PointGroup [32] ‘ 0.724 0.966 0.454 0.627 0.393 0.808 0.593 0.887 0.567 0.431 0.785 0.565 N/A 0.522 0.640
* For our approach, top/middle/bottom rows report APo5/APg /AP . For the two baseline approaches, only AP was reported by the original works.
TABLE II
CID-BASED LABEL PROPAGATION FOR INSTANCE SEGMENTATION ON SCANNET [27].
| cabinet bed chair sofa table door window bookshe. picture  counter desk curtain  refrige.  s. curtain toilet sink bathtub  other Mean
0911 0.989 0.942 1.0 0.941 0.89 0.896 0911 0.568 0.701 0.835 0.952 0.945 0.993 0.992 0.837 0.986 0.868 0.898
Ours™ 0.667 0.777 0.742 0.000 0.674 0.600 0.552 0.623 0.082 0.206 0.381 0.729 0.779 0.913 0.945 0.376 0.894 0.559 0.583
0.257 0.275 0.39 0.0 0.276 0.245 0.157 0.191 0.011 0.031 0.071 0.322 0.31 0.71 0.644 0.095 0.298 0.212 0.250
SGPN [31] | 0.065 0.390 0.275 0.351 0.168 0.087 0.138 0.169 0.014 0.029 0.000 0.069 0.027 0.000 0.438 0.112 0.208 0.043 0.143
PointGroup [32] ‘ 0.505 0.765 0.797 0.756 0.556 0.441 0.513 0.624 0.476 0.116 0.384 0.696 0.596 1.000 0.997 0.666 1.000 0.559 0.636

* For our approach, top/middle/bottom rows report APo5/AP5()/AP7 5. For the two baseline approaches, only AP5() was reported by the original works.

Fig. 4.

Qualitative results for CID-based point cloud instance segmentation. From left to right: original point cloud, predicted semantic segmentation, ground

truth semantic segmentation, predicted instance segmentation, and ground truth instance segmentation. Green balls indicate the locations of seed points. The boxes
show the objects that cannot be well separated by the CID-based method, since they are nearly on the same plane (e.g., board and wall, ceiling and light).

over all groups divided by the total number of points in the
point cloud:

1 &
Purity = E Z ms.
i=1

With the increase in compactness, the segmentation is more
concise, since the total number of segments is reduced. Note
that the compactness can be larger than 1 when the number of
groups output from the abstraction is smaller than the number of
instances. The purity measures how much each group contains
points from the same object instance. It is obvious that the
maximum value of purity is 1 when each group only contains
points from the same instance. Compactness and purity are
usually inversely related. Higher compactness usually means
lower purity, because, in a highly compact abstraction, points
from different instances are more likely to be segmented into
the same group. We compare the baseline method with our
method at the same level of compactness for each individual
scene, which is determined by the baseline method. We also
plot the purity-compactness curve for our method on our project
website.

Results: In Fig. 5, we show the point cloud convex shape
decomposition results at some critical 7" values for group merg-
ing. T o is the value where the compactness reaches 1.0. T}, is

(6)

the value where the compactness reaches the same level as the
baseline method. We can see that our method has a better ability
in preserving the large convex parts (usually large objects), such
as walls and floors. The better performance of our method is due
to the independence from normal estimation and alignment,
which may introduce errors to the baseline method. Fig. 6
illustrates the convex hulls of the point groups for each scene.
Fig. 7 shows the boxplot of purity for our method and the baseline
method at the compactness level T}, where the median purity of
our method exceeds the baseline method by a large margin (over
15%).

VI. ALGORITHM ANALYSIS

Next, we perform further experiments on our method to show
how the number of seed points can influence our method. We
will also discuss the limitations. On our project website, we will
perform a robustness analysis on CID, regarding the noise in
point cloud.

Effects on the number of seed points: We evaluate the CID-
based label propagation using the different number of seed
points. The number of seed points proposed by CID-FPS is
incrementally increased from 10 to 100 with a step of 10. Fig. 8
shows the change of mean AP5( with increasing the number of
seed points.
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Fig. 5.

CID-based point cloud decomposition. From left to right, the first column shows the original point cloud and the second to the fourth column shows our

method at merging step n = 0, Ty /2, T4 0. The fifth column shows our method at merging step n = T}, where our method shares the same compactness as the
baseline method. The sixth column shows the baseline method [9]. Different colors represent different detected convex parts in a certain scene. Green dots indicate

the locations of the seed points.

Fig. 6. CID-based convex hull. The first row shows the original point cloud,
and the second row shows the corresponding convex hull computed by our
method. Different colors represent different convex hull parts.

1.0

0.4 o
Ours

Baseline

Fig. 7. Purity for scene abstraction. Our method shows higher purity than the
baseline method. The median purity of our method is 0.76, while the baseline
method is 0.58.

We can see that with the increasing number of seed points,
the AP5( for most of the classes of object increases, and finally
saturates after a certain number of seed points. This is because
when the number of seed points is small, some objects are
not covered by any seed points. Therefore, it is impossible
to correctly segment these objects. When the number of seed
points reaches a certain level, most of the convex parts in the

ceiling
floor
wall
0.8

beam

column
window

0.6

door

AP,

chair
0.44 table
bookcase
sofa
board

stairs

0.2

0.0+ clutter

SR SRR

mean

20 40 60 80 100
Number of seed points

Fig. 8. The effects of #seed-points on AP35 for various objects.

scene contain at least one seed point. In this case, increasing the
number of seed points further has very limited influence.

Interestingly, we find that some classes of objects are less
influenced by the number of seed points, such as the ceiling,
floor, and beam. The explanation of such a phenomenon is that
our CID-FPS seed point proposal method tends to first find seed
points that have larger CID from other points in the point cloud.
In indoor scenes, ceilings, floors, and beams usually have higher
concavity from other objects compared with smaller objects in
the scene, such as chairs and tables. Therefore, with a small
number of seed points, ceilings, floors, and beams still have a
higher chance to be sampled by CID-FPS.

Another interesting phenomenon is that the AP5q for stairs
first increases and then decreases. This is due to the fact that
in the whole dataset, there are only 14 stair instances. At first,
adding the number of seed points increases the chance that the
stairs can be correctly segmented. With the increasing number
of seed points, some seed points that are not on the stairs may
propagate their labels to the points on the stairs, which causes
a decrease in AP5g. Due to the very less number of instances
(14), the variance of APj5( is large even if only a small number
of objects is influenced.

Limitations of our method: There are several limitations for
CID in point cloud analysis:
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Computational cost: Since the CID-FPS process is itera-
tive, the computational cost of CID-FPS can be large. The
state-of-the-art supervised learning methods usually have
inference time that is lower than 1 s per scene, while our
label propagation method takes over 1 minute to process |
million points (slow mainly due to the CID-FPS computa-
tion).

Non-uniformly sampled point clouds: Another limitation of
CID is that it currently cannot effectively handle outdoor
LiDAR point clouds that are sparse and not uniformly sam-
pled. Therefore we have to focus on indoor point clouds that
are typically densely and uniformly sampled everywhere
on indoor object surfaces.

Thin object separation: Another minor limitation of CID
is that it cannot be used as the only cue to segment thin
objects such as papers on the desk or paintings on the wall,
as shown in previous experiments. However, together with
visual features, this could be overcome.

VII. CONCLUSION

Our proposed Concavity-Induced Distance (CID), which is
the first distance that can measure the concavity between two
points or two sets of points on an unoriented point cloud, has
shown strong potential in indoor point cloud understanding
tasks, such as instance segmentation and convexity-based point
cloud segmentation, without heavy manual labeling as required
by supervised learning methods. Our future work will focus on
extending CID into more point cloud-based tasks such as object
detection and outdoor scenes.
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