
910 IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 71, NO. 7, JULY 2024

Quantitative Viscoelastic Response (QVisR):
Direct Estimation of Viscoelasticity With

Neural Networks
Joseph B. Richardson , Student Member, IEEE, Christopher J. Moore, Member, IEEE,

and Caterina M. Gallippi , Senior Member, IEEE

Abstract—We present a machine learning method to
directly estimate viscoelastic moduli from displacement
time-series profiles generated by viscoelastic response
(VisR) ultrasound excitations. VisR uses two colocal-
ized acoustic radiation force (ARF) pushes to approx-
imate tissue viscoelastic creep response and tracks
displacements ON-axis to measure the material relax-
ation. A fully connected neural network is trained
to learn a nonlinear mapping from VisR displace-
ments, the push focal depth, and the measurement
axial depth to the material elastic and viscous mod-
uli. In this work, we assess the validity of quantitative
VisR (QVisR) in simulated materials, propose a method
of domain adaption to phantom VisR displacements,
and show in vivo estimates from a clinically acquired
dataset.

Index Terms— Acoustic radiation force (ARF), elastography, machine learning, quantitative, radiomics, ultrasound,
viscoelastic response (VisR), viscoelasticity.

I. INTRODUCTION

T
ISSUE characterization is studied to identify measurable

properties that can be correlated to clinical outcomes [1].

Considerable efforts has been spent developing quantitative,

as opposed to qualitative and semiquantitative, metrics

of characterization because they are better suited for

cross-sectional and longitudinal clinical studies [2], [3].
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Tissue viscoelasticity is a quantitative parameter with an

intuitive link to clinical outcomes since many pathologies

present measurable changes in mechanical property (e.g.,

fibrosis and inflammation) [4], [5], [6].

The subfield of ultrasound elastography attempts to measure

changes in tissue viscoelasticity. The majority of elastog-

raphy methods involve tracking the physical displacement

of speckle-generating scatterers constituting the interrogated

tissue. The magnitude and/or rate of displacement is then

associated with mechanical property through model-based or

data driven approaches [7], [8]. Physical displacement of tissue

is generated through external indentation or vibration, passive

stresses such as breathing, or application of acoustic radiation

force (ARF). Reduction to clinical practice can be challenging

for techniques that use external indentation or vibration due

to the need for extra equipment and/or nonstandardized appli-

cation of stress [9]. Passive stress methods generally require

boundary condition measurements or mathematical models

that are often unknown for in vivo imaging contexts [10].

Most elastography techniques using ARF pushes track shear

wave propagation OFF-axis laterally of the applied ARF push.

These methods typically relate shear wave measurements

(phase or group velocity and dispersion) to tissue mechanical

property [7], [11], [12], [13]. Shear wave-based methods gen-

erally assume mechanical property homogeneity over the wave
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Highlights

• QVisR uses a neural network trained on simulations to estimate the elastic and viscous moduli of materials given

the displacement profile measured in the region of acoustic radiation force excitation.

• QVisR has low elastic and viscous moduli estimation RMSE in mechanically homogeneous and heterogeneous

simulations and can be fine-tuned to estimate using displacements acquired with a real scanner.

• QVisR estimates both the elastic and viscous moduli without monitoring shear-wave propagation and shows

promise for clinical application with improvements in model calibration.

propagation region. This assumption reduces the resolution of

shear wave-based methods compared to ON-axis methods and

can result in spatial averaging of mechanical property estima-

tion if heterogeneities exist. Shear waves are also prone to

reflection off out-of-plane targets, such as bone or connective

tissue, which can distort the measured wave properties. Addi-

tionally, shear wave-based methods are depth limited since the

ARF pushes need to generate enough displacement to support

shear wave propagation over a measurable distance [7], [11].

Our lab developed viscoelastic response (VisR) ultrasound

to evaluate the viscoelastic properties of tissue by approx-

imating a creep response [14]. VisR uses a colocalized,

double-push ARF excitation to minimize acquisition time

when compared with similar methods (kinetic acoustic vit-

roretinal examination (KAVE) [15] and monitored state-state

excitation and recovery (MSSER) [16]). Additionally, VisR

tracks the induced displacements ON-axis with the ARF exci-

tations to avoid the aforementioned challenges of methods

that monitor shear-wave propagation. VisR displacements can

be fit to a 1-D mass-spring-damper (MSD) model with fit

parameters rearranged to derive semiquantitative measures of

elasticity and viscosity (RE = Relative Elasticity and RV =

Relative Viscosity) [17] relative to the applied force amplitude,

which can be assumed constant over a small, local region [11],

[18]. Additional corrections have been studied to improve

comparisons of RE and RV over a wider region of interest

(ROI) in an image [19], [20], [21]; however, all VisR sequence

derived viscoelasticity measures have been semiquantitative.

Model-based elastography approaches become more

ill-posed when a model parameter or boundary condition is

unknown/immeasurable, such as the applied force amplitude

for VisR. Data-driven statistical approaches, such as neural

networks, often require large sets of labeled data for training

that, ideally, represent all data variations present in the

final test application of the network. Although experimental

and clinical elastography datasets are usually small, large

simulation datasets can be generated to capture variations

in displacement profiles due to imaging configuration

(focal depth and transducer parameters) and tissue property

(viscoelasticity and attenuation).

In this study, we regress multilayer perceptron neural

networks on simulated, ultrasonically tracked VisR

displacement time series to jointly estimate elastic and

viscous moduli. The predicted moduli are direct estimates

of the underlying mechanical properties coining the term

quantitative VisR (QVisR) ultrasound. This work is an

extension of methods, results, and discussion presented

in [22], [23], and [24]. In [22], we evaluated bagged trees

regressors models against neural network architectures on

mechanically homogeneous simulations without noise and

concluded that neural networks provide lower test set error.

In [23], we varied the added noise levels in homogeneous

materials to test QVisR performance degradation. In [24],

we trained QVisR on both homogeneous and heterogeneous

simulations with noise and evaluated QVisR generalizability

by estimating the elasticity scans acquired in a CIRS

elastic tissue-mimicking phantom. This manuscript includes

extended analysis of QVisR results in homogeneous and

heterogeneous simulations with noise, provides metrics

related to model evaluation in CIRS phantom, and shows both

simulation-trained and phantom fine-tuned QVisR estimates

in the muscles of boys with Duchenne muscular dystrophy

(DMD) not present in any previous work. We also provide

comparisons of QVisR with conventional VisR RE and RV

semiquantitative images in the phantom and clinical examples

to show the benefits of quantitative viscoelasticity estimation.

II. METHODS

A. Simulations

Mechanically homogeneous and heterogeneous viscoelas-

tic materials interrogated through a VisR beam sequence

were simulated using methods adapted from the work of

Palmeri et al. [25]. Fixed ARF excitation and tracking parame-

ters across all simulations are listed in Table I. Major material

and finite element parameters shared by all simulations and

unique to the homogeneous and heterogeneous simulations

are shown in Table II. For each set of simulations, ON-axis

displacement through time data was paired with the respec-

tive axial depth, focal depth, elasticity, and viscosity of the

simulation and then saved for further processing. Viscoelastic

material properties were chosen to represent realistic ranges

found in soft tissues [4], [5] for all simulations.

1) Homogeneous Dataset: A Siemens VF7-3 transducer

(Siemens Healthineers, Issaquah, WA) was parameterized to be

modeled with Field II [26]. Transducer point spread functions

(PSFs) for ARF excitations and tracks were modeled using the

beam sequence parameters in Table I and material properties

in Table II. ARF excitation PSFs were calculated for each of

the 11 focal depths enumerated in Table II.

A rectangular finite element mesh was defined using

LS-DYNA (Ansys Inc., Canonsburg, PA) with 280 440 ele-

ments of volume 250 µm3 spanning a 1 × 1 × 4 cm (lateral ×

elevation × axial) region with axial quarter symmetry. Simu-

lated ARF PSF intensities were converted to body forces and
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TABLE I

ARF EXCITATION AND TRACKING PARAMETERS FOR SIMULATIONS AND

PHANTOM ACQUISITIONS

TABLE II

SIMULATION PARAMETERS

mapped to nodes on the mesh. LS-DYNA material files were

created on a grid of ten elasticities (5–100 kPa in 10.56-kPa

steps) and ten viscosities (0.01–7.01 Pa.s in 0.78-Pa.s steps)

for a total of 100 material combinations. Each material was

defined with the Kelvin–Maxwell Viscoelastic material model,

a Poisson’s Ratio of 0.499, and an equivalent elastic perfectly

matched layer (PML). Finite element simulations were per-

formed for every material combination and focal depth. Each

simulation applied nodal forces with a VisR beam sequence

and evaluated the resulting nodal displacements through time

by solving the dynamic equations of motion between nodes.

The simulations were carried out over 4.36 ms with a control

time step of 1 µs, a sampling period of 25 µs, and two

successive 70 µs (300 cycle) ARF pushes applied at 5 and

442 µs, respectively. Finite element hourglassing control type

(ihq) of 4 and hourglassing coefficient (qh) of 0.10 were set

for all elements in the mesh.

Nodal displacements for each time step were translated

to scatterer displacements in five uniform scattering phan-

toms with randomly generated initial scatterer positions and

11 scatterers per resolution cell. Scatterers were tracked in

Field II with the previously generated track PSFs in each

phantom with a pulse repetition frequency (PRF) of 10 kHz.

White Gaussian noise from 30- to 50-dB signal-to-noise ratio

(SNR) was added in steps of 10 dB to the received RF

data before scatterer displacement was estimated with 1-D

axial normalized cross correlation (3λ kernel, 50-µm search

window) [27] generating 1559 displacement through time

profiles from 10 to 40 mm axially. Each displacement profile

was treated as an independent sample resulting in 34 298 000

simulated displacement profiles (focal depths × elasticities ×

viscosities × scatterer realizations × SNRs × axial depths).

2) Heterogeneous Dataset: Heterogeneous simulations

were carried out in a similar manner to the homogeneous

simulations aside from the focal depths and material prop-

erties. Beginning with the finite element mesh formed for

the homogeneous simulations, a 10-mm diameter spherical

inclusion was placed with centroid at an axial depth of 25 mm.

LS-DYNA material files were generated on a grid of four

inclusion elasticities (15.56, 22, 28, and 36.67 kPa), four

inclusion viscosities (0.01, 1.57, 2.6, and 3.9 Pa.s), and a sin-

gle background viscoelasticity (26.11-kPa elasticity, 2.34-Pa.s

viscosity). The background viscoelasticity was selected to

match a set of homogeneous simulations, and the inclusion

viscoelasticities were varied around the background values to

provide both lower and higher contrast sets of simulations.

The ARF excitation PSFs were calculated at five focal depths

(15–35 mm in 5-mm steps) to interrogate the medium above,

below, within, and at the boundary of the inclusion. Addi-

tionally, ARF excitations were applied at four lateral offsets

from the center of the inclusion (0, 2.5, 4, and 7 mm) to

model the effects of pushing closer to the lateral inclusion

boundary and, in the extreme case of a 7-mm lateral offset,

pushing outside of the inclusion. In total, the heterogeneous

dataset consisted of 9 977 600 simulated displacement profiles

(focal depths × inclusion elasticities × inclusion viscosities ×

scatterer realizations × SNRs × axial depths × lateral offsets).

B. Scanner Acquisitions

1) Phantom Acquisitions: Imaging of a CIRS Cylindrical

Elasticity QA Phantom (CIRS, Norfolk, VA) was performed

with a Siemens Acuson Antares scanner and a VF7-3 lin-

ear array transducer (Siemens Healthineers, Issaquah, WA).

Custom VisR beam sequences were created through the Axius

Direct Ultrasound Research Interface (URI) allowing access to

the raw radio frequency data. The imaging sequence executed
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a raster scan focused B-Mode acquisition followed by a VisR

sequence at each of 40 lateral locations evenly spaced over

20 mm for 2-D VisR imaging. The VisR sequences used the

beam sequence parameters listed in Table I and consisted of

two reference tracks, two ARF excitations, four tracks between

the ARF excitations, and 40 tracks after the second ARF

excitation.

The imaging sequence was applied to the transverse cross

section of the 30-mm-deep cylindrical inclusions forming 2-D

images with circular inclusions. Data were acquired for each

inclusion type (four inclusion elasticities) and the largest three

circular cross-section diameters (6.49, 10.41, and 16.67 mm)

at three focal depths (25, 30, and 35 mm). Each acquisition

was repeated twice; however, only the first acquisition was

used unless an error occurred in the data collection routine.

True elastic modulus measurements calibrated by CIRS were

reported as follows: Background (26 kPa), Type 1 Inclusion

(6.5 kPa), Type 2 Inclusion (15.3 kPa), Type 3 Inclusion

(49 kPa), and Type 4 Inclusion (88 kPa).

2) Clinical Acquisitions: Samples from a previously acquired

clinical dataset were processed similar to those from the CIRS

phantom. The clinical data set included VisR data acquired in

the lower limb muscles of male patients, aged 5–10 years,

with DMD and in age-match control boys with no known

neuromuscular disorders. Data acquisitions were performed

using the same scanner, transducer, and sequencing as listed in

the phantom acquisitions section. All acquisition procedures

were approved by the Institutional Review Board (IRB) of

the University of North Carolina at Chapel Hill. Further

information on the collection and composition of this dataset

are reported in [28].

3) Scanner Processing: Raw acquisition data from the

scanners was transferred to workstations for custom pro-

cessing. B-mode images were created through the absolute

value of the log-compressed, Hilbert-transformed RF data.

VisR displacements were estimated with 1-D axial normalized

cross correlation with parameters listed in Table I. A linear

motion filter was applied to each displacement to remove

any low-frequency bulk displacements from the acquisition

process [29]. For each phantom acquisition, ON-axis displace-

ment through time data were paired with the respective axial

depth, focal depth, calibrated elasticity, and assumed viscosity

and saved for use in model fitting. Clinical acquisitions were

similarly saved aside from pairing with the true elasticity and

viscosity, which is unknown. The clinical acquisition system

SNR is estimated to be roughly 40 dB given that the muscle

tissue were echogenic, stationary through the acquisition cycle,

and did not contain any large structures with blood flow.

C. Semiquantitative Viscoelastic Response Model Fit

Procedure

Ultrasonically tracked VisR displacements are fit to an MSD

second-order nonhomogeneous differential equation [17], [21].

The MSD model is equivalent to a Kelvin–Voigt viscoelastic

model with the addition of an acceleration term with mass

coefficient which captures some of the complex inertial effects

of tissue deformation induced by transient ARF pushes. The

base form of the MSD model is as follows:

mz̈(t) + ηż(t) + µz(t) = Au(t) (1)

where m [Kg] is the mass, η [Nm−1s] is the damper viscosity,

µ [Nm−1] is the spring stiffness, A[N ] is the applied force

magnitude, z(t) [m] is the time-dependent axial displacement,

and u(t) is the time-dependent applied VisR force profile. The

VisR force profile can be modeled as a series of time-delayed

ARF pushes through the following equation:

u(t, tARF, ts) = H(t) − H(t − tARF) + H(t − tARF − ts)

−H(t − 2tARF − ts) (2)

where H denotes a heavyside step function, tARF [s] is the

ARF push duration, and ts [s] is the time between the two

ARF pushes. This equation generates two square impulses

that approximate the applied forcing function of a double-push

VisR beam sequence. Combining (1) and (2) and rearranging

coefficients leads to the following form:

z̈(t) + ω2τ ż(t) + ω2
z(t)

= Sω2[H(t) − H(t − tARF) + H(t − tARF − ts)

−H(t − 2tARF − ts)] (3)

where ω [s−1] is the natural frequency, τ [s] is the material

relaxation time constant, and S [m] is the system static

sensitivity. These coefficients are defined as follows:

ω =

√

µ

m
, τ =

η

µ
, S =

A

µ
. (4)

An analytic expression for z(t) in (3) is found in the Laplace

domain. Nonlinear optimization (Nelder–Mead algorithm) is

then used to estimate the coefficients (ω, τ , and S) that min-

imize the difference between the analytic displacement z(t)

and ultrasonically tracked displacement measurements. Once

the fit procedure is complete, the coefficients are rearranged

into the semiquantitative estimates of elasticity and viscosity,

RE [m−1] and RV [m−1s], respectively,

RE =
1

S
=

µ

A
, RV =

τ

S
=

η

A
. (5)

These parameters are considered semiquantitative measures

of elasticity and viscosity because each is estimated relative

to the unknown applied force amplitude, A. Considering A

varies over axial depth due to the focusing effects of the

applied ARF push PSF, a depth-compensation factor is applied

to RE and RV. Additionally, since fitting displacements to

a series of 1-D MSD models does not capture the complex

system inertia that develops in an actual tissue environment,

a simulation-derived elasticity compensation factor is applied

to the RV estimates. Briefly, in a continuum environment, the

displacement recovery measured ON-axis to the ARF push is

due to both the viscoelastic recovery effects of the media

as well as the spatially averaged measure of viscoelastic

shearing effect [30]. The shearing effect is measured as an

artificially prolonged displacement recovery, which results in

an overestimation of viscosity when using the 1-D MSD

model. Further details for the derivation and application of

the depth and elasticity compensation factors are documented

in [21].
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Fig. 1. Simulated VisR displacement profiles before (top row) and after (bottom row) max normalization as (a) and (e) elasticity, (b) and (f) viscosity,
(c) and (g) focal depth, and (d) and (h) axial depth vary. When not varying, the following fixed parameters were used: elasticity = 36.67 kPa,
viscosity = 2.34 Pa.s, focal depth = 25 mm, axial depth = 25 mm, and SNR = 40 dB. Note that the green displacements in each subplot have
equivalent parameters.

D. Quantitative Viscoelastic Response Machine

Learning Model Training and Evaluation
1) Preprocessing: Max normalization was applied to each

displacement profile to remove amplitude differences caused

primarily by the unknown applied force distribution (see

Fig. 1). Min–max normalization over the respective global

parameter range was used for axial depth, focal depth, elastic-

ity, and viscosity to homogenize the data scales from 0 to 1.

The focal depth variable refers to the ARF push focus and the

axial depth is the displacement estimation kernel location. Dis-

placements were concatenated with the associated axial depth

and focal depth of each profile to create the model inputs, and

elasticity and viscosity were grouped as the outputs. Dataset

generation for each acquisition type is described in greater

detail below:

Simulation datasets were grouped into homogeneous sim-

ulations only (TrainHom, TestHom), heterogeneous simula-

tions only (TrainHet, TestHet), and a mixture of the two

(TrainMix, TestMix). The primary difference between the train-

ing/validation and testing sets for simulations was the random

scatterer realization since this variable would model noisy

differences in the posterior distribution of the viscoelasticity

estimates. Samples from each dataset were assigned a draw

probability to balance classes during training. For example,

the background samples of the TrainHet dataset were assigned

a lower draw probability than the inclusion samples because

the background for all heterogeneous simulations was the

same viscoelastic material combination, whereas the inclusion

material combinations varied. Validation sets were generated

as 350 000 sample random splits from the training sets using

the aforementioned draw probabilities. To account for different

training set sizes for the TrainHom, TrainHet, and TrainMix

datasets, an epoch was defined as a random weighted draw of

2 million total samples, e.g., an epoch of TrainHom draws 2 mil-

lion homogeneous samples and an epoch of TrainMix draws

1 million homogeneous samples and 1 million heterogeneous

samples.

Phantom images were cropped axially to only include data

between 22 and 38 mm to reduce oversampling of the single

background elasticity. Phantom displacements were linearly

interpolated to match the simulation time grid so that model

inputs were the same length (43 samples).

2) Model Selection: A Bayesian hyperparameter search was

executed for each of the training datasets to minimize the com-

bined Huber loss of the elasticity and viscosity estimates on the

validation sets [31]. Huber loss acts as L2, or Mean Square

Error, loss within a delta range and L1, or Mean Absolute

Error, outside of this range, providing regularization. Given the

elasticities and viscosities were min–max normalized between

0 and 1, the delta range was set to 1, so the Huber loss acted

as L2 when the summed estimate errors were within nor-

malization ranges and L1 otherwise. Additionally, combining

losses with this normalization equally weights penalties for

elasticity and viscosity estimates. This search found similar

optimal hyperparameters for each training dataset, and so the

TrainMix parameters were used for all cross-validation runs

to standardize training. Using the random weighted sampling

procedure described above, 11 cross-validation runs were

performed for each train dataset resulting in 33 trained models.

For each cross-validation training run, a fully connected,

feed-forward, multilayer perceptron neural network model

was trained for 150 epochs with an ADAM optimizer [32],

a learning rate λ of 0.0037, first moment β1 of 0.9, second

moment β2 of 0.999, a batch size of 4096 samples, and early

stopping. The model consisted of four hidden layers with the

following neuron count connecting each layer: 128, 256, 256,

128, and 64. The concatenated displacements, axial depth, and

focal depth had an input size of 45, and jointly estimating

elasticity and viscosity gives an output size of 2. Hidden layer

neurons used Tanh activation functions and Softplus activation

was used on the two output neurons to constrain the model

to positive elastic and viscous moduli predictions. Model

performance results are reported as the root mean square error

(RMSE).

3) Fine-Tuning: Using model weights trained with simulated

data, fine-tuning was performed by lowering the learning

rate to 0.0001 and further training for five epochs on the

phantom displacements. Early stopping was employed while
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Fig. 2. (a) Elasticity and (b) viscosity RMSE grouped by train and
test simulation datasets for each cross-validation training run. RMSEs
displayed are over samples in the test sets (color) with an SNR of 50 dB.
Square marker points represent the subset of TestHom and TestMix

with parameter ranges filtered to match TrainHet ranges (e.g., TestHom

elasticities greater than 36.67 kPa were removed since 36.67 kPa is the
max elasticity in TrainHet).

monitoring the combined Huber loss on simulation and

phantom displacement estimates on the validation sets. The

fine-tuning training set contained phantom acquisitions from

the 10.41- and 16.67-mm cross-sectional diameter inclusions

with 25- and 35-mm focal depths. Performance was tested on

the 6.49-mm cross-sectional diameter inclusion with a 30-mm

focal depth.

E. Performance Metrics

Quantitative elasticity and viscosity estimations using

QVisR are evaluated with the quantitative RMSE metric [33].

Given the large sample sizes and approximately normal error

distributions, RMSE is appropriate to give an average estimate

of the error in the correct unit of the estimate (kPa for elasticity

and Pa.s for viscosity). When comparing semiquantitative

estimates of elasticity and viscosity (VisR RE and RV) to

each other and to the quantitative estimates, the semiquan-

titative metric, generalized contrast to noise ratio (gCNR),

is used [34]. This metric allows comparison of the ability to

delineate the contrast between image patches independently of

any dynamic range transformations to the data.

III. RESULTS

Fig. 2(a) and (b) shows QVisR elasticity and viscosity esti-

mation RMSE for each train and test material subset pairing

cross-validation run. Neural networks are poor at extrapola-

tion [35], so results for the TrainHet models were filtered to

exclude estimates on TestHom samples that were outside of

the simulated heterogeneous dataset parameter ranges (filtered

subset RMSEs represented by square markers in Fig. 2).

Fig. 3 depicts QVisR TrainMix model RMSEs on the TestHom

dataset grouped by axial distance to the focal depth. Due to

displacement profiles being measured only from 10 to 40 mm,

some focal depths within the distance to focal depth ranges

(colors) have sparse data as illustrated by truncated lines in

Fig. 3(c) and (f). Results are shown with varying test set

elasticity, viscosity, and focal depth.

Fig. 4 compares QVisR TrainMix model RMSEs on the

TestMix set when grouped by SNR. Results are shown with

varying test set elasticity, viscosity, focal depth, and scatterer

TABLE III

CIRS PHANTOM GCNR VALUES FOR VARYING ROI PATCH SIZES

realization. At 20-dB system SNR, the estimate RMSEs are no

longer viable representing a lower limit of noise where QVisR

is no longer a good estimator. Significant spiked decreases in

RMSE for lower SNRs (≤30 dB) at elastic moduli of 22 and

28 kPa as well as viscous modulus of 2.34 Pa.s indicate moduli

that are present only in the heterogeneous dataset. Similar

alternating spikes in the focal depth subplots are also caused by

these moduli since the RMSE at each focal depth is averaging

over all elasticities and viscosities and the lower RMSE spikes

occur at the focal depths in the heterogeneous dataset.

Fig. 5 shows the point-wise axial QVisR estimates of elas-

ticity and viscosity in heterogeneous inclusion simulations.

Results are shown for heterogeneous materials with the fol-

lowing inclusion elastic and viscous moduli pairs: (15.56 kPa,

0.01 Pa.s), (15.56 kPa, 3.90 Pa.s), (36.66 kPa, 0.01 Pa.s),

and (36.66 kPa, 3.90 Pa.s). The heterogeneous material back-

ground was held constant with 26.11-kPa elastic modulus

and 2.34-Pa.s viscous modulus. Heterogeneous material axial

estimation results are shown at four lateral offsets from the

inclusion center (0, 2.5, 4.0, and 7.0 mm). The 7.0-mm lateral

offset measurements are completely outside the inclusion

boundary so the material is homogeneous over the axial extent

[see Fig. 5(d) and (i)]. Results in a separate homogeneous

simulation matching the heterogeneous simulation background

viscoelasticity are also plotted [see Fig. 5(e) and (j)].

Fig. 6 shows the VisR MSD RE as well as both

simulation-trained and phantom fine-tuned QVisR elasticity

estimation results in the CIRS cylindrical elasticity phantom

test set. True elasticity masks created from manual B-Mode

segmentation illustrate the target elasticity for each model

[see Fig. 6(a)–(d)]. Model results are shown for each of the

four calibrated inclusion elasticities (6.5, 15.3, 49.0, and

88.0 kPa). Overlaid on the figure are semiquantitative (gCNR)

and quantitative (RMSE) metrics with corresponding ROI

patch sizes of 2 × 2 mm. The gCNR metric uses a patch

within the center of the inclusion and one to the right of

the inclusion while RMSE is measured per patch. Table III

lists the changes in the gCNR metric as the image patch size

increases to encompass most of the interior of the inclusion

and more of the boundary pixels.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on August 19,2024 at 19:52:14 UTC from IEEE Xplore.  Restrictions apply. 



916 IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 71, NO. 7, JULY 2024

Fig. 3. Elasticity [top row, (a)–(c)] and viscosity [bottom row, (d)–(f)] RMSE grouped by distance from displacement axial depth to ARF push focal
depth with varying elasticity [left column, (a) and (d)], viscosity [middle column, (b) and (c)], and focal depth [right column, (c) and (f)]. Points and
shading represent the mean ± max and min RMSE over the 11 cross-validation TrainMix models. RMSEs were calculated over all seed realizations
with an SNR of 50 dB in the TestHom dataset.

Fig. 4. Elasticity [top row, (a)–(d)] and viscosity [bottom row, (e)–(h)] RMSE grouped by SNR for varying elasticity [first column, (a) and (e)],
viscosity [second column, (b) and (f)], focal depth [third column, (c) and (g)], and scatterer realization [fourth column, (d) and (h)]. Points and
shading represent the mean ± max and min RMSE over the 11 cross-validation TrainMix models. RMSEs calculated over all samples in the TestMix

set except those greater than 20 mm below the focus.

Fig. 7 shows B-Mode, peak displacement, VisR MSD RE

and RV, and both simulation-trained and phantom fine-tuned

QVisR viscoelasticity estimates in the gastrocnemius and

rectus femoris muscles of two boys with DMD. The sim-

ulation trained model, and base model used for fine-tuning,

is the TrainMix cross-validation model with the lowest TestMix

RMSE. Displacements within key ROIs, labeled in Fig. 7, are

shown in Fig. 8.

IV. DISCUSSION

QVisR was found to work best when trained with a mixture

of homogeneous and heterogeneous materials (see Fig. 2).

Although the TrainMix model had the lowest RMSE for the

TestMix dataset, the TrainHom and TrainHet models had slightly

better performance on their, respectively, material subset test

datasets than the TrainMix model. Additionally, each train/test

set pairing had minimal bias (<0.1 kPa, <0.03 Pa.s), and

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on August 19,2024 at 19:52:14 UTC from IEEE Xplore.  Restrictions apply. 



RICHARDSON et al.: QVisR: DIRECT ESTIMATION OF VISCOELASTICITY WITH NEURAL NETWORKS 917

Fig. 5. Point-wise axial estimates of elasticity [top row, (a)–(e)] and viscosity [bottom row, (f)–(j)] for heterogeneous and homogeneous simulation
samples. Four heterogeneous inclusion viscoelasticity combinations (colors) are shown for each inclusion center lateral offset. (a)–(d) and
(f)–(i) Homogeneous sample matched the background viscoelasticity of the heterogeneous samples. (e) and (j) Estimates (solid lines) are plotted
over true (dashed lines) elasticities and viscosities. Each sample was drawn from a random seed realization in the TestMix set and have a fixed
focal depth of 25 mm and 40-dB SNR. Estimate results are plotted with a ∼1-mm sliding axial median filter. Estimates shown for the TrainMix

cross-validation model with the lowest TestMix RMSE.

errors were approximately normally distributed. RMSEs can

therefore be interpreted as a standard deviation capturing 68%

of the error variation, e.g., 68% of the TrainMix model elasticity

estimates on the TestMix dataset were within ±2.54 kPa of the

true elasticity. Filtering by test subset brought RMSEs down

to comparable levels with TrainHom errors; however, train-

ing with both homogeneous and heterogeneous simulations

still provided the best or comparable performance to models

trained with each set individually. These results suggest that

QVisR estimates depend on material geometry in cases where

the boundary effects distort the displacement profiles. QVisR

models designed to generalize to arbitrary material geometries

will require training on a much greater array of simulated

material geometries than presented in this study. For the

remaining simulation analyses, TrainMix models are used.

When isolated to estimating on homogeneous materials to

study model performance over the axial extent (see Fig. 3),

QVisR elasticity and viscosity estimate RMSEs are consistent

over all axial depth groups aside from greater than 20 mm

below the focal depth (orange). In limited cases where the true

elastic modulus is less than ∼80 kPa, the elasticity estimation

RMSE is also consistent >20 mm below the focal depth [see

Fig. 3(a)]. This wide axial extent of stability is thought to be

due to the combination two factors. First, the relatively high

acoustic attenuation coefficient of 1 dB/cm/MHz spreads the

force distribution over the axial extent [11], particularly in

the near field, causing several micrometer displacements far

from the focus. Second, peak-normalizing each displacement

profile and pairing it with both the measurement axial depth

and the ARF push focal depth acts as a type of depth normal-

ization allowing QVisR to estimate viscoelasticity far from the

focus. Training QVisR models on millions of displacements

with varying ARF focal depth, measurement axial depth, and

material property results in a network that can compensate for

complex system inertia peak displacement time delays that

appear similar to an increase in viscosity. The effect of force

distribution on QVisR estimates, specifically the modification

of the acoustic attenuation coefficient and focal configuration,

is a topic of ongoing research. For example, using a lower

acoustic attenuation will make the applied force more localized

and may disrupt QVisR estimates far from the focal depth.

For the remaining simulation analyses, estimates greater than
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Fig. 6. Calibrated cylindrical step phantom bmode-segmented true elasticity reference [first row, (a)–(d)] compared with VisR MSD model fit
RE [second row, (e)–(h)] and QVisR estimated elasticities before [third row, (i)–(l)] and after [fourth row, (m)–(p)] fine-tuning. Each column is a
different inclusion type with varying inclusion elasticity and a fixed background elasticity (calibrated inclusion and background elasticities marked
on the elasticity colorbar). The segmentation mask inclusion boundary is overlaid in transparent white on the estimate images to mark the outer
extent of the inclusion. VisR displacement acquisitions had a 30-mm ARF push focal depth. Estimates are displayed with a 2-D median filter with a
∼1 × 0.5 mm kernel (axial × lateral). Overlaid statistics were calculated using 2-mm square image patches in the center of the inclusion and to
the right of the inclusion. RMSE in the inclusion and background were calculated over the respective image patches with the ground truth from an
equivalent size patch from the first row of images and gCNR was calculated using the inclusion and background patch of each image. Note that
RMSE cannot be calculated for VisR MSD RE because RMSE is a quantitative metric and RE is a semiquantitative parameter; however, gCNR,
a semiquantitative metric, can be applied to both semiquantitative and quantitative images. RMSE is in units of kPa Young’s modulus.

20 mm below the focus are considered beyond the useful range

of the model and excluded.

Estimates are also stable over a range of scanner real-

istic system SNRs (see Fig. 4). The homogeneous dataset

elasticity and viscosity step sizes (10.56 kPa and 0.78 Pa.s,

respectively) were considered acceptable RMSE cutoffs when

estimating across large data subsets. QVisR meets this criteria

for both elasticity and viscosity RMSE across all variations

of elasticity, viscosity, focal depth, and scatterer realization

when the SNR is at least 40 dB; however, only elasticity
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Fig. 7. B-Mode, VisR peak displacement, VisR MSD RE and RV, and QVisR elastic and viscous moduli estimates on in vivo gastrocnemius
[left, (a)–(h)] and rectus femoris [right, (i)–(p)] muscles of boys with DMD. QVisR estimates are shown for the simulation trained model [third row,
(e)–(f) and (m)–(n)] and the phantom fine-tuned model [fourth row, (g)–(h) and (o)–(p)]. Acquisitions had 20- (left) and 17-mm (right) ARF push focal
depths and estimates are displayed with a 2-D median filter with ∼1 × 0.5 mm kernel (axial × lateral) on the image overlays. Peak displacement
images (b) and (h) were depth normalized with a parabolic curve fit to minimize variations due to applied force amplitude around the focal depth.
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Fig. 8. VisR displacement profiles from gastrocnemius (left) and rectus
femoris (right) muscle ROIs. Shading shows the min and max displace-
ment over a 0.5-mm axial kernel. Legend labels 1 and 2 correspond to
regions 1 and 2 in each Fig. 7 muscle.

RMSE is within the tolerance down to 30-dB SNR. This

suggests elasticity is easier for QVisR to estimate in noisier

environments than viscosity. One possible explanation for this

result could be determined by visually inspecting the peak

normalized displacements as elasticity and viscosity vary [see

Fig. 1(e) and (f)]. Changes in displacement as viscosity varies

are less dramatic than changes in displacement as elasticity

varies, so it is intuitive that elasticity would be easier to

estimate from the displacement profile at a lower SNR. Further

analysis is necessary for proper characterization of QVisR’s

performance in lower SNR environments.

Shifting from evaluation of error data subset groups to

individual estimate error, QVisR estimates closely match the

true viscoelastic moduli through axial depth (see Fig. 5).

Heterogeneous sample estimates delineate the viscoelastic

inclusion boundary within 1 mm of the true boundary despite

focusing at the center of the inclusion [see Fig. 5(a)–(c) and

(f)–(h)]. Background viscoelasticity is estimated with negligi-

ble error aside from a large overestimate around 15 mm for

samples with lower inclusion elastic modulus [see Fig. 5(a),

(b), (f), and (g)]. These large overestimation errors may be

caused by speckle bias, reflection artifacts off the top of

the inclusion, or estimating close to the edge of simulated

focal depths. When focusing with a lateral offset outside the

inclusion boundary, estimate errors increase within the axial

range of the inclusion projection [20–30 mm, see Fig. 5(d)

and (i)]. When looking at estimates of a simulation with-

out an inclusion and matching viscoelastic modulus to the

heterogeneous sample background, a similar error profile is

seen for the elastic modulus estimates but not for the viscous

modulus estimates [see Fig. 5(e) and (j)], although the homo-

geneous viscous modulus estimates have a higher variance,

which may obfuscate the viscous error profile. The repeated

error profiles in both heterogeneous samples measured in the

background and matched viscoelastic modulus homogeneous

samples indicate a slight model bias (1–2-kPa elastic modulus,

0.5–1.0-Pa.s viscous modulus) based on the training set inclu-

sion geometry. Additionally, the error profiles appear larger

for the heterogeneous background cases implying a slight

distortion of the displacement profiles due to reflections off

the inclusion boundary. These insights are significant given

that the model inputs are just the displacement profile, axial

depth, and focal depth, so the TrainMix models have no a priori

information about the existence of an inclusion or information

from neighboring displacement profiles. This suggests QVisR

trained on simulations with more material geometries may still

accurately estimate near the inclusion boundaries.

A. Phantom Acquisitions

Testing QVisR generalization on CIRS calibrated elas-

tic phantom images (see Fig. 6) shows that fine-tuning is

necessary for quantitative domain adaption. Phantom image

estimates for the model trained only on simulation data show

the correct trends (i.e., estimates correctly identify when

the inclusion is softer or stiffer than the background and

generally indicate that stiffness increases with true inclu-

sion elasticity), but the estimates have large errors and poor

boundary delineation [see Fig. 6(i) and (j)]. After fine tun-

ing [see Fig. 6(m)–(p)], QVisR both delineates the inclusion

boundary and estimates the elastic moduli of the inclusion

and background with a lower RMSE; however, the soft-

est and stiffest inclusions [see Fig. 6(m) and (p)] are still

under and overestimated, respectively. Elasticity estimation

with QVisR somewhat gradually transitions from inclusion to

background values across the inclusion boundary leading to

higher RMSE near the boundary than near the center of the

inclusion. Viscosity estimates are not shown since the phantom

only had elasticity variations and a negligible viscous moduli.

Comparing QVisR elasticity estimation with VisR MSD RE

estimation gCNR scores show that both simulation-trained

and phantom fine-tuned QVisR better delineate an inclusion

from the background. Additionally, the phantom fine-tuned

QVisR model has perfect gCNR scores indicating that the

2-mm patch in the center of the inclusion is perfectly separable

from the 2-mm patch outside the inclusion to the right.

These results degrade only as the ROI patches approach the

boundary of the inclusions and noted in Table III. Note that

although it seems the VisR RE estimates [see Fig. 6(e)–(h)

visually appear to more closely match the ground truth of

the background material in color than the simulation-trained

QVisR model [see Fig. 6(i)–(l)], the VisR RE results are on

a semiquantitative scale which means an error metric for

the background material cannot be calculated and, therefore,

it cannot be evaluated if the VisR RE background is closer to

the ground truth than the simulation-trained QVisR results.

Since both the simulation-trained and phantom fine-tuned

[see Fig. 6(m)–(p)] models are directly estimating the elastic

modulus quantitatively, the RMSE of the background estimates

can be compared to determine that fine-tuning improves the

background and inclusion RMSE.

The ability of QVisR simulation-trained models to be

domain adapted to scanner-acquired data in a calibrated phan-

tom suggest model generalization would be feasible with

relatively small labeled datasets. Additionally, QVisR domain

adaption works best on materials in the interior range of

samples, i.e., the medium stiffness materials rather than the

softest or stiffest, suggesting an ideal labeled dataset would

extend beyond the range of materials QVisR would ultimately

be estimating in practice.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on August 19,2024 at 19:52:14 UTC from IEEE Xplore.  Restrictions apply. 



RICHARDSON et al.: QVisR: DIRECT ESTIMATION OF VISCOELASTICITY WITH NEURAL NETWORKS 921

B. Clinical Acquisitions

As a secondary evaluation of QVisR model generaliza-

tion, the simulation and phantom fine-tuned models estimated

viscoelastic moduli in the gastrocnemius and rectus femoris

muscles of two boys with DMD (see Fig. 7). Since fine-tuning

was necessary for adaption from simulations to phantoms, the

DMD dataset estimates should not be considered quantitative;

however, a few labeled ROIs show promising trends.

The gastrocnemius peak displacement image [see Fig. 7(b)]

has a region of high displacement bisected laterally by a streak

of low displacement near the ARF focal depth (region 1).

Interpreting the blue low peak displacement streak in isolation

would indicate high elasticity; however, it is not possible to

separate the effects of elasticity and viscosity. QVisR estimates

indicate this low displacement streak is dominated by a change

in viscous modulus [see Fig. 7(f) and (h) since the elasticity

is relatively constant above this region [see Fig. 7(e) and

(g)]. This result is supported visually by the VisR MSD

RE and RV fits in Fig. 7(c) and (d); however, since the

VisR results are semiquantitative, the exact values cannot be

quantitatively compared. The corresponding displacement in

Fig. 8 has a delayed peak, long recovery time, and minimal

recovery after the first peak which also tends to happen with

highly viscous materials at the focus. Additionally, the peak

image lower left corner (region 2) shows two small regions

of high displacement which QVisR suggests are points with

higher elasticity and lower viscosity than the surrounding

tissue [see Fig. 7(e)–(h)]. This could suggest a very stiff region

that was displaced further by compressing the softer, more

viscous tissue in neighboring regions. The displacements in

this region are fairly typical of those with higher elasticity

and low viscosity (i.e., rapid ascension to peak displacement,

partial recovery between the two ARF pushes, and rapid peak

displacement recovery as shown in Fig. 8). Comparing the

simulation-trained and phantom fine-tuned model estimates

shows an interplay between the elasticity and viscosity esti-

mates. The phantom dataset had no viscosity, which biased

the fine-tuned models toward estimating low viscosity. Region

1 still has a 2–3-Pa.s viscosity indicating strongly viscous

features; however, the background of the phantom fine-tuned

image is relatively homogeneous. Comparing the elasticity

estimates pre and post fine-tuning shows an increase in detail

and elasticity in region 2. This suggests the QvisR elasticity

and viscosity estimates may be coupled and that a proper

domain adaption dataset would need to include both elasticity

and viscosity variations to reduce bias.

The rectus femoris peak displacement image [see Fig. 7(j)]

has a central area with two points of high peak displacement

(region 1) and a third point of high displacement near the

bottom of the peak overlay (region 2). Interpreting the peak

displacement images alone would indicate both regions have

low elasticity. Simulation-trained QVisR indicates that the cen-

tral high peak points in region 1 are driven by decreases in both

elastic and viscous moduli whereas the high peak in region 2 is

primarily due to a change in viscosity [see Fig. 7(o) and (q)].

After fine-tuning, the viscosity estimate variability decreases

and the ROIs are only visible in the elasticity estimate image

[see Fig. 7(p)]. VisR RE and RV show the elevated elasticity

and viscosity in region 2; however, there is little change in

contrast in either the RE or RV images near region 1 [see

Fig. 6(l) and (m)]. This could just be due to the lower RE

sensitivity to changes in softer materials as seen in the similar

RE values in the inclusions of Fig. 6(e) and (f). Displacements

for each region (see Fig. 8) are difficult to interpret since the

measurement axial depth is different (13.8 mm for region 1 and

17.5 mm for region 2) and axial depth can fairly dramatically

change the shape of peak normalized displacements as shown

in Fig. 1(h). Further analysis is necessary to determine cases

where QVisR estimates are valid and a proper fine-tuning

dataset for in vivo evaluations.

C. QVisR Outcomes and Study Limitations

QVisR is able to estimate elastic and viscous moduli well

given in silico displacement profiles and shows promise for

generalization to ex vivo/in vivo applications when a limited

dataset can be used to tune and validate model performance.

Since QVisR uses displacements measured in the region of

excitation and only selectively uses limited spatial averaging as

a postprocessing procedure, the proposed model can estimate

viscoelasticity with a finer resolution than methods that rely

on measurement of a shear wave propagating over several

millimeters.

A primary limitation of this study is the availability of

quality, labeled displacement data. True point-wise viscoelas-

tic moduli values are not currently measurable in clinical

datasets. Additionally, calibrated phantoms with mechanical

heterogeneities that vary both elastic and viscous moduli are

an active area of research. Simulation material parameters

were selected to cover a range of realistic values [4], [5];

however, simulating all variations of material viscoelasticities,

geometries, and acoustic properties is not possible. Namely,

this study is limited by use of a fixed, frequency-independent

attenuation as well as the use of a single geometry and

single background viscoelasticity for the heterogeneous sim-

ulations. The simulation imaging parameters were fixed to

match those of the phantom and DMD dataset acquisitions

with the VF7-3 transducer. QVisR is sensitive to variations in

many of these imaging parameters, so separate datasets and

models would need to be generated for imaging parameter

combinations. For example, if the F/# or time between pushes

in the VisR beam sequence were changed, a dataset with

that imaging configuration would need to be simulated and

a new QVisR model would need to be trained on the new

dataset. Additionally, fine-tuning was necessary for trans-

lating a simulation-trained QVisR model to the calibrated

CIRS phantom scanner acquisitions. This fine-tuning step

is likely necessary due to a mismatch between simulated

and scanner-acquired displacements with matched imaging

configuration and material properties. Improving the match

between simulations and scanner acquisitions is a topic of

ongoing research and, in theory, would eliminate the need

for fine-tuning once the simulation error is sufficiently small.

Alternatively, a composite model could be trained with data

from multiple imaging configurations where the imaging

parameters could be included as features, similar to the focal

depth parameter in current QVisR models; however, these

composite models may be harder to train due to the large

amount of data across varying imaging configurations.
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Expanding the breadth of the simulation datasets to encom-

pass varying attenuation, more heterogeneous structures, and

different imaging parameters may improve model general-

ization. Any additional parameter which could be known

a priori, such as the imaging configurations, could be directly

incorporated to the models as an input feature, similar to

how axial depth and focal depth were treated in this study.

Unknown confounding parameters, such as attenuation, could

be estimated with other methods before use as an input or

could be jointly estimated with elastic and viscous moduli if

labels are available for a training set.

This study used a relatively simple neural network model

architecture with minimal preprocessing of displacements

before use as a model input. Focus on improving the model’s

understanding of the data and dataset information quality may

yield estimate improvements. Using a model more appro-

priate for time-series analysis, such as a 1-D convolutional

neural network (CNN) or recurrent neural network (RNN),

or a dimensionality reduction technique, such as principal

component analysis (PCA), may help the model efficiently

extract the necessary information content from displacement

profiles. Training efficiency may also be increased by use of a

displacement quality factor to remove erroneous displacements

or samples with high correlation. Use of a Bayesian approach

may additionally allow use of labeling data with uncertainty,

e.g., clinical muscle data could be parameterized by a mean

and standard deviation from literature. Viscosity bias to the

phantom dataset may be reducible by decoupling the elasticity

and viscosity estimation into separate networks and freezing

the viscosity network weights; however, this would remove

any benefits from joint estimation of elasticity and viscosity.

Investigation of alternative QVisR methods is ongoing.

V. CONCLUSION

This study shows that there is a functional mapping,

although potentially complex, between ON-axis displacements

and viscoelastic moduli that can be learned from data. Across

several million simulated displacement samples in the test set,

QVisR estimates have an elastic modulus RMSE less than

2 kPa and a viscous modulus RMSE less than 0.5 Pa.s. QVisR

estimates are stable in regions far above and below the focal

depth (10–15+ mm) and with realistic scanner system SNRs

(30–50 dB). When training on a random sampling of both

mechanically homogeneous and heterogeneous displacement

profiles, QVisR is able to delineate viscoelastic inclusion

boundaries while maintaining similar performance in mechan-

ically homogeneous materials. Although the simulation trained

models do not generalize perfectly to phantom and clini-

cal datasets currently, fine-tuning methods show promise for

future implementations, and alternative modeling to improve

generalization are under investigation.
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