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Quantitative Viscoelastic Response (QVisR):
Direct Estimation of Viscoelasticity With
Neural Networks

Joseph B. Richardson™, Student Member, IEEE, Christopher J. Moore, Member, IEEE,
and Caterina M. Gallippi*, Senior Member, IEEE

Abstract—We present a machine learning method to
directly estimate viscoelastic moduli from displacement
time-series profiles generated by viscoelastic response
(VisR) ultrasound excitations. VisR uses two colocal-
ized acoustic radiation force (ARF) pushes to approx-
imate tissue viscoelastic creep response and tracks
displacements on-axis to measure the material relax-
ation. A fully connected neural network is trained
to learn a nonlinear mapping from VisR displace-
ments, the push focal depth, and the measurement
axial depth to the material elastic and viscous mod-
uli. In this work, we assess the validity of quantitative
VisR (QVisR) in simulated materials, propose a method
of domain adaption to phantom VisR displacements,
and show in vivo estimates from a clinically acquired
dataset.
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[. INTRODUCTION

ISSUE characterization is studied to identify measurable
properties that can be correlated to clinical outcomes [1].
Considerable efforts has been spent developing quantitative,
as opposed to qualitative and semiquantitative, metrics
of characterization because they are better suited for
cross-sectional and longitudinal clinical studies [2], [3].
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Tissue viscoelasticity is a quantitative parameter with an
intuitive link to clinical outcomes since many pathologies
present measurable changes in mechanical property (e.g.,
fibrosis and inflammation) [4], [5], [6].

The subfield of ultrasound elastography attempts to measure
changes in tissue viscoelasticity. The majority of elastog-
raphy methods involve tracking the physical displacement
of speckle-generating scatterers constituting the interrogated
tissue. The magnitude and/or rate of displacement is then
associated with mechanical property through model-based or
data driven approaches [7], [8]. Physical displacement of tissue
is generated through external indentation or vibration, passive
stresses such as breathing, or application of acoustic radiation
force (ARF). Reduction to clinical practice can be challenging
for techniques that use external indentation or vibration due
to the need for extra equipment and/or nonstandardized appli-
cation of stress [9]. Passive stress methods generally require
boundary condition measurements or mathematical models
that are often unknown for in vivo imaging contexts [10].

Most elastography techniques using ARF pushes track shear
wave propagation OFF-axis laterally of the applied ARF push.
These methods typically relate shear wave measurements
(phase or group velocity and dispersion) to tissue mechanical
property [7], [11], [12], [13]. Shear wave-based methods gen-
erally assume mechanical property homogeneity over the wave
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Highlights

« QVisR uses a neural network trained on simulations to estimate the elastic and viscous moduli of materials given
the displacement profile measured in the region of acoustic radiation force excitation.

« QVisR has low elastic and viscous moduli estimation RMSE in mechanically homogeneous and heterogeneous
simulations and can be fine-tuned to estimate using displacements acquired with a real scanner.

« QVisR estimates both the elastic and viscous moduli without monitoring shear-wave propagation and shows
promise for clinical application with improvements in model calibration.

propagation region. This assumption reduces the resolution of
shear wave-based methods compared to ON-axis methods and
can result in spatial averaging of mechanical property estima-
tion if heterogeneities exist. Shear waves are also prone to
reflection off out-of-plane targets, such as bone or connective
tissue, which can distort the measured wave properties. Addi-
tionally, shear wave-based methods are depth limited since the
ARF pushes need to generate enough displacement to support
shear wave propagation over a measurable distance [7], [11].

Our lab developed viscoelastic response (VisR) ultrasound
to evaluate the viscoelastic properties of tissue by approx-
imating a creep response [14]. VisR uses a colocalized,
double-push ARF excitation to minimize acquisition time
when compared with similar methods (kinetic acoustic vit-
roretinal examination (KAVE) [15] and monitored state-state
excitation and recovery (MSSER) [16]). Additionally, VisR
tracks the induced displacements ON-axis with the ARF exci-
tations to avoid the aforementioned challenges of methods
that monitor shear-wave propagation. VisR displacements can
be fit to a 1-D mass-spring-damper (MSD) model with fit
parameters rearranged to derive semiquantitative measures of
elasticity and viscosity (RE = Relative Elasticity and RV =
Relative Viscosity) [17] relative to the applied force amplitude,
which can be assumed constant over a small, local region [11],
[18]. Additional corrections have been studied to improve
comparisons of RE and RV over a wider region of interest
(ROI) in an image [19], [20], [21]; however, all VisR sequence
derived viscoelasticity measures have been semiquantitative.

Model-based elastography approaches become more
ill-posed when a model parameter or boundary condition is
unknown/immeasurable, such as the applied force amplitude
for VisR. Data-driven statistical approaches, such as neural
networks, often require large sets of labeled data for training
that, ideally, represent all data variations present in the
final test application of the network. Although experimental
and clinical elastography datasets are usually small, large
simulation datasets can be generated to capture variations
in displacement profiles due to imaging configuration
(focal depth and transducer parameters) and tissue property
(viscoelasticity and attenuation).

In this study, we regress multilayer perceptron neural
networks on simulated, ultrasonically tracked VisR
displacement time series to jointly estimate elastic and
viscous moduli. The predicted moduli are direct estimates
of the underlying mechanical properties coining the term
quantitative VisR (QVisR) ultrasound. This work is an
extension of methods, results, and discussion presented

n [22], [23], and [24]. In [22], we evaluated bagged trees
regressors models against neural network architectures on
mechanically homogeneous simulations without noise and
concluded that neural networks provide lower test set error.
In [23], we varied the added noise levels in homogeneous
materials to test QVisR performance degradation. In [24],
we trained QVisR on both homogeneous and heterogeneous
simulations with noise and evaluated QVisR generalizability
by estimating the elasticity scans acquired in a CIRS
elastic tissue-mimicking phantom. This manuscript includes
extended analysis of QVisR results in homogeneous and
heterogeneous simulations with noise, provides metrics
related to model evaluation in CIRS phantom, and shows both
simulation-trained and phantom fine-tuned QVisR estimates
in the muscles of boys with Duchenne muscular dystrophy
(DMD) not present in any previous work. We also provide
comparisons of QVisR with conventional VisR RE and RV
semiquantitative images in the phantom and clinical examples
to show the benefits of quantitative viscoelasticity estimation.

[I. METHODS
A. Simulations

Mechanically homogeneous and heterogeneous viscoelas-
tic materials interrogated through a VisR beam sequence
were simulated using methods adapted from the work of
Palmeri et al. [25]. Fixed ARF excitation and tracking parame-
ters across all simulations are listed in Table I. Major material
and finite element parameters shared by all simulations and
unique to the homogeneous and heterogeneous simulations
are shown in Table II. For each set of simulations, ON-axis
displacement through time data was paired with the respec-
tive axial depth, focal depth, elasticity, and viscosity of the
simulation and then saved for further processing. Viscoelastic
material properties were chosen to represent realistic ranges
found in soft tissues [4], [5] for all simulations.

1) Homogeneous Dataset: A Siemens VF7-3 transducer
(Siemens Healthineers, Issaquah, WA) was parameterized to be
modeled with Field II [26]. Transducer point spread functions
(PSFs) for ARF excitations and tracks were modeled using the
beam sequence parameters in Table I and material properties
in Table II. ARF excitation PSFs were calculated for each of
the 11 focal depths enumerated in Table II.

A rectangular finite element mesh was defined using
LS-DYNA (Ansys Inc., Canonsburg, PA) with 280440 ele-
ments of volume 250 xm? spanning a 1 x 1 x 4 cm (lateral x
elevation x axial) region with axial quarter symmetry. Simu-
lated ARF PSF intensities were converted to body forces and
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TABLE |
ARF EXCITATION AND TRACKING PARAMETERS FOR SIMULATIONS AND
PHANTOM ACQUISITIONS

Name Value
Beam Sequence Parameters
Transducer VF7-3
Elevational Lens Focus (mm) 37.5
Sampling Frequency (MHz) 40
ARF Center Frequency (MHz) 421
ARF Duration (ps, cycles) 70, 300
ARF F/# 3.0
Tracking Center Frequency (MHz) 6.15
Tracking Tx F/# 3.0
Tracking Rx F/#* 0.75
Tracking Tx Focus (mm) 20
Tracking PRF (kHz) 10
Normalized Cross Correlation Parameters

Kernel Length (wavelengths, um) 3,751
Search Window (um) 50

* Aperture growth and dynamic Rx focusing enabled

TABLE Il
SIMULATION PARAMETERS

Name Value

All Simulations

Material Model Kelvin-Maxwell

Poisson’s Ratio 0.499
Speed of Sound (m/s) 1540
Acoustic Attenuation (dB/cm/MHz) 1.0
Density (kg/m?) 1.0

Homogeneous Simulations Only
5-100 step 10.56
0.01-7.01 step 0.78

15, 17, 20, 23, 25, 27, 30,
32, 35, 38, 40

Elasticity (kPa)
Viscosity (Pa.s)
Focal Depth (mm)

Heterogeneous Simulations Only
15.56, 22, 28, 36.67
0.01, 1.57, 2.6, 3.9

Inclusion Elasticity (kPa)

Inclusion Viscosity (Pa.s)

Background Elasticity (kPa) 26.11
Background Viscosity (Pa.s) 2.34
Focal Depth (mm) 15-35 step 5
Inclusion Diameter (mm) 10
Inclusion Depth (mm) 25
Inclusion Lateral Offset (mm) 0,25,4,7

mapped to nodes on the mesh. LS-DYNA material files were
created on a grid of ten elasticities (5—-100 kPa in 10.56-kPa
steps) and ten viscosities (0.01-7.01 Pa.s in 0.78-Pa.s steps)
for a total of 100 material combinations. Each material was
defined with the Kelvin—-Maxwell Viscoelastic material model,
a Poisson’s Ratio of 0.499, and an equivalent elastic perfectly
matched layer (PML). Finite element simulations were per-
formed for every material combination and focal depth. Each

simulation applied nodal forces with a VisR beam sequence
and evaluated the resulting nodal displacements through time
by solving the dynamic equations of motion between nodes.
The simulations were carried out over 4.36 ms with a control
time step of 1 wus, a sampling period of 25 us, and two
successive 70 us (300 cycle) ARF pushes applied at 5 and
442 us, respectively. Finite element hourglassing control type
(ihq) of 4 and hourglassing coefficient (qh) of 0.10 were set
for all elements in the mesh.

Nodal displacements for each time step were translated
to scatterer displacements in five uniform scattering phan-
toms with randomly generated initial scatterer positions and
11 scatterers per resolution cell. Scatterers were tracked in
Field II with the previously generated track PSFs in each
phantom with a pulse repetition frequency (PRF) of 10 kHz.
White Gaussian noise from 30- to 50-dB signal-to-noise ratio
(SNR) was added in steps of 10 dB to the received RF
data before scatterer displacement was estimated with 1-D
axial normalized cross correlation (3A kernel, 50-um search
window) [27] generating 1559 displacement through time
profiles from 10 to 40 mm axially. Each displacement profile
was treated as an independent sample resulting in 34 298 000
simulated displacement profiles (focal depths x elasticities x
viscosities X scatterer realizations x SNRs x axial depths).

2) Heterogeneous Dataset: Heterogeneous simulations
were carried out in a similar manner to the homogeneous
simulations aside from the focal depths and material prop-
erties. Beginning with the finite element mesh formed for
the homogeneous simulations, a 10-mm diameter spherical
inclusion was placed with centroid at an axial depth of 25 mm.
LS-DYNA material files were generated on a grid of four
inclusion elasticities (15.56, 22, 28, and 36.67 kPa), four
inclusion viscosities (0.01, 1.57, 2.6, and 3.9 Pa.s), and a sin-
gle background viscoelasticity (26.11-kPa elasticity, 2.34-Pa.s
viscosity). The background viscoelasticity was selected to
match a set of homogeneous simulations, and the inclusion
viscoelasticities were varied around the background values to
provide both lower and higher contrast sets of simulations.
The ARF excitation PSFs were calculated at five focal depths
(15-35 mm in 5-mm steps) to interrogate the medium above,
below, within, and at the boundary of the inclusion. Addi-
tionally, ARF excitations were applied at four lateral offsets
from the center of the inclusion (0, 2.5, 4, and 7 mm) to
model the effects of pushing closer to the lateral inclusion
boundary and, in the extreme case of a 7-mm lateral offset,
pushing outside of the inclusion. In total, the heterogeneous
dataset consisted of 9977 600 simulated displacement profiles
(focal depths x inclusion elasticities x inclusion viscosities x
scatterer realizations x SNRs x axial depths x lateral offsets).

B. Scanner Acquisitions

1) Phantom Acquisitions: Imaging of a CIRS Cylindrical
Elasticity QA Phantom (CIRS, Norfolk, VA) was performed
with a Siemens Acuson Antares scanner and a VF7-3 lin-
ear array transducer (Siemens Healthineers, Issaquah, WA).
Custom VisR beam sequences were created through the Axius
Direct Ultrasound Research Interface (URI) allowing access to
the raw radio frequency data. The imaging sequence executed
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a raster scan focused B-Mode acquisition followed by a VisR
sequence at each of 40 lateral locations evenly spaced over
20 mm for 2-D VisR imaging. The VisR sequences used the
beam sequence parameters listed in Table I and consisted of
two reference tracks, two ARF excitations, four tracks between
the ARF excitations, and 40 tracks after the second ARF
excitation.

The imaging sequence was applied to the transverse cross
section of the 30-mm-deep cylindrical inclusions forming 2-D
images with circular inclusions. Data were acquired for each
inclusion type (four inclusion elasticities) and the largest three
circular cross-section diameters (6.49, 10.41, and 16.67 mm)
at three focal depths (25, 30, and 35 mm). Each acquisition
was repeated twice; however, only the first acquisition was
used unless an error occurred in the data collection routine.
True elastic modulus measurements calibrated by CIRS were
reported as follows: Background (26 kPa), Type 1 Inclusion
(6.5 kPa), Type 2 Inclusion (15.3 kPa), Type 3 Inclusion
(49 kPa), and Type 4 Inclusion (88 kPa).

2) Clinical Acquisitions: Samples from a previously acquired
clinical dataset were processed similar to those from the CIRS
phantom. The clinical data set included VisR data acquired in
the lower limb muscles of male patients, aged 5-10 years,
with DMD and in age-match control boys with no known
neuromuscular disorders. Data acquisitions were performed
using the same scanner, transducer, and sequencing as listed in
the phantom acquisitions section. All acquisition procedures
were approved by the Institutional Review Board (IRB) of
the University of North Carolina at Chapel Hill. Further
information on the collection and composition of this dataset
are reported in [28].

3) Scanner Processing: Raw acquisition data from the
scanners was transferred to workstations for custom pro-
cessing. B-mode images were created through the absolute
value of the log-compressed, Hilbert-transformed RF data.
VisR displacements were estimated with 1-D axial normalized
cross correlation with parameters listed in Table I. A linear
motion filter was applied to each displacement to remove
any low-frequency bulk displacements from the acquisition
process [29]. For each phantom acquisition, ON-axis displace-
ment through time data were paired with the respective axial
depth, focal depth, calibrated elasticity, and assumed viscosity
and saved for use in model fitting. Clinical acquisitions were
similarly saved aside from pairing with the true elasticity and
viscosity, which is unknown. The clinical acquisition system
SNR is estimated to be roughly 40 dB given that the muscle
tissue were echogenic, stationary through the acquisition cycle,
and did not contain any large structures with blood flow.

C. Semiquantitative Viscoelastic Response Model Fit
Procedure

Ultrasonically tracked VisR displacements are fit to an MSD
second-order nonhomogeneous differential equation [17], [21].
The MSD model is equivalent to a Kelvin—Voigt viscoelastic
model with the addition of an acceleration term with mass
coefficient which captures some of the complex inertial effects
of tissue deformation induced by transient ARF pushes. The

base form of the MSD model is as follows:
mZ(t) +nz(t) + pnz(t) = Au(t) (D

where m [Kg] is the mass, n [Nm™'s] is the damper viscosity,
" [Nm~'] is the spring stiffness, A[N] is the applied force
magnitude, z(¢) [m] is the time-dependent axial displacement,
and u(t) is the time-dependent applied VisR force profile. The
VisR force profile can be modeled as a series of time-delayed
AREF pushes through the following equation:

u(t, taRF, &) = H(t) — H(t — tarr) + H(f — tARF — L)
—H(t —2tarpg — 15)  (2)

where H denotes a heavyside step function, farp [s] is the
ARF push duration, and ¢, [s] is the time between the two
ARF pushes. This equation generates two square impulses
that approximate the applied forcing function of a double-push
VisR beam sequence. Combining (1) and (2) and rearranging
coefficients leads to the following form:

2(t) + o’ tz(t) + 0*z(2)
= Sw?[H(t) — H(t — tarr) + H(t — tarr — 1)
—H(t — 2tARp — 1,)] 3)

where @ [s~'] is the natural frequency, t [s] is the material
relaxation time constant, and S [m] is the system static
sensitivity. These coefficients are defined as follows:
w=* =1 =4 (4)
m % w

An analytic expression for z(¢) in (3) is found in the Laplace
domain. Nonlinear optimization (Nelder—-Mead algorithm) is
then used to estimate the coefficients (w, T, and §) that min-
imize the difference between the analytic displacement z(¢)
and ultrasonically tracked displacement measurements. Once
the fit procedure is complete, the coefficients are rearranged
into the semiquantitative estimates of elasticity and viscosity,
RE [m~'] and RV [m~!s], respectively,

RE— L _F gyoZ_1 5)
S A S A

These parameters are considered semiquantitative measures
of elasticity and viscosity because each is estimated relative
to the unknown applied force amplitude, A. Considering A
varies over axial depth due to the focusing effects of the
applied ARF push PSF, a depth-compensation factor is applied
to RE and RV. Additionally, since fitting displacements to
a series of 1-D MSD models does not capture the complex
system inertia that develops in an actual tissue environment,
a simulation-derived elasticity compensation factor is applied
to the RV estimates. Briefly, in a continuum environment, the
displacement recovery measured ON-axis to the ARF push is
due to both the viscoelastic recovery effects of the media
as well as the spatially averaged measure of viscoelastic
shearing effect [30]. The shearing effect is measured as an
artificially prolonged displacement recovery, which results in
an overestimation of viscosity when using the 1-D MSD
model. Further details for the derivation and application of
the depth and elasticity compensation factors are documented
in [21].
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Fig. 1. Simulated VisR displacement profiles before (top row) and after (bottom row) max normalization as (a) and (e) elasticity, (b) and (f) viscosity,
(c) and (g) focal depth, and (d) and (h) axial depth vary. When not varying, the following fixed parameters were used: elasticity = 36.67 kPa,
viscosity = 2.34 Pa.s, focal depth = 25 mm, axial depth = 25 mm, and SNR = 40 dB. Note that the green displacements in each subplot have

equivalent parameters.

D. Quantitative Viscoelastic Response Machine
Learning Model Training and Evaluation

1) Preprocessing: Max normalization was applied to each
displacement profile to remove amplitude differences caused
primarily by the unknown applied force distribution (see
Fig. 1). Min—-max normalization over the respective global
parameter range was used for axial depth, focal depth, elastic-
ity, and viscosity to homogenize the data scales from O to 1.
The focal depth variable refers to the ARF push focus and the
axial depth is the displacement estimation kernel location. Dis-
placements were concatenated with the associated axial depth
and focal depth of each profile to create the model inputs, and
elasticity and viscosity were grouped as the outputs. Dataset
generation for each acquisition type is described in greater
detail below:

Simulation datasets were grouped into homogeneous sim-
ulations only (Traingem, Testgom), heterogeneous simula-
tions only (Trainge, Testye), and a mixture of the two
(Trainpgix, Testymix). The primary difference between the train-
ing/validation and testing sets for simulations was the random
scatterer realization since this variable would model noisy
differences in the posterior distribution of the viscoelasticity
estimates. Samples from each dataset were assigned a draw
probability to balance classes during training. For example,
the background samples of the Traing.; dataset were assigned
a lower draw probability than the inclusion samples because
the background for all heterogeneous simulations was the
same viscoelastic material combination, whereas the inclusion
material combinations varied. Validation sets were generated
as 350000 sample random splits from the training sets using
the aforementioned draw probabilities. To account for different
training set sizes for the Traingey, Trainge, and Trainygyg
datasets, an epoch was defined as a random weighted draw of
2 million total samples, e.g., an epoch of Traing,y, draws 2 mil-
lion homogeneous samples and an epoch of Trainyx draws
1 million homogeneous samples and 1 million heterogeneous
samples.

Phantom images were cropped axially to only include data
between 22 and 38 mm to reduce oversampling of the single

background elasticity. Phantom displacements were linearly
interpolated to match the simulation time grid so that model
inputs were the same length (43 samples).

2) Model Selection: A Bayesian hyperparameter search was
executed for each of the training datasets to minimize the com-
bined Huber loss of the elasticity and viscosity estimates on the
validation sets [31]. Huber loss acts as L2, or Mean Square
Error, loss within a delta range and L1, or Mean Absolute
Error, outside of this range, providing regularization. Given the
elasticities and viscosities were min—max normalized between
0 and 1, the delta range was set to 1, so the Huber loss acted
as L2 when the summed estimate errors were within nor-
malization ranges and L1 otherwise. Additionally, combining
losses with this normalization equally weights penalties for
elasticity and viscosity estimates. This search found similar
optimal hyperparameters for each training dataset, and so the
Trainy, parameters were used for all cross-validation runs
to standardize training. Using the random weighted sampling
procedure described above, 11 cross-validation runs were
performed for each train dataset resulting in 33 trained models.

For each cross-validation training run, a fully connected,
feed-forward, multilayer perceptron neural network model
was trained for 150 epochs with an ADAM optimizer [32],
a learning rate A of 0.0037, first moment B; of 0.9, second
moment B, of 0.999, a batch size of 4096 samples, and early
stopping. The model consisted of four hidden layers with the
following neuron count connecting each layer: 128, 256, 256,
128, and 64. The concatenated displacements, axial depth, and
focal depth had an input size of 45, and jointly estimating
elasticity and viscosity gives an output size of 2. Hidden layer
neurons used Tanh activation functions and Softplus activation
was used on the two output neurons to constrain the model
to positive elastic and viscous moduli predictions. Model
performance results are reported as the root mean square error
(RMSE).

3) Fine-Tuning: Using model weights trained with simulated
data, fine-tuning was performed by lowering the learning
rate to 0.0001 and further training for five epochs on the
phantom displacements. Early stopping was employed while
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Fig. 2. (a) Elasticity and (b) viscosity RMSE grouped by train and

test simulation datasets for each cross-validation training run. RMSEs
displayed are over samples in the test sets (color) with an SNR of 50 dB.
Square marker points represent the subset of Testyom and Testyix
with parameter ranges filtered to match Trainye; ranges (e.g., TestHom
elasticities greater than 36.67 kPa were removed since 36.67 kPa is the
max elasticity in Trainyet).

monitoring the combined Huber loss on simulation and
phantom displacement estimates on the validation sets. The
fine-tuning training set contained phantom acquisitions from
the 10.41- and 16.67-mm cross-sectional diameter inclusions
with 25- and 35-mm focal depths. Performance was tested on
the 6.49-mm cross-sectional diameter inclusion with a 30-mm
focal depth.

E. Performance Metrics

Quantitative elasticity and viscosity estimations using
QVisR are evaluated with the quantitative RMSE metric [33].
Given the large sample sizes and approximately normal error
distributions, RMSE is appropriate to give an average estimate
of the error in the correct unit of the estimate (kPa for elasticity
and Pa.s for viscosity). When comparing semiquantitative
estimates of elasticity and viscosity (VisR RE and RV) to
each other and to the quantitative estimates, the semiquan-
titative metric, generalized contrast to noise ratio (gCNR),
is used [34]. This metric allows comparison of the ability to
delineate the contrast between image patches independently of
any dynamic range transformations to the data.

[1l. RESULTS

Fig. 2(a) and (b) shows QVisR elasticity and viscosity esti-
mation RMSE for each train and test material subset pairing
cross-validation run. Neural networks are poor at extrapola-
tion [35], so results for the Trainge, models were filtered to
exclude estimates on Testy,, samples that were outside of
the simulated heterogeneous dataset parameter ranges (filtered
subset RMSEs represented by square markers in Fig. 2).

Fig. 3 depicts QVisR Trainyix model RMSESs on the Testyom
dataset grouped by axial distance to the focal depth. Due to
displacement profiles being measured only from 10 to 40 mm,
some focal depths within the distance to focal depth ranges
(colors) have sparse data as illustrated by truncated lines in
Fig. 3(c) and (f). Results are shown with varying test set
elasticity, viscosity, and focal depth.

Fig. 4 compares QVisR Trainyix model RMSEs on the
Testyix set when grouped by SNR. Results are shown with
varying test set elasticity, viscosity, focal depth, and scatterer

TABLE IlI
CIRS PHANTOM GCNR VALUES FOR VARYING ROl PATCH SIZES
Parameter ROI Size Inc. Typel Inc.Type2 Inc.Type3 Inc.Type4d
2x2mm 0.79 0.93 0.29 0.92
VisR MSD
Relative 3x3mm 0.69 0.95 0.36 0.69
Elasticity
4x4 mm 0.70 0.73 0.28 0.77
) ) 2x2mm 1.00 0.95 0.98 0.40
Simulation
Trained
QUisR 3x3mm 1.00 0.97 0.95 0.55
Blasticity 4 4 mm 0.97 0.90 0.78 055
2x2mm 1.00 1.00 1.00 1.00
Phantom
Fine Tuned
QUisR 3x3mm 1.00 1.00 1.00 1.00
Blasticity 45 4 mm 1.00 0.97 0.98 1.00

realization. At 20-dB system SNR, the estimate RMSEs are no
longer viable representing a lower limit of noise where QVisR
is no longer a good estimator. Significant spiked decreases in
RMSE for lower SNRs (<30 dB) at elastic moduli of 22 and
28 kPa as well as viscous modulus of 2.34 Pa.s indicate moduli
that are present only in the heterogeneous dataset. Similar
alternating spikes in the focal depth subplots are also caused by
these moduli since the RMSE at each focal depth is averaging
over all elasticities and viscosities and the lower RMSE spikes
occur at the focal depths in the heterogeneous dataset.

Fig. 5 shows the point-wise axial QVisR estimates of elas-
ticity and viscosity in heterogeneous inclusion simulations.
Results are shown for heterogeneous materials with the fol-
lowing inclusion elastic and viscous moduli pairs: (15.56 kPa,
0.01 Pa.s), (15.56 kPa, 3.90 Pa.s), (36.66 kPa, 0.01 Pa.s),
and (36.66 kPa, 3.90 Pa.s). The heterogeneous material back-
ground was held constant with 26.11-kPa elastic modulus
and 2.34-Pa.s viscous modulus. Heterogeneous material axial
estimation results are shown at four lateral offsets from the
inclusion center (0, 2.5, 4.0, and 7.0 mm). The 7.0-mm lateral
offset measurements are completely outside the inclusion
boundary so the material is homogeneous over the axial extent
[see Fig. 5(d) and (i)]. Results in a separate homogeneous
simulation matching the heterogeneous simulation background
viscoelasticity are also plotted [see Fig. 5(e) and (j)].

Fig. 6 shows the VisR MSD RE as well as both
simulation-trained and phantom fine-tuned QVisR elasticity
estimation results in the CIRS cylindrical elasticity phantom
test set. True elasticity masks created from manual B-Mode
segmentation illustrate the target elasticity for each model
[see Fig. 6(a)—(d)]. Model results are shown for each of the
four calibrated inclusion elasticities (6.5, 15.3, 49.0, and
88.0 kPa). Overlaid on the figure are semiquantitative (gCNR)
and quantitative (RMSE) metrics with corresponding ROI
patch sizes of 2 x 2 mm. The gCNR metric uses a patch
within the center of the inclusion and one to the right of
the inclusion while RMSE is measured per patch. Table III
lists the changes in the gCNR metric as the image patch size
increases to encompass most of the interior of the inclusion
and more of the boundary pixels.
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Fig. 7 shows B-Mode, peak displacement, VisR MSD RE IV. DISCUSSION
and RV, and both simulation-trained and phantom fine-tuned QVisR was found to work best when trained with a mixture
QVisR viscoelasticity estimates in the gastrocnemius and of homogeneous and heterogeneous materials (see Fig. 2).
rectus femoris muscles of two boys with DMD. The sim-  Although the Trainy;, model had the lowest RMSE for the
ulation trained model, and base model used for fine-tuning, Testyy;, dataset, the Trainy,, and Trainge models had slightly
is the Trainyx cross-validation model with the lowest Testvmix  better performance on their, respectively, material subset test
RMSE. Displacements within key ROls, labeled in Fig. 7, are  datasets than the Trainyg, model. Additionally, each train/test
shown in Fig. 8. set pairing had minimal bias (<0.1 kPa, <0.03 Pa.s), and
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Fig. 5. Point-wise axial estimates of elasticity [top row, (a)—(e)] and viscosity [bottom row, (f)—(j)] for heterogeneous and homogeneous simulation
samples. Four heterogeneous inclusion viscoelasticity combinations (colors) are shown for each inclusion center lateral offset. (a)—(d) and
(f)—(i) Homogeneous sample matched the background viscoelasticity of the heterogeneous samples. (e) and (j) Estimates (solid lines) are plotted
over true (dashed lines) elasticities and viscosities. Each sample was drawn from a random seed realization in the Testyx set and have a fixed
focal depth of 25 mm and 40-dB SNR. Estimate results are plotted with a ~1-mm sliding axial median filter. Estimates shown for the Trainyix

cross-validation model with the lowest Testyx RMSE.

errors were approximately normally distributed. RMSEs can
therefore be interpreted as a standard deviation capturing 68%
of the error variation, e.g., 68% of the Trainyx model elasticity
estimates on the Testyy;x dataset were within £2.54 kPa of the
true elasticity. Filtering by test subset brought RMSEs down
to comparable levels with Traing,, errors; however, train-
ing with both homogeneous and heterogeneous simulations
still provided the best or comparable performance to models
trained with each set individually. These results suggest that
QVisR estimates depend on material geometry in cases where
the boundary effects distort the displacement profiles. QVisR
models designed to generalize to arbitrary material geometries
will require training on a much greater array of simulated
material geometries than presented in this study. For the
remaining simulation analyses, Trainy;, models are used.
When isolated to estimating on homogeneous materials to
study model performance over the axial extent (see Fig. 3),
QVisR elasticity and viscosity estimate RMSEs are consistent
over all axial depth groups aside from greater than 20 mm
below the focal depth (orange). In limited cases where the true
elastic modulus is less than ~80 kPa, the elasticity estimation

RMSE is also consistent >20 mm below the focal depth [see
Fig. 3(a)]. This wide axial extent of stability is thought to be
due to the combination two factors. First, the relatively high
acoustic attenuation coefficient of 1 dB/cm/MHz spreads the
force distribution over the axial extent [11], particularly in
the near field, causing several micrometer displacements far
from the focus. Second, peak-normalizing each displacement
profile and pairing it with both the measurement axial depth
and the ARF push focal depth acts as a type of depth normal-
ization allowing QVisR to estimate viscoelasticity far from the
focus. Training QVisR models on millions of displacements
with varying ARF focal depth, measurement axial depth, and
material property results in a network that can compensate for
complex system inertia peak displacement time delays that
appear similar to an increase in viscosity. The effect of force
distribution on QVisR estimates, specifically the modification
of the acoustic attenuation coefficient and focal configuration,
is a topic of ongoing research. For example, using a lower
acoustic attenuation will make the applied force more localized
and may disrupt QVisR estimates far from the focal depth.
For the remaining simulation analyses, estimates greater than
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Fig. 6. Calrbrated cylrndrrcal step phantom bmode-segmented true elastrcrty reference [first row, (d)] compared with VisR MSD model fit
RE [second row, (h)] and QVisR estimated elasticities before [third row, ()] and after [fourth row ( (p)] fine-tuning. Each column is a

different inclusion type with varying inclusion elasticity and a fixed background eIastrcrty (calibrated inclusion and background elasticities marked
on the elasticity colorbar). The segmentation mask inclusion boundary is overlaid in transparent white on the estimate images to mark the outer
extent of the inclusion. VisR displacement acquisitions had a 30-mm ARF push focal depth. Estimates are displayed with a 2-D median filter with a
~1 x 0.5 mm kernel (axial x lateral). Overlaid statistics were calculated using 2-mm square image patches in the center of the inclusion and to
the right of the inclusion. RMSE in the inclusion and background were calculated over the respective image patches with the ground truth from an
equivalent size patch from the first row of images and gCNR was calculated using the inclusion and background patch of each image. Note that
RMSE cannot be calculated for VisR MSD RE because RMSE is a quantitative metric and RE is a semiquantitative parameter; however, gCNR,
a semiquantitative metric, can be applied to both semiquantitative and quantitative images. RMSE is in units of kPa Young’s modulus.

20 mm below the focus are considered beyond the useful range respectively) were considered acceptable RMSE cutoffs when
of the model and excluded. estimating across large data subsets. QVisR meets this criteria

Estimates are also stable over a range of scanner real- for both elasticity and viscosity RMSE across all variations
istic system SNRs (see Fig. 4). The homogeneous dataset of elasticity, viscosity, focal depth, and scatterer realization
elasticity and viscosity step sizes (10.56 kPa and 0.78 Pa.s, when the SNR is at least 40 dB; however, only elasticity

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 19,2024 at 19:52:14 UTC from IEEE Xplore. Restrictions apply.



RICHARDSON et al.: QVisR: DIRECT ESTIMATION OF VISCOELASTICITY WITH NEURAL NETWORKS 919

Gastrocnemius Muscle - Longitudinal View Rectus Femoris Muscle - Transverse View
Peak Displacement

Relative Elasticity Estimates
e ]
Qs izmﬂg‘m J
"Scan 2¥;

Ces
4

VisR MSD Relative
Viscoelasticity Estimates

Viscoelasticity Estimates

Phantom Fine-Tuned QVisR Simulation Trained QVisR

Viscoelasticity Estimates

-12 -6 0 6 12 -12 -6 0 6 12 -12 -6 0 6 12 -12 -6 0 6 12
Lateral Position (mm) Lateral Position (mm) Lateral Position (mm) Lateral Position (mm)

6 7 8 9 10 11 12 13 14 15 16 17 18

-——Trrr—r T e T T T T T T T T T T T T T T T T T T T T T T T T T

Colormap

Peak Disp. (um) -?

VisR MSD Relative Viscoelasticity Estimate Scales

Relative Elasticity 0.25 0.5 0.75 1 1.25 1.5 1.75 2

(1/mm) rr——————n—n— Yy

Relative Viscosity 0.25 0.5 0.75 1 1.25 1.5 1.75 2

(ms/mm) T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T 1

QVisR Viscoelasticity Estimate Scales

Elasticity (kPa) 10 12 14 16 18 20 22 24 26 28 30 32 34

— I s e B B B e e e B e e B I e m e B e e B e e e IR R s

1 2 3 4 5 6 7

Viscosity (Pa.s) ?

T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T 1

Fig. 7. B-Mode, VisR peak displacement, VisR MSD RE and RV, and QVisR elastic and viscous moduli estimates on in vivo gastrocnemius
[left, (a)—(h)] and rectus femoris [right, (i)—(p)] muscles of boys with DMD. QVisR estimates are shown for the simulation trained model [third row,
(e)—(f) and (m)—(n)] and the phantom fine-tuned model [fourth row, (g)—(h) and (0)—(p)]. Acquisitions had 20- (left) and 17-mm (right) ARF push focal
depths and estimates are displayed with a 2-D median filter with ~1 x 0.5 mm kernel (axial x lateral) on the image overlays. Peak displacement
images (b) and (h) were depth normalized with a parabolic curve fit to minimize variations due to applied force amplitude around the focal depth.
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Fig. 8. VisR displacement profiles from gastrocnemius (left) and rectus
femoris (right) muscle ROls. Shading shows the min and max displace-
ment over a 0.5-mm axial kernel. Legend labels 1 and 2 correspond to
regions 1 and 2 in each Fig. 7 muscle.

RMSE is within the tolerance down to 30-dB SNR. This
suggests elasticity is easier for QVisR to estimate in noisier
environments than viscosity. One possible explanation for this
result could be determined by visually inspecting the peak
normalized displacements as elasticity and viscosity vary [see
Fig. 1(e) and (f)]. Changes in displacement as viscosity varies
are less dramatic than changes in displacement as elasticity
varies, so it is intuitive that elasticity would be easier to
estimate from the displacement profile at a lower SNR. Further
analysis is necessary for proper characterization of QVisR’s
performance in lower SNR environments.

Shifting from evaluation of error data subset groups to
individual estimate error, QVisR estimates closely match the
true viscoelastic moduli through axial depth (see Fig. 5).
Heterogeneous sample estimates delineate the viscoelastic
inclusion boundary within 1 mm of the true boundary despite
focusing at the center of the inclusion [see Fig. 5(a)-(c) and
(f)—(h)]. Background viscoelasticity is estimated with negligi-
ble error aside from a large overestimate around 15 mm for
samples with lower inclusion elastic modulus [see Fig. 5(a),
(b), (f), and (g)]. These large overestimation errors may be
caused by speckle bias, reflection artifacts off the top of
the inclusion, or estimating close to the edge of simulated
focal depths. When focusing with a lateral offset outside the
inclusion boundary, estimate errors increase within the axial
range of the inclusion projection [20-30 mm, see Fig. 5(d)
and (i)]. When looking at estimates of a simulation with-
out an inclusion and matching viscoelastic modulus to the
heterogeneous sample background, a similar error profile is
seen for the elastic modulus estimates but not for the viscous
modulus estimates [see Fig. 5(e) and (j)], although the homo-
geneous viscous modulus estimates have a higher variance,
which may obfuscate the viscous error profile. The repeated
error profiles in both heterogeneous samples measured in the
background and matched viscoelastic modulus homogeneous
samples indicate a slight model bias (1-2-kPa elastic modulus,
0.5-1.0-Pa.s viscous modulus) based on the training set inclu-
sion geometry. Additionally, the error profiles appear larger
for the heterogeneous background cases implying a slight
distortion of the displacement profiles due to reflections off
the inclusion boundary. These insights are significant given

that the model inputs are just the displacement profile, axial
depth, and focal depth, so the Trainysx models have no a priori
information about the existence of an inclusion or information
from neighboring displacement profiles. This suggests QVisR
trained on simulations with more material geometries may still
accurately estimate near the inclusion boundaries.

A. Phantom Acquisitions

Testing QVisR generalization on CIRS calibrated elas-
tic phantom images (see Fig. 6) shows that fine-tuning is
necessary for quantitative domain adaption. Phantom image
estimates for the model trained only on simulation data show
the correct trends (i.e., estimates correctly identify when
the inclusion is softer or stiffer than the background and
generally indicate that stiffness increases with true inclu-
sion elasticity), but the estimates have large errors and poor
boundary delineation [see Fig. 6(1) and (j)]. After fine tun-
ing [see Fig. 6(m)—(p)], QVisR both delineates the inclusion
boundary and estimates the elastic moduli of the inclusion
and background with a lower RMSE; however, the soft-
est and stiffest inclusions [see Fig. 6(m) and (p)] are still
under and overestimated, respectively. Elasticity estimation
with QVisR somewhat gradually transitions from inclusion to
background values across the inclusion boundary leading to
higher RMSE near the boundary than near the center of the
inclusion. Viscosity estimates are not shown since the phantom
only had elasticity variations and a negligible viscous moduli.
Comparing QVisR elasticity estimation with VisR MSD RE
estimation gCNR scores show that both simulation-trained
and phantom fine-tuned QVisR better delineate an inclusion
from the background. Additionally, the phantom fine-tuned
QVisR model has perfect gCNR scores indicating that the
2-mm patch in the center of the inclusion is perfectly separable
from the 2-mm patch outside the inclusion to the right.
These results degrade only as the ROI patches approach the
boundary of the inclusions and noted in Table III. Note that
although it seems the VisR RE estimates [see Fig. 6(e)—(h)
visually appear to more closely match the ground truth of
the background material in color than the simulation-trained
QVisR model [see Fig. 6(i)—(1)], the VisR RE results are on
a semiquantitative scale which means an error metric for
the background material cannot be calculated and, therefore,
it cannot be evaluated if the VisR RE background is closer to
the ground truth than the simulation-trained QVisR results.
Since both the simulation-trained and phantom fine-tuned
[see Fig. 6(m)—(p)] models are directly estimating the elastic
modulus quantitatively, the RMSE of the background estimates
can be compared to determine that fine-tuning improves the
background and inclusion RMSE.

The ability of QVisR simulation-trained models to be
domain adapted to scanner-acquired data in a calibrated phan-
tom suggest model generalization would be feasible with
relatively small labeled datasets. Additionally, QVisR domain
adaption works best on materials in the interior range of
samples, i.e., the medium stiffness materials rather than the
softest or stiffest, suggesting an ideal labeled dataset would
extend beyond the range of materials QVisR would ultimately
be estimating in practice.
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B. Clinical Acquisitions

As a secondary evaluation of QVisR model generaliza-
tion, the simulation and phantom fine-tuned models estimated
viscoelastic moduli in the gastrocnemius and rectus femoris
muscles of two boys with DMD (see Fig. 7). Since fine-tuning
was necessary for adaption from simulations to phantoms, the
DMD dataset estimates should not be considered quantitative;
however, a few labeled ROIs show promising trends.

The gastrocnemius peak displacement image [see Fig. 7(b)]
has a region of high displacement bisected laterally by a streak
of low displacement near the ARF focal depth (region 1).
Interpreting the blue low peak displacement streak in isolation
would indicate high elasticity; however, it is not possible to
separate the effects of elasticity and viscosity. QVisR estimates
indicate this low displacement streak is dominated by a change
in viscous modulus [see Fig. 7(f) and (h) since the elasticity
is relatively constant above this region [see Fig. 7(e) and
(g)]. This result is supported visually by the VisR MSD
RE and RV fits in Fig. 7(c) and (d); however, since the
VisR results are semiquantitative, the exact values cannot be
quantitatively compared. The corresponding displacement in
Fig. 8 has a delayed peak, long recovery time, and minimal
recovery after the first peak which also tends to happen with
highly viscous materials at the focus. Additionally, the peak
image lower left corner (region 2) shows two small regions
of high displacement which QVisR suggests are points with
higher elasticity and lower viscosity than the surrounding
tissue [see Fig. 7(e)—(h)]. This could suggest a very stiff region
that was displaced further by compressing the softer, more
viscous tissue in neighboring regions. The displacements in
this region are fairly typical of those with higher elasticity
and low viscosity (i.e., rapid ascension to peak displacement,
partial recovery between the two ARF pushes, and rapid peak
displacement recovery as shown in Fig. 8). Comparing the
simulation-trained and phantom fine-tuned model estimates
shows an interplay between the elasticity and viscosity esti-
mates. The phantom dataset had no viscosity, which biased
the fine-tuned models toward estimating low viscosity. Region
1 still has a 2-3-Pa.s viscosity indicating strongly viscous
features; however, the background of the phantom fine-tuned
image is relatively homogeneous. Comparing the elasticity
estimates pre and post fine-tuning shows an increase in detail
and elasticity in region 2. This suggests the QvisR elasticity
and viscosity estimates may be coupled and that a proper
domain adaption dataset would need to include both elasticity
and viscosity variations to reduce bias.

The rectus femoris peak displacement image [see Fig. 7(j)]
has a central area with two points of high peak displacement
(region 1) and a third point of high displacement near the
bottom of the peak overlay (region 2). Interpreting the peak
displacement images alone would indicate both regions have
low elasticity. Simulation-trained QVisR indicates that the cen-
tral high peak points in region 1 are driven by decreases in both
elastic and viscous moduli whereas the high peak in region 2 is
primarily due to a change in viscosity [see Fig. 7(o) and (q)].
After fine-tuning, the viscosity estimate variability decreases
and the ROIs are only visible in the elasticity estimate image
[see Fig. 7(p)]. VisR RE and RV show the elevated elasticity
and viscosity in region 2; however, there is little change in

contrast in either the RE or RV images near region 1 [see
Fig. 6(1) and (m)]. This could just be due to the lower RE
sensitivity to changes in softer materials as seen in the similar
RE values in the inclusions of Fig. 6(e) and (f). Displacements
for each region (see Fig. 8) are difficult to interpret since the
measurement axial depth is different (13.8 mm for region 1 and
17.5 mm for region 2) and axial depth can fairly dramatically
change the shape of peak normalized displacements as shown
in Fig. 1(h). Further analysis is necessary to determine cases
where QVisR estimates are valid and a proper fine-tuning
dataset for in vivo evaluations.

C. QVisR Outcomes and Study Limitations

QVisR is able to estimate elastic and viscous moduli well
given in silico displacement profiles and shows promise for
generalization to ex vivo/in vivo applications when a limited
dataset can be used to tune and validate model performance.
Since QVisR uses displacements measured in the region of
excitation and only selectively uses limited spatial averaging as
a postprocessing procedure, the proposed model can estimate
viscoelasticity with a finer resolution than methods that rely
on measurement of a shear wave propagating over several
millimeters.

A primary limitation of this study is the availability of
quality, labeled displacement data. True point-wise viscoelas-
tic moduli values are not currently measurable in clinical
datasets. Additionally, calibrated phantoms with mechanical
heterogeneities that vary both elastic and viscous moduli are
an active area of research. Simulation material parameters
were selected to cover a range of realistic values [4], [S];
however, simulating all variations of material viscoelasticities,
geometries, and acoustic properties is not possible. Namely,
this study is limited by use of a fixed, frequency-independent
attenuation as well as the use of a single geometry and
single background viscoelasticity for the heterogeneous sim-
ulations. The simulation imaging parameters were fixed to
match those of the phantom and DMD dataset acquisitions
with the VF7-3 transducer. QVisR is sensitive to variations in
many of these imaging parameters, so separate datasets and
models would need to be generated for imaging parameter
combinations. For example, if the F/# or time between pushes
in the VisR beam sequence were changed, a dataset with
that imaging configuration would need to be simulated and
a new QVisR model would need to be trained on the new
dataset. Additionally, fine-tuning was necessary for trans-
lating a simulation-trained QVisR model to the calibrated
CIRS phantom scanner acquisitions. This fine-tuning step
is likely necessary due to a mismatch between simulated
and scanner-acquired displacements with matched imaging
configuration and material properties. Improving the match
between simulations and scanner acquisitions is a topic of
ongoing research and, in theory, would eliminate the need
for fine-tuning once the simulation error is sufficiently small.
Alternatively, a composite model could be trained with data
from multiple imaging configurations where the imaging
parameters could be included as features, similar to the focal
depth parameter in current QVisR models; however, these
composite models may be harder to train due to the large
amount of data across varying imaging configurations.
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Expanding the breadth of the simulation datasets to encom-
pass varying attenuation, more heterogeneous structures, and
different imaging parameters may improve model general-
ization. Any additional parameter which could be known
a priori, such as the imaging configurations, could be directly
incorporated to the models as an input feature, similar to
how axial depth and focal depth were treated in this study.
Unknown confounding parameters, such as attenuation, could
be estimated with other methods before use as an input or
could be jointly estimated with elastic and viscous moduli if
labels are available for a training set.

This study used a relatively simple neural network model
architecture with minimal preprocessing of displacements
before use as a model input. Focus on improving the model’s
understanding of the data and dataset information quality may
yield estimate improvements. Using a model more appro-
priate for time-series analysis, such as a 1-D convolutional
neural network (CNN) or recurrent neural network (RNN),
or a dimensionality reduction technique, such as principal
component analysis (PCA), may help the model efficiently
extract the necessary information content from displacement
profiles. Training efficiency may also be increased by use of a
displacement quality factor to remove erroneous displacements
or samples with high correlation. Use of a Bayesian approach
may additionally allow use of labeling data with uncertainty,
e.g., clinical muscle data could be parameterized by a mean
and standard deviation from literature. Viscosity bias to the
phantom dataset may be reducible by decoupling the elasticity
and viscosity estimation into separate networks and freezing
the viscosity network weights; however, this would remove
any benefits from joint estimation of elasticity and viscosity.
Investigation of alternative QVisR methods is ongoing.

V. CONCLUSION

This study shows that there is a functional mapping,
although potentially complex, between ON-axis displacements
and viscoelastic moduli that can be learned from data. Across
several million simulated displacement samples in the test set,
QVisR estimates have an elastic modulus RMSE less than
2 kPa and a viscous modulus RMSE Iless than 0.5 Pa.s. QVisR
estimates are stable in regions far above and below the focal
depth (10-15+ mm) and with realistic scanner system SNRs
(30-50 dB). When training on a random sampling of both
mechanically homogeneous and heterogeneous displacement
profiles, QVisR is able to delineate viscoelastic inclusion
boundaries while maintaining similar performance in mechan-
ically homogeneous materials. Although the simulation trained
models do not generalize perfectly to phantom and clini-
cal datasets currently, fine-tuning methods show promise for
future implementations, and alternative modeling to improve
generalization are under investigation.
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