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Abstract. Numerical models are a powerful tool for investi-
gating the dynamic processes in the interior of the Earth and
other planets, but the reliability and predictive power of these
discretized models depends on the numerical method as well
as an accurate representation of material properties in space
and time. In the specific context of geodynamic models, par-
ticle methods have been applied extensively because of their
suitability for advection-dominated processes and have been
used in applications such as tracking the composition of solid
rock and melt in the Earth’s mantle, fluids in lithospheric-
and crustal-scale models, light elements in the liquid core,
and deformation properties like accumulated finite strain or
mineral grain size, along with many applications outside the
Earth sciences.

There have been significant benchmarking efforts to mea-
sure the accuracy and convergence behavior of particle meth-
ods, but these efforts have largely been limited to instanta-
neous solutions, or time-dependent models without analyt-
ical solutions. As a consequence, there is little understand-
ing about the interplay of particle advection errors and er-
rors introduced in the solution of the underlying transient,
nonlinear flow equations. To address these limitations, we
present two new dynamic benchmarks for transient Stokes
flow with analytical solutions that allow us to quantify the
accuracy of various advection methods in nonlinear flow. We
use these benchmarks to measure the accuracy of our parti-
cle algorithm as implemented in the ASPECT geodynamic
modeling software against commonly employed field meth-
ods and analytical solutions. In particular, we quantify if an

algorithm that is higher-order accurate in time will allow
for better overall model accuracy and verify that our algo-
rithm reaches its intended optimal convergence rate. We then
document that the observed increased accuracy of higher-
order algorithms matters for geodynamic applications with
an example of modeling small-scale convection underneath
an oceanic plate and show that the predicted place and time
of onset of small-scale convection depends significantly on
the chosen particle advection method.

Descriptions and implementations of our benchmarks are
openly available and can be used to verify other advection al-
gorithms. The availability of accurate, scalable, and efficient
particle methods as part of the widely used open-source code
ASPECT will allow geodynamicists to investigate complex
time-dependent geodynamic processes such as elastic defor-
mation, anisotropic fabric development, melt generation and
migration, and grain damage.

1 Introduction

Numerical models have been a key tool for geoscientists in-
vestigating the processes governing plate tectonics and man-
tle convection. Among the many one could cite, a cross-
section of publications include studies of the evolution of
mantle heterogeneities over time (e.g., Kellogg and Turcotte,
1990; McNamara and Zhong, 2005; Brandenburg et al.,
2008; Giilcher et al., 2021; Jones et al., 2021), the initia-
tion and evolution of plate boundaries (e.g., Tackley, 1998;
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Bercovici and Ricard, 2014; Baes et al., 2020; Schierjott
et al., 2020), the fate of subducted slabs (e.g., Gurnis and
Hager, 1988; Billen, 2008; Faccenna et al., 2017; Grima
et al., 2020), plume dynamics (e.g., Farnetani and Richards,
1994; Lin and van Keken, 2006; Dannberg and Gassmdller,
2018; Arnould et al., 2020), the dynamics of microplates
(e.g., Glerum et al., 2020; Neuharth et al., 2021), and the
seismic cycle (e.g., Van Dinther et al.,, 2013; Van Zelst
et al., 2019). Obviously, the usefulness of such dynamic
models relies on the accurate approximation of solutions of
the equations that describe the processes under considera-
tion. For geodynamic models of the solid Earth, this usu-
ally requires solving the Stokes equations governing the flow,
and advection(-diffusion) equations governing the transport
of thermodynamic properties like temperature or entropy,
chemical composition, and trace elements, as well as defor-
mation properties like damage, or mineralogical properties
like grain size. Established methods for solving the Stokes
equations typically treat the fluid as a continuum and are
based on the finite-element (e.g., Moresi et al., 2022), finite-
difference (e.g., Gerya and Yuen, 2003; Kaus et al., 2016),
and finite-volume methods (e.g., Tackley, 2008). In contrast,
there is a wide variety of methods for solving the advection
equations (van Keken et al., 1997; Puckett et al., 2018) such
as particle methods, continuous or discontinuous field meth-
ods, marker-chain methods, or volume-of-fluid methods.
Due to their inherent suitability for modeling advection-
dominated problems, different variants of particle methods
have become popular in the geodynamic modeling commu-
nity (Weinberg and Schmeling, 1992; van Keken et al., 1997,
Tackley and King, 2003; Gerya and Yuen, 2003; McNamara
and Zhong, 2004; Gassmoller et al., 2018; Samuel, 2018;
Sime et al., 2021). The main advantage of particles in geody-
namic applications is that particles advected with the material
flow keep their associated material properties; that is, these
properties do not diffuse in space as is the case for many
field-based methods. It also means that the differential equa-
tions for each particle’s location are simply ordinary differen-
tial equations for which many good solution approaches are
available. On the other hand, while errors in particle methods
are less apparent than for field methods, they still exist (Tack-
ley and King, 2003; Gassmoller et al., 2019). In particular,
previous work has discussed the influence of errors due to
interpolating properties from particles to finite-element func-
tions representing Stokes discretizations (Thielmann et al.,
2014), the influence of the divergence of the computed ve-
locity field on particle distributions (Wang et al., 2015; Pu-
sok et al., 2017; Sime et al., 2021), and the advection of par-
ticles over time in spatially variable flow (Gassmoller et al.,
2019). However, a source of error in particle advection meth-
ods that has, to the best of our knowledge, not been system-
atically discussed is the error in advecting the particle po-
sition in transient, rapidly changing flow. (Some examples
of this can be seen in Gerya and Yuen, 2003.) This type of
flow is common in geodynamic models of the upper mantle
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or lithosphere, because employing a visco-plastic or stress-
dependent rheology can cause strong nonlinear feedbacks be-
tween the current solution and material properties, and there-
fore can cause fast changes over time. While the presence of
these errors is known, only few studies systematically inves-
tigate its influence on geodynamic applications (Trim et al.,
2023a, b). This is largely due to the difficulty in quantifying
their influence, as one needs a time-dependent model solu-
tion against which to compare numerical results, and most
currently available benchmarks either rely on instantaneous
solutions (Duretz et al., 2011; Zhong, 1996; Zhong et al.,
2008; Schmid and Podladchikov, 2003; Kramer et al., 2021),
a steady-state solution (Zhong et al., 2008; Gassmoller et al.,
2019), or a comparison between several numerical methods
without known exact solutions (van Keken et al., 1997; Tack-
ley and King, 2003).

In this work, we measure the particle advection error in
transient flow using the particle architecture we have devel-
oped as part of our work on the Advanced Solver for Plan-
etary Evolution, Convection, and Tectonics (ASPECT; Kro-
nbichler et al., 2012; Heister et al., 2017). We start with a
description of the mathematical problem we would like to
solve in Sect. 2 and then present an analysis of the numeri-
cal errors that result from the advection of particles in tran-
sient flow (Sect. 3). We develop new benchmarks for tran-
sient flow in a box and spherical shell that have known ana-
Iytical solutions (Sect. 4) and use these benchmarks to mea-
sure the accuracy of the discussed particle advection meth-
ods and quantify their influence on the results of the Stokes
equations (Sect. 5). Finally, we illustrate why focusing on
the accuracy of particle methods matters for practical geody-
namic applications with a model example of small-scale con-
vection developing underneath oceanic lithosphere (Sect. 6).
We conclude in Sect. 7. Appendix A contains the derivation
of the analytical solution for the spherical shell benchmark
and Appendix B contains a more detailed discussion of some
benchmark results.

2 Governing equations

For the models in this work, we will consider the incompress-
ible Stokes equations using the Boussinesq approximation.
They consist of a force balance and a mass continuity equa-
tion:

—V-2ném)+Vp=pg, ey
V-u=0, )

where bold script represents vector quantities, # = u(x,t) is
the velocity, p = p(x,t) the pressure, p the density, 1 the
viscosity, and g the gravity. é(u) = %(Vu+VuT) denotes the
strain rate tensor. In other words, because inertia is absent,
the equations above describe an instantaneous equilibrium.
The models evolve in time because the density and vis-
cosity may depend on time through additional variables
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¢c = dc(x,t), c=1,...,N., where N, is the number of
additional quantities. Examples include the temperature or
other thermodynamic quantities, or chemical compositions.
These quantities typically satisfy advection—diffusion equa-
tions and may be solved through either field- or particle-
based approaches. For the purposes of this paper, let us
specifically focus on those properties with negligible diffu-
sion (such as chemical compositions or grain sizes); particle
methods for applications with non-negligible diffusivity and
reactions have been described elsewhere (Gerya and Yuen,
2003; Sime et al., 2022). In other words, we consider equa-
tions of the form

dpc
ot

+u-Vo.=H,, 3)

where the H, are source terms. In Egs. (1)—(3), material prop-
erties n and p, as well as source terms H,, are then assumed
to depend (perhaps nonlinearly) on the solution variables u,
p, and ¢,, resulting in a coupled and time-dependent system
of equations.

We end this section by noting that while for simplicity we
use the incompressible Stokes equations, the usefulness of
the benchmark models we present below do not rely on this
assumption and will be transferable to compressible mod-
els. In fact, an accurate solution to the advection equation
may matter more in compressible models, because they often
contain more coupled terms such as adiabatic heating (de-
pending on the pressure gradient), the pressure dependence
of the density, and additional processes like phase transitions
caused by pressure or temperature changes.

3 Numerical methodology

Over the past years we have developed a flexible, scalable,
and efficient particle architecture (Gassmoller et al., 2018).
This work is open source, and performs well in modern
high-performance computing environments. In particular, it
supports advanced computational methods such as an adap-
tively refined, unstructured, and dynamically changing back-
ground mesh, parallelization beyond tens of thousands of
(CPU) compute cores, storing of arbitrary particle proper-
ties, and complex nonlinear solvers. The underlying particle
infrastructure is application agnostic and independent of the
used discretization for the field-based quantities. Its methods
are integrated into the general purpose open-source finite-
element software library deal.Il (Arndt et al., 2023) and have
been used to model a wide range of geoscientific applications
as well as Navier—Stokes flow, mixing of granular materials,
solid—fluid interaction, and laser metal deposition of metallic
particles (Popov and Marchevsky, 2022; Arndt et al., 2020;
Golshan et al., 2022; El Geitani et al., 2023; Golshan and
Blais, 2022; Murer et al., 2022).

We have discussed the numerical methods for most steps
of our particle algorithm (Gassmoller et al., 2018, 2019) and
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Stokes solver (Kronbichler et al., 2012; Heister et al., 2017)
in earlier work and refer the reader there for details on the
finite-element method, time-stepping algorithm, particle gen-
eration, advection, and interpolation from particles to grid.
Here we will extend this earlier work by developing tran-
sient solutions and focus on how the temporal accuracy of
advection methods controls the overall accuracy of a coupled
geodynamic model.

3.1 Particle advection

In particle methods, the values of fields ¢, are approximated
by advecting particles that carry these field values as “prop-
erties”. Particles move with the velocity u(x,t) that results
from solving the Stokes Egs. (1)and (2), and the proper-
ties carried by a particle evolve based on H, in Eq. (3). In
other words, the solution of the partial differential Eq. (3)
is approximated by solving an ordinary differential equation
(ODE) tracking the position x; = x;(¢) for each particle i
and a separate ODE tracking the evolution of the properties
carried by the particle:

d
O =ulxi@).0), “)
d
g e () = He(xi (1), 1, §e.i (1)). ®)

In practice, the exact velocity u(x,t) is not available but
only a numerical approximation in space uj (x,t) to u(x,1t).
Furthermore, this approximation is only available at discrete
time steps, uj (x) = u(x,t") and it needs to be interpolated
between time steps if the advection algorithm for integrat-
ing Eq. (4) requires one or more evaluations at intermediate
times between ¢ and "+, If we denote this interpolation in
time by #y (x,t) where @, (x, ") = uj (x), then the equation
being solved is actually

i«?i(t) =up(X;(1),1), (6)
dt

where X;(¢) is the exact solution of this equation using the
“wrong” velocity field. If @, is a good approximation to u,
then we hope that X (¢) is a good approximation of x(z). In
practice, however, we can not even compute X (¢) but need to
further approximate it via time stepping.

3.2 Convergence of particle advection methods

The particle positions contain error contributions from the
inexactly known velocity field discussed in the previous sub-
section, as well as the error introduced by time stepping the
ODEs describing particle position and properties. If we de-
note by Xx; 5 (¢) the numerical approximation to the solution
of Eq. (6), then the error at some time ¢ will typically satisfy
a relationship like

%0 (1) =X (D]l < C(1) Aty )
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where Aty is the time step used by the ODE solver, which is
often an integer fraction of the time step At, used to advance
the velocity field u. In our application we will choose Az, =
Aty; q is the convergence order of the method and C(7) is a
(generally unknown) constant that depends on the end time ¢
at which one compares the solutions as well as on z. We want
to compare this computed solution against exact trajectories
using the exact velocity as in Eq. (4) and then assess the error
as ||x; () — x; 5 (¢)||. This quantity will, in the best case, only
satisfy an estimate of the form

1%i5() —xi D] = [ (Xin () — X (1)) + & (1) —x; (1)) |
< |xin@®) -0 +1%:(0) —xi (D)
< Ci() Aty + Co()llu — up || + C3(0) |lup — ity |,

with appropriately chosen norms for the second and third
terms, which represent how accurately the flow field is dis-
cretized in space and time. All of these terms can converge to
zero at different rates with the mesh size s and the time-step
size At. As a consequence, each of these terms may be the
limiting factor for the overall accuracy of the ODE integrator.

3.3 Common particle integrators

Given these considerations and that ODE integrators require
the expensive step of evaluating the velocity field #;, at arbi-
trary points in time and space, choosing a simpler, less accu-
rate scheme can significantly reduce the computation time. In
our work, we have implemented the Forward Euler, Runge—
Kutta 2 (RK2) and Runge—Kutta 4 (RK4) schemes (Hairer
and Wanner, 1991; Gassmoller et al., 2018), although other
methods are available and have been used in geodynamic ap-
plications (e.g., Heun’s method in Zhong and Hager (2003)
and Sime et al. (2021), Runge—Kutta schemes with addi-
tional predictor—corrector steps in Weinberg and Schmeling
(1992), implicit Euler and BDF2 methods in Furuichi and
May (2015), or Adams Bashforth methods in Adamuszek
et al. (2016)). We will briefly discuss our selected methods
below and will limit ourselves to a discussion of two dif-
ferent variants of the RK2 integrator, which is sufficient to
support our conclusions.

For simplicity, we will omit the particle index i from for-
mulas in the remainder of this section and will assume that
the ODE and partial differential equation (PDE) time steps
At, and At, are equal. We will therefore simply denote them
as At. This is often the case in practice because the veloc-
ity field is typically computed with a method that requires a
Courant—Friedrichs-Lewy (CFL) number around or smaller
than one, implying that particles move no more than by one
cell diameter per (PDE) time step. In such cases, even ex-
plicit time integrators for particle trajectories can be used
without leading to instabilities, and all of the methods below
fall in this category. The formulas in the remainder of this
section are, however, obvious to generalize to cases where
At, < Aty. We will also assume that we have already solved
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the velocity field up to time /! and are now updating par-
ticle locations from x” to x"*!. In cases where one wants to
solve for particle locations before updating the velocity field,
uj, can be extrapolated beyond ¢" from previous time steps,
or particle advection and velocity computation could be it-
erated in a nonlinear solver scheme. Because of this choice,
the number of Stokes solutions which have to be computed
is independent of the choice of particle advection scheme.

In the following, we briefly describe some of the com-
mon time stepping algorithms, including those we use in this
work:

1. Forward Euler (FE) — the simplest method often used is
the forward Euler scheme,

FH =% 4 Ar g, (27, 7).

It is only of first order (that is, the exponent in Eq. (7)
is g = 1) but cheap to evaluate because it only requires
evaluating the velocity solution at an already-computed
time point.

2. Runge—Kutta second order (RK2) — accuracy and sta-
bility can be improved by using a second-order Runge—
Kutta scheme (that is, ¢ =2 in Eq. (7)). Among the
many second-order Runge—Kutta methods, we specifi-
cally choose what is commonly referred to as the (ex-
plicit) midpoint method in which the new particle posi-
tion is computed as

t
ki =—ua, (", %",
1 2uh( x")

At k
' =x" 4+ Ar iy, (t”+7,i"+71>.

This method requires evaluating the computed veloc-
ity at two different locations and two different points in
time, including a time point intermediate between (ve-
locity) time steps. Note that there are other RK2 meth-
ods, such as Ralston’s method, which reduce the theo-
retical truncation error of the method while maintaining
the order of convergence. However, in our benchmarks
the difference in error is small, and the midpoint method
allows us to reduce the memory requirement of the al-
gorithm.

3. Runge—Kutta second-order space, first-order time
(RK2FOT) - in practice, many geodynamic modeling
packages only store a single velocity solution at a time,
which prevents the interpolation of the velocity field at
"+ % used in RK2 from adjacent solutions at t" and
t"*1, However, reasonable accuracy can still often be
achieved when ignoring the time dependence of the ve-
locity (Gerya and Yuen, 2003; McNamara and Zhong,
2004). Here we implement such an advection scheme
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as a modification to RK2, in which the new particle po-
sition is computed as

At
kl = T&h(tnvin)v
k
¥ 4 A, (t",yz" + 71) .

Note how, compared with the RK2 scheme, the velocity
is evaluated at the (wrong) time ¢" instead of " 4 % but
at the correct location X" + I% RK2FOT still requires
the evaluation of the velocity at two different points in
space but only a single point in time.

4. Runge—Kutta fourth order (RK4) — a further improve-
ment in particle advection can be achieved by a fourth-
order Runge—Kutta scheme. We choose the most com-
monly used scheme that computes the new position as

ki = Aruy, (tn,fn) ,

At At k
k2=—uh<tn+—,xn+—l),

2 2 2
At At ky
ky=—an(t"+—,%"+—=),
3 2uh< +2 x—|—2>

ko = At iy (z”“,fc" +k3>,

1 1 1 1
¥ =%+ —ky + sko+ ks + —ka.
X x" + 6 1+ 3 2+ 3 3+ 6 4
RK4 requires the evaluation of the velocity at four
points in space and three points in time.

The primary expense in all of the methods above is the
evaluation of the velocity field uj, and uZH at arbitrary po-
sitions x. Given that the velocity fields u; that we consider
here are often finite-element fields defined with shape func-
tions whose values are determined by mapping a reference
cell K to each cell K using a transformation x = ® g (x), the
evaluation at arbitrary points requires the inversion of ®g,
which is an expensive operation for nonlinear mappings such
as those used in deformed or curved geometries.

3.4 Particle integrators used in the benchmarks

Based on our earlier work measuring the convergence prop-
erties of the integrators described above in analytically
known flow (see the Supplement in Gassmoller et al., 2018),
we expect FE and RK2FOT to converge with first order (in
At) in time variable flow, while RK2 and RK4 are expected
to converge with second order in time. RK2FOT is limited
from reaching the potential of RK2 by the use of only a sin-
gle velocity solution in time, and RK4 in our specific imple-
mentation (though not in general) is limited by only storing
two velocity solutions, which only allows for a linear extrap-
olation from " to " + % and t"t1, Therefore, while there
are valid reasons to choose either FE or RK4, we will limit
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our benchmark results to RK2 and RK2FOT, because we ex-
pect them to illustrate the significant difference between al-
gorithms that are first- or second-order accurate in time.

4 Deriving transient benchmark solutions

For our benchmarks we want to reduce the coupling between
Egs. (1) and (2) with (3) to a minimum in order to pre-
cisely measure the influence of exactly one coupled prop-
erty. This step also simplifies the construction of the bench-
marks. Therefore, we focus on problems with constant vis-
cosity (n = 1) and no source terms (H, = 0). The advected
material property ¢, we consider here is the density p. The
final set of equations for our benchmarks will therefore be

—V-Qém)+Vp=pg, 3
V.ou=0 ©)
W yvp=o. (10)

at

The set of benchmarks we will consider is an extension of
previously published benchmarks (Gassmoller et al., 2019).
In order to explain the extensions to transient flow, here
we will briefly revisit our approach to derive steady flow
fields. In our earlier work we have considered incompress-
ible flow fields u that were derived based on a known and
time-independent stream function W. Under the assumption
that viscosity is known and constant, and that boundary con-
ditions are chosen to match the desired solution, we were
able to compute the right-hand-side terms to Eq. (8) that sat-
isfied the set of equations and therefore created an analytical
benchmark for the whole system of equations. However, this
only guarantees a consistent solution for the distribution of
the density p at the current instant in time. It is therefore
only an instantaneous benchmark solution. In order to cre-
ate a steady-state flow field — defined as a velocity field u
that does not change over time — the right-hand-side driving
force needs to stay constant over time. In other words, the
advected property p needs to be chosen in such a way that
when it is advected with the flow field u, the right-hand-side
pg does not change over time. In order to find such a density
distribution, we can make use of the definition of the stream-
line, which comprises lines of constant W. If W is indepen-
dent of time, any property advected with the flow will be
advected along the streamlines. Thus, if p is constant along
the streamlines, the right-hand-side pg will not change even
if p is advected with the flow. Choosing p = W is therefore
an easy approach to guarantee a steady-state flow field.

The benchmarks below extend these steady-state models
with a nonlinear time dependence, which will test how much
error the chosen advection scheme accumulates over time
when the velocity changes. In order to derive such solutions,
we make use of the fact that we can superimpose two inde-
pendent flow fields. In addition to a steady flow based on a
stream function W, we add a time-dependent velocity that has
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two special properties. First, we ensure that this second flow
field is purely forced by the boundary conditions instead of
internal density forces. This choice opens up control over the
exact velocity over time. It also implies that we do not have to
modify the density distribution to add this second flow field,
i.e., the density is still a function of the steady-state stream
function ¥. Second, we choose the time-variable flow field
to be in the nullspace of the Stokes operator, e.g., solid body
rotational flow in a spherical shell and translational flow in
a box geometry. This ensures that the resulting modification
only affects the velocity solution (but not the pressure) and
can be interpreted as a (time-dependent) coordinate transfor-
mation of a steady flow. We will consider one case in a 2D
spherical shell and one case in a 2D box geometry, and we
will discuss the specific flow fields in the following subsec-
tions.

4.1 A benchmark for a 2D spherical shell

As described, we start from an instantaneous solution for
Stokes flow in a spherical shell and add a time-dependent ro-
tational flow that is enforced using the boundary conditions.
A detailed derivation of the benchmark solution is given in
Appendix A. It is important to note that while the benchmark
is derived in polar coordinates, it is implemented in Cartesian
coordinates in our code. Our final benchmark solution con-
sists of a number of convection cells that rotate around the
center of a spherical shell and is described by

vr(r,0,1) = g(r)ksin(k(6 — t(1))), arn)
vg(r,0,t) = f(r)cos(k(@ —t(t))) +row(t), (12)
p(r,0,t) =kh(r)sin(k(0 — t(1))), (13)

p(r,0,t) =— (gr2 + Bln(r) — 1) cos(k(@ — (1)), (14)

B sin(k(6 — (1))
g,(r,@,t)—m(r)kw, (15)

g0 =0. 16)

The constants A and B along with the functions g(r),
f(r), h(r), and m(r) are listed in Appendix A. The parame-
ter k controls the number of upwellings and downwellings in
the model and is chosen as k = 4 for this study. The param-
eter w(t) represents the time-dependent solid body rotation
and is chosen as w(¢) =e’. T(t) is a phase shift caused by
the solid body rotation and is computed as 7 (t) = fé w(s)ds.
The spherical shell has an inner radius of R; = 1 and an outer
radius of Ry = 2. The setup of the benchmark and a snapshot
of the solution is shown in Fig. 1.

‘We note that this solution can be interpreted as consistent
with a stream function that is variable in time, with a flow
field that conveniently advects the density in such a way as
to satisfy our Stokes solution at the current point in time. We
also note that this solution effectively consists of two parts: a
density-driven internal convection in small convection cells
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e
R =1
—»'
. R,=2

Density
999.5 1000 1000.5

——

t=26

Figure 1. Solution of a transient spherical shell benchmark. (a) The
density field of the benchmark at ¢t = 0. (b) Velocity solution at t =
0. (¢, d) Initial (r = 0) and later (¢ = 2.6) particle distributions after
almost two full rotations of the model. Particles are colored based
on a unique index given to each particle at the beginning.

and a forced and analytically known rotational flow of the
whole model.

4.2 A benchmark for a 2D box geometry

Our solution for the box benchmark is analogous to the
spherical shell case, but we can build directly on our ear-
lier model setup of Gassmoller et al. (2018). We add a solid
body translation, and with periodic boundary conditions at
both side boundaries this allows us to define a known, tran-
sient solution to the incompressible Stokes equations, which
is described by

vy (x,y,t) =sin(w(x — t(t))) cos(mry) + w(t), 17)

vy (x,y,1) = —cos(mw(x — t(t)))sin(wy), (18)

p(x,y,t) =2mcos(w(x —1(t)))cos(ry), (19)

p(x,y, 1) =sin(w(x — (7)) sin(wy), (20)

gx(x,y,1) =0, (21

(6 y.1) = 42 cos(m(x — r(t)))sin(ny). 22)
p(x,y,1)

As for the spherical case described above, we will use a
nonlinear choice for w (), namely w(z) = €', and the phase
shift  is computed as before. We choose a box with a width
of w = 2 and height of 4 = 1. The solution of the benchmark
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Figure 2. Solution of a transient box benchmark with known ana-
lytic solution. (a) The density field of the benchmark. (b) Velocity
solution. (¢, d) Particle distributions at model start (+ = 0) and at
t =0.5. Particles are colored as in Fig. 1.

is shown in Fig. 2. The translation of the solution as well
as the periodic boundary conditions also represent the main
difference between our benchmark solution and the one pre-
sented in Trim et al. (2023a), which uses a steady-state flow
with a time-dependent velocity amplitude.

4.3 How we use these benchmarks in our particle
advection algorithms

Adding time dependence to the benchmarks modifies the nu-
merical solution and the accumulated error in distinct ways,
depending on which advection method we choose. Here we
will consider five cases:

1. We obtain a computed solution by using the exact den-
sity p(x,y,t) defined in Eqgs. (14) and (20). This solu-
tion will act as our baseline benchmark, illustrating the
optimal convergence rate for the Stokes solver we used.

2. We use the (interpolated) exact density as an initial con-
dition for the density advection Eq. (10), whose solu-
tion we then approximate using discontinuous, piece-
wise quadratic (DGQ;) finite elements with a penalty
method as described in He et al. (2016).

3. Same as case 2, but we use continuous, piecewise
quadratic (Q>) finite elements and an entropy viscosity
stabilization technique (Guermond et al., 2011; Kron-
bichler et al., 2012). This is the default choice in AS-
PECT. In both cases 2 and 3 we use a backward differ-
entiation formula (BDF2) time-stepping algorithm that
is second-order accurate in time to solve the advection
Eq. (10).

https://doi.org/10.5194/gmd-17-4115-2024

4. We use the exact density as the initial condition for
particles whose position we advect using a second-
order accurate Runge—Kutta (RK2) algorithm. Where
we need the density for the solution of the Stokes equa-
tions, we interpolate properties from particles onto a
DGQ; discontinuous finite-element field and evaluate
that at quadrature points as necessary.

5. Same as case 4, but we use RK2FOT as described in
Sect. 3.3.

In order to limit ourselves to examining the accuracy in
time of these five benchmark series, we will only consider
a single combination of the Stokes finite-element and par-
ticle interpolation algorithm in this paper. We will use a
Q2 x Q1 Stokes element (continuous, piecewise quadratic
velocity, and continuous, piecewise linear pressure) and a
linear least-squares particle interpolation algorithm with ini-
tially 64 particles per cell. We have described the influence
of these choices in earlier work (Gassmoller et al., 2019).

Because the number of particles in a cell can change dur-
ing the model run, we enforce a minimum of 12 particles
per cell, which guarantees that the linear least-squares inter-
polation algorithm is always sufficiently constrained. We do
not limit the maximum number of particles per cell in these
models. In practice, the presented benchmarks never require
the addition of particles, and therefore the number of parti-
cles stays constant (for the box) or decreases by less than
0.01 % (for the annulus, caused by integration error close to
the boundary, and then leading to the loss of particles across
the boundary). The two tested integration schemes do not
show a significant difference in particle loss in the annulus
geometry, even though we have observed such differences
between Runge—Kutta algorithms and Forward Euler integra-
tors in our earlier work (Gassmoller et al., 2018).

5 Numerical evaluation of particle schemes

In the following subsections, let us use the benchmarks de-
rived above for the numerical evaluation of particle schemes.

5.1 Spherical shell benchmark

Figure 3 presents the L, error norm of velocity, pressure, and
density for the spherical annulus benchmark at a fixed time
as a function of mesh resolution (left column) and at a fixed
resolution as a function of time (right column).

The left column illustrates that all advection methods but
RK2FOT reach second-order convergence for the density
with increasing resolution (bottom left panel). As expected,
RK2FOT is limited by the available time information and
only reaches first-order convergence. An additional detail
is that the field methods (Q, and DGQ,) have a larger er-
ror constant than the particle method (RK2), even for the
same convergence rate. We will revisit the source of this
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Figure 3. Transient spherical annulus benchmark. (a, ¢, €) L, error norms of velocity (a, b), pressure (c, d), and density (e, f) for different
cell sizes h at time ¢ = In(1 4+ 4m) ~ 2.6075. Different colors and marker styles show different advection methods; gray lines show ideal
first-, second-, and third-order convergence. Note that the line for the exact (benchmark) density overlaps with the RK2 line. (b, d, f) L»
error norms of velocity (a, b), pressure (¢, d), and density (e, f) over time for resolution 2 = 1/128. Colors as in left column, and the exact
benchmark density line is hidden behind the RK?2 case. (For more details on the distinction between the RK2 case and the benchmark density

case see the Appendix.)

error constant when discussing the error accumulation over
time. Starting at moderate resolutions (around i = %) the
RK2FOT model only reaches a first-order convergence rate
in velocity, while O, and DGQ; reach second order. This re-
sult is important, because it illustrates that particles do not
uniformly generate smaller errors than field methods but can
indeed generate larger errors if their advection method is too
simple and therefore inaccurate. The RK2 method maintains
a third-order convergence rate in this metric up to very fine
resolutions, which is surprising as the expected convergence
order for RK2 is second order. We refer to Sect. 5.2 for a
discussion on how RK2 may reach superconvergence for the
resolutions shown in this benchmark.
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The analysis of error evolution over time (the right col-
umn of Fig. 3) illustrates further differences between field
and particle methods. Velocity and pressure errors reveal
that RK2FOT accumulates the largest errors over time, as
expected, followed by Q> and DGQ;. RK2 accumulates
the smallest errors. However, the density error norm shows
distinct differences between the methods. Both RK2 and
RK2FOT start with the same error value, but while the RK2
error remains near constant over the evolution of the model
(increasing by less than 2 %), the error of RK2FOT increases
by almost two orders of magnitude. The rate of increase in
the RK2FOT scheme changes towards the end of the model
run. We show in Appendix B that this slowdown is related to

https://doi.org/10.5194/gmd-17-4115-2024



R. Gassmdller et al.: Benchmarking the accuracy of higher-order particle methods 4123

the periodicity of our benchmark solution. The field methods
0> and DGQ; behave distinctly different. DGQ, starts at a
much smaller error value than all other methods, but it accu-
mulates significant errors towards the end of the model run.
Q> already starts at a significantly larger error value than all
other methods. This is likely related to the fact that the used
entropy viscosity method falls back to a first-order stabiliza-
tion scheme for the first time step, which introduces a large
amount of numerical diffusion at the model start (and only
then). The overall shape of these curves is due to properties
of the exact solution, not the method used, but is not of inter-
est to us here.

Summarizing these findings, low-order particle methods
show larger errors than the tested field methods, while
higher-order particle methods outperform the field methods
in our benchmark both with increasing resolution and with
increasing model time. Therefore, whenever the other er-
ror sources of the solution are sufficiently small (i.e., if the
Stokes element and time-stepping scheme allow for higher-
order accuracy), a higher-order particle scheme can signifi-
cantly improve accuracy.

5.2 Box benchmark

The box benchmark results follow a similar pattern for the
dependence of errors on the methods used (see Fig. 4). First,
the solution using the analytical density solution produces
a third-order convergence in velocity and second-order con-
vergence in pressure, which proves that the Stokes elements
reach their optimal convergence order when given accu-
rate density distributions. Second, and confirming theoreti-
cal predictions, the RK2 first-order time (RK2FOT) advec-
tion method creates a first-order accurate approximation for
the density, which also generates a first-order accurate pres-
sure and velocity solution, thereby significantly limiting the
potential accuracy of the Stokes elements. All other advec-
tion methods reach second-order convergence as predicted
by their derivations, however with significant differences in
the absolute error norm. For all solution variables, particles
advected using a full RK2 scheme reach about a one order
of magnitude lower error norm at the end time than the Q>
and DGQ> finite-element methods, a value that depends on
the chosen end time (compare right column of Fig. 4 and
next paragraph). One feature to note is that the velocity er-
ror of the RK2 particle advection method starts with a third-
order convergence rate at low resolutions and transitions to
a second-order convergence rate for higher resolutions (red
line with red triangles in Fig. 4a). We assume that this tran-
sition is caused by a shift in the dominant error source: at
large h the spatial error in the solution dominates, which is
consistent with the observation that the particle solution (red
line with red triangles in Fig. 4a) is very close to the solution
computed with an analytical density (blue line with upside-
down triangles in Fig. 4a) and converges with third order. At
smaller & the spatial error is reduced significantly, leaving the
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time error, which converges at second order as the remain-
ing dominant source of velocity error. We observed such a
transition in the dominant error source already in our earlier
work (Gassmdller et al., 2019).

When evaluating the error norms of the solution as a func-
tion of time for a fixed resolution (right column of Fig. 4), we
can gain additional insight into the properties of the advec-
tion methods. While it is obvious that the RK2FOT method
remains the most inaccurate method at a sufficiently large
time, this comparison also makes clear that it shares the same
error value as RK2 at the start of the model, a value which
is lower than the Q, and DGQ, methods. This is because
the error in the first time step is dominated by the accuracy
of the spatial approximation of the density. This also means
that in benchmarks that are instantaneous or very short, the
RK2FOT method will perform at nearly the same accuracy
as the RK?2 method, leading to misleading conclusions about
its accuracy and suitability for time-dependent geodynamic
models. Both the Q> and DGQ; methods start at significantly
larger errors in velocity and pressure, but they accumulate
less error over time than RK2FOT, although more than RK2.

For our conclusion it is important to note that even though
both particle methods start with a significantly smaller error
than finite-element advection methods, the first-order accu-
racy of the RK2FOT scheme produces significantly larger
errors, and that this effect becomes more pronounced with
increasing resolution and increasing model runtime.

5.3 Accuracy and performance discussion

Summarizing the benchmark results, first-order particle
methods yield larger errors than the tested field-based meth-
ods, while higher-order particle methods outperform the in-
vestigated field-based methods both with increasing resolu-
tion and increasing model time. Therefore, whenever other
error sources of the solution are sufficiently small (i.e., if the
Stokes element and time-stepping scheme allow for higher-
order accuracy), a higher-order particle scheme can signifi-
cantly enhance the accuracy of the solution. Even though we
cannot prove it here, this conclusion is likely also true for
the common case of a solution that is not smooth enough
to allow for the optimal convergence rate of RK2. For dis-
continuous solutions the convergence rate of higher-order fi-
nite elements can break down to the same rate as for first-
order elements (e.g., Thielmann et al., 2014). However, so-
lutions are rarely fully discontinuous and instead contain a
mix of smooth and non-smooth regions. Additionally, de-
spite showing the same convergence rate, higher-order ele-
ments have still delivered higher accuracy in absolute terms
than lower-order methods in many benchmarks (Kronbich-
ler et al., 2012; Thieulot and Bangerth, 2022). We speculate
that the same results would be seen for higher-order advec-
tion methods in time, although the construction of appropri-
ate benchmarks would be challenging.
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h=1/128.

Finally, the improved accuracy of higher-order particle
methods has to be discussed in the context of their larger
memory requirement and computational cost. RK2 requires
the storage of two velocity solutions instead of a single solu-
tion like RK2FOT; thus, very coarsely (neglecting the mem-
ory cost of the particles) one could consider RK2 to be twice
as expensive in terms of memory. However, this additional
cost has to be compared with the total memory requirement
of a modern geodynamic model and is only relevant if models
are typically limited by the available memory. Many modern
Stokes solvers in geodynamics either rely on matrix-based
algorithms or Krylov subspace solvers with a long recur-
rence relation (e.g., GMRES), both of which can easily re-
quire the memory of tens to hundreds of solution vectors.
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For all of these models, storing an additional velocity solu-
tion for the particle advection represents a negligible memory
cost. Even if models are computed with modern matrix-free
solvers with short-recurrence relations (e.g., Clevenger and
Heister, 2021), in our experience the size of models is typi-
cally limited by the available computational power or mem-
ory bandwidth, but rarely by the available total memory. We
therefore assume that storing an additional velocity solution
is not a prohibitive cost and focus for the rest of this section
on investigating the performance of RK2 over RK2FOT.

In theory, and at the most granular level, RK2 could
be expected to require 50 % more memory bandwidth than
RK2FOT, because simplistically speaking its second stage
computes x"+! = x"+ 5 (" + u"*+!) (reading three vector
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entries from memory) instead of x"*! = x" + Az u" (reading
two). If the algorithm is bandwidth limited, it could therefore
incur a 33 % performance penalty. However, this is of course
only a small part of the total particle advection cost, which
also includes algorithms that are independent of the integra-
tion scheme (like the first Runge—Kutta stage, or determining
the interpolation functions from grid to particle location). Fi-
nally, it is important to consider what fraction of the total
model cost is used to advect the particles, as even if RK2 is
significantly more expensive than RK2FOT, it may deliver
higher accuracy for a small fraction of the total model cost.

Table 1 illustrates these metrics for a version of the box
benchmark that was shortened to a model runtime of # = 0.1.
As can be seen, particle advection only requires an almost
insignificant percentage of the total model runtime (always
< 3.7 %). Additionally, the RK2 advection algorithm only in-
curs an additional cost compared with RK2FOT on the order
of 0.4 % of the total model runtime or a relative increase of
10 %-21 % compared with the cost of RK2FOT. Moreover,
it is clearly visible that this additional cost is approximately
constant across resolutions, which means that for a constant
and relatively small additional cost these models deliver sig-
nificantly more accurate solutions as shown in the previous
sections. In our opinion, these results illustrate that as long as
the memory cost of storing an additional velocity solution is
acceptable, using RK2 with an extrapolated or interpolated
half time step is generally superior to a first-order method
like RK2FOT in applications that depend on accurate solu-
tions.

6 Application: evolution of the mineral grain size
below oceanic lithosphere

Above we have illustrated the influence of algorithmic
choices on the accuracy and performance of benchmark re-
sults. However, this does not by itself justify the increased
cost of such an algorithm in practical models: perhaps, in
typical geodynamic applications, the error due to a low-order
time approximation is negligible compared with other error
sources, and therefore a simple advection method may be
sufficient. In the following, we use an application model to
show that the higher accuracy is indeed important and can in-
fluence first-order outcomes and the interpretation of a geo-
dynamic study.

In order to illustrate this point, we use an example where
the property carried on the particles (the grain size d) non-
linearly influences the material properties (the viscosity 1)
and the corresponding solution of the equations. Our model
setup (Fig. 5a) consists of the oceanic lithosphere and as-
thenosphere, down to a depth of 410 km, moving away from
a spreading center at the top left corner of the model and hor-
izontally extending to a distance of 4000 km from the ridge.
The grid does not change over time and is spatially uniform
with a cell size of 12.8 km (for a total of 320 cells in the x-
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and 32 cells in y direction). The plate speed is prescribed in
the horizontal direction to 5 cm yr~! at the top, and right (out-
flow) boundaries at depths smaller than 100 km. The outflow
velocity then linearly decreases with depth starting at 100 km
depth towards Ocmyr~! at the bottom of the model. The
left (ridge axis) boundary of the model is closed and stress-
free (free slip). The vertical velocity component is not pre-
scribed at the bottom and right boundaries; instead, a depth-
dependent hydrostatic pressure profile, which is computed at
the model start and is constant in time, is prescribed. There-
fore, material can flow in beneath the ridge axis and leaves
the model either through the bottom or the right boundary.
The initial temperature follows an adiabatic profile with a po-
tential temperature of 1623 K and a half-space cooling pro-
file close to the top boundary with an age consistent with the
plate velocity. The initial temperature also includes a small
(r = 10km) thermal perturbation at the ridge axis to sup-
port the onset of spreading. The initial grain size is set to
d =5mm and also includes a small (» = 30km) Gaussian
anomaly, which reduces the grain size to d =2.1 mm close
to the ridge axis. Since the temperature is prescribed at the
top boundary, the plate cools conductively over time until
small-scale convection sets in at the base of the plate.

In this model, we use particles to carry information about
the mineral grain size d, which influences the viscosity non-
linearly as

ndiff = %A&}fdm exp <w> . (23)
Ndis = EA;f edlfn exp <%) , (24)
resulting in an effective viscosity of

Neft = %- (25)

Here, ngifr, 7dis, and 7nefr are the diffusion, dislo-
cation, and effective viscosity, respectively. Agif =35 X
107 m3Pa=!s™! and Agis =107 Pa=33s~! are diffu-
sion and dislocation creep prefactors, Egier = 375kJ mol~!
and Egs = 530kImol~! the activation energy for diffusion
and dislocation creep, Vyiff = 4 X 10 m3 mol~! and Viis =
1.4 x 107> m3 mol~! the respective activation volumes, R is
the universal gas constant, P the pressure, T the tempera-
ture, m = 3 the grain size exponent of diffusion creep, &4is 11
the square root of the second moment invariant of the dis-
location strain rate, and n = 3.5 the dislocation creep strain
rate exponent. We limit the viscosity computed in Eq. (25) to
be between 10! and 1023 Pas.

In addition, particles are not just advected, but both the
temperature and the strain rate in the model influence the
evolution of the grain size. For a single particle moving along
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Table 1. Performance comparison of RK2 and RK2FOT for the box benchmark with a shortened end time of # = 0.1 in dependence of reso-
lution. The table shows the total model runtime (Model) and particle advection time (RK2 and RK2FOT) for the two advection algorithms,
as well as the fraction of total model runtime used for particle advection (RK2/Model and RK2FOT/Model) and the relative performance
cost of RK2 vs RK2FOT. Note that parts of the algorithm, such as sorting particles into mesh cells or interpolating properties back to the
mesh, are not listed because their cost is independent of the advection algorithm.

Cells No. of steps  No. of particles | Model RK2 RK2/model | Model RK2FOT RK2FOT/model | RK2/RK2FOT
Units (s) (s) (%) (s) (s) (%) (%)
42 3 2048 | 0.136  0.00158 1.1 0.133 0.00136 1.0 116.1
82 5 8192 | 0.248 0.00609 2.4 0.25 0.00552 22 110.3
16 8 32768 1.02 0.034 33 1.01 0.0279 2.7 121.8
322 15 131072 6.71 0.244 3.6 6.81 0.212 3.1 115.0
642 28 524288 48.5 1.81 3.7 48 1.59 33 113.8
1282 54 2097152 381 13.6 35 377 11.8 3.1 115.2
2562 107 8388608 3077 108 35 3056 94.1 3.1 114.8

All performance results were computed on one core of an AMD EPYC 7453 processor with the software listed in the Data Availability statement.

the flow field, we describe this evolution via the equation

d
340 =pg'dekgexp (—

rd?

cy’

Eg+ PV,
RT

— 411 Edis, 11 Nefr (26)

which implies that the grain size field d(x,r) satisfies the
equation

od 11— E;+ PV,
<E +u~Vd> =pg d Pekgexp (—T
rd?

cy

— 4 &1 Edis, 11 Netf 27

Here, kg = 1.92 x 10719 m3 s~ is the grain size growth pref-
actor, and E; = 400KkJ mol~! and Ve=0 m?> mol~! the acti-
vation energy and volume for grain size growth, respectively.
pg =3 is the grain size growth exponent, ¢ =3 a geomet-
ric constant, A = 0.1 the fraction of deformation work that
goes into changing the grain boundary area, and y =1 the
average specific grain boundary energy. The terms on the
right-hand side of these equations describe how the dynamic
grain size increases over time (with a nonlinear dependence
on temperature and grain size itself) and how it is decreased
by dynamic recrystallization due to strain accommodated by
dislocation creep (which depends nonlinearly on stress and
temperature). (For a detailed discussion of these terms and
all parameter values, we refer the reader to Dannberg et al.,
2017.) We solve this model using the particle-based RK2 and
RK2FQOT advection schemes for different time step lengths
expressed as a fraction of the CFL number. We make sure
that except for the advection scheme, all other parts of the
model and algorithms are identical. In particular, we gener-
ate particles in identical and deterministic random locations
and we enforce the same minimum (40) and maximum (250)
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number of particles per cell, and we make sure that all algo-
rithms for particle addition and deletion are deterministic.

As can be seen in Fig. 5b and c, the two advection meth-
ods produce noticeably different locations of onset of con-
vection. While the model with a full RK2 advection scheme
develops small-scale convection beneath the oceanic plate at
a distance of approximately 1900 km from the ridge (from
1893.2 to 1969.2 km), the model with RK2FOT develops the
onset at varying distances from 1656.0 to 1916.0 km. These
numbers correspond to plate ages of 37.9-39.4 Myr (RK2)
and 34.3-38.3 Myr (RK2FOT), respectively. Because of the
strong nonlinearity of these models, we do not observe a
simple convergence to one solution as in the benchmark re-
sults for either of the models. However, it is apparent that
the RK2 method produces a much more stable onset loca-
tion of small-scale convection and a greater similarity of the
other downwellings that develop beyond the initial onset. In
contrast, the onset of convection varies significantly in the
RK2FOT method depending on the time step size. In addi-
tion, the downwellings show very different convection struc-
tures. One could speculate that the RK2FOT method starts
to converge towards the RK2 results for a CFL number of
0.075; however, this is not certain given the strong variations
in the RK2FOT results. Considering our benchmark results in
the previous sections, we would expect the RK2FOT method
to converge to the same solution as RK2, though requiring
substantially smaller time steps. At least in this application
it would clearly require time steps that make the model pro-
hibitively expensive.

More importantly, one could assume that the shown varia-
tions just illustrate temporal variability in the convection pat-
tern, and that the RK2FOT results are only a temporary state
at the end of the model (200 Myr). To investigate this ques-
tion we track the onset of convection over time for both RK2
and RK2FOT, and show the results in Table 2. We find that
the different outcomes between the advection methods is not
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Figure 5. (a) Setup of the application model. Background colors illustrate temperature and solid black lines are streamlines. Arrows indicate
velocity. (b, ¢) Grain size at the end of the application model after 200 million years for models using RK2 (b), and RK2FOT (¢) for different
time step lengths (rows). The onset of convection below the plate is marked for each model and measured as the distance from the ridge to
the —50 K non-adiabatic temperature contour at 150 km depth. The corresponding age of the oceanic plate at this distance is also shown.

Table 2. Onset of convection for RK2 and RK2FOT for the applica-
tion model with a CFL number of 0.15 over time. The table shows
distance from ridge and plate age of onset of convection listed for
different model times for both RK2 and RK2FOT.

Method | RK2 \ RK2FOT

Time Distance  Plate age | Distance Plate age
(Myr) (km) (Myr) (km) (Myr)
120 1931.2 38.6 1888.4 37.8
140 1941.6 38.8 1855.6 37.1
160 1938.4 38.8 1843.2 36.9
180 1942.0 38.8 1827.6 36.6
200 1928.4 38.6 1716.4 343

just a temporary state at this precise time, but the models
show systematic differences over long ranges of time. The
onset of convection is relatively stable in the model with
RK?2, while it varies significantly in the model with RK2FOT
and occurs systematically closer to the ridge as time passes.
Even though this may be a temporary development that will
eventually reverse, we have not observed similar behavior for
RK2.

https://doi.org/10.5194/gmd-17-4115-2024

The exact timing of the onset of convection beneath an
oceanic plate is relevant for the argument that small-scale
convection causes a flattening of topography in seafloor
subsidence datasets, and therefore ultimately relevant also
for supporting the plate model of oceanic lithosphere cool-
ing (Stein and Stein, 1992; Huang and Zhong, 2005;
Richards et al., 2018). In addition to the difference in the
onset of convection, the characteristic length scale at which
instabilities develop below the lithosphere is significantly
smaller for the RK2FOT method, visible in the larger num-
ber and smaller distance between convection cells in Fig. 5b
and c. This is especially relevant as the distance between seis-
mic anomalies associated with small-scale convection is a
constraint from seismic studies and can be used to validate
geodynamic models (Eilon et al., 2022). We want to empha-
size here that our model is conceptual and not intended to
produce realistic timings or length scales, and that a mis-
prediction of these quantities due to inaccurate particle al-
gorithms in models has concrete consequences for the inter-
pretation of geodynamic features observed on Earth.

Because both the onset of small-scale convection and the
length scale of convection cells is governed by the growth
of small instabilities in a boundary layer, it is reasonable to
assume that the lower accuracy of RK2FOT supports this
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growth of instabilities and explains the earlier onset of con-
vection. The growth of instabilities in a boundary layer (or
internally layered systems) is one of the most common pro-
cesses for developing flow features in convecting systems
like the Earth’s mantle and lithosphere. Examples are the
generation of plumes at the core-mantle boundary, the stag-
nation of subducted slabs or plumes at phase transitions, or
the initiation of plate boundaries in models of lithosphere dy-
namics. We therefore infer from our results that models of
all of these processes can benefit from incorporating more
accurate particle advection methods, and that predictions of
models using lower-order advection schemes may need to be
adjusted or reproduced in higher-resolution studies.

7 Conclusions

We have shown in our benchmarks and applications that im-
plementing accurate particle algorithms, in particular higher
order in time, can significantly improve the numerical accu-
racy of geodynamic models. One of the conclusions of our
benchmarks is that commonly used particle advection meth-
ods that are higher order in space but first order in time ac-
quire significant amounts of numerical error in time-variable
flow, which becomes more pronounced the higher the reso-
lution and the longer the model runs. The reason this error is
not often discussed in the geodynamic literature is that tradi-
tional benchmarks that either rely on instantaneous analytical
solutions or on steady-state solutions cannot show this error
by their design. Only model comparison studies or bench-
marks with analytical solutions in transient flow can point
out this error source. Given that many geodynamic finite-
element models already use Stokes elements that allow for
higher-order accuracy to ensure stability (e.g., Taylor—Hood
0> x Q1 or Oy x P_1), it would be straightforward to ex-
tend their particle advection algorithms to a second-order-in-
time method. While this can increase the cost for evaluating
velocities at the particle locations, our results show that the
increased convergence order and improved accuracy of the
model results is well worth the additional cost. Of course, in
order to increase the overall model accuracy, all other em-
ployed algorithms need to support the same accuracy.

We believe that sharper focus on quantifying the numerical
accuracy of geodynamic models will generate more trust in
geodynamic model solutions and increase the impact of the
discipline of geodynamic modeling as a whole. We provide
the reference implementation of our algorithms and bench-
marks in the open-source community software ASPECT and
hope that they are useful to the community at large.

Appendix A: Derivation of an exact solution in an
annulus

Extending our previously published spherical bench-
mark (Gassmoller et al., 2019) seems to be straightforward
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by adding a time-dependent solid body rotation to the exist-
ing solution. However, because our earlier solution is already
a purely rotational flow, an additional time-dependent rota-
tion does not create a transient solution for the density, not
allowing to intuitively measure the accuracy of the combined
particle—finite-element algorithm. In other words, an error in
the particle position along the streamline because of the time
variability in the flow would not change the density distri-
bution and therefore would not translate into an error in the
Stokes solution.

We therefore begin by deriving a new exact solution to
the stationary, incompressible Stokes equations for an isovis-
cous, isothermal fluid in a 2D annulus. Given the geometry
of the problem, we work in polar coordinates. We denote the
orthonormal basis vectors by e, and ey, the inner radius of
the annulus by R, and the outer radius by R;. Furthermore,
we assume that the viscosity is a constant n = 1 and set the
gravity vector to an inward-pointing vector g = —g;,e,, with
8r = 1.

Given these assumptions, the incompressible Stokes equa-
tions in the annulus are (Schubert et al., 2001)

Pup  Lov 1P v 29w
ar2 r ar r29602 r2 r2 96
ap
—— —pg =0 , (A1)
ar
P Low L 2w L
ar2 r or  r2 9602  r290 r2 96
19(rv,) 10dvy
- ——=0. A3
r or + r 00 (A3)

Equations (A1) and (A2) are the momentum equations in po-
lar coordinates, while Eq. (A3) is the incompressibility con-
straint.

We then seek solutions whose circumferential velocity can
be written as

vg(r,0) = f(r)cos(k9), (A4)

where k is an integer and where f(r) will be specified later.
From Eq. (A3) we then obtain

d0rv) _ dug
o = a9 = kf (r)sin(k6), (AS5)
leading to
vy (r,0) = g(r)k sin(k6), (A6)
where
l f / /
g(r)= ;/f(r )dr. (A7)

Since we want to fix the velocity to be tangential at both
boundaries we have

vr(R1,0) = v (R2,0) =0 (A8)
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for all 6 € [0, 2r]. We choose
f(ry=Ar+B/r (A9)

in analogy to the solution of the Laplace equation in Chap. 6
of Strauss (2007), and thus

A B C
gr)y=—r+—Inr+—, (A10)
2 r r

where C is a non-zero constant of integration. Given the
boundary conditions in Eq. (A8) we find that

2(ln R1 —In Rz)

=-C , All
R3InR; — R}InR, (A1
R2 _ R2
B=-C—>—2—1 ) (A12)
R5InRy — R{InR;
In this work we choose C = —1. Our earlier choice of f
means that
3?f 19
LA A ) (A13)

ar2 ror r?

so that Eq. (A2) simplifies to

1 0% 20v, 1dp
r2 962 " r290  rof

which together with Eq. (A4) leads to

0, (A14)

p(r,0) = kh(r)sin(k0) +1(r), (A15)

where [(r) comes from integration with respect to 6 and
h(r)y=Qg@r)— f(r))/r. We now insert Eq. (Al5) into
Eq. (A1) to obtain

( 9)_32v’+13v’+i@,&,£aﬁ,aﬁ
puno) = ar? r or r2 962 r2  r2 90 ar
= kg"(r)sin(k6) + k. ir) sin(k6) — k3%) sin(k6)
- k&;) sin(k) + &k 2L §’> sin(k6)
r r
— kK () sin(k6) — I'(r)
= m(r)ksin(k) —I'(r) (A16)
with
/ I
m(r)=g”—g——%(k2—1)+12+i
r r r r
f-g f'-¢ f-g g >
=- - — S -
}’2 + r r2 r2( )
/
+12+L
r r
__f-e ff f-g f-¢
}"2 r r‘2 r2
/
Sw-n+LeL
r r r
— / /
Y 2g+i—§2(k2—1)+12+£ (A17)
r r r r r
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since it is easy to verify using Eq. (A7) that g'(r) = (f —
g)/r.

Taking k = 0 yields p(r,0) = —1'(r), so we choose I (r) =
—po. In this case,

p(r,0) k=0 =1(r) = pogr(R2 — 1), (A1B)

which represents a familiar linear pressure increase with
depth for constant density and gravity, and where we have
imposed p(r, ) = 0 at the outer radius r = R».

In summary, Eqs. (A4), (A6), and (A15) form a solution of
the incompressible Stokes equations, which fully stated reads

vg(r,0) = f(r)cos(k9), (A19)
v (r,0) = g(r)ksin(k6), (A20)
p(r,0) = kh(r)sin(k0) + pogr(R2 —r), (A21)
with
p(r,0) =m(r)ksin(k6) + po, (A22)
gr=1, (A23)
f@r)=Ar+B/r, (A25)
A B C
gr)=—=r+—Inr+—, (A26)
2 r r
hry = 280 =J0) (A27)
r
iy =g'() -5 - ED g2 )
n f(zr) n f (r), (A28)
r r
2(InR; —InRy)
— A2
CRglnRI—R%mRQ’ (429)
R2 _ R2
B = 5 2 12 , (A30)
R; InR| — i InR>
C=-1. (A31)

We can use the velocity solution for v, and vy to determine
a stream function for this flow field, which will be used to
derive the stationary benchmark below:
Y(r,0)=— <§r2+Bln(r)+C) cos(k6). (A32)

The solution above is time independent and only valid
for instantaneous models where the density is not advected.
To make it time dependent, we first modify the density and
gravity to create a steady-state variant of the benchmark
and add a known time-dependent component to the veloc-
ity as described in Sect. 4. We start by choosing a den-
sity field consistent with the streamline p(r,0) = W (r,6). In
our concrete benchmark this solution no longer satisfies the
derived Stokes solution. However, we can recover an ana-
Iytic solution by exploiting the fact that for the incompress-
ible Stokes equations the density p only enters the com-
putation as a product with the gravity g. Therefore, if as
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described in the example case above m(r)ksin(k6) is the
right-hand-side force term that satisfies the Stokes equation,
we can still choose the density arbitrarily (e.g., p(r,60) =
W(r,0)), as long as we define the gravity to be g(r,0) =
m(r)ksin(k6)/p(r,0). This keeps the original forcing term
constant, and thus makes the solution independent of time.
The steady-state solution therefore is the same as above, ex-
cept

p(r,0) =V (r0),
8r(r,0) = m(r)ksin(k0)/p(r,0),

(A33)
(A34)

with all other constants chosen as before.

In order to transform this steady-state benchmark into a
known transient solution, we then add a solid body rotation
with a nonlinear time-dependent rotational velocity to the
flow field. Since solid body rotations lie in the nullspace of
the incompressible Stokes equations on an annular domain,
the resulting flow field will still be a solution of the incom-
pressible Stokes equations. This approach will work as long
as we perform an appropriate rotation of all components of
the solution, and it is equivalent to defining the solution in
a rotating reference frame. We therefore modify the velocity
components in 6 direction to

vg(r,0,t) = f(r)cos(k(@ —t(t))) +rw(t). (A35)

Here t(#) is a phase shift and w(¢) is an angular velocity. The
phase shift 7(¢) can be computed as the time integral of the
angular velocity from the beginning of the model up to the
present time :

t

T(t) = /w(s)ds.

0

(A36)

In order to not make the problem too simple, we forgo the
case of a constant angular velocity and instead choose w () =
¢!, resulting in 7(¢) = e’ — 1.

Since the modification of the velocity in Eq. (A35) by
the solid body rotation r w(¢) lies in the nullspace of the
Stokes equations, it is straightforward to compute the modi-
fications of the remaining solution variables, which only in-
volves adding the phase shift to the 6 coordinate.

The final consideration is how to achieve this prescribed
rotation in the model. Since in the incompressible Stokes
equations stresses are transmitted instantaneously throughout
the entire domain, we can use the exact, known velocities as
boundary conditions and expect the motion to apply equally
to the entire model domain.

Appendix B: Detailed error investigation of the
spherical shell benchmark

In order to better understand the accuracy of the RK2 method
and investigate the source of the error decrease late in the
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model, we show in Fig. B1 a detailed comparison of only
RK2 against the analytical density method. In order to vi-
sualize the difference between RK2 and analytical density
over resolution (Fig. Bla and c), we no longer plot the ab-
solute error in the L, norm but instead the relative differ-
ence in error between RK2 and analytical density; i.e., if
€rK2 = |lu — uEKQHL2 and eap = ||u — ufDHLZ, then we plot
(erk2 — €aD)/€ap- This way of plotting the error illustrates
if both error values converge at the same rate — leading to
a constant relative difference between the two errors — or if
the RK2 error indeed converges at a lower rate — leading to a
linearly (or higher-order) increasing relative error difference
towards smaller /. As it turns out, the relative error indeed in-
creases linearly with resolution, meaning that RK2 converges
at only second order; however, the second-order contribution
is so small that it is not yet visible in the corresponding plot
of Fig. 3. On the other hand, the pressure (Fig. 3c) converges
at the same second-order rate for both analytical density and
RK?2, leading to a constant relative difference between the
two errors.

Turning to the evolution of error over model time
(Fig. B1b, d, and e) reveals that what looked like a con-
stant error value in Fig. 3 indeed follows the same trends
as the other methods, only at drastically reduced error val-
ues. While the error values for velocity and density increased
by 1-2 orders of magnitude from model start to end for the
other advection methods (RK2FOT, Q», and DGQ,), they
increased by at most &~ 2 % for RK2. Additionally, RK2 fea-
tures the same error reduction close to t =1 as the other
methods. Finally, it becomes apparent that even the model
using analytical densities features a small but growing ve-
locity error. Because the density error in this model is zero
(analytical density), it seems reasonable to assume this error
is a result of the Stokes solver. The accuracy of the Stokes
solver depends on the absolute value of velocity, which in-
creases exponentially over time. In other words, the blue line
in Fig. B1b represents the best possible accuracy any advec-
tion method could reach for the given Stokes solver if it trans-
ported material information with perfect accuracy. Consider-
ing all the results presented in this section, we consider the
RK2 scheme to be very close to achieving this theoretical
limit.

To understand the reduction in velocity error and density
error at certain model times requires us to take a closer look
at the benchmark solution. Particularly relevant is that the
benchmark solution is rotation symmetric, with four regions
of upwelling and four regions of downwelling. Therefore, ro-
tating the density field by 90° at any given time would lead to
exactly the same solution. For some reason the reduction in
velocity error in RK2 coincides almost exactly with a quarter
rotation of the model solution at # = In(1+m/2) =~ 0.944, the
reduction for Q; coincides with a rotation by three quarters
of a rotation (f = In(1 + 37 /2) ~ 1.742), and the reduction
for RK2FOT coincides with a full rotation (t = In(1+27) ~
1.985). We speculate that the times of rotation symmetry
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Figure B1. Transient spherical annulus benchmark. (a, ¢) L, error norms of velocity (a, b) and pressure (¢, d) for different cell sizes & at
time ¢t = In(1 4+ 4m) ~ 2.6075. The pink line shows the relative difference in the error between RK2 and the analytical density model. Gray
lines indicate the same convergence order (dashed line) or one convergence order lower (dash-dotted line) than the analytical density model.
(b, d, e) L, error norms of velocity (a, b), pressure (c, d), and density (e) as a function of time for resolution # = 1/128 for analytical density

and the RK2 model.

with the starting solution allows for a resonance between
the accumulated error in the numerical solution and the an-
alytical solution at a slightly different time. This interaction
would allow for an apparent reduction in error that does not
actually exist, which is consistent with the observation that
all errors rapidly increase again after the minimum. However,
while this theory explains why reductions in error could hap-
pen at specific times, we have no explanation as to why the
anomaly happens at different multiples of the rotation sym-
metry for different advection methods. We can only speculate
that the occurrence depends on a very specific feature in each
model, for example, how close individual discrete time steps
end at the analytically determined times of rotation symme-
try. Independent of the origin of the anomaly, the results of
the convergence studies show that it does not influence the
measurement of the convergence orders of different methods.
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