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Abstract: Research has shown that climate change creates warmer temperatures and drier conditions,
leading to longer wildfire seasons and increased wildfire risks in the United States. These factors
have, in turn, led to increases in the frequency, extent, and severity of wildfires in recent years.
Given the danger posed by wildland fires to people, property, wildlife, and the environment, there is
an urgent need to provide tools for effective wildfire management. Early detection of wildfires is
essential to minimizing potentially catastrophic destruction. To that end, in this paper, we present
our work on integrating multiple data sources into SmokeyNet, a deep learning model using spa-
tiotemporal information to detect smoke from wildland fires. We present Multimodal SmokeyNet
and SmokeyNet Ensemble for multimodal wildland fire smoke detection using satellite-based fire
detections, weather sensor measurements, and optical camera images. An analysis is provided to
compare these multimodal approaches to the baseline SmokeyNet in terms of accuracy metrics, as
well as time-to-detect, which is important for the early detection of wildfires. Our results show that
incorporating weather data in SmokeyNet improves performance numerically in terms of both F1
and time-to-detect over the baseline with a single data source. With a time-to-detect of only a few
minutes, SmokeyNet can be used for automated early notification of wildfires, providing a useful
tool in the fight against destructive wildfires.

Keywords: multimodal remote sensing; wildfire mitigation; smoke detection; deep learning;
image analysis

1. Introduction

Research has shown that climate change creates warmer temperatures and drier
conditions, leading to longer wildfire seasons and increased wildfire risks in many areas
in the United States [1,2]. These factors have, in turn, led to increases in the frequency,
extent, and severity of wildfires [3,4]. According to the National Centers for Environmental
Information (NCEI) [5], which keeps track of weather and climate events with significant
economic impacts, there have been 20 wildfire events exceeding USD 1 billion in damages
in the United States from 1980 to 2022 (adjusted for inflation), and 16 of those have occurred
since 2000 [3]. In the western United States, climate change has doubled the forest fire area
from 1984 to 2015 [6].

Given the danger posed by wildland fires to people, property, wildlife, and the environ-
ment, there is an urgent need to provide tools for effective wildfire management. Currently,
wildfires are detected by humans trained to be on the lookout for wildfires, residents in an
area, or passersby. A more reliable approach is needed for early wildfire detection, which is
essential to minimizing potentially catastrophic destruction. In this work, we describe a
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deep learning model for automated wildfire smoke detection to provide early notification
of wildfires.

In previous work [7], we introduced FIgLib (Fire Ignition Library), a dataset of labeled
wildfire smoke images from fixed-view cameras; and SmokeyNet, a novel deep learning
architecture using spatiotemporal information from optical camera image sequences to
detect smoke from wildland fires. Here, we extend that work by investigating the efficacy of
adding additional data sources to our camera-based smoke detection system—specifically,
satellite-based fire detections and weather sensor measurements. Satellite-based fire de-
tections may detect fires that are hidden from the cameras behind hills or other occluders.
Weather factors such as humidity can affect how a wildfire grows and changes. Adding
these additional inputs thus provides additional data that can further inform SmokeyNet,
potentially leading to better smoke detection performance in terms of both accuracy and
detection time. As the three data sources have different temporal and spatial resolutions,
integrating all three requires several nontrivial data processing steps, as well as complex
architectural changes to our deep learning model.

We make the following contributions for multimodal wildland fire smoke detection:
(1) data processing techniques for integrating the different types of data with different
spatial and temporal scales; (2) SmokeyNet Ensemble, an ensemble approach to integrate
multiple data sources; (3) Multimodal SmokeyNet, an extension of SmokeyNet to incor-
porate additional data types; and (4) a comparative analysis of multimodal approaches to
the baseline SmokeyNet in terms of accuracy metrics as well as time-to-detect, which is
important for the early detection of wildfires.

2. Related Work

Recently, deep learning approaches have employed a combination of convolutional
neural networks (CNNss) [8,9], background subtraction [10,11], and object detection meth-
ods [12,13] to incorporate visual and spatial features. Long short-term memory (LSTM)
networks [10,12] and optical flow [14,15] methods have been applied to incorporate tempo-
ral context from video sequences.

Due to the lack of a benchmark dataset to evaluate model performance, the high
accuracies reported in many papers on the detection of smoke from images may not be
representative of real-world performance across different scenarios. For instance, Ko [16]
and Jeong [12] use video sequences either with or without a fire, but none with a fire
starting in the middle of a sequence. Li [17] and Park [8] use image inputs wherein smoke
plumes are more visible compared to video frames where the smoke is initially forming
after ignition. Yin [18] uses images representing smoke in scenarios beyond wildland
fires. In other works, such as Park [8], Zhang [19], and Yuan [20], images are synthetically
generated to overcome the lack of available data.

Govil et al. [21] is the only work we are aware of that also uses the FIgLib dataset
to evaluate wildfire smoke detection performance, using an InceptionV3 CNN trained
from scratch as the primary image classification architecture. The authors reported a test
accuracy of 0.91 and an Fl-score of 0.89. However, the test set consists of only a small
number of hand-selected images relative to the training set (250 vs. 8500+ images). The
test set also contains images from the same video sequences of fires used in the training
set, with only 10 min (i.e., 10 frames) of separation between them; this procedure bleeds
information from the training data, and therefore may overstate the performance on the
test set.

Peng and Wang [22] combined hand-designed smoke features with an optimized
SqueezeNet network for smoke detection. A smoke detection rate of 97.74% was reported.
However, they used the relatively small dataset created by Lin et al. [23], which consists
of 15 HD videos (10 smoke and 5 nonsmoke). Khan et al. [9] used an EfficientNet CNN
architecture for smoke detection and DeepLabv3+ semantic segmentation architecture for
smoke localization. Model performance was reported on both image inputs as well as
video sequences. However, this model was trained for indoor and outdoor scenarios and
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not for wildfires. Hence, while the model was tested on custom-collected wildfire data,
quantitative results for these data were not reported by the authors. Mukhiddinov et al. [24]
also curated a custom wildfire image dataset that was used to train a YOLOv5m model for
wildfire smoke detection, reporting an average precision of 79.3% on the test set.

There has been some work carried out using weather data for detection of wildfires.
Da Penha and Nakamura [25] make use of wireless sensor networks (WSNs) to collect
temperature and light intensity data from the surroundings to detect wildfires using
information fusion methods. They propose a threshold-based algorithm and a Dempster—
Shafer method for forest fire detection, and claim that the former is more reliable. Diaz-
Ramirez et al. [26] expand on this idea to include humidity data as well. However, such
methods require the sensors to be installed very close to the fire. Moreover, the experiments
they conducted are from a small time frame of 10 days, which is not sufficient to understand
the efficacy of their algorithm in different seasons.

In our previous work [7], we presented the SmokeyNet deep learning model that
detects smoke from wildland fires using images from optical cameras. The model consists
of a CNN [27], LSTM [28], and a vision transformer [29]. Here, we use SmokeyNet as a
baseline, and extend it with additional weather data and satellite-based fire detections to
investigate the effects of these additional data sources on performance in terms of accuracy
and detection time.

Our main focus is on detecting wildfires from camera images as soon as possible after
ignition for early notification. In most scenarios, smoke will be spotted before the actual
fire can be seen. In addition, the field of view of the camera may be blocked by terrain,
making it difficult to spot the actual fire from the camera. Therefore, detecting smoke is a
faster way to indicate the presence of a wildland fire than trying to detect the fire itself. It
is also worth noting that the detection of fires, rather than smoke, is a different research
problem that requires different approaches (e.g., infrared vs optical cameras), and is a
rich but separate field with numerous research efforts, and hence, we are not currently
considering fire detection in our work.

3. Data

The work presented in this paper makes use of data from three different sources:
images from optical cameras, weather sensor measurements, and fire detections from
satellite data. Camera data from the FIgLib library provide images with and without
smoke; our SmokeyNet model was originally trained on these camera images. Weather
factors such as temperature and relative humidity play a role in the likelihood of wildfire
ignition. Combined with wind conditions, these can affect how a wildfire grows and
changes, and consequently, the appearance of smoke. Additionally, weather can also
affect the appearance of clouds, which can cause false positives in our model. These
considerations are the motivation for adding weather data to the model. The integration
of fire detections from satellite data was motivated by the potential for such detections to
identify wildfires missed by SmokeyNet. For instance, fires could be occluded by hills or
mountains from optical cameras on the ground, so satellite-based systems might detect fires
before ground camera-based systems. Thus, we wanted to investigate if adding satellite-
based fire detections and weather data to the baseline SmokeyNet would help to improve
the overall performance of the model. This section describes the FIgLib data, weather data,
and satellite fire detection data in detail.

3.1. FIgLib Data

The baseline dataset used in our work is the Fire Ignition images Library (FIgLib)
dataset. FIgLib consists of sequences of wildland fire images captured at one-minute inter-
vals from fixed-view optical cameras located throughout southern California, which are
part of the High Performance Wireless Research and Education Network (HPWREN) [30].
The dataset contains nearly 20,000 images, and covers multiple terrains, including moun-
tainous, desert, and coastal areas, and also contains sequences from throughout the year,



Remote Sens. 2023, 15, 2790

40f17

thus capturing seasonal variations. Each sequence consists of images from before and after
initial fire ignition. To the best of our knowledge, FIgLib is the largest publicly available
labeled dataset for training smoke detection models.

Each image is 1536 x 2048 or 2048 x 3072 pixels in size, depending on the camera
model used. Each FIgLib sequence has been curated to contain images before and after the
start of a wildfire that can be used for training and evaluating machine learning models.
Typically, each sequence consists of images from 40 min prior to and 40 min following fire
ignition, for a total of 81 images, with a balance between positive and negative images.

To avoid out-of-distribution sequences, the FIgLib dataset was filtered to remove fire
sequences with black and white images, night fires, and fires with questionable labels, as
detailed in [7]. Additionally, 15 fires without matching weather data were also removed.
The resulting FIgLib dataset used in this paper consists of 255 FIgLib fire sequences from
101 cameras across 30 weather stations occurring between 3 June 2016 and 12 July 2021,
totaling 19,995 images.

Each image was resized to an empirically determined size of 1392 x 1856 pixels to
speed up training. Further, the top 352 rows of the image, which depict the sky far above
the horizon, were cropped. This had the added advantage of removing clouds from the
topmost part of the image, reducing false positives that may arise due to the clouds. This
resulted in images of size 1040 x 1856 pixels, which enabled us to evenly divide the image
into 45 tiles of size 224 x 224 pixels, overlapping by 20 pixels, to allow for independent
processing of each tile. Refer to Section 4.1 for more details. Data augmentation using
horizontal flip; vertical crop; blur; and jitter of color, brightness, and contrast was applied
to each image. Each augmentation operation is applied with a 50% probability, and the
amount of augmentation is chosen randomly within a specified range. The image pixels
were normalized to 0.5 mean and 0.5 standard deviation, as expected by the deep learning
library that we used (torchvision). Data augmentation is a standard approach in deep
learning to help the model generalize better and prevent overfitting. This entire process of
image resizing, cropping, and applying data augmentations was performed as part of the
model training pipeline.

The 255 FIgLib fire sequences were partitioned into 131 fires for training, 63 fires for
validation, and 61 fires for testing. Fires for training, validation, and testing are mutually
exclusive. The number of fires and images in the train, validation, and test partitions are
summarized in Table 1.

Table 1. Splits of the FIgLib dataset as used for model training, validation, and testing.

Data # Fires # Images

Train 131 10,302
Validation 63 4894

Test 61 4799

The FIgLib dataset is publicly available and can be accessed at the following link:
http:/ /hpwren.ucsd.edu/HPWREN-FIgLib/, accessed on 15 March 2023. Some examples
of FIgLib images are shown in Figure 1.

3.2. Weather Data

For each FIgLib image, we also extracted the weather data associated with that image.
This was accomplished by obtaining sensor measurements from the three weather stations
nearest to the camera location and in the direction that the camera is facing. Note that
we need the weather corresponding to the scene captured by the camera, not the weather
corresponding to the camera location, which may be different. Weather data in the HP-
WREN [30,31], SDG&E [32], and Southern California Edison (SCE) [33] networks were
fetched from weather stations using the Synoptic’s Mesonet API [34]. Synoptic is a partner
of SDG&E that offers services for storing and serving weather data.
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Figure 1. Sample images with smoke from the FIgLib dataset. The red bounding box indicates the
location of the smoke plume. (Top left) Very apparent smoke plume; (top right) extremely faint
smoke observed at a distance from the camera; (bottom Left) smoke blending into the area with
strong glare; (bottom right) smoke with misleading haze.

The weather data has 23 attributes, out of which we selected the ones with under 5%
missing data: air temperature, relative humidity, wind speed, wind gust, wind direction,
dew point temperature. Wind speed and wind direction can be thought of as being the
radius and angle in a polar coordinate system, which were then used to obtain Cartesian

7

co-ordinates “u” and “v”. Wind speed and wind direction were thus converted to ‘u’ and

v’ so that aggregation across the three closest weather stations could be performed easily.

The wind direction was also adjusted to be relative to the direction that the camera is facing
and converted to the corresponding sine and cosine components. Due to the sparsity of
many of the weather attributes, some features that may affect the likelihood of ignition,
such as soil moisture, were not included in our data. The resulting weather vector consists
of the following seven features: air temperature, dew point temperature, relative humidity,
wind speed, wind gust, and sine and cosine of wind direction.

Since weather varies from region to region, weather measurements are normalized per
station to ensure that relative values are used instead of raw values. Weather measurements
are also normalized over an entire year to retain seasonal fluctuations. Normalized weather
measurements from the three stations corresponding to each image are then aggregated
using a weighted average based on the inverse of the distance between the camera and
the weather station. Additionally, since there is a weather data point available every ten
minutes, whereas the images are spaced one minute apart, we employed linear interpolation
to resolve the difference in temporal resolution. The detailed procedure for obtaining and
processing the weather data is explained in Appendix A.1.

3.3. Satellite Fire Detection Data

In addition to FIgLib camera data and weather data, we also used fire detection data
based on satellite images from the Geostationary Operational Environment Satellite (GOES)
system. GOES is operated by the National Oceanic and Atmospheric Administration
(NOAA) [35] to support weather monitoring, forecasting, severe storm tracking, and
meteorology research [36,37]. GOES provides real-time satellite data covering Southern
California that are publicly available. Satellite image data from the GOES-R series Advanced
Baseline Imager (ABI) are processed by the Wildfire Automated Biomass Burning Algorithm
(WFABBA) [38] in order to detect and characterize fire from biomass burning. The output
of WFABBA provides the fire detection data used in our model, as discussed in Section 4.2.
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WEFABBA is a rule-based algorithm for dynamic multispectral thresholding to locate
and characterize hot spot pixels in a satellite image [39]. It uses data from the GOES
satellites to detect thermal anomalies (i.e., areas of increased temperature) associated with
wildfires. These anomalies are identified using a combination of brightness temperature
thresholds, temporal and spatial filtering, and statistical analyses. The algorithm also takes
into account the presence of clouds and other factors that can affect the accuracy of the
detection. Once a thermal anomaly is detected, the WFABBA algorithm generates a fire
location and intensity estimate, which is used to produce fire detection maps and other
products that can aid in wildfire management and response efforts.

For our work, data from the GOES-16 and GOES-17 satellites were used, where GOES-
16 covers North and South America and the Atlantic Ocean to the west coast of Africa while
GOES-17 covers western North America and the Pacific Ocean [37]. The data processed
via WFABBA can be accessed at the following link: https://wifire-data.sdsc.edu/dataset/
goes-fire-detections, accessed on 15 March 2023.

We used the metadata generated by the WFABBA system in our experiments. These
are text files generated after WFABBA processing of GOES imagery that list the details
of the algorithm used, the latitude-longitude of the detected fire (if any), fire size, fire
temperature, and other parameters calculated by the algorithm. WFABBA metadata files
were parsed, consolidating all data in a single dataframe. We used the latitude-longitude
information to match GOES detections with FIgLib, as described in later sections.

Since the spatial and temporal resolutions of FIgLib images were different from those
of GOES, we came up with the following procedure for matching FIgLib with GOES data.
For every camera associated with FIgLib input images, we selected GOES detections that
were within a 35-mile radius of the camera and in its field of view. From this subset,
if a detection was found that was within a 20 min window of the FIgLib input, then it
was considered a match and was joined with the FIgLib input with a positive prediction
value (indicating that fire was detected by WFABBA). If there was no match, a negative
prediction value was assigned. This process was carried out for data from both GOES-16
and GOES-17. The 35-mile radius and the 20 min window were determined empirically.
A detailed description of the algorithm can be found in Appendices A.2 and A.3. In the
rest of this work, we refer to these data as “GOES data.”

4. Methods
The following three model architectures were used in our experiments:

e SmokeyNet: Baseline model that takes an image and its previous frame from a FIgLib
fire sequence and predicts smoke /no smoke for the image.

¢ SmokeyNet Ensemble: An ensemble model combining the baseline SmokeyNet model,
GOES-based fire predictions, and weather data.

*  Multimodal SmokeyNet: An extension of the SmokeyNet architecture that incorpo-
rates weather data directly into the network.

4.1. SmokeyNet

The baseline SmokeyNet model [7], depicted in Figure 2, is a spatiotemporal model
consisting of three different networks: a convolutional neural network (CNN) [27], a long
short-term memory model (LSTM) [28], and a vision transformer (ViT) [29]. The input to
SmokeyNet is a tiled wildfire image and its previous frame from a wildfire image sequence
to account for temporal context. A pretrained CNN, namely ResNet34 [40], extracts feature
embeddings from each raw image tile for the two frames independently. These embeddings
are passed through an LSTM, which assigns temporal context to each tile by combining the
temporal information from the current and previous frame. These temporally combined
tiles are passed through a ViT, which encodes spatial context over the tiles to generate
the image prediction. The outputs of the ViT are spatiotemporal tile embeddings, and
a classification (CLS) token that encapsulates the complete image information [29]. This
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token is passed through a sequence of linear layers and a sigmoid activation to generate a
single image prediction for the current image.

Tiled Image Sequence

Tile Loss
Tile Loss
) ——, Tile Loss
A R—
[ e
CNN

Image Loss

Figure 2. The SmokeyNet architecture takes two frames of the tiled image sequence as input and
combines a CNN, LSTM, and ViT. The yellow blocks denote “tile heads” used for intermediate
supervision, while the blue block denotes the “image head” used for the final image prediction.

4.2. SmokeyNet Ensemble

To incorporate GOES predictions, weather data, and FIgLib camera images, we used
an ensemble approach to combine SmokeyNet outputs with separate models that we built
for the GOES and weather data, as shown in Figure 3. The SmokeyNet Ensemble model
consists of three components: output probabilities obtained from baseline SmokeyNet,
GOES-based predictions obtained from the matching algorithm described in Section 3.3,
and outputs of a 32-unit LSTM model used to model time-series weather data to predict the
probability of a fire. The input to the model is weather data from the previous 20 min. Both
the GOES and weather models are weak models that are used to supplement the stronger
SmokeyNet signals in order to improve the accuracy of SmokeyNet.

SmokeyMet
Predictions

GOES L .| Ensemble
Predictions L/ "l Outputs
Combine outputs
of
models

Weather
Predictions

Figure 3. The SmokeyNet Ensemble architecture schematic depicts the three source models. Signals
from these three models are combined either using a majority voting strategy or using a weighted
average. A detailed description of the strategies is discussed in Section 4.2.

In order to combine the outputs, we first experimented with a simple voting strategy,
such that the class that was output by at least two of the three models became the final
output. Using the baseline model accuracies as weights, a weighted average of the pre-
dictions from the three models was computed to derive the final prediction. The output
class was derived from the averaged probability by using a threshold-based decision rule.
In addition, as a separate experiment, we passed the signal vector from the three models
through a logistic regressor with the aim of learning the weights used for combining the
models. More details on the ensemble setup are provided in Section 5.2.

4.3. Multimodal SmokeyNet

We also investigated an approach to integrate weather data directly into the SmokeyNet
model. This allows for both raw data sources—optical camera images and weather sensor
measurements—to be integrated as input to the model. This approach is Multimodal
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[bx ngx Ig]

FlgLib
Images

SmokeyNet, and its architecture is depicted in Figure 4. The input to the model is a series
of Iy images, with each image represented using n; tiles, similar to baseline SmokeyNet.
For each FIgLib image series passed through the model, the corresponding weather vector,
of length [, is incorporated in the model at two places as weather tensors that are con-
catenated to the CNN and the LSTM embeddings (represented in Figure 4 as “Normalized
Weather Data”). The input weather vector is replicated, via the hidden layer, along the
feature dimension, to prevent the CNN/LSTM embeddings from dominating the weather
features. The replication is controlled by the replication factor r¢. The resultant weather
tensor output from the hidden layer is such that it matches the dimensions of the respec-
tive embedding, and has a length of [I;, x 7¢] along the feature dimension. This weather
embedding is concatenated with the CNN/LSTM embedding (of size e). The concatenated
embedding is then passed through three hidden layers before tile loss computation, and
is also propagated forward to the next component of Multimodal SmokeyNet, as shown
in Figure 4. This is carried out similarly with the weights from the LSTM output to the
ViT. Finally, when the output of the hidden layer is sent through the vision transformer,
the final model outputs are tile and image probabilities, similar to the baseline SmokeyNet
model. Table 2 lists the dimension parameters shown in Figure 4. The values for these
parameters were determined using hyperparameter tuning, as discussed in Section 5.3.

[bx n¢ x Ig x (hy x r§)] [bxntxlg x (I x rf)]

Linear

[ x 1% ly] O Linear [bx1xlw] O Layer
L
Normalized O pee Normalized O
Weather . Weather 3
Data 8 Data .

CNN + Weather Embedding
[bxngxlsx (e+ hyxrf]

LSTM

LSTM + Weather Embedding
[bx ngx g x (e +2(ly x re))]

@ vit

Tile
Loss

Concatenate

Concatenate

= ¥ St - Image
CNN bedd
g T e
S S—
(O----0O0] i T
Hidden | ——¥ Hidden O OO
Layers | (O----O0| e | [0
b i L) ]
O---l-OO, [Q...]._QQJ

e Tile
Loss
Loss

Figure 4. The Multimodal SmokeyNet architecture concatenates the CNN/LSTM embeddings with
weather embeddings. The dimensions at each stage are mentioned in brackets. b denotes the batch
size, n; denotes the number of tiles, I; denotes the series length, e denotes the embedding size, I,
denotes the length of a weather vector, r¢ denotes the weather replication factor.

Table 2. Dimension parameters and their values used in our experiments for Multimodal SmokeyNet.

Parameter Name Symbol Value Used
Batch Size b 2

Number of Tiles ny 45

Series Length I 2
Embedding Size e 1000
Length of Weather Vector lw 7

Replication Factor s 10
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The training procedure for the model happens in two stages. First, the baseline
SmokeyNet model is trained for 25 epochs on just FIgLib camera images. Using transfer
learning, the multimodal model (Figure 4) is initialized with weights from the trained base-
line SmokeyNet model. The concatenation of the weather embeddings to the CNN/LSTM
embeddings increases the dimensions of the weights from the CNN output to the LSTM
and the weights from the LSTM output to the ViT. These extra connections are initialized
with random weights. The multimodal SmokeyNet is then trained with both FIgLib images
and weather data, as described in more detail in Section 5.

Similar to the baseline SmokeyNet, the binary cross-entropy (BCE) training loss for
Multimodal SmokeyNet consists of the image loss from the ViT, as well as the tile loss
from each of the model’s components: CNN, LSTM, and ViT, as shown in Figure 2 and
described in detail in [7]. If I is the total number of tiles, the overall training loss can be
summarized as:

loss = BCE™¢ + Y H{BCESNN + BCEFS™™ 4 BCEY'T}

5. Experiments and Results

As mentioned in Section 3.1, we used a train/validation/test split of 131/63/61 fires
(or 10,302/4894 /4799 images) for all our experiments. Using these datasets, we first ran
experiments on the SmokeyNet model to establish a baseline. This baseline model was
then used in the SmokeyNet Ensemble and used to initialize the Multimodal SmokeyNet
model, as described in this section.

5.1. Baseline SmokeyNet

For the baseline model, we took the original trained SmokeyNet model from [7] and
trained it for an additional 25 epochs. This was to match the additional training that
the multimodal SmokeyNet model undergoes so that we had a fair comparison between
these two models. The model with the lowest validation loss was selected as the baseline
SmokeyNet, used in both SmokeyNet Ensemble and Multimodal SmokeyNet experiments
described below.

5.2. SmokeyNet Ensemble Results

The SmokeyNet ensemble combines input from four separate models: SmokeyNet,
GOES-16, GOES-17, and weather-based LSTM. The weather-based LSTM, as described in
Section 4.2, was trained in order to capture time-series trends in the weather data. The
model was trained using the same training split as SmokeyNet, while the validation set was
used to select the best model based on validation accuracy, and also to tune the learning
rate. Baseline SmokeyNet is as described in Section 5.1. Moreover, since both the GOES
baseline models were found to be extremely weak predictors, we combined predictions
from the GOES-16 and GOES-17 models by performing a logical OR operation (denoted
“(GOES-16 | | GOES-17)”).

For the ensemble, we started with a simple majority vote strategy, such that the final
prediction was the mode of predictions from the three models: SmokeyNet, (GOES-16 | |
GOES-17), and Weather. Next, since the three models have varying baseline performances,
a weighted average of the three predictions was computed using the baseline model
validation accuracies as weights. The output class was decided based on a threshold
determined by F1 on the validation data. Finally, instead of manually providing weights
to the three model predictions, we passed the data through a logistic regression model
to have the model learn the weights. The inputs to the model were the binary prediction
values from the GOES models and output probabilities obtained from SmokeyNet and
the Weather model. These features were used to train a logistic regression model. We also
experimented with ridge regression to further evaluate the behavior of the individual base
models in terms of contribution to the final ensemble prediction. To find the optimal value
of regularization strength (e.g., A) for the ridge regression model, we used grid search on
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the validation set. All the regression models were trained using the train split used for
baseline SmokeyNet.

Table 3 reports the performance of the SmokeyNet Ensemble methods described in
Section 4.2 on the test set. Note that the TTD metric is not reported for these experiments.
Due to the difference in temporal resolution of FIgLib data vs. GOES fire detections, the
algorithm used to match SmokeyNet predictions with GOES predictions used a sliding
window around the timestamp associated with a given FIgLib image, as described in
Section 3.3. The sliding window can contain GOES predictions before or after the timestamp
of the FlIgLib image, thus making the TTD metric unsuitable for these experiments.

Table 3. Accuracy, F1 scores, Precision, and Recall for the ensemble models based on the test set.
(GOES-16 | | GOES-17) specifies that GOES-16 and GOES-17 predictions are combined using logical
OR. Boldfaced values indicate best results.

Algorithm Data A F1 P R
1 Baseline SmokeyNet  SmokeyNet Predictions 79.64 81.60 94.02 72.08
2 Baseline GOES-16 GOES-16 Predictions 50.53 35.07 98.63 21.33
3 Baseline GOES-17 GOES-17 Predictions 51.35 4477 7752 3148
Baseline Weather
4 LSTM Weather Data 5265 6255 6199 63.12
5 Majority Vote SmokeyNet l?re.dlctlons + (GOES-16 | | GOES-17) Predictions + 6985 7123 8858 59.56
Weather Predictions
6 Weighted Average SmokeyNet Predictions + (GOES-16 | | GOES-17) Predictions 79.64 81.60 94.02 72.08
7 Weighted Average SmokeyNet Predictions + Weather Predictions 79.64 81.60 94.02 72.08
8 Weighted Average SmokeyNet l?re_dlctlons + (GOES-16 || GOES-17) Predictions + 7890 8192 8840 7633
Weather Predictions
9 Logistic Regression SmokeyNet Probabilities + (GOES-16 | | GOES-17) Predictions 7842 80.16 9454 69.58
10 Logistic Regression SmokeyNet Probabilities + Weather Probabilities 7846 8020 9458 69.61
. . SmokeyNet Probabilities + (GOES-16 | | GOES-17) Predictions +
11 Logistic Regression Weather Probabilities 78.67 8046 9441 7011
12 Ridge Regression SmokeyNet Probabilities + (GOES-16 | | GOES-17) Predictions + 7931 8118 9433 7126

Weather Probabilities

The scores in Table 3 indicate that weighting the predictions from individual models
slightly increases F1 over baseline SmokeyNet (setup 8), though baseline SmokeyNet
provides the highest Accuracy and Recall over any ensemble model. Baseline GOES-16
gives the highest Precision (setup 2), although this is due to the very small number of
matches between FIgLib and GOES data. As described in Section 3.3, a GOES detection is
considered only if it matches a FIgLib image using the spatial and temporal filters we have
defined. The small number of matches for GOES-16 thus results in a very high Precision
and correspondingly very low Recall.

For the experiments using logistic regression (setups 9, 10, 11), the results are very
close to those of baseline SmokeyNet, indicating that the model could be learning to assign
the highest weight to the SmokeyNet output probability that was passed as a feature.
This hypothesis is validated by the feature coefficients of the trained models, which are
heavily dominated by the SmokeyNet variable, with the least weight being given to the
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GOES signal. For example, in setup 11, the resulting feature coefficients provides the
following weighting to the base models: 9.31 (SmokeyNet), 1.06 (GOES 16 | | GOES 17),
4.89 (Weather). Similarly, the trained ridge regression model (setup 12) ended up with
the following coefficients: 1.92 (SmokeyNet), 0.06 (GOES 16 | | GOES 17), 0.32 (Weather).
This indicates that the ensemble model learned to attribute the largest contribution to the
SmokeyNet prediction, with some contribution to the Weather model prediction and a very
small contribution to the (GOES-16 | | GOES-17) prediction. While the models that we
show here use (GOES-16 | | GOES-17) predictions as input to the ensemble model, we
also tested using the GOES-16 and GOES-17 predictions as separate inputs as well as by
combining them using the logical AND operator. The performance using separate features
was similar to that of models described here, with GOES-17 predictions being given more
weight than GOES-16 by the ensemble. Performance with (GOES-16 && GOES-17), on the
other hand, was much worse. These results are expected, given the performance of the
baseline GOES models (setups 2 and 3).

5.3. Multimodal SmokeyNet Results

Using the transfer learning approach and the method to incorporate the weather data
into the model as described in Section 4.3, we trained Multimodal SmokeyNet for 25 epochs
and used the model with the lowest validation loss to compute our results. The weather
attributes of air temperature, dew point temperature, relative humidity, wind speed, wind
gust, and sine and cosine of wind direction constitute the vector, as described in Section 3.2.
In addition to using actual weather values, to verify whether the addition of the weather
data was adding some useful information to the model, we also ran experiments by passing
random weather tensors of the same size, drawn from a normal distribution.

For all experiments, we used the best values for the hyperparameters as described
in [7], i.e., a learning rate of 1 x 103, weight decay of 1 x 1073, image resizing of 90%, no
dropout, image binary cross-entropy loss with positive weight of 5 to trade-off precision
for higher recall, and a batch size of 2. For Multimodal SmokeyNet, we used a weather
replication factor of ten, which means that the weather vector of size seven was replicated
7 x 10 via the hidden layer and then concatenated to the CNN/LSTM embedding. We
replicated the weather vector to prevent the CNN/LSTM embedding (which was of size
1000) from dominating the input data when the vector and embedding were concatenated
together as described in Section 4.3.

Table 4 provides a summary of the experimental results using Multimodal SmokeyNet.
For each experiment, we report the accuracy, precision, recall, F1 score, and time-to-detect
(TTD). For each row in the table, the reported scores are the average and standard deviation
over eight runs. These results indicate that there is a performance improvement in accuracy
and F1 as well as in time-to-detect when weather data are added to the model, averaged
over eight runs.

Table 4. Mean and standard deviation (SD) of time-to-detect (TTD) in minutes, Accuracy, F1, Precision,
and Recall metrics on the test set over eight runs. Boldfaced values indicate best results. SN = Baseline
SmokeyNet, mSN = Multimodal SmokeyNet with weather data, mSN-RW = Multimodal SmokeyNet
with random vectors of weather data dimension drawn from a normal distribution.

TTD (min) Accuracy F1 Precision Recall
Model

Mean SD Mean SD Mean SD Mean SD Mean SD
SN 4.70 090 80.12 147 7752 239 9043 1.66 68.00 4.42
mSN-RW 4.77 0.66 7944 093 7696 120 8822 122 67.92 178

mSN 4.06 089 8048 128 78.62 207 8819 324 7120 459
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Figure 5 shows some qualitative results from the Multimodal SmokeyNet model. In
the top left image, as indicated by the red bounding box, we see that the smoke plume
is far away in the distance and in close proximity to the glare captured by the camera.
Even so, in this particular case, the Multimodal SmokeyNet model was able to detect the
smoke plume approximately 5 min after the fire started, whereas the baseline SmokeyNet
model took around 16 min to detect the smoke. The top right image in the first row shows
a very faint smoke plume in the distance. This plume can barely be spotted in a static
frame by the human eye, requiring a minimum of two consecutive frames to spot the
smoke via changes between the frames. For this scenario, Multimodal SmokeyNet correctly
classified the image, whereas baseline SmokeyNet was unable to detect the smoke plume,
even though both models take a series of two images as input, as described in Section 4.1.
Finally, the bottom image shows a nonsmoke frame from a fire sequence (i.e, this frame
does not contain any smoke) where both baseline SmokeyNet and Multimodal SmokeyNet
incorrectly classified the image as an image with smoke. As indicated by the red bounding
box, this image contains a dense layer of low-hanging clouds, which are a common source
of false positives for both models.

Figure 5. Qualitative results from baseline SmokeyNet and Multimodal SmokeyNet. (Top left) The
red BB indicates the location of the smoke plume in the distance; TTD for mSN was found to be much
smaller than that for SN. (Top right) The red BB encloses a very faint smoke plume in the image,
which mSN correctly detected. (Bottom row) The area enclosed by the red BB shows a cover of
low-hanging clouds; both SN and mSN incorrectly classified this image as containing smoke. Abbr.:
BB =bounding box; SN = Baseline SmokeyNet; mSN = Multimodal SmokeyNet; TTD = time-to-detect.

6. Discussion

Our experimental results with SmokeyNet Ensemble indicate that the simple ensemble
methods did not lead to significant performance improvement over the baseline SmokeyNet
model. The trained regression model effectively learns to give the largest weight to the
input signals obtained from the baseline SmokeyNet model. This indicates that both the
GOES and weather supplemental data are weak signals. This is reinforced by the feature
weights of the trained model, which explains the decrease in performance observed for the
model using simple (setup 5 in Table 3). Additionally, the spatial and temporal resolution of
the GOES data is very different from that of FIgLib data, and hence it is impossible to have
a one-to-one joining between the two heterogeneous sources of data, which also contributes
to GOES data being a weak signal. This is evidenced by the low F1 values observed for
both the Baseline GOES 16 and GOES 17 models (setups 2 and 3 in Table 3). For the test set,
only 656 matches of GOES-16 with FlgLib (i.e., positive GOES-16 predictions) were found,
whereas for GOES-17, 1232 matches were found. These numbers also explain the unusually
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high precision value observed for the baseline GOES-16 model. Due to all these reasons,
for Multimodal SmokeyNet, we decide to use only weather data as supplemental input.

For Multimodal SmokeyNet, our results show that both accuracy and F1, as well as
time-to-detect, improved with the use of multimodal data over the baseline model with just
camera imagery. Aggregated over eight runs, F1 improved by 1.10 on average, with the
standard deviation decreasing by 0.32. Importantly, the time-to-detect metric improved by
0.64 min, meaning that integrating weather data with camera imagery enabled the model
to detect smoke 13.6% faster on average. We also computed the standard deviation of time-
to-detect across fires (vs. across runs as shown in Table 4). The average standard deviation
across fires for the baseline SmokeyNet model is 6.2 min. In comparison, the average
standard deviation for Multimodal SmokeyNet with weather data is 5.4 min and 6.0 min
with random weather vectors. Thus, Multimodal SmokeyNet model not only reduces
the time-to-detection on average, but also offers more stability in this metric across fire
sequences. We are investigating the use of more data and more precise labels to strengthen
these results.

The models presented in this paper are general architectures for multimodal data
integration. SmokeyNet Ensemble provides an approach to integrate predictions from
multiple sources. A smoke prediction system based on an object detection model, for
example, can be easily added to the current ensemble. Multimodal SmokeyNet presents a
general deep learning architecture for incorporating additional data types. Terrain data
such as slope and aspect, and LiDAR data, for instance, can be incorporated into SmokeyNet
for more robust wildland fire smoke detection. These models are general frameworks that
can be adapted for multimodal data integration in other domains as well.

Additionally, the data preprocessing techniques in this work can be used for inte-
grating disparate data sources with different spatial and temporal resolutions for other
applications. The operations to extract sensor measurements from multiple weather sta-
tions, aggregate the values, and evaluate them with respect to a camera in order to logically
match them to the camera images temporally and spatially are not trivial. Other applica-
tions using weather data will likely find these steps to be useful. Similarly, the steps for
joining GOES data with FIgLib data will likely be useful for other applications requiring
the fusion of data sources with very different temporal and spatial scales. We discuss these
pipelines in Section 3 and detail them in Appendix A so that other researchers can apply
them to their work as needed.

Our model was trained with data centered on FlgLib. The FIgLib dataset contains
images from Southern California, mostly in and around San Diego County, and the cam-
eras are all of the same type. Since this dataset contains images from various locations
throughout San Diego County and at different times throughout the year, we believe our
approach should generalize to various scenarios with similar geography. A limitation of
the FIgLib dataset is that models trained with it may not generalize to out-of-distribution
data, i.e., data from regions that differ in character from Southern California. We will
need additional data to adapt to these geographically different regions, and additional
preprocessing techniques that normalize the data acquired from different camera types.

In future work, we plan on addressing the issue of false positives. We will investigate
methods to automate the process of identifying difficult negative samples (e.g., low clouds
touching the ground) and adding more weight to these samples for additional model
training. We are also researching ways to make use of unlabeled camera images to increase
our training data. Additionally, we observed that Multimodal SmokeyNet detected fires
faster (i.e., lower TTD) than the baseline SmokeyNet in cases where there were low lying
clouds in mountainous regions. We plan to analyze this further as future work. We
are looking to expand our dataset, incorporate other geographical locations and camera
types, and investigate approaches to make use of unlabeled data to further improve
detection performance.
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7. Conclusions

We have presented our work on extending SmokeyNet—a deep learning model
using spatiotemporal information to detect smoke from wildland fires—to multimodal
smoke detection. Multimodal SmokeyNet incorporates weather data into SmokeyNet,
and SmokeyNet Ensemble integrates camera-based predictions from baseline SmokeyNet,
GOES-based fire predictions, and weather data.

With a time-to-detect of only a few minutes, SmokeyNet can serve as an automated
early notification system, providing a useful tool in the fight against destructive wildfires.
Additionally, we will explore methods to optimize the model’s compute and memory
resource requirements. Ultimately, our goal is to embed SmokeyNet into edge devices to
enable insight at the point of decision for effective real-time wildland fire smoke detection.
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Appendix A. Data Preprocessing
Appendix A.1. Weather Data

An image from the FIgLib dataset has metadata that include the camera name (that
captured the image) and the timestamp. We obtained the historical weather data for the
images using the following procedure:

*  Using the Synoptic Weather Data API, metadata for the weather stations in the HP-
WREN, SDG&E, SCE weather networks were fetched and stored. These are weather
stations in the Southern California region.

¢ We used the camera coordinates from the HPWREN camera metadata and the weather
station coordinates to map the weather stations in a 35-mile radius to each camera.
The weather data should be those of the scene that is captured by the camera (not
the weather at the camera). We found the weather stations that were in the field of
view of the camera. This was carried out by filtering the weather stations within a
35-mile radius using the direction in which the camera was pointing (the camera name
provides this). We assumed a 180 degree field of view for the camera to filter weather
stations in the direction of the camera. The end result is a mapping of up to three
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weather stations for each camera. We chose the FIgLIb subset such that each camera
was mapped to at least one weather station.

The weather data has 23 attributes, out of which we selected the ones with under
5% missing data: air temperature, relative humidity, wind speed, wind gust, wind
direction, dew point temperature.

The weather data for the FIgLib time range (3 June 2016 to 12 July 2021) were fetched
using the Synoptic Weather Data API for each station in the camera station mapping.
Weather tends to follow certain trends based on the season, as well as based on the
hour of the day. So, for the weather data at each station, we performed Z-scoring on
the chosen weather attributes (as mentioned in Section 3.2, except wind direction (“u”
and “v”) by grouping them on the year and then on the time of the day. Then, for
each camera, we stored the weather data by performing a weighted average (based
on inverse of the distance between the camera and the weather station) over the
normalized weather data from its mapped stations. The aggregated wind direction
was obtained from first aggregating “u” and “v” and then converting it to a wind
direction using Cartesian-to-polar coordinate conversion.

The wind direction in our weather vector was relative to absolute north, but this
had to be transformed to be relative to the direction that the camera was facing. We
employed the following steps:

- If the camera is pointing to north, the wind direction is unchanged;

If the camera is pointing west, we add 90 degrees to the wind direction;

- If the camera is pointing south, we add 180 degrees to the wind direction;
—  If the camera is pointing east, we add 270 degrees to the wind direction.

After this, the wind direction was converted to its sine and cosine components. These
wind directions in degrees were replaced with these two components in all of the
following processing. Since sine and cosine are already in a [—1,1] range, these
components did not need to be normalized again.

The resulting wind vector has the following features: air temperature, dew point
temperature, relative humidity, wind speed, wind gust, sine of wind direction, and
cosine of wind direction.

For each image in our dataset, we fetched a weather vector based on the camera
and the nearest timestamp that was less than the image’s timestamp. The FIgLib
dataset contains images captured every minute, whereas the weather stations report
data every 10 min. So, we ended up having 10 images with the same weather vector,
followed by a change in the 11th image, as we had a new weather data point. To make
the weather transition smoother, we performed linear interpolation on the weather
data. We considered the difference between weather data in the 1st and 11th image and
then updated the weather vectors from the 2nd to the 10th image. This is guaranteed
to work for a maximum of 71 of the 81 images (which corresponds to the 81 min) of
a fire excerpt. For the last 10 images, we additionally fetched the next weather data
point after the timestamp of the last image and used it to perform the interpolation.
Thus, we ended up with a weather vector for all images in our chosen FIgLib subset.

Appendix A.2. Satellite Data

The Wildfire Automated Biomass Burning Algorithm (WFABBA) system uses a heuris-

tic algorithm that uses satellite images to identify possible locations of fires. Data files
generated by this algorithm are parsed to extract information such as the latitude-longitude
of the detected fire. These data are fetched for two satellites: GOES-16 and GOES-17. The
consolidated WFABBA data from both satellites are then joined with SmokeyNet predic-
tions, as follows:

The FIgLib dataset consists of camera metadata, input images, and details about the
captured fire (such as timestamp). Predictions from SmokeyNet are added to these
data. This forms the input dataframe.
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*  GOES data are consolidated into another dataframe after parsing the WFABBA files.
The dataframe consists of the following columns, which were used to join GOES data
with the FIgLib data:

- Timestamp: Represents the time of detection.
-  Latitude: Latitude value of location of fire detection.
- Longitude: Longitude value of location of fire detection.

* A separate dataframe is created for both GOES-16 and GOES-17 data. Additional
details about the above data fields and how they are calculated can be found in [38].

Appendix A.3. Data Fusion: GOES with FIgLib
The following describes the algorithm used to join GOES data with FIgLib:

e Timestamps (representing when the image was captured) in the input dataframe are
rounded to the closest minute in the future.

*  Next, a set of unique cameras is fetched from the input dataframe. Cameras that do
not have associated viewing directions (north, south, east, west) are excluded from
this set.

e  Por every unique camera:

- Using latitude-longitude information from camera metadata, only GOES detec-
tions that are within 35 miles of the camera are retained in the GOES dataframes.

- Next, we check if the GOES detections are in the viewing direction of the camera.
If not, they are removed from the GOES dataframes.

—  For every row in the input dataframe, if a GOES detection (earliest in case of
multiple) is found such that the GOES-timestamp is within a 20 min window
around the input-timestamp, that GOES row is joined with the input data row
along with a GOES prediction value of 1 (indicating the presence of smoke). This
is performed for both GOES-16 and GOES-17 data. If no GOES match is found,
then the GOES prediction is set to 0.

e These data, generated per camera, are consolidated into a single dataframe that forms
the satellite data input for the models.
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