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TerrainMesh: Metric-Semantic Terrain
Reconstruction From Aerial Images

Using Joint 2-D-3-D Learning
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Abstract—This article considers outdoor terrain mapping us-
ing RGB images obtained from an aerial vehicle. While feature-
based localization and mapping techniques deliver real-time vehicle
odometry and sparse keypoint depth reconstruction, a dense model
of the environment geometry and semantics (vegetation, buildings,
etc.) is usually recovered offline with significant computation and
storage. This article develops a joint 2-D-3-D learning approach to
reconstruct a local metric-semantic mesh at each camera keyframe
maintained by a visual odometry algorithm. Given the estimated
camera trajectory, the local meshes can be assembled into a global
environment model to capture the terrain topology and seman-
tics during online operation. A local mesh is reconstructed using
an initialization and refinement stage. In the initialization stage,
we estimate the mesh vertex elevation by solving a least squares
problem relating the vertex barycentric coordinates to the sparse
keypoint depth measurements. In the refinement stage, we associate
2-D image and semantic features with the 3-D mesh vertices using
camera projection and apply graph convolution to refine the mesh
vertex spatial coordinates and semantic features based on joint 2-D
and 3-D supervision. Quantitative and qualitative evaluation using
real aerial images show the potential of our method to support
environmental monitoring and surveillance applications.

Index Terms—Aerial systems: Perception and autonomy, graph
convolution for mesh reconstruction, mapping, semantic scene
understanding.

I. INTRODUCTION

R ECENT advances in sensing, computation, storage, and
communication hardware have set the stage for mobile

robot systems to impact environmental monitoring, security and
surveillance, agriculture, and many other applications. Con-
structing terrain maps onboard an unmanned aerial vehicle
(UAV) using online sensor measurements provides critical sit-
uational awareness in such applications. This article considers
the problem of building a metric-semantic terrain model, rep-
resented as a triangular mesh, of an outdoor environment using
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Fig. 1. This article develops a method using aerial RGB images and sparse
depth measurements (top-left) to reconstruct a semantic mesh of an outdoor
terrain. The color, elevation, and semantics of the mesh are visualized in the
top-right, bottom-left, and bottom-right plots.

a sequence of overhead RGB images obtained onboard a UAV.
Fig. 1 shows an example input and mesh reconstruction. We
assume that the UAV is running a localization algorithm, based
on visual-inertial odometry (VIO) [1] or simultaneous local-
ization and mapping (SLAM) [2], which estimates its camera
pose and the depths of a sparse set of tracked image keypoints.
However, range sensors and, hence, dense depth information
are not available during outdoor flight. One approach for terrain
mapping is to recover depth images at each camera view using
dense stereo matching, fuse them to generate a point cloud,
and triangulate a mesh surface. While specialized sensors and
algorithms exist for real-time dense stereo matching, they are re-
stricted to a limited depth range, much smaller than the distances
commonly present in aerial images. Moreover, due to limited
depth variation, the recovered point cloud might not be suffi-
ciently dense for accurate mesh reconstruction. Recently, depth
completion methods [3], [4] using deep learning have shown
promising performance on indoor [5] and outdoor datasets [6].
However, aerial images are different from ground RGBD images
used to train these models. Due to the limited availability of
aerial image datasets for supervision, learning-based methods
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have not yet been widely adopted for outdoor terrain mapping.
Recently, there has also been increasing interest in supplement-
ing geometric reconstruction with semantic information because
many robotics tasks require semantic understanding. However,
few algorithms exist for joint metric-semantic reconstruction.
Most works treat semantic classification as a postprocessing
step, decoupling it from 3-D geometric reconstruction.

This article is an extension of our 2021 IEEE ICRA confer-
ence paper [7] on mesh reconstruction from aerial RGB images
with sparse depth measurements. We propose a joint 2-D-3-D
learning method for metric-semantic mesh reconstruction using
a novel coarse-to-fine strategy, composed of mesh initialization
and mesh refinement stages. In the initialization stage, we use
only the sparse depth measurements to fit a coarse mesh sur-
face. In the refinement stage, we extract deep convolutional
2-D image features and associate them with the initial mesh
3-D vertices through perspective projection. The mesh is sub-
sequently refined using a graph convolution model to predict
both spatial coordinates and semantic features residuals of the
vertices. We conduct extensive evaluation on simulated and real
aerial datasets. The proposed mesh reconstruction method can
be combined with any feature-based SLAM algorithm [8] to fuse
local keyframe meshes into a consistent global terrain model.

The main contribution of the journal compared with the
conference is the introduction and association of semantic seg-
mentation with the mesh vertices, interpolation and projection
techniques to obtain dense semantic features over the whole
mesh, and graph convolution network (GCN) optimization with
a joint geometric-semantic loss function to optimize the mesh
vertices and semantic features. We demonstrate empirically that
the joint geometric-semantic training can outperform the earlier
geometric-only method proposed in the conference paper. We
also derive a closed-form mesh initialization method, which
is more accurate and efficient than the one in the conference
paper, as well as an explicit mesh merging method to combine
multiview mesh reconstruction into a single consistent global
mesh of the environment. In summary, the contributions of this
article are summarized as follows.

1) We introduce a joint 2-D-3-D loss function, utilizing
differentiable mesh rendering, for metric-semantic mesh
reconstruction.

2) We develop a two-stage coarse-to-fine mesh reconstruc-
tion approach, using a closed-form mesh vertex initializa-
tion from sparse depth measurements and a GCN mesh
vertex refinement from RGB, sparse depth measurements,
and semantic image features.

3) We evaluate our metric-semantic mesh reconstruction
algorithm on synthetic and photo-realistic aerial image
datasets.

II. RELATED WORK

A. Depth Completion

Predicting depth from monocular RGB images allows single-
camera perception systems to recover 3-D environment struc-
ture [9], [10]. However, dense depth estimation from monocular
images may be challenging, especially for aerial images, where

the depth variation is small compared with the absolute depth
values. In contrast, the depth of sparse visual keypoints may
be obtained efficiently and accurately using triangulation [11]
between tracked feature points from Kanade–Lucas–Tomasi
tracking [12] or visual feature matching [13].

Depth completion is the task of reconstructing a dense depth
image from an RGB image with given sparse depth estimates.
The authors in [3] and [14] developed a deep network for depth
completion that passes the sparse depth and RGB image inputs
through convolution layers, ResNet encoder layers, transposed
convolution decoder layers, and a 1×1 convolution filter. The
model is trained either with supervision from ground-truth depth
images or via photometric error self-supervision from calibrated
RGB image pairs. Instead of consuming sparse depth images
directly, Chen et al. [15] preprocessed sparse depth images by
generating a Euclidean distance transform (EDT) of the keypoint
locations and a nearest-neighbor depth fill map. The authors
proposed a multiscale deep network that treats depth completion
as residual prediction with respect to the nearest-neighbor depth
fill maps. We borrow the idea of densify the 2-D sparse depth
inputs for our model design. Chen et al. [4] design a 2-D
convolution branch to process stacked RGB and sparse depth
images and a 3-D convolution branch to process point clouds
and fuse the outputs of the two branches so that the 2-D and
3-D features are combined. Our approach also combines both
the 2-D and 3-D feature extraction phases but in the form of
mesh. CodeVIO [16] uses a conditional variational autoencoder
to encode RGB and sparse depth inputs into a latent depth code
and decode a dense depth image from the latent depth code.
The sparse depth measurements are used to perform incremen-
tal depth code updates, allowing the depth reconstruction to
be coupled with visual odometry estimation in the multi-state
constraint Kalman filter (MSCKF) filter [17]. Our method is
loosely integrated with a feature-based VIO/SLAM algorithm.

We approach depth completion using mesh reconstruction
from RGB images and sparse depth measurements. While both
dense depth completion and mesh reconstruction are challeng-
ing, a mesh model is more memory efficient than a depth image.
For example, a 512 × 512 dense depth image requires 260 000
parameters. In contrast, our approach can represent the same
region using only 1024 vertices.

B. Mesh Reconstruction

Online terrain mapping requires efficient storage and up-
dates of a 3-D surface model. However, storing dense depth
information from aerial images needs significant memory and
subsequent model reconstruction for robot objectives, such as
motion planning or environment exploration. An explicit sur-
face representation using a polygonal mesh can be quite mem-
ory and computationally efficient. Compared with sparse point
cloud models, mesh surfaces are continuous, allowing direct
integration in motion planning algorithms as well as intuitive
visualization for human operators. FLaME [18] performs varia-
tional optimization over a time-varying Delaunay graph to obtain
an inverse-depth mesh of the environment, using sparse depth
measurements from a VIO algorithm. Rosinol and Carlone [19]
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extended FLaME to optimize the mesh over dense depth image
measurements in real-time using a parallel implementation.
Rosinol et al. [20] detected vertical and horizontal planes to
regularize mesh vertices, and optimize the mesh vertices and the
camera poses using a factor graph. Voxblox [21] incrementally
builds a voxel-based truncated signed distance field and can
reconstruct a mesh as a postprocessing step using the marching
cubes algorithm [22]. Terrain Fusion [23] performs real-time
terrain mapping by generating digital surface model (DSM)
meshes at selected keyframes. The local meshes are converted
into grid-maps and merged using multiband fusion.

Recently, learning methods have emerged as a promising
approach for mesh reconstruction from limited or no 3-D in-
formation. Bloesch et al. [24] proposed a learning method to
regress the image coordinates and depth of mesh vertices in a
decoupled manner. This allows an in-plane 2-D mesh to capture
the image structure. Pixel2Mesh [25] treats a mesh as a graph
and applies graph convolution [26] for vertex feature extraction
and graph unpooling to subdivide the mesh for refinement.
Using differentiable mesh rendering [27], [28], the 3-D mesh
structure of an object can be learned from 2-D images [29],
[30], [31]. Mesh R-CNN [32] simultaneously detects objects and
reconstructs their 3-D mesh shape. A coarse voxel representation
is predicted first and then converted into a mesh for refinement.
Recent works [33], [34] can generate mesh reconstructions of
complete scenes, including object and human meshes and their
poses, from a single RGB image.

In contrast with many mesh reconstruction approaches, our
method uses both visual and semantic features to refine the mesh
geometry and generates mesh models with per-vertex semantic
category distributions.

C. Semantic 3-D Reconstruction

3-D reconstruction from an image sequence is a fundamental
problem in robotics and computer vision. Multi-view stereo
(MVS) [35] aims to estimate the depth at one frame using
several different frames. Classical MVS methods perform patch
matching with photometric and geometric consistency [36].
These methods generalize well although the performance can
be affected by low texture, lighting variation, and occlusion.
Recently, learning-based methods that fuse multiview learned
features across frames for depth recovery have achieved ex-
cellent performance. NeuralRecon [37] reconstructs and fuses
sparse truncated signed distance function (TSDF) volumes for
each frame incrementally using 3-D sparse convolutions and
gated recurrent units. VoRTX [38] learns to fuse multiview
frames using a transformer model and projective occupancy.
SimpleRecon [39] leverages relative poses among frames to
build a cost volume and uses a multilayer perceptron to reduce
the volume and avoid costly 3-D convolution. Learning-based
MVS [40], [41], [42], [43] can tackle challenges, such as severe
occlusion but generally labeled data is needed for training.
Recently, SLAM systems that integrate a learning-based MVS
model to obtain dense 3-D reconstruction in real-time have
been proposed [44], [45]. Besides explicit 3-D representations,
implicit representations that model 3-D structures as level sets

of distance or radiance functions have shown impressive perfor-
mance recently. Neural radiance fields (NeRF) [46] represent
the color and density field of the scene through the weights of
the neural network. For any given camera pose, an RGB and
depth image can be generated through volume rendering over the
NeRF, providing photo-realistic novel view synthesis. Another
advantage of NeRF models is that they can be trained from posed
RGB images without depth supervision. However, for any new 3-
D scene a NeRF needs to be trained from scratch, which may take
a long time. Numerous recent works have extended the NeRF
model [47], [48], [49], [50] to enable MVS pretraining, capture
high-frequency details, and apply to unbounded outdoor envi-
ronments. Instant neural graphics primitives (Instant-NGP) [51]
and Nerfstudio [52] incorporate many of the recent NeRF model
advances and offer open-source implementations.

Semantic 3-D reconstruction aims to estimate both the geo-
metric structure and semantic content of an environment from
visual observations. Extending 2-D semantic segmentation and
depth prediction to a 3-D multiview consistent semantic model
provides information that is critical for environmental monitor-
ing tasks, such as observing vegetation recovery after a wildfire
or controlling fuel build-up for fire prevention [53], or for terrain
traversablility estimation in ground–aerial robot teaming [54].
Semantic information also allows human operators to specify
tasks for mobile robots in terms of objects and concepts in
the environment model. Semantic segmentation on the 2-D
images can be back-projected onto 3-D space and multiview
information can be fused to annotate the 3-D structure [55],
[56], [57]. Besides, semantic segmentation can be directly per-
formed on the 3-D point cloud [58], [59] or the mesh [60].
Instead of treating the semantic annotation as the postprocessing
step after geometric reconstruction, researchers also investigate
on how to jointly optimize geometric and semantic accuracy.
Häne et al. [61] formulated a joint segmentation and dense
reconstruction problem on voxels and showed that appearance
likelihoods and class-specific geometric priors help each other.
Cherabier et al. [62] leveraged variational energy minimization
method for regularization to capture complex dependencies be-
tween the semantic labels and the 3-D geometry. Guo et al. [63]
jointly optimized the geometry and semantics by predicting the
implicit neural representations of the signed distance, color and
semantic field.

Our approach is most closely related to the concurrent work
on semantic mesh mapping [64]. Our formulation utilizes sparse
depths obtained from keyframe-based SLAM and emphasizes
the interaction of geometric reconstruction and semantic seg-
mentation in 3-D mesh reconstruction.

III. PROBLEM FORMULATION

Consider a UAV equipped with an RGB camera flying out-
door. Let I denote an RGB image. Obtaining dense depth images
during outdoor flight is challenging due to the large distances
and relative small variation. However, a VIO or SLAM algorithm
can track and estimate the depth of a sparse set of image feature
points. Let Ds be a sparse 2-D matrix that contains estimated
depths at the image feature locations and zeros everywhere
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else. Let D denote the dense ground-truth depth image. Let S
denote an associated ground-truth semantic segmentation image.
Assuming there are s semantic classes in total, we model S as
a tensor with the same width and height as the RGB image I,
and third channel size s. Each element Si,j ∈ [0, 1]s is a one-hot
vector with 0 s in all elements, except for a single 1 indicating
the true semantic class.

Our goal is to construct an explicit model of the camera view
using a 3-D semantic triangle mesh M := (V,C, E ,F), where
V ∈ Rn×3 are the vertex spatial coordinates, C ∈ Rn×s are the
vertex semantic features, [n] := {1, . . . , n} is the set of vertex
indices, E ⊆ [n]× [n] are the edges, and F ⊆ [n]× [n]× [n]
are the faces. Each row of the matrixC contains an unnormalized
score vector for the s classes that can be converted into a
probability distribution over the s classes using the softmax
function [65].

Problem: Given a finite set of RGB images {Ik}k and corre-
sponding sparse depth measurements {Ds

k}k, define a semantic
mesh reconstruction functionM = f(I,Ds;θ) and optimize its
parameters θ to fit the ground-truth depth {Dk}k and semantic
segmentation {Sk}k images

min
θ

∑

k

�(f(Ik,D
s
k;θ);Dk,Sk) (1)

where �(M;D,S) is a loss function measuring the error between
a 3-D semantic mesh M and a depth image D plus a semantic
image S.

The choice of loss function � is discussed in Section IV. We
develop a machine learning approach consisting of an offline
training phase and an online mesh reconstruction phase. During
training, the parameters θ are optimized using a training set
D := {Ik,Ds

k,Dk,Sk}k with known ground-truth depth im-
ages and semantic segmentation images. During testing, given
streaming RGB images I and sparse depth measurementsDs, the
optimized parameters θ∗ are used in the model f(I,Ds;θ∗) to
reconstruct the mesh vertex spatial coordinates V and semantic
features C. The mesh edges E and faces F are assumed fixed
and known, and hence, are not reconstructed by the model. For
notational simplicity, we write the output of model f directly
as the semantic mesh M = f(I,Ds;θ∗). A keyframe-based
VIO or SLAM algorithm estimates the positions p and orien-
tations R of camera keyframes as well as the depth of sparse
keypoint measurements associated with each keyframe. Our
approach estimates a local mesh M = (V,C, E ,F) at each
camera keyframe. The keyframe meshes can be converted to
a global frame (with vertex coordinates VR� + 1p�, where 1
is a n× 1 vector filled with 1) and fused to obtain a complete
consistent metric-semantic model of the environment.

IV. LOSS FUNCTIONS FOR MESH RECONSTRUCTION

We develop several loss functions to measure the consistency
between a semantic mesh M and corresponding depth image D
and semantic segmentation image S. Since our problem focuses
on optimizing the mesh, the loss function must be differentiable
with respect to the mesh vertex spatial coordinates V and

semantic features C. We keep the mesh edges E and faces F
fixed during the mesh optimization.

A loss function can be defined in the 2-D image plane by
rendering a depth image from M and comparing it with D.
The differentiable mesh renderer [28], [66] makes the 3-D mesh
rendering, e.g., from a 3-D mesh to a 2-D image, differentiable.
Therefore, we can back-propagate the loss measured on the 2-D
images to the 3-D mesh vertices. We leverage a differentiable
mesh renderer to generate a depth image ρD(M) and define a
2-D loss function

�2(M,D) := mean(|ρD(M)−D|) (2)

where mean(·) is a function taking the mean over all the valid
pixels where both D and ρD(M) have a depth value.

While �2 is a natural choice of a loss function in the image
plane, it does not emphasize two important properties for mesh
reconstruction. First, since �2 only considers a region in the
image plane where both depth images have valid information,
its minimization over M may encourage the mesh M to shrink
to cover only a smaller image region. Second, �2 does not
emphasize regions of large depth gradient variation (e.g., the
side surface of a building), which may lead to inaccurate 3-D
reconstruction. To address these limitations, we define an addi-
tional loss function in the 3-D spatial domain using two point
clouds PM and QD obtained from M and D, respectively,

�3(M,D) :=
1

2
d(PM,QD) +

1

2
d(QD,PM) (3)

where d is the asymmetric Chamfer point cloud distance [67]

d(P,Q) :=
1

|P|
∑

p∈P
min
q∈Q

‖p− q‖22. (4)

Note that squared Euclidean distance is used when calculating
the Chamfer distance. To generatePM, we sample on the faces of
M uniformly using PyTorch3-D library [66]. The loss function
is differentiable with respect to the mesh vertices because the
samples on the mesh faces can be represented as linear com-
binations of the mesh vertices using the barycentric coordinate
introduced in Section V-A. To generate QD, we may sample the
depth image D uniformly and project the samples to 3-D space
but this will not generate sufficient samples in the regions of
large depth gradient variation. Instead, we first generate a pseudo
ground-truth mesh MD by densely sampling pixel locations in
D as the mesh vertices and triangulating on the image plane to
generate faces. We then sample the surface of MD uniformly
to obtain QD. The sample number is set as 10 000.

We also define two regularization terms to measure the
smoothness of the mesh M. The first is based on the Laplacian
matrix L := G−A ∈ Rn×n of M, where G is the vertex
degree matrix and A is the adjacency matrix. We define a
vertex regularization term based on the �2,1-norm [68] of the
degree-normalized Laplacian [69] Ln = G−1L = In −G−1A
where In is an identity matrix of size n× n

�V(M) :=
1

n
‖LnV‖2,1 (5)
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where n is the number of vertices. We also introduce a mesh
edge regularization term to discourage long edges in the mesh

�E(M) :=
1

|E|
∑

(i,j)∈E
‖vi − vj‖2 (6)

where vi ∈ R3 are the coordinates of the ith mesh vertex.
We also define a semantic loss function that relates the 3-D

mesh semantic information to the 2-D semantic segmentation
image by rendering the semantic mesh similar to (2). We define
a differentiable semantic rendering function ρS(M), which can
generate a same-sized image asSwith s channels, where s is the
number of semantic classes. At each pixel, the s-dimensional
vector stores the unnormalized scores representing the likeli-
hoods of the s classes. We use a softmax function [65] σi(x) =
exp(xi)/

∑s
j=1 exp(xj) to compute the probability distribution

over the s classes σ(ρS(M)). For the semantic segmentation
task, we choose the Dice loss [70]

�S(M,S) := − 2|σ(ρS(M)) · S|
|σ(ρS(M))|+ |S| (7)

where | · | sums up all the absolute values of the elements. Note
thatS contains one-hot vectors whereasσ(ρS(M)) stores proba-
bility vectors for the s classes. Therefore, |σ(ρS(M)) · S| is the
probabilistic intersection between two semantic segmentation
images. In Section VI-G, we compare the Dice loss with three
alternative semantic loss functions (cross-entropy loss, focal
loss, and Jaccard loss). Finally, we apply Laplacian smoothing
(5) to the vertex semantic features

�C(M) :=
1

n
‖LnC‖2,1 . (8)

The complete loss function is:

�(M,D,S) := w2�2(M,D) + w3�3(M,D)

+ wV�V(M) + wE�E(M)

+ wS�S(M,S) + wC�C(M) (9)

where the first two terms evaluate the error between M and
D, the following two terms encourage smoothness of the mesh
structure, and the last two terms evaluate the error between M
and S and regularize the semantic features, which affects both
the geometric and semantic properties of the mesh. The scalars
w2, w3, wV, wE , wS, wC ∈ R≥0 allow appropriate weighting of
the different terms in (9). Fig. 2 illustrates the loss functions �2
in (2), �3 in (3), and �S in (7).

V. 2-D-3-D LEARNING FOR SEMANTIC MESH

RECONSTRUCTION

Inspired by depth completion techniques, we approach mesh
reconstruction in two stages: initialization and refinement. In the
initialization stage, we generate a mesh from the sparse depth
measurements alone (Section V-A). In the refinement stage, we
optimize the mesh vertex coordinates based on RGB image fea-
tures (Section V-B) and assign semantic categories to each vertex
using image segmentation features (Section V-C). An overview
of our semantic mesh reconstruction model M = f(I,Ds;θ) is
shown in Fig. 3.

Fig. 2. Loss function visualization: �2 compares rendered mesh depthρD(M)
to a depth image D, �3 compares a mesh M to an elevated mesh MD obtained
from a depth image, and �S compares a rendered mesh semantic image ρS(M)
to a semantic segmentation image S.

A. Mesh Initialization

Outdoor terrain structure can be viewed as a 2.5-D surface
with height variation. Hence, we initialize a flat mesh surface
and change the surface elevation based on the sparse depth
measurements. The flat mesh is initialized with regular-grid
vertices (n = 1024 in our experiments) over the image plane,
and the edges and the faces connecting the vertices. See Fig. 4 for
an illustration. Subsequently, our mesh reconstruction approach
only optimizes the mesh vertices and keeps the edge and face
topology fixed. The initialized mesh Mint = (V∗,0) is used as
an input to the mesh refinement stage, described in Section V-B
and V-C. Since we do not update E and F , we will omit them
for simplicity.

We constrain the mesh vertex deformation to the z-axis to
change the vertex heights only. The coordinates of the ith vertex
of the flat mesh, vi = [vxi , v

y
i , 1], are divided by a scalar inverse

depth λi to obtain the ith vertex coordinates [vxi /λi, v
y
i /λi, 1/λi]

of the initialized mesh. We concatenate λi to obtain a vector
λ ∈ Rn of all vertex inverse depths.

Any point p on the mesh surface that lies in a specific triangle
can be represented as a convex combination p = bivi + bjvj +
bkvk of the triangle vertices vi,vj ,vk with weights bi, bj , bk ∈
[0, 1], such that bi + bj + bk = 1. The vector [bi, bj , bk]

� is
called the barycentric coordinates of p. We use barycentric
coordinates to relate the sparse depth measurements Ds to
the vertex inverse depths λ, which is equivalent to a linear
interpolation.

Let the valid measurements in the sparse depth image Ds

be {(i, j),Ds
ij}, where (i, j) are the pixel coordinates and Ds

ij
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Fig. 3. Overview of our mesh reconstruction architecture. In the initialization stage (Section V-A), we use sparse depth to elevate a flat mesh from the image
plane to 3-D space (Fig. 4). In the refinement stage (Section V-B and V-C), we first combine the RGB image, a depth image rendered from the initial mesh, and
a EDT of the sparse depth measurements to extract features using a 2-D feature extractor. We have a 2-D semantic segmentation model to generate 2-D semantic
features from the RGB image. The 2-D features and the 2-D semantic features are associated with the mesh vertices using camera projection at different stages
(Figs. 5 and 6). The vertex spatial coordinates and the vertex semantic features, are regressed using GCN over the mesh. The refined output is a metric-semantic
mesh (Fig. 7). The 2-D feature extractor and GCN parameters are optimized jointly using the loss function in Section IV. The 2-D semantic segmentation model
is trained separately.

Fig. 4. Mesh initialization stage (Section V-A). Left: Sparse depth measure-
ments (color dots) are used to determine vertex heights from a flat image-plane
mesh (bottom wireframe). Right: Initialized mesh. Colors indicate elevation.

are the corresponding depth measurements. Each pixel (i, j)
falls within one triangle of the flat 2-D mesh (see Fig. 4). Let
bij ∈ Rn be the barycentric coordinates of pixel (i, j), where at
most three elements of bij , corresponding to the three triangle
vertices, are nonzero. The inverse depth 1/Ds

ij is related to the
vertex inverse depths λ through the barycentric coordinates [71],
b�
ijλ = 1/Ds

ij . Stacking these equations for all valid pixels (i, j)
in Ds, we obtain

Bλ = ρ (10)

where ρ is a vector of the valid inverse depth measurements in
Ds with elements 1/Ds

ij . Using Laplacian regularization as in
(5), we formulate a least-squares problem in λ

λ∗ = argmin
λ

(‖Bλ − ρ‖22 + w′
V‖Lnλ‖22

)
. (11)

The problem in (11) has a closed-form solution

λ∗ = (B�B+ w′
VL�

nLn)
−1B�ρ. (12)

The regularization term, not only makes the initialized mesh
smoother, but also guarantees that the solution exists even when
the number of sparse depth measurements is smaller than the
number of mesh vertices. Since the 2-D mesh projection and Ln

are predefined, the problem can be solved very efficiently, e.g.,
in less than 0.1 s for a mesh with 1024 vertices. Given λ∗, we
obtain an initialized mesh Mint with each vertex coordinate as
[vxi /λ

∗
i , v

y
i /λ

∗
i , 1/λ

∗
i ].

B. Geometric Mesh Refinement

Initialization using the sparse depth measurements only pro-
vides a reasonable mesh reconstruction but many details are
missing. In the geometric refinement stage, we use a learning
approach to extract features from both the 2-D image and 3-D
initial mesh and regress mesh vertex spatial coordinate residuals.
The ground-truth depth maps are used for supervision.

The photometric image information is useful for mesh re-
finement since man-made objects have sharp vertical surfaces,
while natural terrain has noisy but limited depth variation. The
sparse depth measurements also provide information about areas
with large intensity variation. Inspired by Mesh R-CNN [32],
we design a network that extracts features from the 2-D image,
associates them with the 3-D vertices of the initial mesh, and
uses them to refine the vertex spatial coordinates. Our network
has three stages: Feature extraction, vertex-image feature asso-
ciation, and vertex graph convolution.

Feature Extraction: We extract features from three sources:
the RGB image I, the rendered depth ρD(Mint) from the initial
mesh, and a EDT E(Ds) of the sparse depth measurements
in the 2-D image space, obtained by computing the Euclidean
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Fig. 5. Illustration of image feature to mesh vertex association. With known
camera intrinsics, each mesh vertex can be projected in UV coordinates (range
[0, 1]) onto the image plane. Bilinear interpolation is used to associate image
feature maps at different resolutions with the mesh vertices. The features across
different resolutions are concatenated to form a composite vertex feature.

distance to the closest valid depth measurement pixel from each
pixel coordinate. The three images are concatenated to form a
5-channel input [3-channels in I, 1-channel in each ρD(Mint)
and E(Ds)]

F2D = concat(I, ρD(Mint),E(Ds)). (13)

Four layers of features with different resolution and channels
are extracted

[L1,L2,L3,L4] = φres(F2D;θ2D) (14)

where φres is a ResNet model [72] with parameters θ2D.
Vertex-Image Feature Association: Next, we construct 3-D

features for the mesh vertices by projecting each vertex to the
image plane and interpolating the 2-D image features. This idea
is inspired by Pixel2Mesh [25], which projects mesh vertices
onto the image plane and extracts features at the projected
coordinates. To obtain multiscale features, we associate the
projected mesh vertices with the intermediate layer feature maps
[L1,L2,L3,L4] from (14). The vertex–image association step
is illustrated in Fig. 5. All features corresponding to different
channels are concatenated to form composite vertex features.
We define associate(·, ·) as the function that assigns 2-D features
to 3-D mesh vertices

Vgin = associate(M, φres(F2D)) (15)

where Vgin ∈ Rn×(l1+l2+l3+l4) are the vertex features and li is
the number of channels in feature map Li.

Vertex Graph Convolution: After the feature assignment, the
mesh can be viewed as a graph with vertex features Vgin . Using
the vertex features, a GCN [26], [32] is a suitable architecture
to predict coordinate deformation ΔV for the vertex spatial
coordinates to optimize the agreement between the refined mesh
Mref = (V +ΔV) and the ground-truth depth D according to
the loss in (9). To capture a larger region of feature influence, we

Fig. 6. 2-D semantic segmentation feature map (top left) is used to generate
semantic features for the 3-D elevation mesh vertices (bottom left). Each mesh
vertex is projected to the semantic segmentation feature map to retrieve an
associated semantic feature (top right). Dense semantic features over the whole
mesh can be obtained by interpolation on the mesh faces (bottom right).

use three layers of graph convolution gV1 , gV2 , gV3 , as follows:

Vin
1 = ReLU(WV

1 Vgin)

Vin
i = Vout

i−1, i = 2, 3

Vout
i = ReLU(gVi ([Vin

i ;V];θgVi)), i = 1, 2, 3

ΔV = WV
2 [Vout

3 ;V] (16)

where ΔV ∈ Rn×3 is the matrix of spatial coordinate residuals,
WV

1 and WV
2 are weight matrices of the linear layers, θgVi

are the graph convolution layer weights, and ReLU is the recti-
fied linear unit activation function ReLU(x) = max(0, x). The
trainable parameters for vertex graph convolution are θ3DV =
[WV

1 ;WV
2 ;θgV1;θgV2;θgV3]. It is possible to concatenate

more stages of vertex–image feature association and graph con-
volution. At stage i, the previous stage’s refined mesh Mref

i−1

is set as the initial mesh Mint
i and new vertex features are

extracted via vertex–image feature association and fed to new
graph convolution layers. All refined meshes at different stages
are evaluated using the ground-truth depth map D using the loss
functions defined in (9).

C. Semantic Mesh Reconstruction

To further enrich the environment representation, we intro-
duce semantic information in the mesh reconstruction. By as-
signing per-vertex semantic features C, we can interpolate the
semantic information over the whole mesh using barycentric
coordinates (see Fig. 6). To obtain a 2-D semantic segmentation
image from the mesh, we use the differentiable semantic ren-
derer ρS introduced in (7). Both the vertex spatial coordinates V
and the semantic featuresC can affect the rendered 2-D semantic
segmentation image ρS(M). Hence, by optimizing the semantic
loss in (7), we can refine both the semantic features and the
geometric structure of the mesh.
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Fig. 7. Mesh refinement stage: Mesh vertex spatial coordinates are refined to V+ΔV using graph convolution based on the RGB image features. Then, the
semantic features C of the mesh vertices are initialized by projecting the vertices to the image plane and associating them with 2-D semantic segmentation features.
Finally, the vertex semantic features are refined to be C+ΔC using graph convolution.

We first obtain 2-D semantic segmentation features
φdeep(I;θ2Dsem) from the RGB image I using the DeepLabv3
model [73] with parameters θ2Dsem. Then, we associate the mesh
vertices to the 2-D semantic feature map to get initial mesh vertex
semantic features

C = associate(M, φdeep(I)). (17)

Fig. 6 illustrates the mesh vertex association with respect to the
2-D semantic segmentation features. In the semantic refinement
stage, we regress a semantic residual ΔC for the semantic
features. We use three layers of graph convolution gC1 , gC2 , gC3 .
We also use the Vgin extracted from ResNet in (15) as an input
to the first graph convolution layer. In addition, we concatenate
the initial mesh vertex semantic features C in (17) to the graph
convolution input

Cin
1 = ReLU(WC

1 Vgin)

Cin
i = Cout

i−1, i = 2, 3

Cout
i = ReLU(gCi ([Cin

i ;V;C];θgCi)), i = 1, 2, 3

ΔC = WC
2 [Cout

3 ;V;C] (18)

where ΔC ∈ Rn×s is the matrix of semantic residuals and
WC

1 and WC
2 are two matrices as linear layers. The trainable

parameters for vertex semantic graph convolution are θ3DC =
[WC

1 ;WC
2 ;θgC1;θgC2;θgC3].

Now we can perform the joint geometric and semantic refine-
ment. All trainable parameters for the 3-D graph convolution
are θ3D = [θ3DV;θ3DC]. An illustration of the joint geometric
and semantic refinement is provided in Fig. 7. For the initial
mesh M(V,0), we first estimate the geometric residuals ΔV
(16) from Section V-B. On the geometrically refined mesh
M(V +ΔV,0), we initialize the semantic features as in (17) to
get M(V +ΔV,C). Then, we estimate the semantic residuals
ΔC (18). The final joint geometric and semantic refined mesh
is Mref = (V +ΔV,C+ΔC).

D. Global Mesh Merging

Given semantically annotated meshes obtained by our model
from each camera view, a global mesh of the whole environment
can be obtained by transforming each local mesh to the global

frame using the camera pose trajectory and merging it into a
combined global mesh. We design an approach to incrementally
merge local meshes into a global mesh. Given a new local mesh
obtained from a camera view with a known pose and the current
global mesh, we update the global mesh by merging information
from the local mesh.

First, we refine the global mesh vertices. We transform the
global mesh to the local camera frame and project it onto the
2-D image plane. If the resulting 2-D global mesh covers an
area over a certain threshold (e.g., 70%), we regard the local
frame as duplicate and proceed to the next frame. Otherwise, we
determine the overlapping parts between the 2-D projections of
the global and local meshes. We choose the vertices of the over-
lapped global mesh as a source point cloud and sample a point
cloud from the overlapped local mesh vertices as a target point
cloud. We perform nonrigid point cloud registration between
the source and target point cloud using the coherent point drift
(CPD) algorithm [74]. Through this nonrigid transformation, we
deform and refine the global mesh geometry based on the local
mesh information.

Second, we introduce new vertices and faces into the global
mesh from the nonoverlapping region of the local mesh. We
remove the faces of the local mesh that overlap with the global
mesh projection on the image plane. Through this step, we
decouple the global mesh and the local mesh because their
2-D projections do not intersect with each other any longer. We
perform 2-D constrained Delaunay triangulation [75] over the
global and local mesh projections, keeping the edges of existing
triangles in tact. Through this step, we connect the global mesh
and the local mesh to obtain a new global mesh, which is lifted
back to 3-D using the vertex depth values and the known camera
pose.

Figs. 8 and 9 demonstrate the mesh merging process, which
results in a single consistent global mesh and removes artifacts,
such as double layers in naïve mesh merging.

VI. EXPERIMENTS

In this section, we evaluate our metric-semantic mesh
reconstruction approach using aerial image sequences generated
from three open-source 3-D datasets: WHU MVS/Stereo [76],
SensatUrban [58], and STPLS3D [77]. We evaluate the model
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Fig. 8. Red: Global mesh. Blue: Local mesh. Yellow: New edges after merging.
Left: The refined global mesh overlaps with the local mesh. Right: The global
and the local meshes are separated by removing overlapping faces and a new
global mesh is generated via 2-D constrained Delaunay triangulation.

Fig. 9. Left: Stacking two local meshes directly. Right: Merging two meshes
with our proposed method in Section V-D.

Fig. 10. Left: Camera trajectory used to render RGBD images from a point
cloud model generated from the SensatUrban dataset [58]. Right: Sparse depth
points and camera poses estimated by ORB-SLAM3 [8]. The color indicates
elevation.

generalization ability by training and testing on different
datasets. Ablation studies are included to show the effectiveness
of our choices in the model design.

A. Datasets

Our mesh reconstruction approach requires ground-truth
depth and semantic segmentation data for supervised training,
which are generally not available and challenging to obtain from
RGB aerial images. We used photo-realistic point cloud models
covering several km2 reconstructed from real aerial images in
WHU MVS/Stereo and SensatUrban dataset to render RGB,
depth, and semantic segmentation images. This provides accu-
rate depth and semantic supervision data, while keeping the RGB
images realistic, which is important for real-world applications
of our model. We also use data from the synthetic STPLS3D
dataset, which has more variation in the scene layout and the tex-
ture. We divide the large point cloud models in each dataset into
different regions and generate different image sequences over
them. Each camera trajectory follows a sweeping grid-pattern,
which is common in drone flight planning (see Fig. 10). The
camera trajectories are chosen to ensure enough image overlap
for tracking and sparse depth reconstruction. RGBD images with

resolution 512 × 512 are rendered along the trajectory from
the ground-truth point cloud using PyTorch3D [66]. We keep
the RGB aerial image resolution at around 0.2 m/pixel. When
semantic labels are available in the point cloud model, we also
render semantic segmentation images with the same size as
the RGBD images. All the data sequences are available in the
Supplementary Material.

WHU: The WHU MVS/Stereo dataset [76] provides geo-
calibrated RGBD images rendered from a highly accurate 3-D
DSM of a 6.7 × 2.2 km2 area over Meitan County, Guizhou
Province, China. The 3-D DSM model is not publicly available,
so we recover a dense point cloud from the RGBD images as a
ground-truth 3-D model. Semantic labels are also not available in
this dataset so we only perform geometric reconstruction using
the WHU dataset. We obtain sparse depth measurements Ds

for each image by applying OpenSfM [78] to its four neighbor
images with known camera intrinsic and extrinsic parameters.
Since monocular structure from motion (SfM) suffers from scale
ambiguity, we rescale the reconstructed point cloud obtained
from OpenSfM to align it with the real 3-D model. In reality the
scale can be recovered from other sensor measurements, such
as global positioning system (GPS) or inertial measurement unit
(IMU). The point features reconstructed by OpenSfM are treated
as sparse noisy depth measurements. The noise is due to feature
detection and matching as well as the bundle adjustment step.
We also obtain noiseless depth measurements with the same
2-D sparsity pattern from the ground-truth depth images D. We
vary the number of available sparse depth measurements as 500,
1000, and 2000. We generate 20 camera trajectory sequences
with 200 images in each sequence, split into 14 for training, two
for validation, and four for testing.

SensatUrban: The SensatUrban dataset [58] is a point cloud
dataset obtained using photogrammetry in two urban areas in
Birmingham and Cambridge, U.K.. Each 3-D point in the dataset
is labeled as one of 13 semantic classes. The Birmingham region
covers an area of 1.2 km2. The Cambridge region covers an area
of 3.2 km2. We only use the training set part of the data in which
point cloud semantic labels are available. We keep four semantic
categories (ground, vegetation, building, and traffic road) and
merge or discard the remaining less-frequent categories. We
used monocular ORB-SLAM3 [8] to estimate the camera poses
and sparse feature depths on the SensatUrban dataset. Compared
with OpenSfM, ORB-SLAM3 performs sequential optimization
of the image sequences, instead of looping over all the images to
find matching pairs. As a result, it runs faster (1–10 Hz) and may
be deployed on an aerial robot directly. We use ORB-SLAM3
in order to ensure that our method can operate incrementally in
time and handle pose and sparse depth estimation errors typical
for online SLAM algorithms. We also rescale the reconstructed
point cloud and camera poses to align with the real 3-D model.
Finally, we project the point cloud to each camera frame to
derive a sparse depth image. We vary the number of available
sparse depth measurements as 500, 1000, 2000, and 4000. We
generate 13 camera trajectory sequences with 660 images in
each sequence, split into eight for training, two for validation,
and three for testing.
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STPLS3D: The STPLS3D dataset [77] is a richly-annotated
synthetic 3-D aerial photogrammetry point cloud dataset with
more than 16 km2 of landscapes and up to 18 fine-grained seman-
tic category annotations. To ensure the object placements in the
virtual environments resemble real city blocks, the environments
are built based on geographic information system data that are
publicly available. We use the same four semantic categories as
for the SensatUrban dataset. We generated 38 camera trajectory
sequences with 660 images in each sequence, split into 26
for training, four for validation, and eight for testing. Camera
keyframe poses and sparse depth measurements were estimated
using ORB-SLAM3.

B. Implementation Details

During training, we use 1000 sparse depth measurements per
image and generate a mesh model with 576/1024/2025 vertices.
For the WHU dataset, the weights of the loss function in (9) are
set to [w2, w3, wV, wE , wS, wC] = [3, 1, 0.5, 0.01, 0, 0]. For the
SensatUrban and the STPLS3D dataset, the weights are set to
[w2, w3, wV, wE , wS, wC] = [5, 1, 0.5, 0.01, 5, 0.5] for the joint
geometric-semantic training (Section V-C). For the geometric
training (Section V-B), the last two weights are set to be 0. The
loss weights are decided through evaluation on the validation
set. We use the 2-D loss �2 in (2) as the metric to choose the best
model on the validation set. The Chamfer distance d in the �3
loss (3) is computed using 10 000 samples.

For the WHU experiments in Section VI-C, we use ResNet-18
for the 2-D feature extraction. For the remaining ones including
the generalization experiments, we use ResNet-34. The ResNet
is initialized with the pretrained weights on ImageNet-1K.
The ResNet and GCN parameters of our model are optimized
jointly during the mesh refinement training using the Adam
optimizer [79] with initial learning rate of 0.0005 for 100 epochs.
For the semantic reconstruction task, we first train a DeepLabv3
model with ResNet-50 backbone [73] alone for 2-D semantic
segmentation on the SensatUrban training set. The ResNet-50
is initialized with the pretrained weights on ImageNet-1K. We
use the cross entropy loss for training and set the class weight
as [ground, vegetation, building, traffic road] = [1, 2, 3, 3].
During the mesh semantic refinement step, we use the Dice loss
in (7) and keep the same per-class weights. We use three graph
convolution stages for the WHU dataset and two graph convolu-
tion stages for the SensatUrban and the STPLS3D dataset. For
the joint geometric-semantic training, we concatenate two graph
convolution stages, where the first stage predicts the geometric
residual only and the second stage predicts both the geometric
and the semantic residuals. All trainable parameters of the model
in (1) are θ = [θ2D;θ2Dsem;θ3D], including the parameters of the
2-D features extraction, 2-D semantic segmentation, and 3-D
graph convolution models.

C. Geometric Reconstruction

Our experiments report the �2 error in (2) and the �3 error
in (3) for the reconstructed meshes. The �2 error emphasizes
the accuracy of the projected depth, whereas �3 emphasizes the
regions of large depth variation.

For comparison, we define a baseline method that triangulates
the sparse depth measurements directly to build a mesh. The
baseline method performs Delaunay triangulation on the 2-D
image plane over the depth measurements and projects the flat
mesh to 3-D using the measured vertex depths. We refer to the
baseline method as sparse-depth-triangulation (SD-tri). SD-tri
defines vertices at all sparse depth measurements (500, 1000, or
2000) and, hence, may produce meshes with different number
of vertices compared with other models.

First, we perform geometric reconstruction on the WHU
dataset. The quantitative results from the comparison are re-
ported in Table I. All models are trained with 1000 sparse depth
measurements and directly generalize to different numbers of
sparse depth measurements. We compared three options for the
2-D inputs provided to the mesh refinement stage: An RGB
image only (RGB and 3-channels), an RGB image plus rendered
depth (RD) from the initial mesh (RGB+RD and 4-channels),
and an RGB image plus RD from the initial mesh plus EDT
obtained from the sparse depth measurements (RGB+RD+EDT,
5-channels). The model using RGB-only does not perform as
well as the other two. The RGB+RD+EDT model has the best
performance according to the �2 error metric. The RGB+RD
method has similar performance in the �2 metric and smaller
�3 error compared with RGB+RD+EDT. The RGB+RD model
is used to generate our qualitative results in Figs. 11, 12, and
13 with 1024-vertex meshes because it offers good performance
according to both error metrics.

At the bottom of Table I, we evaluate the mesh reconstruction
accuracy with noisy sparse depth measurements obtained from
OpenSfM. The measurements are noisy due to feature matching
errors, local minima during bundle adjustment, and the simple
projective camera model used for optimization. The average per
image errors of the 500/1000/2000 sparse depth measurements
were 1.011/1.017/1.023 m, respectively. The baseline SD-tri
method performs well in a noiseless setting but degenerates
drastically when noise from the SfM feature reconstruction is
introduced. In contrast, our model is more robust to noise due
to two factors. First, our mesh initialization and refinement
stages both include explicit mesh regularization terms [in (5)
and (6)]. Second, the image features extracted during the mesh
refinement process help distinguish among different terrains
and structures. The latter is clear from the improved accuracy
of the refined, compared with the initialized meshes. We also
report the performance using a mesh with only 576 vertices.
When the depth measurements are noisy, the 576-vertex mesh
has lower �2 loss compared with the baseline method with
similar number of vertices. It even has lower �3 loss compared
with meshes with more vertices generated from the baseline
method.

Qualitative results are presented in Figs. 11 and 12. Com-
pared with SD-tri and initialized meshes, the refined meshes
have smoother boundaries on the side surfaces of the build-
ings. The guidance from the image features allows the refined
meshes to fit the 3-D structure better. Fig. 13 shows a global
mesh reconstruction obtained by transforming and merging 12
camera-view mesh reconstructions. The local meshes are trans-
formed to global frame using the camera keyframe poses and
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TABLE I
QUANTITATIVE EVALUATION ON THE WHU DATASET [76]

Fig. 11. Mesh reconstructions on the WHU dataset [76] visualized as RD images. The colors indicate the relative depth values. Column 1: RGB images. Column
2: Sparse depth measurements (around 1000). Column 3: Meshes reconstructed from SD-tri. Column 4: Meshes after initialization (Section V-A). Column 5:
Meshes after neural network refinement (Section V-B). Column 6: Ground-truth depth images.

Fig. 12. Reconstructed meshes painted with RGB texture and colors indicating
elevations. These are associated with the first two rows in Fig. 11. Sharp vertical
transitions of the buildings are reconstructed accurately.

no postprocessing is used to merge them into a single global
mesh.

D. Joint Geometric and Semantic Reconstruction

On the SemsatUrban dataset, we first perform geometric
reconstruction with the same settings as in the WHU dataset.

We train three models with different numbers of mesh vertices:
576 = 242, 1024 = 322, and 2025 = 452. The quantitative re-
sults are reported in Table II. As the number of sparse depth
measurements increases, the baseline SD-tri method has better
accuracy because the number of mesh vertices also increases.
Our initialized meshes with fewer vertices are comparable with
the SD-tri mesh, and the refined meshes are much better, espe-
cially according to the 3-D metric �3. This shows that the joint
2-D-3-D loss in (9) enables our model to capture 3-D structure
details. Comparing the number of input depth measurements, we
find that around 2000 measurements on the 512 × 512 image
provide the best performance, while more do not noticeably
improve the results. Regarding the number of mesh vertices,
all three mesh sizes perform well. While we can see that the
1024-vertex mesh is generally better than 576-vertex mesh,
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TABLE II
QUANTITATIVE EVALUATION ON THE SENSATURBAN DATASET

Fig. 13. Complete environment model obtained by transforming to the global
frame and merging local meshes from 12 camera views.

the 2025-vertex mesh does not show an advantage over the
1024-vertex mesh. This indicates that good accuracy can be
achieved with a light-weight storage-efficient mesh model.

We choose the 1024-vertex mesh to perform joint geometric-
semantic reconstruction using 1000 sparse depth measurements.
To evaluate the semantic reconstruction, we render a 2-D se-
mantic image from the mesh reconstruction and calculate the
per-class intersection over union (IoU). For comparison, we
report the IoU of the DeepLabv3 2-D semantic segmentation
model (named 2-D Seg), the direct projection of the 2-D seman-
tic segmentation image onto the initial mesh as in (17) (named
Geo Init) and the semantic segmentation projection onto the
geometrically-refined mesh (named Geo Refine). Only 2-D Seg
is using a dense semantic image, whereas the other methods
store semantic features on the mesh vertices and interpolate
through the semantic mesh renderer. As we can see in Table III,
our semantic residual refinement model improves the semantic
segmentation performance compared with the direct projection
of the 2-D semantic segmentation image. Our approach also
outperforms 2-D Seg on most of the categories (ground, build-
ing, traffic road) even though it is using only 0.4% of the points
to store the semantic information (1024 mesh vertices versus
512 × 512 segmentation image). Using a compact mesh with

TABLE III
SEMANTIC SEGMENTATION PER-CLASS IOU FOR DIFFERENT

GEOMETRIC-SEMANTIC MODELS

TABLE IV
GEOMETRIC ERROR FOR DIFFERENT METRIC-SEMANTIC MODELS

few vertices improves the computation and memory efficiency
but restricts the mesh from modeling small regions (e.g., small
objects, such as cars, street furniture). Our approach can capture
additional semantic categories if the number of mesh vertices
is increased, e.g., to 642 = 4096 or more, and a semantic
segmentation network capable of segmenting small regions is
used. Achieving this does not require any changes to the model
architecture but only retraining the model parameters.

Further, we investigate whether the semantic mesh refinement
affects the geometric reconstruction quality. In Table IV, we
can see that our joint geometric-semantic mesh reconstruction
achieves better geometric accuracy compared with purely ge-
ometric training. This can be explained by the fact that the
semantic category information serves as regularization for the
geometric properties. The results show that the geometric and
semantic information help each other. More qualitative results
for single-image reconstruction are provided in Figs. 14 and
15. Compared with SD-tri and initialized mesh, the refined
mesh achieves higher reconstruction accuracy. The semantic
refinement can improve the 2-D semantic segmentation results.
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Fig. 14. Mesh reconstructions on SensatUrban dataset [58] visualized as RD (colors indicate the relative depth values) and semantic images. The original 3-D
model is not fully complete so the RGB, groundtruth (GT) depth, and GT semantic may have little missing region. Column 1: RGB images. Column 2: Sparse
depth measurements (1000). Column 3: Meshes reconstructed from SD-tri. Column 4: Meshes after initialization (Section V-A). Column 5: Meshes after neural
network refinement (Section V-B). Column 6: Ground-truth depth images. Column 7: 2-D semantic segmentation results. Column 8: Meshes after neural network
refinement (Section V-C). Column 9: Ground-truth semantic segmentation maps.

Fig. 15. Reconstructed meshes painted with colors indicating elevations and
semantic labels. These are associated with the three rows in Fig. 14. Column 1:
Initialized meshes. Column 2: Refined meshes colored by elevation. Column 3:
Refined meshes colored by semantic categories.

We can see that some noisy classification labels are removed
after the refinement.

To evaluate our global mesh-merging method based on CPD
and Delaunay triangulation, we compare it with a simple stack-
ing method that transforms the same set of local meshes to the
global frame and simply treats them as a single global mesh. For
each scene, about 10% of the frames are used to generate a global
mesh. The global mesh is rendered with respect to all frames,
including ones that were not used for its construction, to com-
pute the error. Therefore, the error is larger than the per-frame
prediction evaluation. The quantitative results are reported in
Table V. The stacked global mesh has many double layers in
regions where the local meshes overlap, whereas our method

TABLE V
GEOMETRIC ERROR FOR GLOBAL MESH-MERGING METHODS

TABLE VI
GEOMETRIC ERROR ON THE STPLS3D DATASET

successfully merges the local meshes into a consistent global
mesh, which improves the reconstruction accuracy, especially
according to the 3-D Chamfer error metric. Fig. 16, shows the
reconstruction of three global metric-semantic meshes using
data from the SensatUrban dataset [58].

We also evaluated our model on the synthetic STPLS3D
dataset. We use a 1024-vertex mesh to perform geometric-only
and joint geometric-semantic reconstruction using 1000 sparse
depth measurements per image. The quantitative results are
shown in Table VI. Our joint geometric-semantic mesh recon-
struction method outperforms geometric-only mesh reconstruc-
tion, which verifies the effectiveness of fusing both geometric
and semantic information.

E. Generalization Across Datasets

In this section, we evaluate the generalization ability of our
model, trained on one dataset and applied to another. To align the
datasets, we regenerated the RGB images and the sparse depth
measurements on the WHU dataset to follow the same camera
intrinsic parameters and trajectory patterns in the SensatUrban
and the STPLS3D dataset so that there are 660 frames for each
trajectory and ORB-SLAM3 is used to estimate sparse depth
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Fig. 16. Global metric-semantic meshes reconstructed from three areas in the SensatUrban dataset [58] by fusing the local mesh reconstructions at the keyframe
camera poses (shown in blue). The three global meshes are obtained from 40/55/58 local keyframe meshes, respectively.

TABLE VII
GENERALIZATION EXPERIMENT: GEOMETRIC ERROR ON WHU

measurements and camera keyframe poses. It is challenging to
achieve zero-shot generalization, so we also include a finetuning
step. During finetuning, we only use 10% of the target domain
training set and train for 30 epochs. A validation set (10% of the
target domain validation set) is used to choose the best model
with the 2-D loss �2 as the metric. Usually, models trained on
larger datasets show better generalization ability. We choose
to use a model trained on WHU to generalize to SensatUrban
and a model trained on STPLS3D to generalize to both WHU
and SensatUrban. The average per image sparse depth errors
in meters for 1000 depth samples were 1.771 on STPLS3D,
2.460 on WHU, and 1.597 on SensatUrban. The sparse depth
measurements are generated through ORB-SLAM3.

First, we evaluate how the model trained on STPLS3D gen-
eralizes to WHU. The geometric error is reported in Table VII.
The WHU dataset is more challenging due to the presence of
denser and taller (> 30 m) buildings. The camera intrinsics and
the flight pattern and height are different compared with the data
generated in Section VI-C so the numbers in Table VII are not
directly comparable with Table I. Zero-shot generalization does
not work for WHU, which is understandable given the large
domain gap. The STPLS3D synthetic dataset uses scene layouts
extracted from a U.S. Geological Survey, which covers cities
in the United States, while the WHU dataset is collected in a
Chinese city. After finetuning with only 10% of the original
WHU training set, our model generalizes well to WHU, and
even outperforms the model trained purely on WHU.

Next, we evaluate how models trained on WHU and STPLS3D
generalize to SensatUrban. The results are presented in
Tables VIII and IX. We report only geometric error for the model
trained on WHU. We can see that zero-shot generalization from
WHU to SensatUrban improves the initialized meshes, whereas

TABLE VIII
GENERALIZATION EXPERIMENT: GEOMETRIC ERROR ON SENSATURBAN

TABLE IX
GENERALIZATION EXPERIMENT: SEMANTIC SEGMENTATION PER-CLASS IOU

ON SENSATURBAN

a finetuned model performs even better. We train a geometric-
only model and a metric-semantic model on STPLS3D. In terms
of geometric loss, both STPLS3D models generalize well to Sen-
satUrban and their performance after finetuning is close to that of
a model trained on SensatUrban. However, the metric-semantic
model is slightly worse than the pure geometric model. In terms
of semantic segmentation performance, zero-shot generalization
does not perform well and especially fails on the traffic road cat-
egory. After finetuning, the metric-semantic model can largely
close the gap between itself and the SensatUrban model. Given
that the RGB images from the synthetic scenes in STPLS3D have
very different appearance, it is understandable that the semantic
model that heavily relies on the RGB image might be harder to
generalize compared with the geometric-only model.

These experiments demonstrate promising generalization
ability of our mesh reconstruction method, using limited data
to finetune or even without finetuning in some cases. The model
generalizes better in terms of geometric reconstruction than in
terms of semantic classification. Nevertheless, it is exciting to
see that a model trained on a synthetic dataset (STPLS3D)
can generalize well to real data. This makes it possible to
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Fig. 17. Depth reconstruction comparison on the SensatUrban dataset among Sparse-to-Dense [3], COLMAP [36], Nerfacto [52], Nerfacto restricted to 1000
mesh vertices, and our method.

TABLE X
GEOMETRIC ERROR COMPARISON AMONG SPARSE-TO-DENSE [3], COLMAP [36], NERFACTO [52], AND OUR METHOD USING METRICS DEFINED IN [37]

achieve good performance by training a model with inexpensive
synthetic data that comes with free ground-truth labels and
finetuning on a small set from the target domain.

F. Comparison With Other Methods

In this section, we compare our approach with depth com-
pletion, MVS, and NeRF techniques on the SensatUrban
dataset [58] with 1000 sparse depth measurements. The qual-
itative results are shown in Fig. 17. The quantitative results
are shown in Table X. To evaluate the reconstruction quality of
the different methods comprehensively, we report multiple 2-D
and 3-D reconstruction accuracy metrics [37]. The threshold
distance for 3-D precision and recall is set to 0.5 m due to the
large scale of the reconstructed mesh.

Depth completion methods take a sparse depth image and
other inputs, such as an RGB image, and recover a dense depth
image. While there are many depth completion algorithms,
few focus on the aerial image domain. We compare against
the sparse-to-dense method [3], an end-to-end deep learning
regression model, because it considers a similar problem setting
and uses similar feature extraction as our approach. The Sparse-
to-Dense model consists of a ResNet feature extraction encoder
and per-pixel depth regression decoder. We trained both our
model and Sparse-to-Dense with a ResNet-34 feature extractor,

thus focusing the comparison on the performance of the pure
2-D learning and per-pixel depth regression of Sparse-to-Dense
versus the joint 2-D-3-D learning for mesh refinement of our
method. The results in Fig. 17 and Table X show that the
Sparse-to-Dense model is not as accurate as our method on
the SensatUrban dataset, and it is beneficial to utilize our joint
2-D-3-D learning technique. At least on this dataset, it is chal-
lenging for Sparse-to-Dense to regress an accurate dense depth
map, while, using the same 2-D feature extraction network, our
mesh initialization and refinement method performs better at
reconstructing the 3-D scene.

We also compare our method with COLMAP [36], a MVS
technique that recovers 3-D structure from a series of calibrated
images using pixelwise view selection for depth and normal
estimation. In this comparison, we used ground-truth camera
poses and skip the SfM step. For each frame, we manually
select neighboring frames within a radius of 50 m for MVS
matching. We use the reconstructed dense depth images to obtain
a global point cloud, generate a global mesh, and crop the
mesh at each camera pose to obtain local meshes associated
with each frame. For the meshing step, we compared Poisson
reconstruction [80] and Delaunay mesh reconstruction [81] and
found that due to point cloud noise the Delaunay reconstruction
performs better. The COLMAP is the dense depth estimation
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result, whereas the COLMAP Mesh is the subsequent meshing
result. For COLMAP, we convert the dense depth images to
a point cloud and sample 10 000 points to compute the �3
error. For COLMAP Mesh, we render the local mesh to get
a RD image to compute the �2 error. The results are shown
in Fig. 17 and Table X. The COLMAP method generally has
better depth reconstruction measured by �2 error, whereas our
method has lower �3 error because of the implicit regularization
in our mesh reconstruction. The 3-D error �3 can be large when
outliers appear in the reconstruction. COLMAP achieves better
reconstruction at the cost of heavy computation for the MVS
step. It takes around 4 s per frame to recover a dense depth
image using GPU, while meshing requires additional time. Our
method is much faster, with 0.07 s per frame on a desktop with
GeForce RTX 2080 Ti GPU and 0.45 s per frame on a Jetson
AGX Xavier edge computing platform. When it comes to online
mesh reconstruction on a resource-constrained platform, our
method offers an advantage over MVS.

Finally, we compare with Nerfacto [52], a NeRF model that
combines components from recent NeRF papers to achieve a
balance between speed and quality. As a NeRF model, Nerfactor
takes posed RGB images and constructs an implicit 3-D scene
represented by a deep neural network. We used ground-truth
camera poses for each image and trained separate Nerfacto
models for each test image sequences. One in ten frames was
chosen as an evaluation image during training. Notice here no
depth images are used for the NeRF training. We observed that
depth images rendered directly from the trained Nerfacto model
have inconsistent depth across frames. Therefore, we exported
a mesh model using the Poisson surface reconstruction [80]
implemented in Nerfstudio [52]. Nerfacto exports meshes with
different vertex density. A dense mesh has about 20 000 vertices
for each camera view, while a sparse mesh has about 1000, which
is similar to our method’s mesh vertex density. To compute the
2-D metrics in Table X, we RD images from the mesh. The
evalution results for Nerfacto are shown in Fig. 17 and Table X.
Qualitatively, Nerfacto has similar reconstruction accuracy with
our method but the quantitative metrics indicate that it is not as
good as our method. Furthermore, Nerfacto needs to be trained
for each novel environment and the training can hardly meet
real-time requirement, while our method can make the inference
faster.

G. Ablation Studies

Section VI-C compared the effect of using RGB, RD, and
EDT as inputs for the mesh reconstruction model. This section
reports additional ablation studies on the SensatUrban dataset.
We use a 1024-vertex mesh model and 1000 sparse depth mea-
surements for training and testing. We evaluate the effects of
mesh initialization, types of 2-D input data, and number of graph
convolution stages on the geometric mesh reconstruction accu-
racy. We also evaluate the performance effect of joint metric-
semantic training and the choice of a semantic loss function.

1) Mesh Initialization: An important aspect of our model
in Section V is the separation of the mesh initialization stage

TABLE XI
ABLATION STUDY ON GEOMETRIC RECONSTRUCTION ERROR FOR

GEOMETRIC MODELS

from the mesh refinement stage. The mesh initialization stage
allows the data-driven refinement stage to focus on learning the
mesh vertex deformation residuals instead of absolute vertex
coordinates. To demonstrate the effectiveness of this design, we
compare our model with a baseline model, which applies the re-
finement stage directly to a flat initial mesh. The baseline model,
Flat Init, deforms a flat initial mesh with vertex depth specified
by the mean of the sparse depth measurements. Table XI shows
that the Flat Init model makes the 2-D-3-D learning problem
challenging, and the model performs even worse than purely
geometric initialization as in Section V-A.

2) 2-D Input Channels: In (13), we concatenate an RGB
image I (RGB), RD ρD(Mint), and a EDT E(Ds) to form a
5-channel input image used for 2-D feature extraction. Table XI
evaluates the role of the different 2-D inputs on the overall
mesh reconstruction performance. The results indicate that the
RGB information plays the most important role in refining the
initialized mesh. The model RD+EDT that does not use RGB
features performs the worst. Adding RD and EDT inputs to the
RGB gives an additional boost to the accuracy.

3) Number of Graph Convolution Stages: Table XI also
evaluates the effect of one (1 Stage) versus two (our model)
graph convolution stages in the geometric mesh refinement
(Section V-B). The first GCN stage contributes the most to the
geometric refinement, whereas the second GCN stage further
refines the results.

4) Semantic Loss Function: Finally, we discuss the choice
of a semantic loss function �S in (7). Instead of the Dice loss in
(7), three other semantic loss functions may be considered.

1) The cross entropy loss is widely used for semantic seg-
mentation. Given two stochastic vectors α,β ∈ [0, 1]s,
the cross entropy loss is defined as

CE(α,β) = −
s∑

i=1

βi log(αi)

�S1(M,S) := mean(CE(σ(ρS(M)),S)) (19)

where CE is applied to the elements σ(ρS,ij(M)) ∈
[0, 1]s and Sij ∈ [0, 1]s of the tensors of predicted and
ground-truth semantic class probabilities.
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TABLE XII
PREDICTION TIME (S) ON DIFFERENT NVIDIA DEVICES

2) The focal loss [82] is a variation of cross entropy, focusing
on hard misclassified examples

FL(α,β) = −
∑

i

βi(1−αi) log(αi)

�S2(M,S) := mean(FL(σ(ρS(M)),S)). (20)

3) The Jaccard loss [83] measures the negative IoU between
the ground-truth and predicted semantic segmentation

�S3(M,S) := − |σ(ρS(M)) · S|
|σ(ρS(M))|+ |S| − |σ(ρS(M)) · S|

(21)
where, as in (7), | · | sums up all the absolute values of the
elements.

In Table III, we see that the Jaccard loss in (21) leads to good
segmentation performance, outperforming the Dice loss in (7)
for some categories. The cross entropy and the focal losses are
not as good. In Table IV, we see that the cross entropy and the
Jaccard loss both outperform the focal loss when considering
their effect on the geometric reconstruction accuracy. The Dice
loss leads to the best geometric reconstruction accuracy. Consid-
ering the joint geometric and semantic performance, we elected
to use the Dice loss for our final model.

H. Memory and Computation Complexity

The reconstructed mesh model is a more efficient representa-
tion than a dense depth image. A dense depth image requires
512 × 512 ≈ 0.26 M parameters, and a semantic image also
requires the same number of parameters. Our mesh model
with fixed face topology only needs storage of the 3-D vertex
coordinates and the semantic labels. With 1024 vertices, our
semantic mesh model requires only 2% of the depth and semantic
image parameters to obtain a high-fidelity reconstruction of a
camera view. Our model has about 21 M parameters (ResNet
and GCN) and takes about 3 GB GPU memory during infer-
ence. We report the inference time of our model on different
computation platforms in Table XII. The results show that our
mesh reconstruction algorithm can achieve 2 Hz on an embedded
NVIDIA Jetson AGX Xavier computer, making it applicable for
real-time deployment onboard a robot system. Regarding timing
the baseline algorithm for SD-tri, we evaluated its run-time
frequency to be at around 20 Hz on the same platform.

I. Limitations

Our 3-D metric-semantic mesh reconstruction algorithm can
run efficiently on an embedded computer but as a result the
number mesh vertices used for reconstruction is limited, which
in turn affects the geometric reconstruction accuracy. Further-
more, local meshes are generated using only a single camera

frame without multiview constraints, making it challenging to
achieve consistent mesh merging into a global model. Potential
avenues for future work that may improve the reconstruction
quality include adaptively increasing the mesh vertices depend-
ing on the image feature distribution, considering techniques,
such as deformable convolution [84] for associating the 3-D
mesh vertices with the 2-D image features, utilizing sparse depth
measurement uncertainty (e.g., keypoint covariances provided
by SLAM) for weighted interpolation during the image features
to vertex association, and improving the global mesh merging
approach with multiview constraints.

VII. CONCLUSION

This work introduces an approach for 3-D metric-semantic
mesh reconstruction from RGB image and sparse depth mea-
surements. Compared with methods that utilize only sparse
depth for mesh initialization or triangulation, our approach pro-
vides more accurate geometric reconstruction by utilizing RGB
image features. Compared with 2-D semantic segmentation
methods, our semantic reconstruction eliminates classification
inaccuracies by inferring an underlying 3-D mesh structure.
The joint metric-semantic reconstruction approach improve ge-
ometric accuracy further by utilizing semantic information and
provides memory savings compared with dense image depth
and segmentation techniques. Employing our method in combi-
nation with feature- and keyframe-based odometry techniques
allows reconstruction of global dense metric-semantic mesh
models with utility in environmental monitoring and semantic
navigation applications.
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