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ABSTRACT: Many machine learning techniques are used as drug
discovery tools with the intent to speed characterization by
determining relationships between compound structure and
biological function. However, particularly in anticancer drug
discovery, these models often make only binary decisions about
the biological activity for a narrow scope of drug targets. We present
a feed-forward neural network, PECAN (Prediction Engine for the
Cytostatic Activity of Natural product-like compounds), that
simultaneously classifies the potential antiproliferative activity of
compounds against 59 cancer cell lines. It predicts the activity to be
one of six categories, indicating not only if activity is present but the
degree of activity. Using an independent subset of NCI data as a
test set, we show that PECAN can reach 60.1% accuracy in a six-way classification and present further evidence that it classifies based
on useful structural features of compounds using a “within-one” measure that reaches 93.0% accuracy.

Cancer cells vary widely in their sensitivity to different types
of chemotherapeutic agents as a result of their biochemical

defects, cellular origin, and tissue location. This can make
anticancer drug discovery a time-consuming and challenging
process. While studies over decades have sought to characterize
the biological properties of small molecules, including natural
products (from bacteria, plants, animals, etc.), their derivatives,
and synthetics, there are still many known compounds whose
biological properties remain unknown, in addition to the many
new compounds that are continually being discovered and
characterized.1 Performing in vitro assays to evaluate the activity
of new compounds to a variety of different cancer cell lines can
take extensive amounts time and resources with no guarantees of
the usefulness of the compound to contribute to effective cancer
chemotherapy.
In order to speed and assist with antineoplastic drug

discovery, we created a deep network, PECAN (Prediction
Engine for the Cytostatic Activity of Natural product-like
compounds), trained on the National Cancer Institute’s NCI-60
Human Tumor Cell Lines data set.2,3 The NCI-60 data set is an
in vitro data set comprising the results from evaluation of
thousands of compounds and including multiple measurements
of biological activity for each cell line. PECAN uses the structure
of the compound to predict the GI50 concentration (the
concentration at which cancer cell growth is inhibited by 50%)
for each of 59 different cancer cell lines. PECAN uses as inputs
Morgan fingerprints, 1D vector representations of the structural
components present in a compound, and performs a multiway
classification to predict the activity level for each cell line. After
training, PECAN can be used on unseen compounds whose

antiproliferative properties have not yet been characterized to
predict their activity.
The challenges that accompany traditional drug discovery

methods have led many researchers to embrace computational
methods as a means to speed characterization of natural
products. Research using computational tools to study natural
products extends past cancer research into antibiotics,
antifungals, and more.4−8 Many of these use machine learning
models to learn from existing data sets and generalize to unseen
natural products and related compounds.4,6−11

In Walker and Clardy, logistic regression, support vector
machines, and random forest classifiers were used to map
biosynthetic gene clusters to several types of bioactivity.
Multiple classifiers were constructed to make binary (active/
inactive) predictions on antibacterial, antifungal, antitumor, and
cytotoxic activity.7

While Walker and Clardy did not use neural networks, several
other approaches to drug discovery have incorporated these into
their models. Stokes et al. used a graph neural network and
ensembling to use compounds’ SMILES strings and predict if
they would inhibit the growth of E. coli.6 Dias et al. used a natural
product data set to train two different machine learning
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approaches to predict the inhibitory ability of compounds
against methicillin-resistant Staphylococcus aureus (MRSA).4
The first used molecular descriptors (physicochemical proper-
ties of the molecules) for a quantitative structure−activity
relationship (QSAR) regression model that predicted minimum
inhibitory concentration. The second used NMR descriptors
and averaged the predictions of three machine learning models
[random forest, support vector machine, and convolutional
neural network (CNN)] to create a classification model to make
binary predictions about their compounds’ anti-MRSA activity
(i.e., inactive or moderately active to active).4 Fernańdez-
Llaneza et al. trained a Siamese neural network, with a
bidirectional long−short-termmemory LSTMmodel, to predict
the similarity in activity between two compounds using SMILES
strings as inputs.5 The network makes binary predictions about
activity. Unlike other studies, Fernańdez-Llaneza et al. focused
on the architecture more than a particular drug target, training
and testing the same architecture on five different data sets.
These data sets targeted specific molecular targets involved in
Alzheimer’s disease (β-site amyloid precursor protein (AAP)
cleaving enzyme 1, BACE1), inflammatory diseases (CC
chemokine receptor 5, CCR5), neurological diseases (dopamine
D2 receptor, DRD2), cancer (epidermal growth factor
receptors, EGFR), and liver disease (nuclear receptor subfamily
1 group H member 2, NR1H2).5
Within cancer research, machine learning models can be used

to narrow down the potential pool of active compounds or to
focus a search on specific cell lines. They can also be used for
feature selection. Many computationally aided anticancer drug
discovery studies have used machine learning techniques,
although few make use of the pattern recognition capabilities
provided by neural networks.
Yue et al. used 2D chemical features of compounds as input to

multiple machine learning models: decision trees, support
vector machines, random forests, and rotation forests. These
were used to make binary determinations about the resistivity of
hundreds of cell lines to different natural products.11
Davis et al. used a multiple linear regression analysis model to

determine the optimal molecular descriptors for QSAR models.
After determining optimal descriptors, they were used with a
QSAR model to predict the IC50 of natural products against six
different cell lines. Here, each cell line was predicted using
separately trained models.10
Similarly to Dias et al., Cruz et al. trained two QSAR models,

the first using molecular descriptors and the second using NMR
descriptors. Cruz et al., however, focused on predicting cytotoxic
activity, IC50, against the HCT116 human colon carcinoma cell
line. Machine learning algorithms, including k-nearest neigh-
bors, random forests, and support vector machines, were only
used in the model trained with molecular descriptors.12
Other approaches to anticancer drug discovery have used

earlier versions of the NCI-60 data set that we use in this current
study.3,13 Li and Huang describe CDRUG, an online tool for
predicting anticancer activity of compounds, which uses the
NCI-60 data set as a reference for making similarity judgements
between compounds in the data set and unseen compounds.
The activity of unseen compounds is predicted using the
activities of the most similar compounds in the data set.13
Our workmakes three improvements on previous approaches.

First, we use a multilayer perceptron, a feedforward neural
network. This allows us to take advantage of the ability of deep
networks to learn structural patterns in compounds in order to
predict activity and generalize to unseen compounds. Second,

we categorize cytostatic activity into six levels instead of making
binary predictions. This gives more information about a
compound while also allowing for greater specificity about the
differences in activity between different cell lines. Finally,
PECAN predicts the antiproliferative activity levels for 59 cell
lines simultaneously, which requires the network to learn
generalizable features that are useful in making predictions for all
59 cell lines.

■ RESULTS AND DISCUSSION

Results on ValidationData. For every compound, PECAN
simultaneously makes 59 cell line predictions. We compare
PECAN’s predictions to experimental data, or the true activity
level determined in a laboratory setting. All performance metrics
compare PECANpredictions to experimentally obtained results.
We report three measures of performance for PECAN. The first
is the overall accuracy, the percentage of correct predictions.
These results are shown in Table 1.

For the next two measures of performance, we specifically
looked at activity level specific (e.g., “super potent”) labels and
predictions. First, we looked at how often a prediction of “super
potent” was correct. This is the precision of PECAN for this
label. We also evaluated the recall of PECAN. This is the number
of “super potent” true labels that exist in the data set that are
correctly identified. We report these values and their
corresponding “within one” values. For precision, “within one”
indicates, out of all predictions that are “super potent”, the
number with a true label of “super potent” or a true label of
“potent”. For recall this indicates, out of all truly “super potent”
examples, the number that were predicted to be either “super
potent” or “potent”. The “within one” values are important in
evaluating performance because if PECAN makes a mistake, a
small mistake is preferred to a large one. For example, if an
example is “super potent”, we would prefer the prediction for the
compound−cell line pair to be “potent” instead of “inactive”.
Both are incorrect, but if PECAN generally makes smaller
mistakes, we can be more confident that it is using the structure
of the compound to make the predictions as opposed to having
utilized insignificant details from the training data set that
allowed it to perform well but in a very narrow context. The

Table 1. Accuracy Values, by Activity Level and Overall, for
Both Experiments, Using Either Weighted Loss or
Resampled Data, for 59 Cell Lines on Validation Dataa

Accuracy

Activity level Weightedb Resampledc

Super Potent 45.0%/64.7% 50.6%/79.9%
Potent 20.25%/62.51% 35.1%/80.3%
Active 28.1%/ 69.9% 41.1%/75.8%
Mildly Active 46.6%/85.8% 43.6%/86.6%
Weakly Active 57.6%/98.8% 54.7%/95.9%
Inactive 73.4%/96.3% 69.7%/94.0%
Overall 60.1%/93.0% 58.0%/92.0%

aResults are presented as accuracy/within-one accuracy. Bolded
numbers represent best results for a given activity level. bLoss is
weighted to inversely correspond to the representation of an activity
level in the data set. Underrepresented activity levels (e.g., super
potent and potent) are overweighted to ensure they are not ignored.
cInstead of weighting the loss, underrepresented activity levels are
resampled multiple times in order to construct a data set where all
activity levels are equally represented.
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precision and recall data for all activity levels are shown in Table
2.
It can be argued that recall is the most important measure of

performance when choosing a model for drug discovery. This is
because it provides better assurance that the most potent and
super potent compounds will be identified. We reasoned that
obtaining a few false positives was better thanmissing potentially
significant compounds. We used the model with the best recall
for activity levels of “active” through “super potent”, which was
the model trained with resampling, to test further. We tested this
model on two data sets, one with a set of unseen examples from
the National Cancer Institute’s NCI-60 data set (the “test set”)
and the other taken from the TimTec Library, Natural Product
Library-720 (NPL-720). Only the results from the NCI-60 test
set are discussed in the main body of the paper, whereas all
results from theNPL-720 test set can be found in the Supporting
Information. The code for PECAN trained with resampled data
and a checkpoint for testing uncharacterized compounds are
available at https://github.com/marthagahl/PECAN.
Results on NCI-60 Test Data. In reporting the accuracy

comparison with experimental results, we again used an exact
measure and a measure that accounts for small errors. Here we
report the accuracy of PECAN in predicting the activity level
and the within-one accuracy of PECAN. The within-one
accuracy includes any examples in which the activity levels of
the experimental results and the predicted results are offset by
one activity level. The accuracy of PECAN on the test data is
59.9%, and the within-one accuracy is 92.9%.

Figure 1 shows the number of compounds classified into each
antiproliferative activity level from PECAN predictions on the
NCI-60 test set and experimental results. For PECAN
predictions, in addition to recording correct predictions, we
also noted the distance between incorrect predictions and their
true labels. We created confusion matrices to analyze the
distribution of incorrect predictions (Figure 2). In Figure 2, the
columns are the predicted activity levels. These values sum to
the counts shown in Figure 1. The columns indicate how many
times PECAN predicted each activity level. The rows are the
true labels. These values sum to the counts in the data set. For
any given compound, the column indicates what its activity level
was predicted to be, and the row indicates what the true activity
level is. Therefore, correctly predicted compounds lie on the
diagonal. Compounds that are incorrectly predicted are off-
diagonal. However, the closer the incorrect predictions are to the
diagonal, the closer those predictions were to the true labels.
We can more clearly analyze how well PECAN performs with

precision and recall, which are plotted in Figure 3. For the test
data, we report precision and recall for all activity levels.
Finally, we calculate the selectivity of the compounds in the

NCI-60 test set and the selectivity of PECAN’s predictions. We
use the selectivity definition of having at least one cell line GI50
value be lower than the average GI50 for the compound by two
log orders. The NCI-60 test set includes 346 selective
compounds by this definition out of 4913 total compounds in
the test set. PECAN predicted only 5 of the 4913 compounds to
be selective. We believe the lack of accuracy in PECAN’s

Table 2. Precision and Recall Values by Activity Level for Both Experiments, Using EitherWeighted Loss or Resampled Data, for
59 Cell Lines on Validation Dataa

Precision Recall

Activity level Weighted Resampled Weighted Resampled

Super Potent 60.0%/81.5% 41.5%/58.5% 45.0%/64.7% 50.6%/79.9%
Potent 29.5%/74.0% 22.1%/60.4% 20.3%/62.5% 35.1%/80.3%
Active 42.2%/86.3% 30.7%/79.1% 28.1%/69.9% 41.1%/75.8%
Mildly Active 53.3%/88.3% 50.7%/87.2% 46.6%/85.8% 43.6%/86.6%
Weakly Active 51.5%/96.5% 51.4%/97.5% 57.7%/98.8% 54.7/95.9%
Inactive 71.8%/93.0% 73.7%/94.5% 73.4%/96.3% 69.7%/94.0%

aResults are presented as precision/within-one precision or recall/within-one recall. Bolded numbers represent best results for a given activity level.

Figure 1. Counts of PECAN activity level predictions (averaged over cell line activities) and experimental activity levels.
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selectivity predictions results from holes in the data and the
scarcity of data for particular cell lines. More training data are
needed to improve PECAN’s predictions of selective com-
pounds.
Discussion.We further analyzed our predictions of extreme

values, inactive or super potent, and the compounds that
contributed to those predictions. Each number on the confusion
matrix in Figure 2 indicates an example, or a compound and cell
line activity pair. While we only have fewer than 50,000

compounds total for the training, validation, and test sets, we
have almost 3 million examples of compound and cell line
activity pairs because each compound has 59 associated activity
levels: one for each cell line. However, we can look at our
confusion matrix results in terms of the compounds that make
up each square. There are 164 examples that were predicted to
be inactive and were truly super potent. All 164 examples come
from just 52 compounds. There are 997 examples that were
correctly predicted to be super potent, and all 997 of these

Figure 2. Confusion matrix for PECAN predictions using the NCI-60 test set. Columns indicate total predictions for each activity level, and rows
indicate the true label for each prediction. Values on the upper left to lower right diagonal indicate correct predictions of cell line activity for a particular
compound. Darkened boxes represent higher numbers of correct predictions.

Figure 3. Recall and precision of PECAN predictions when compared with experimental results for the NCI-60 test set based on data shown in Figure
2.
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examples came from 55 compounds. Therefore, on average each
of those 55 compounds correctly predicted just over 18 super
potent examples out of 59 cell lines. There are 11 examples that
were predicted to be super potent and were truly inactive. These
come from 6 different compounds.
Of those compounds predicted to be inactive but had true

labels as super potent, there were a diversity of small heterocyclic
alkaloids that appear mostly to be synthetic in origin. The
compounds predicted to be super potent with true labels as
super potent included such well-known cytostatic natural
products as alkaloidal steroid dimers, digitoxin analogs,
mithramycin-type compounds, camptothecin analogs, didemnin
B analogs, cryptophycin A, colchicine analogs, epothilone
analogs, taxanes, anthramycin analogs, steroidal glycosides,
and actinomycin D analogs. Finally, the few compounds that
were predicted to be super potent but had true labels as inactive
included a tetrahydrofolate derivative, taxane derivatives, and
colchicinoid-like compounds. The compound NSC IDs and
structures can be found in Supporting Information Tables S1,
S2, and S3.
These results are promising in their ability to narrow down the

scope of compounds to test experimentally for potential
evaluation as cancer therapeutics. They are also encouraging
more broadly for the use of machine learning to aid in drug
discovery efforts. PECAN is able to predict antiproliferative
activity in multiple cancer cell lines with high recall. While there
will certainly be false positives, this tool can be used to determine
which compounds should be explored further and reduce the
incidence of potent compounds being incorrectly excluded. The
ability to screen compounds and remove those with low
cytostatic activities will speed the drug discovery process by
focusing time and resources on those compounds with a greater
likelihood of being effective as cancer therapeutics. In addition,
PECAN can be used to screen for cell line specificity. By
predicting activity levels for all cell lines, PECAN gives a more
comprehensive view of likely interactions with various tissues in
the body. These results could allow identification of compounds
with high specific activity in one or a few cell lines versus those
compounds that are broadly potent and might be too toxic for
use as unmodified agents. However, as noted above, the current
version of PECAN does not perform well in detecting selective
compounds, presumably due to incomplete and insufficient data
sets. On the other hand, broadly potent compounds could be
evaluated for their utility as “warheads” in antibody−drug
conjugates (ADCs).

■ CONCLUSION

By harnessing PECAN’s ability for pattern recognition, we have
developed a method by which to map the structure of a
compound to its potential utility to inhibit the growth of cancer
cells. The same principle of mapping structure to function can be
applied to other active areas of drug discovery, if sufficient
training data are available. By building a model that predicts
activity to multiple cell types simultaneously, we have shown
that deep networks have the ability to provide a broad picture
about drug interactions in different systems. This has been
achieved by designing PECAN with an output that allows
researchers to screen for particular activity levels as well as for
activity to particular cell lines. Interesting insights are gained into
potential correlations between agents and their predicted
activities to specific cell lines. PECAN provides further insight
into how machine learning can be widely useful to scientific
questions of varying foci and goals.

■ EXPERIMENTAL SECTION

PECAN Model. PECAN uses Morgan fingerprints, 1D bit vector
representations of molecules, as input. EachMorgan fingerprint is 6144

bits long. PECAN outputs predictions of activity level for 59 cell lines
for each Morgan fingerprint. The predicted activity levels are vectors of
length 354 because there are 59 cell lines and 6 outputs for each (i.e., 6
different levels of antiproliferative activity), which are arranged in a
softmax between the six categories. This allowed a simultaneous six-way
classification for the 59 different cell lines and enabled PECAN to use
feedback from all 59 cell lines to learn an internal representation of the
structure function relationship of each compound.

In order to determine the optimal architecture for predicting
cytostatic activity, we searched over model types, architectures, and
hyperparameters. We tried three types of models: regression models,
multilayer perceptrons, and 1D convolutional models. We also tested
having separate prediction heads with unique weights for each of the
cell lines. Multiplayer perceptrons with a single output had the most
robust performance and minimized computation time. We searched
over architectures by considering the type of layers, the number of
hidden layers, and the number of hidden units in each layer. For
hyperparameters, we searched over different values of input layer
dropout, hidden layer dropout, and L2 weight decay. We used the
validation data to determine the optimal architecture for PECAN: a
multilayer perceptron with five layers, each with 256 hidden units, using
ReLU nonlinearity. It also used an input dropout of 30%, a hidden layer
dropout of 60% in each layer, and a weight decay of 0.0001. This is the
final architecture of PECAN.

Data. The data used in our experiments came from the National
Cancer Institute’s NCI-60 data set.3 This data set included theNSC IDs
for different small molecules, including natural products (from bacteria,
plants, animals, etc.), their derivatives, and synthetics as well as the
antiproliferative data for each compound for each of the cell lines in the
data set. In our experiments, we used only 59 cell lines as we omitted
any cell lines with fewer than 30,000 data points. The cell lines used can
be found in the Supporting Information in Tables S2 and S3. We
preprocessed compound IDs to remove stereoisomers as well as any
compounds that were also in the TimTec Natural Product Library-720
(NPL-720).14 The preprocessed NCI-60 data set was randomly split
into a training set, a validation set, and a test set. NPL-720 was used as
an additional test set for several reasons. First, these compounds are
commercially available, and second, not all of the compounds included
in NPL-720 have had their antiproliferative activity to cancer cells
evaluated. Because the compounds are all purchasable, but not all have
their cancer cell cytostatic activity characterized, they could
subsequently be evaluated in the NCI-60 cancer cell line assay. This
procedure enabled potential laboratory validation for PECAN’s

Figure 4. Pipeline used to preprocess data and perform experiments.
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performance on unseen compounds. Finally, theNPL-720 is an external
data set. The test set of NCI-60 will have a similar distribution to the
training set, while the NPL-720 is a separate data set and should have
more variation in its data. However, the NPL-720 is a small data set with
very few examples of certain activity categories. The test set of NCI-60
is much larger and provides prediction results across many more

compounds, leading to a more realistic demonstration of PECAN’s
performance. The data preprocessing and experimental pipeline are
detailed in Figure 4, and the NPL-720 results are included in the
Supporting Information.

We used the SMILES strings for each of the 49,126 remaining NSC
IDs in order to obtain chemical structures for all compounds. The
SMILES strings were then converted to a version of Morgan
fingerprints, using RDKit,15 which were then used as the input to
PECAN. Morgan fingerprints are bit vectors created using a hashing
algorithm that maps substructures in the compound to locations in the
vector. A ‘0’ indicates absence of the substructure, and a ‘1’ indicates its
presence. In a minor modification of the standard Morgan fingerprint,
we separated out the bits for different radii (0, 1, and 2), with 2048 bits
for each to try to avoid collisions.

For training PECAN, we needed a representation of the negative log
GI50 concentrations for each compound in each of the 59 cell lines. We
chose to represent these as six categories of activity: inactive, weakly
active, mildly active, active, potent, and super potent. The thresholds for
these categories were obtained by examining the distribution of all
activity levels in the data set and setting boundaries at apparent
inflection points. This distribution and the selected thresholds are
shown in Figure 5.

The numeric thresholds for the negative log GI50 concentrations are
given in Table 3. These categories were then assigned to each
compound based on where their activity levels fell. Hence, each
compound has 59 different targets, one for each cell line. As a result,

Figure 5. Distribution of activity levels of all compounds in the data set (blue) and the negative log GI50 value thresholds we used to categorize the
compounds (red). Activity level annotations are given for each portion of the distribution: “Inactive”, “Weakly active”, “Mildly active”, “Active”,
“Potent”, “Super potent”.

Table 3. Negative log GI50 Activity Category Thresholds and Dataset Activity Level Category Sizes and Percentages

Category Negative log GI50 concentration Number of examples Percent of data set

Inactive <4.1 1,091,610 43.21%
Weakly Active [4.1, 5.0) 801,171 31.71%
Mildly Active [5.0, 6.0) 450,447 17.83%
Active [6.0, 7.0) 117,253 4.64%
Potent [7.0, 8.0) 41,356 1.64%
Super Potent ≥8.0 24,614 0.97%

Figure 6. PECAN architecture for predicting the activity level for 59
cell lines. Each box labeled “Cell Line” consists of a 6-way softmax
vector.
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PECAN learned to predict an activity level for all 59 cell lines from one
input Morgan fingerprint, as shown in Figure 6. We chose to design
PECAN to predict one of six activity levels instead of making a binary
determination (active or inactive) in order to provide the greatest
specificity possible about the compounds’ activity levels. Training data
sets with a broader range of biological values have also been shown to
create better models.16

Each of the 49,126Morgan fingerprints had 59 activity levels, one for
each cell line. Where data were missing for a particular cell line, we did
not provide a target for that output segment (i.e., no error was
propagated back for that cell line).

The data set was extremely unbalanced, a feature that could lead to
biased results in neural networks. For example, if we used the entire
training set, a neural network could achieve a fairly low error by learning
to categorize everything as inactive or weakly active. We used one of
two methods to compensate for this bias in the data set. In the first
method we resampled theminority categories (active, potent, and super
potent) with replacement to provide 200,000 examples each, and we
subsampled the other three categories to 200,000 examples each. As a
result, the categories were perfectly balanced. We did the resampling
only once and used that resampled data set for all resampling
experiments. The second method used a weighting of the loss of the
categories according to their frequency in the data set during training.

First, we shuffled all examples and randomly selected 80% to be in
the training set, 10% to be in the validation set, and 10% to be in the test
set. In instances where data were missing, or a fingerprint had not been
tested with a certain cell line, we excluded this example from the loss
calculation. For trials using resampling, we resampled only the training
data and left the validation data and test data unbalanced.

To provide insight into the composition of the NCI-60 data set, we
aggregate compound properties LogP and molecular weight into
histograms in Figure 7. Figure 7A and C provide the distribution of
LogP and molecular weight values respectively in the data set (all
compounds in training, validation, and test sets). Figure 7B and D
demonstrate the diversity of values represented in the data set by
magnifying the extremes of the distributions. LogP and molecular
weight values for the NPL-720 external test set are provided in Table S1
in the Supporting Information. We also compare the chemical diversity
and distributions of the training and the test sets used in Figure 8. Here,
UMAP1 and UMAP2 represent dimensions with large amounts of
variation in the data set. The chemical diversity of the Dictionary of
Natural Products (DNP) is also shown in gray in Figure 8. The DNP
contains the majority of reported natural products, giving a broad
estimation of the distribution of chemical diversity at large. Both the
training and test sets show similar clustering to DNP and include
examples across the entirety of the DNP distribution, suggesting the

Figure 7.Distributions of LogP andmolecular weight values in the NCI-60 data set. (A) All values of LogP. (B)Magnified view of LogP values greater
than 10. (C) All values of molecular weight. (D) Magnified view of molecular weight values greater than 1000.
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training and test sets are representative samples of reported natural
products.
Training. We performed two experiments with PECAN: one

training on the original data with weighted loss and one training on
resampled training data with no weighted loss. Both experiments used
the same architecture and data thresholds. We used early stopping to
determine the number of epochs to train and chose the Adam optimizer
with an initial learning rate of 1e-5.

■ ASSOCIATED CONTENT
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