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Abstract—The Industrial Internet of Things (IIoT) includes
networking equipment and smart devices to collect and analyze
data from industrial operations. However, IIoT security is chal-
lenging due to its increased inter-connectivity and large attack
surface. Machine learning (ML)-based intrusion detection system
(IDS) is an IIoT security measure that aims to detect and respond
to malicious traffic by using ML models. However, these methods
are susceptible to adversarial attacks. In this paper, we propose a
RObust Layered DEFense (ROLDEF) against adversarial attacks.
Our denoising autoencoder (DAE) based defense approach first
detects if a sample comes from an adversarial attack. If an
attack is detected, adversarial component is eliminated using the
most effective DAE and the purified data is provided to the ML
model. We use a realistic IIoT intrusion data set to validate the
effectiveness of our defense across various ML models, where
we improve the average prediction performance by 114% with
respect to no defense. Our defense also provides 50% average
prediction performance improvement compared to the state-of-
the-art defense under various adversarial attacks. Our defense
can also be deployed for any underlying ML model and provides
an effective protection against adversarial attacks.

I. INTRODUCTION

The Industrial Internet of Things (IIoT) is the connection of
industrial assets with the information systems and the business
processes [1]. It continuously monitors and analyzes collected
data towards better system efficiency and reliability. Its value
increases where IIoT could be worth $7.1 trillion in the United
States by 2030 [2]. Increased inter-connectivity and poorly
implemented security features make IIoT an easy target for
cybercriminals [3]. An adversary can exploit vulnerabilities
to modify system data, disrupt communication, or prevent
asset availability [4]. Recent cyberattacks include StuxNet
and Industroyer [3]. IIoT security is challenging due to long
lifetime of industrial devices and increased interconnection
among IIoT devices. Intrusion Detection System (IDS) is a
security solution that continuously monitors the network data
to detect cyberattacks [S]. Machine learning (ML) methods
have been recently adopted for IDS due to their accuracy [6].

Although ML methods provide good intrusion detection
performance, they can be vulnerable to small changes in the
input data. In an adversarial attack, an adversary creates slight
but carefully-crafted examples to affect the ML prediction
performance [4]. Fig. 1 demonstrates the impact of an ad-
versarial attack (under varying perturbation amounts) on ML
prediction performance for intrusion detection. Here, 0% per-
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Fig. 1: ML prediction performance under adversarial attack

turbation refers to no adversarial attack. Higher perturbation
amount implies a stronger adversarial attack. In this figure,
different colors denote select ML methods, e.g., random forest
(RF), hyperdimensional computing (HD), deep neural network
(DNN). Under an adversarial attack, accuracy (Fig. la) and
F} score (Fig. 1b) can be impacted significantly irrespective
of the underlying ML model, causing up to 25x performance
loss. These results motivate the need for an effective defensive
mechanism against adversarial attacks for ML-based IDS.

In this work, we propose RObust Layered DEFense
(ROLDEF) which is presented in Fig. 2. Given test data, we
first use a pretrained denoising autoencoder (DAE) to predict
the perturbation amount. We then mark if the data belongs
to an adversarial attack depending on the perturbation amount
prediction. If the input is predicted to be an attack, we perform
DAE selection where the best performing DAE is chosen. The
selected DAE eliminates the perturbation and passes the data
to the pretrained ML algorithm. Comprehensive experiments
on a realistic IIoT intrusion detection dataset [7] show that
ROLDEF provides both robust and effective defense for var-
ious ML methods under different adversarial attacks. It can
improve average model prediction performance by 114% with
respect to no defense. ROLDEF is also consistently better
than the state-of-the-art (SoA) adversarial training defense
[8] with 50.1% average prediction performance improvement.
While improving adversarial robustness, our defense requires
additional 0.09 milliseconds per sample (on average) com-
pared to the SoA defense. Most importantly, ROLDEF can be
deployed for any ML-based IDS and could effectively protect
the learning system against adversarial attacks.
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Fig. 2: Proposed defense framework (ROLDEF)

II. RELATED WORK

A. IloT Security

IIoT is an adaptation of traditional IoT for industrial en-
vironments enabling full automation, remote monitoring, and
predictive maintenance [9]. Due to inadequate standardization
and the lack of required skills to implement them, IIoT has
become a target for different cyber attacks, e.g., denial of
service, eavesdropping, man-in-the-middle, spoofing, and side
channel [10]. An adversary can gain access to an entire IIoT
system by exploiting its vulnerable assets such as operating
systems, application software, industrial communication pro-
tocols, and smart devices [11]. There are advanced security
solutions in traditional IT systems, yet these cannot be directly
used in IIoT systems due to IIoT’s limited power, constrained
functionality, and lightweight network protocols. ML-based
IDS is one possible security solution that trains ML models by
using historical network data to detect attacks and anomalies
[5]. There are different models proposed in the literature, e.g.,
logistic regression, random forest, deep neural networks [6].

B. Adversarial Attacks and Defenses

Adversarial attacks craft perturbed input data to fool ML
models [4]. These attacks can significantly impact ML-based
IDS decisions where benign data can be classified as an
attack or vice versa. To effectively generate those instances,
attacker can use white-box or black-box attacks. While white-
box exploits complete knowledge of an ML model, i.e., model
parameters and architecture, black-box refines adversarial in-
put based on an output generated from the model. Adversarial
defenses aim to protect ML models against adversarial attacks
under three main groups [12]: (i) input defense, (ii) adversarial
attack detection, and (iii) model defense. Input defense pre-
processes input data to remove any adversarial component,
e.g., data compression, data coding, data decomposition. Ad-
versarial attack detection aims to distinguish adversarial attack
data from clean ones before model training and inference,
e.g., data feature analysis, ML-based detection. Model de-
fense strengthens the ML model against adversarial attacks
via further modifications, e.g., gradient masking, defensive
distillation, adversarial training.
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Fig. 3: Adversarial Transfer Attack Framework

C. Denoising Autoencoder (DAE) Defense

Autoencoder (AE) is an unsupervised learning setting which
consists of encoder, code, and decoder. Encoder performs
input compression and generates the code, and the decoder
reconstructs the input from the code [13]. The AE goal is to
get an output identical with the input. However, AE carries a
risk of learning identity function where input is directly copied
to the output without any learning performed. Denoising AE
(DAE) solves this problem through noise injection. DAE first
adds some random noise to the input data and reconstructs the
clean data. Due to this property, DAE is capable of removing
adversarial noise before target model prediction. Hence, DAE
can be used as a defense against adversarial attacks where per-
turbed data is pre-processed before model prediction. There are
several AE-based defenses in the literature: MagNet [14], deep
denoising sparse autoencoder (DDSA) [15], adversarial noise
removing network (ARN) [16], and adversarial purification
denoising autoencoder (APuDAE) [17]. All these defenses are
applied to images, and do not apply to the time series data.

III. ROLDEF FRAMEWORK

Fig. 2 illustrates our RObust Layered DEFense framework
ROLDEF. Our defense is based on denoising autoencoder
(DAE) to remove adversarial perturbation before ML model
inference. We use DAE since it can purify noisy samples by
reconstructing the output that is like the clean input [17]. Given
test data with a window size w, the first step is to determine
the perturbation prediction amount 4. Perturbation prediction B)
is calculated by finding the average difference between DAE
input and reconstructed output. We then compare 5 with a
predefined threshold level 7" to mark it as clean or attack data.
If an attack is detected (5 > T'), we select the best performing
DAE (against adversarial attacks) among a set of pretrained
DAEs. Finally, data is purified and given to the ML model
to obtain the prediction metrics, e.g., F} score, accuracy. We
use 6 ML methods: decision tree (DT), random forest (RF),
logistic regression (LR), naive bayes (NB), hyperdimensional
computing (HD) [18], and deep neural network (DNN). How-
ever, ROLDEF can work with any ML-based IDS system,
making it a generalizable defense solution.

A. Black-box Transfer Attack Framework

Fig. 3 presents our black-box transfer attack framework.
Black-box attacks represent a more realistic attack scenario
where the attacker can be an outsider, with limited knowledge
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Fig. 4: Adversarial attack simulation

about the internal system [19]. Adversary first needs to create
a surrogate (substitute) model and access the validation data to
create adversarial examples. Attackers usually exploit network
vulnerabilities to access data in IoT systems. We select 4
different gradient-based attacks: fast gradient sign method
(FGSM) [20], randomized fast gradient sign method (RFGSM)
[21], projected gradient descent (PGD) [8], and momentum
iterative method (MIM) [22]. We select these attacks since
they are the most common attacks in time-series classification
[23]. We use a deep neural network (DNN) as the surrogate
model due to its superior prediction performance [7]. We train
it using the training data. The attacker then uses the validation
data to create attacks and send them to the target ML models.
The selected target ML models are DT, RF, LR, NB, HD,
and DNN. We use a separate target DNN model to make the
attack black-box, i.e., the surrogate and target ML models are
different. These methods are selected due to their prevalence in
the IDS domain [24]. All these methods are previously trained
using our training data. Given perturbed validation data, we
store the prediction performance for each attack type and ML
model to keep track of the individual attack effectiveness.
Based on these values, we select the most effective DAE
adversarial noise type as provided in Section III-E.

B. Denoising Autoencoder (DAE) Training

We perform two main modifications to the traditional DAE
training: (i) injecting adversarial noise and (ii) including clean
data. For the former, we use the adversarial attack data instead
of some random noise such as Gaussian noise. To create
the adversarial attack data, we leverage the black-box attack
framework in Fig. 3 and input it to the DAE. For the latter
change, we also incorporate some clean data into the training
to increase DAE robustness in case there is no adversarial
attack. Our experiments showed that both changes contributed
to the DAE adversarial robustness positively since DAE is able
to learn the reconstruction of adversarial examples with some
clean data. This means that when trained DAE receives some
attack and clean data, it reconstructs the data more accurately.
Overall, we train four different DAEs corresponding to differ-
ent adversarial attacks. We give equal weights to the clean and
attack data in training, i.e., 50% clean, 50% attack data due
to more accurate predictions under adversarial attacks among
different ratios. As the output of DAE training, we obtain
four trained DAEs which are going to be used in perturbation
prediction and perturbation removal.

C. Variation in Adversarial Attacks

Adversarial attacks can change in time where an adversary
can try different attacks to deceive the deployed ML method
[25]. To reflect this situation, we receive the test data in
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Fig. 5: DAE performance under varying adversarial attacks
(& =20, ADR = 50%)

windows, with size w. We shift each window by w at each
iteration and receive the new set of data continuously (or
until all test data is consumed). Here, we assume that data
is processed in windows, i.e., data is fed into the target
ML model after all data from a window is received. Fig. 4
simulates an adversarial attack scenario where clean (green
square) or attack data (red, yellow, and orange squares) is
received during each time window, e.g., wy,ws. Each time
window consists of M number of samples, i.e., S1, 52, ..., S)-
We observe that different attacks (denoted by distinct colors)
might arrive at random times with random frequencies. Based
on this observation, we consider three possible adversarial
attack scenarios: (i) adversary always conducts an attack, i.e.,
all samples are attack, (ii) adversary never conducts an attack,
i.e., all samples are clean, and (iii) adversary conducts an
attack at some random time with unknown frequencies, i.e.,
some samples are attack/clean. Among these three scenarios,
the last one represents the most realistic and stealthy attack
setting since the adversary would not want to be detected
by a defense mechanism. Let ¢ denote the selected number
of windows in a given test data. So, in a single window w,
we have N/& samples where N is the total number of test
samples. To denote the number of times adversarial attack
is conducted in total, we introduce attack data ratio (ADR)
which is the number of attack windows (£4414ck) divided by
the total number of windows (§ = &uttack + Eciean):

Attack data ratio (ADR) = 55% )
attack clean

We select different AD Rs to show the validity of the proposed
defense, covering all three adversarial attack scenarios.

D. Layered Defense Motivation

Fig. 5 presents the pretrained DAEs’ defense performance
against varying adversarial attacks where £ is 20, and ADR
is 50%. This figure uses HD as the target ML model. Here, a
random adversarial attack is selected for the attack samples
and the result represents average values over all test win-
dows. While x-axis is the prediction metric, y-axis has the
corresponding values in percentage. Different colors represent
DAE:s trained with different adversarial attacks (e.g., MIM-
DAE denotes DAE with MIM noise injection) and No Defense
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is indicated by light blue color. We observe that No Defense
outperforms DAE defenses based on F) score. This is due
to the DAE performance under clean data. Although DAE
performs well under adversarial attacks, its performance gets
worse with clean data where traditional training is favorable.
This means that defense should be adaptive based on the
received data, i.e., clean or attack. To solve this problem, we
devise a layered defense mechanism based on DAE perturba-
tion prediction where we determine if an attack is conducted
and remove the perturbation if there is an adversarial attack.

E. Perturbation Prediction

Perturbation prediction calculates the amount of perturba-
tion in a given data. Based on the perturbation prediction 5,
we categorize the data as clean or attack. Given input data &,
DAE reconstructs it to obtain z’. We calculate the perturbation
amount & by finding the absolute difference between & and x’
averaged over all samples:

5 Zgl abs(i; — x})
M

where abs is the absolute value function and M is the
number of samples in a single window. To calculate the
perturbation amount, we use the DAE trained with the most
effective attack which is determined based on our attack
prediction performance result from Section II-A. This is
selected for each target ML method. After 5 is calculated,
we determine if the data is from an attack or not using a
threshold level 7. If & < T, we have clean data; otherwise
(5 > T') we have an attack data. In case of an adversarial
attack detection, we utilize our pretrained DAEs to remove
the adversarial perturbation, otherwise we directly use our

pretrained ML models without any further modification.

2

F. DAE Selection and Perturbation Removal

After we predict that the given data comes from an attack,
the best DAE is selected and applied as a defense mechanism.
For this selection, we denoise the perturbed data via pretrained
DAEs and provide it to the target model. This model then
outputs the performance metrics corresponding to individual
DAEs. Based on these metrics, we select the DAE that gives
the best prediction performance. The selected DAE is then
used as a defense. It is important to note that the best DAE
can change at each time window and for each ML method.

IV. EXPERIMENTAL ANALYSIS
A. Dataset Description

We use a realistic IIoT intrusion dataset, X-IIoTID [7]. X-
IIoTID is a device and connectivity agnostic dataset which
addresses the heterogeneity of IloT network traffic and sys-
tems’ activities generated from distinct connectivity protocols,
devices, and communication patterns. 18 different attacks are
included in the dataset: malicious insider, reverse shell, MitM
attack, MQTT cloud broker-subscription, generic scanning,
Modbus-Register reading, TCP relay attack, scanning vulner-
abilities, fuzzing, discovering resources, brute force attack,

dictionary attack, command and control, exfiltration, false data
injection, fake notification, crypto-ransomware, and ransom
denial of service. The input data comes from end-to-end
network traffic, physical properties, host device logs, the host
device’s resources, and alert logs. Data collection began on
December 5, 2019, ran for many hours each day, and ended
on March 23, 2020 (not continuous). The overall learning goal
is to map the input data to the attack labels.

B. Experimental Setup

We run all experiments on a PC with 16 GB RAM and
an 8-core 2.3 GHz Intel Core 19 processor. For our surrogate
model, we select a DNN with 2 hidden layers with 30, and 20
units. To train this DNN, we use SGD optimizer with learning
rate 0.01, ReLU activation function, and batch size of 32. For
our traditional ML target models, e.g., DT, RF, we perform a
grid search to find their optimal hyper-parameters. For HD, we
set HV dimension to 1000, used random projection encoding,
and set learning rate to 2 after detailed experiments. Our target
DNN consists of 3 hidden layers with 50, 30, and 20 units.
The selected defense DAE structure contains an encoder with
32, 16, and 8 units and a decoder with 16, 32 and 58 units.
DAE is trained using Adam optimizer, with mean squared
error loss. For DAE noise injection, we add noise generated
from {FGSM, RFGSM, PGD, MIM} attack set with 0.5 as
the perturbation amount. We also included 50% clean and 50%
attack data in training which gives the best prediction perfor-
mance under various adversarial attacks. We set the number of
windows (&) to 20. This selection brings the largest prediction
improvement over no defense. We report average metrics over
all windows. For varying adversarial attacks, we select a ran-
dom attack from the {FGSM, RFGSM, PGD, MIM} set with
the random perturbation from the interval [0.1, 0.9]. For ADR,
we experimented with the ratios (%) from {0, 25,50, 100} to
consider different adversarial attack scenarios. We also set the
threshold level 7" to 0.01 to differentiate attack samples from
clean ones after detailed experiments. To measure the defense
performance, we select 2 metrics: accuracy and Fj score. Since
we have an unbalanced dataset (number of attack samples are
relatively smaller than clean ones), F score provides a more
meaningful insight.

C. State-of-the-art Defense

Adpversarial training (AT) [8]: AT is widely accepted as the
most effective defense method against adversarial attacks [26].
We selected this as the state-of-the-art defense since it can be
applied to any ML model. It incorporates adversarial attack
data into the training process. For the DNN, we retrain the
model via adversarial attack samples where network weights
are updated. For traditional ML methods, we retrain the
models by including adversarial attack data. For HD, class
hyper-vectors are updated inspired by the method presented
by Ma et al. [27]. For each ML method’s adversarial training,
we use the best adversarial attack to obtain the most effective
defense performance. Hence, we report the most effective
adversarial training defense in our experimental results.
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Fig. 6: Accuracy Comparison Among No Defense, SoA
Defense (AT) [8], and Our Defense (ROLDEF)

Defensive Distillation (DD) [28]: DD is another well-
known defense approach against adversarial attacks when
adversarial data is not allowed during training. This approach
uses two DNNs: initial and distilled network. Initial DNN
probability vector predictions are given to the distilled network
and training is performed with the original labels. Trained
distilled network is used as the inference model. We make
a comparison with DD when the target model is DNN.

D. Experimental Results

ROLDEF Performance: Fig. 6 and Fig. 7 compare
ROLDEF (green color) against the SoA defense [8] (yellow
color), and No Defense (red color) in terms of accuracy and
F1 score respectively. Each sub-figure has varying attack data
ratio (ADR) on the x-axis and y-axis is accuracy or Fj score.
In terms of accuracy (Fig. 6), our defense consistently provides
the best prediction performance across various target models
and ADR values. Table I presents our method’s accuracy im-
provement over No Defense and SoA defense. Compared to No
Defense, ROLDEF brings up to 965.1% (259.4% on average)
accuracy improvement when the target model is DNN. With
respect to SoA defense, ROLDEF provides up to 44.6% (24.7%
on average) accuracy improvement. Compared to No Defense
and SoA defense, we can obtain 71.7% and 15.9% accuracy
improvement over all target models respectively.

In terms of F scores (Fig. 7), we can observe the superior-
ity of our defense. ROLDEF is consistently the best approach
when ADR > 0. Table II shows our method’s F} score

BNo Defense @ SoA Defense [9] 8 Our Defense

100 50 2 0

ADR (%)

BNo Defense BSoA Defense [9] 8 Our Defense
100 100

2 70 :3 70
I.u 0 & 60
o 50 & s
o3
3 w0 @ a0
T 3 T 3
2
10
o
0 50 2 0

ADR (%)

(a) DT (b) RF
- s
& w0 @ w0
E I] E ol Ml I 1
ADR (%) ADR (%)
(c) LR (d) NB
920 90
E 60 ,&7 60
3w & w0
T 30 T 30
20 20
10 10
: :
ADR (%) ADR (%)
(e) HD (f) DNN

Fig. 7: F; Score Comparison Among No Defense, SoA
Defense (AT) [8], and Our Defense (ROLDEF)

TABLE I: ROLDEF Accuracy Improvement (%)

No Defense SoA Defense [8]
Target Model | Maximum | Average | Maximum | Average

DT 144.6 45.7 11.3 6.9

RF 21.8 7.4 18.0 8.5

LR 91.4 35.0 35.1 13.7

NB 162.4 572 44.6 19.8

HD 67.0 252 26.6 24.7
DNN 965.1 259.4 42.7 21.7

improvement over No Defense and SoA defense. Compared
to No Defense, ROLDEF brings up to 1706.3% (438.1% on
average) Fi score improvement. With respect to SoA defense,
ROLDEF provides up to 440.6% (242.9% on average) F}
score improvement. We can obtain 114% and 50.1% F} score
improvement over No Defense and SoA defense when all target
models are considered. Overall, we can note that our defense
consistently improves the prediction performance irrespective
of the underlying target ML model.

Defense Comparison under DNN Target Model: Based
on Table II, the largest improvement is observed when the
target model is DNN. This result can be attributed to the

TABLE II: ROLDEF F; Score Improvement (%)

No Defense SoA Defense [8]
Target Model | Maximum | Average | Maximum | Average
DT 219.1 59.6 13.1 6.4
RF 375.7 98.8 9.1 3.5
LR 54.4 19.4 30.9 11.8
NB 82.6 31.9 17.0 6.8
HD 112.1 36.2 34.9 29.3
DNN 1706.3 438.1 440.6 242.9
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TABLE III: Defense Comparison under DNN Target Model

Accuracy F1 Score
ADR (%) / Defense | AT /8] | DD [28] | ROLDEF | AT [S] | DD [28] | ROLDEF
100 73.3 26.8 65.1 30.1 9.4 30.7
50 66.6 60.6 81.6 18.5 46.1 589
25 68.7 78.9 91.2 17.9 64.9 732
0 68.1 96.8 97.2 15.8 83.5 85.6
Average 69.2 65.8 83.8 20.6 50.9 62.1

TABLE IV: ROLDEF Overhead Analysis

Target Model [ DT [ RF [ LR | NB | HD [ DNN |
[ Additional Overhead (ms) | 0.08 | 0.14 | 0.09 | 0.09 | 0.1T | 0.06 |

similarity between surrogate and target models. Since the ad-
versarial attack data is crafted via a DNN surrogate, it can fool
the target DNN the most although they have different network
structures. To further demonstrate the effectiveness of our
defense under DNN target model, we compare ROLDEF with
defensive distillation (DD) [28]. Table III presents the results
of this comparison. We observe that our defense provides the
best prediction performance under all AD R values, solidifying
the case for the superiority of our defense.

Overhead Analysis: ROLDEF overhead is the sum of
perturbation prediction and DAE selection. Table IV shows
our method’s additional per sample overhead over the selected
ADR values compared to the SoA defense. When average
execution time is calculated over all target ML methods,
running our defense requires an additional 0.09 milliseconds
per sample compared to the SoA defense. For our data set, a
sample refers to the time interval between the last and the first
packet seen in a network traffic flow [7], where the median
traffic flow duration is 4.98 ms. Compared to the median traffic
flow duration, our method’s overhead is around 1.8%.

V. CONCLUSION

IIoT security is challenging owing to its large attack surface,
and increased inter-connectivity. Intrusion Detection Systems
(IDSs) dynamically monitor the behavior of an IIoT system to
detect malicious activity. ML-based IDS solution is popular
owing to its great prediction performance. However, ML
methods are sensitive to adversarial attacks, impacting their
prediction performance significantly. These attacks can happen
with unknown perturbations and frequencies. Hence, defense
should be adaptive against attacks. In this paper, we proposed
a robust layered defense against adversarial attacks. Our DAE-
based defense first detects if sample comes from an attack. If
attack is detected, adversarial noise is eliminated using the
best DAE. Our defense improved average model prediction
performance by 114% and 50% with respect to no defense
and the state-of-the-art adversarial training defense.
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