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Abstract—The Industrial Internet of Things (IIoT) includes
networking equipment and smart devices to collect and analyze
data from industrial operations. However, IIoT security is chal-
lenging due to its increased inter-connectivity and large attack
surface. Machine learning (ML)-based intrusion detection system
(IDS) is an IIoT security measure that aims to detect and respond
to malicious traffic by using ML models. However, these methods
are susceptible to adversarial attacks. In this paper, we propose a
RObust Layered DEFense (ROLDEF) against adversarial attacks.
Our denoising autoencoder (DAE) based defense approach first
detects if a sample comes from an adversarial attack. If an
attack is detected, adversarial component is eliminated using the
most effective DAE and the purified data is provided to the ML
model. We use a realistic IIoT intrusion data set to validate the
effectiveness of our defense across various ML models, where
we improve the average prediction performance by 114% with
respect to no defense. Our defense also provides 50% average
prediction performance improvement compared to the state-of-
the-art defense under various adversarial attacks. Our defense
can also be deployed for any underlying ML model and provides
an effective protection against adversarial attacks.

I. INTRODUCTION

The Industrial Internet of Things (IIoT) is the connection of

industrial assets with the information systems and the business

processes [1]. It continuously monitors and analyzes collected

data towards better system efficiency and reliability. Its value

increases where IIoT could be worth $7.1 trillion in the United

States by 2030 [2]. Increased inter-connectivity and poorly

implemented security features make IIoT an easy target for

cybercriminals [3]. An adversary can exploit vulnerabilities

to modify system data, disrupt communication, or prevent

asset availability [4]. Recent cyberattacks include StuxNet

and Industroyer [3]. IIoT security is challenging due to long

lifetime of industrial devices and increased interconnection

among IIoT devices. Intrusion Detection System (IDS) is a

security solution that continuously monitors the network data

to detect cyberattacks [5]. Machine learning (ML) methods

have been recently adopted for IDS due to their accuracy [6].

Although ML methods provide good intrusion detection

performance, they can be vulnerable to small changes in the

input data. In an adversarial attack, an adversary creates slight

but carefully-crafted examples to affect the ML prediction

performance [4]. Fig. 1 demonstrates the impact of an ad-

versarial attack (under varying perturbation amounts) on ML

prediction performance for intrusion detection. Here, 0% per-

(a) Accuracy (b) F1 Score

Fig. 1: ML prediction performance under adversarial attack

turbation refers to no adversarial attack. Higher perturbation

amount implies a stronger adversarial attack. In this figure,

different colors denote select ML methods, e.g., random forest

(RF), hyperdimensional computing (HD), deep neural network

(DNN). Under an adversarial attack, accuracy (Fig. 1a) and

F1 score (Fig. 1b) can be impacted significantly irrespective

of the underlying ML model, causing up to 25× performance

loss. These results motivate the need for an effective defensive

mechanism against adversarial attacks for ML-based IDS.

In this work, we propose RObust Layered DEFense

(ROLDEF) which is presented in Fig. 2. Given test data, we

first use a pretrained denoising autoencoder (DAE) to predict

the perturbation amount. We then mark if the data belongs

to an adversarial attack depending on the perturbation amount

prediction. If the input is predicted to be an attack, we perform

DAE selection where the best performing DAE is chosen. The

selected DAE eliminates the perturbation and passes the data

to the pretrained ML algorithm. Comprehensive experiments

on a realistic IIoT intrusion detection dataset [7] show that

ROLDEF provides both robust and effective defense for var-

ious ML methods under different adversarial attacks. It can

improve average model prediction performance by 114% with

respect to no defense. ROLDEF is also consistently better

than the state-of-the-art (SoA) adversarial training defense

[8] with 50.1% average prediction performance improvement.

While improving adversarial robustness, our defense requires

additional 0.09 milliseconds per sample (on average) com-

pared to the SoA defense. Most importantly, ROLDEF can be

deployed for any ML-based IDS and could effectively protect

the learning system against adversarial attacks.
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Fig. 2: Proposed defense framework (ROLDEF)

II. RELATED WORK

A. IIoT Security

IIoT is an adaptation of traditional IoT for industrial en-

vironments enabling full automation, remote monitoring, and

predictive maintenance [9]. Due to inadequate standardization

and the lack of required skills to implement them, IIoT has

become a target for different cyber attacks, e.g., denial of

service, eavesdropping, man-in-the-middle, spoofing, and side

channel [10]. An adversary can gain access to an entire IIoT

system by exploiting its vulnerable assets such as operating

systems, application software, industrial communication pro-

tocols, and smart devices [11]. There are advanced security

solutions in traditional IT systems, yet these cannot be directly

used in IIoT systems due to IIoT’s limited power, constrained

functionality, and lightweight network protocols. ML-based

IDS is one possible security solution that trains ML models by

using historical network data to detect attacks and anomalies

[5]. There are different models proposed in the literature, e.g.,

logistic regression, random forest, deep neural networks [6].

B. Adversarial Attacks and Defenses

Adversarial attacks craft perturbed input data to fool ML

models [4]. These attacks can significantly impact ML-based

IDS decisions where benign data can be classified as an

attack or vice versa. To effectively generate those instances,

attacker can use white-box or black-box attacks. While white-

box exploits complete knowledge of an ML model, i.e., model

parameters and architecture, black-box refines adversarial in-

put based on an output generated from the model. Adversarial

defenses aim to protect ML models against adversarial attacks

under three main groups [12]: (i) input defense, (ii) adversarial

attack detection, and (iii) model defense. Input defense pre-

processes input data to remove any adversarial component,

e.g., data compression, data coding, data decomposition. Ad-

versarial attack detection aims to distinguish adversarial attack

data from clean ones before model training and inference,

e.g., data feature analysis, ML-based detection. Model de-

fense strengthens the ML model against adversarial attacks

via further modifications, e.g., gradient masking, defensive

distillation, adversarial training.

Fig. 3: Adversarial Transfer Attack Framework

C. Denoising Autoencoder (DAE) Defense

Autoencoder (AE) is an unsupervised learning setting which

consists of encoder, code, and decoder. Encoder performs

input compression and generates the code, and the decoder

reconstructs the input from the code [13]. The AE goal is to

get an output identical with the input. However, AE carries a

risk of learning identity function where input is directly copied

to the output without any learning performed. Denoising AE

(DAE) solves this problem through noise injection. DAE first

adds some random noise to the input data and reconstructs the

clean data. Due to this property, DAE is capable of removing

adversarial noise before target model prediction. Hence, DAE

can be used as a defense against adversarial attacks where per-

turbed data is pre-processed before model prediction. There are

several AE-based defenses in the literature: MagNet [14], deep

denoising sparse autoencoder (DDSA) [15], adversarial noise

removing network (ARN) [16], and adversarial purification

denoising autoencoder (APuDAE) [17]. All these defenses are

applied to images, and do not apply to the time series data.

III. ROLDEF FRAMEWORK

Fig. 2 illustrates our RObust Layered DEFense framework

ROLDEF. Our defense is based on denoising autoencoder

(DAE) to remove adversarial perturbation before ML model

inference. We use DAE since it can purify noisy samples by

reconstructing the output that is like the clean input [17]. Given

test data with a window size ω, the first step is to determine

the perturbation prediction amount δ̂. Perturbation prediction δ̂
is calculated by finding the average difference between DAE

input and reconstructed output. We then compare δ̂ with a

predefined threshold level T to mark it as clean or attack data.

If an attack is detected (δ̂ > T ), we select the best performing

DAE (against adversarial attacks) among a set of pretrained

DAEs. Finally, data is purified and given to the ML model

to obtain the prediction metrics, e.g., F1 score, accuracy. We

use 6 ML methods: decision tree (DT), random forest (RF),

logistic regression (LR), naive bayes (NB), hyperdimensional

computing (HD) [18], and deep neural network (DNN). How-

ever, ROLDEF can work with any ML-based IDS system,

making it a generalizable defense solution.

A. Black-box Transfer Attack Framework

Fig. 3 presents our black-box transfer attack framework.

Black-box attacks represent a more realistic attack scenario

where the attacker can be an outsider, with limited knowledge

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on August 16,2024 at 16:02:37 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4: Adversarial attack simulation

about the internal system [19]. Adversary first needs to create

a surrogate (substitute) model and access the validation data to

create adversarial examples. Attackers usually exploit network

vulnerabilities to access data in IIoT systems. We select 4

different gradient-based attacks: fast gradient sign method

(FGSM) [20], randomized fast gradient sign method (RFGSM)

[21], projected gradient descent (PGD) [8], and momentum

iterative method (MIM) [22]. We select these attacks since

they are the most common attacks in time-series classification

[23]. We use a deep neural network (DNN) as the surrogate

model due to its superior prediction performance [7]. We train

it using the training data. The attacker then uses the validation

data to create attacks and send them to the target ML models.

The selected target ML models are DT, RF, LR, NB, HD,

and DNN. We use a separate target DNN model to make the

attack black-box, i.e., the surrogate and target ML models are

different. These methods are selected due to their prevalence in

the IDS domain [24]. All these methods are previously trained

using our training data. Given perturbed validation data, we

store the prediction performance for each attack type and ML

model to keep track of the individual attack effectiveness.

Based on these values, we select the most effective DAE

adversarial noise type as provided in Section III-E.

B. Denoising Autoencoder (DAE) Training

We perform two main modifications to the traditional DAE

training: (i) injecting adversarial noise and (ii) including clean

data. For the former, we use the adversarial attack data instead

of some random noise such as Gaussian noise. To create

the adversarial attack data, we leverage the black-box attack

framework in Fig. 3 and input it to the DAE. For the latter

change, we also incorporate some clean data into the training

to increase DAE robustness in case there is no adversarial

attack. Our experiments showed that both changes contributed

to the DAE adversarial robustness positively since DAE is able

to learn the reconstruction of adversarial examples with some

clean data. This means that when trained DAE receives some

attack and clean data, it reconstructs the data more accurately.

Overall, we train four different DAEs corresponding to differ-

ent adversarial attacks. We give equal weights to the clean and

attack data in training, i.e., 50% clean, 50% attack data due

to more accurate predictions under adversarial attacks among

different ratios. As the output of DAE training, we obtain

four trained DAEs which are going to be used in perturbation

prediction and perturbation removal.

C. Variation in Adversarial Attacks

Adversarial attacks can change in time where an adversary

can try different attacks to deceive the deployed ML method

[25]. To reflect this situation, we receive the test data in

Fig. 5: DAE performance under varying adversarial attacks

(ξ = 20, ADR = 50%)

windows, with size ω. We shift each window by ω at each

iteration and receive the new set of data continuously (or

until all test data is consumed). Here, we assume that data

is processed in windows, i.e., data is fed into the target

ML model after all data from a window is received. Fig. 4

simulates an adversarial attack scenario where clean (green

square) or attack data (red, yellow, and orange squares) is

received during each time window, e.g., ω1, ω2. Each time

window consists of M number of samples, i.e., s1, s2, . . . , sM .

We observe that different attacks (denoted by distinct colors)

might arrive at random times with random frequencies. Based

on this observation, we consider three possible adversarial

attack scenarios: (i) adversary always conducts an attack, i.e.,

all samples are attack, (ii) adversary never conducts an attack,

i.e., all samples are clean, and (iii) adversary conducts an

attack at some random time with unknown frequencies, i.e.,

some samples are attack/clean. Among these three scenarios,

the last one represents the most realistic and stealthy attack

setting since the adversary would not want to be detected

by a defense mechanism. Let ξ denote the selected number

of windows in a given test data. So, in a single window ω,

we have N/ξ samples where N is the total number of test

samples. To denote the number of times adversarial attack

is conducted in total, we introduce attack data ratio (ADR)

which is the number of attack windows (ξattack) divided by

the total number of windows (ξ = ξattack + ξclean):

Attack data ratio (ADR) =
ξattack

ξattack + ξclean
(1)

We select different ADRs to show the validity of the proposed

defense, covering all three adversarial attack scenarios.

D. Layered Defense Motivation

Fig. 5 presents the pretrained DAEs’ defense performance

against varying adversarial attacks where ξ is 20, and ADR
is 50%. This figure uses HD as the target ML model. Here, a

random adversarial attack is selected for the attack samples

and the result represents average values over all test win-

dows. While x-axis is the prediction metric, y-axis has the

corresponding values in percentage. Different colors represent

DAEs trained with different adversarial attacks (e.g., MIM-
DAE denotes DAE with MIM noise injection) and No Defense
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is indicated by light blue color. We observe that No Defense
outperforms DAE defenses based on F1 score. This is due

to the DAE performance under clean data. Although DAE

performs well under adversarial attacks, its performance gets

worse with clean data where traditional training is favorable.

This means that defense should be adaptive based on the

received data, i.e., clean or attack. To solve this problem, we

devise a layered defense mechanism based on DAE perturba-

tion prediction where we determine if an attack is conducted

and remove the perturbation if there is an adversarial attack.

E. Perturbation Prediction

Perturbation prediction calculates the amount of perturba-

tion in a given data. Based on the perturbation prediction δ̂,

we categorize the data as clean or attack. Given input data ẍ,

DAE reconstructs it to obtain x′. We calculate the perturbation

amount δ̂ by finding the absolute difference between ẍ and x′

averaged over all samples:

δ̂ =

∑M
i=1 abs(ẍi − x′

i)

M
(2)

where abs is the absolute value function and M is the

number of samples in a single window. To calculate the

perturbation amount, we use the DAE trained with the most

effective attack which is determined based on our attack

prediction performance result from Section III-A. This is

selected for each target ML method. After δ̂ is calculated,

we determine if the data is from an attack or not using a

threshold level T . If δ̂ ≤ T , we have clean data; otherwise

(δ̂ > T ) we have an attack data. In case of an adversarial

attack detection, we utilize our pretrained DAEs to remove

the adversarial perturbation, otherwise we directly use our

pretrained ML models without any further modification.

F. DAE Selection and Perturbation Removal

After we predict that the given data comes from an attack,

the best DAE is selected and applied as a defense mechanism.

For this selection, we denoise the perturbed data via pretrained

DAEs and provide it to the target model. This model then

outputs the performance metrics corresponding to individual

DAEs. Based on these metrics, we select the DAE that gives

the best prediction performance. The selected DAE is then

used as a defense. It is important to note that the best DAE

can change at each time window and for each ML method.

IV. EXPERIMENTAL ANALYSIS

A. Dataset Description

We use a realistic IIoT intrusion dataset, X-IIoTID [7]. X-

IIoTID is a device and connectivity agnostic dataset which

addresses the heterogeneity of IIoT network traffic and sys-

tems’ activities generated from distinct connectivity protocols,

devices, and communication patterns. 18 different attacks are

included in the dataset: malicious insider, reverse shell, MitM

attack, MQTT cloud broker-subscription, generic scanning,

Modbus-Register reading, TCP relay attack, scanning vulner-

abilities, fuzzing, discovering resources, brute force attack,

dictionary attack, command and control, exfiltration, false data

injection, fake notification, crypto-ransomware, and ransom

denial of service. The input data comes from end-to-end

network traffic, physical properties, host device logs, the host

device’s resources, and alert logs. Data collection began on

December 5, 2019, ran for many hours each day, and ended

on March 23, 2020 (not continuous). The overall learning goal

is to map the input data to the attack labels.

B. Experimental Setup

We run all experiments on a PC with 16 GB RAM and

an 8-core 2.3 GHz Intel Core i9 processor. For our surrogate

model, we select a DNN with 2 hidden layers with 30, and 20

units. To train this DNN, we use SGD optimizer with learning

rate 0.01, ReLU activation function, and batch size of 32. For

our traditional ML target models, e.g., DT, RF, we perform a

grid search to find their optimal hyper-parameters. For HD, we

set HV dimension to 1000, used random projection encoding,

and set learning rate to 2 after detailed experiments. Our target

DNN consists of 3 hidden layers with 50, 30, and 20 units.

The selected defense DAE structure contains an encoder with

32, 16, and 8 units and a decoder with 16, 32 and 58 units.

DAE is trained using Adam optimizer, with mean squared

error loss. For DAE noise injection, we add noise generated

from {FGSM, RFGSM, PGD, MIM} attack set with 0.5 as

the perturbation amount. We also included 50% clean and 50%

attack data in training which gives the best prediction perfor-

mance under various adversarial attacks. We set the number of

windows (ξ) to 20. This selection brings the largest prediction

improvement over no defense. We report average metrics over

all windows. For varying adversarial attacks, we select a ran-

dom attack from the {FGSM, RFGSM, PGD, MIM} set with

the random perturbation from the interval [0.1, 0.9]. For ADR,

we experimented with the ratios (%) from {0, 25, 50, 100} to

consider different adversarial attack scenarios. We also set the

threshold level T to 0.01 to differentiate attack samples from

clean ones after detailed experiments. To measure the defense

performance, we select 2 metrics: accuracy and F1 score. Since

we have an unbalanced dataset (number of attack samples are

relatively smaller than clean ones), F1 score provides a more

meaningful insight.

C. State-of-the-art Defense

Adversarial training (AT) [8]: AT is widely accepted as the

most effective defense method against adversarial attacks [26].

We selected this as the state-of-the-art defense since it can be

applied to any ML model. It incorporates adversarial attack

data into the training process. For the DNN, we retrain the

model via adversarial attack samples where network weights

are updated. For traditional ML methods, we retrain the

models by including adversarial attack data. For HD, class

hyper-vectors are updated inspired by the method presented

by Ma et al. [27]. For each ML method’s adversarial training,

we use the best adversarial attack to obtain the most effective

defense performance. Hence, we report the most effective

adversarial training defense in our experimental results.
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(a) DT (b) RF

(c) LR (d) NB

(e) HD (f) DNN

Fig. 6: Accuracy Comparison Among No Defense, SoA
Defense (AT) [8], and Our Defense (ROLDEF)

Defensive Distillation (DD) [28]: DD is another well-

known defense approach against adversarial attacks when

adversarial data is not allowed during training. This approach

uses two DNNs: initial and distilled network. Initial DNN

probability vector predictions are given to the distilled network

and training is performed with the original labels. Trained

distilled network is used as the inference model. We make

a comparison with DD when the target model is DNN.

D. Experimental Results

ROLDEF Performance: Fig. 6 and Fig. 7 compare

ROLDEF (green color) against the SoA defense [8] (yellow

color), and No Defense (red color) in terms of accuracy and

F1 score respectively. Each sub-figure has varying attack data

ratio (ADR) on the x-axis and y-axis is accuracy or F1 score.

In terms of accuracy (Fig. 6), our defense consistently provides

the best prediction performance across various target models

and ADR values. Table I presents our method’s accuracy im-

provement over No Defense and SoA defense. Compared to No
Defense, ROLDEF brings up to 965.1% (259.4% on average)

accuracy improvement when the target model is DNN. With

respect to SoA defense, ROLDEF provides up to 44.6% (24.7%

on average) accuracy improvement. Compared to No Defense
and SoA defense, we can obtain 71.7% and 15.9% accuracy

improvement over all target models respectively.

In terms of F1 scores (Fig. 7), we can observe the superior-

ity of our defense. ROLDEF is consistently the best approach

when ADR > 0. Table II shows our method’s F1 score

(a) DT (b) RF

(c) LR (d) NB

(e) HD (f) DNN

Fig. 7: F1 Score Comparison Among No Defense, SoA
Defense (AT) [8], and Our Defense (ROLDEF)

TABLE I: ROLDEF Accuracy Improvement (%)

No Defense SoA Defense [8]
Target Model Maximum Average Maximum Average

DT 144.6 45.7 11.3 6.9
RF 21.8 7.4 18.0 8.5
LR 91.4 35.0 35.1 13.7
NB 162.4 57.2 44.6 19.8
HD 67.0 25.2 26.6 24.7

DNN 965.1 259.4 42.7 21.7

improvement over No Defense and SoA defense. Compared

to No Defense, ROLDEF brings up to 1706.3% (438.1% on

average) F1 score improvement. With respect to SoA defense,

ROLDEF provides up to 440.6% (242.9% on average) F1

score improvement. We can obtain 114% and 50.1% F1 score

improvement over No Defense and SoA defense when all target

models are considered. Overall, we can note that our defense

consistently improves the prediction performance irrespective

of the underlying target ML model.

Defense Comparison under DNN Target Model: Based

on Table II, the largest improvement is observed when the

target model is DNN. This result can be attributed to the

TABLE II: ROLDEF F1 Score Improvement (%)

No Defense SoA Defense [8]
Target Model Maximum Average Maximum Average

DT 219.1 59.6 13.1 6.4
RF 375.7 98.8 9.1 3.5
LR 54.4 19.4 30.9 11.8
NB 82.6 31.9 17.0 6.8
HD 112.1 36.2 34.9 29.3

DNN 1706.3 438.1 440.6 242.9
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TABLE III: Defense Comparison under DNN Target Model

Accuracy F1 Score
ADR (%) / Defense AT [8] DD [28] ROLDEF AT [8] DD [28] ROLDEF

100 73.3 26.8 65.1 30.1 9.4 30.7
50 66.6 60.6 81.6 18.5 46.1 58.9
25 68.7 78.9 91.2 17.9 64.9 73.2
0 68.1 96.8 97.2 15.8 83.5 85.6

Average 69.2 65.8 83.8 20.6 50.9 62.1

TABLE IV: ROLDEF Overhead Analysis

Target Model DT RF LR NB HD DNN
Additional Overhead (ms) 0.08 0.14 0.09 0.09 0.11 0.06

similarity between surrogate and target models. Since the ad-

versarial attack data is crafted via a DNN surrogate, it can fool

the target DNN the most although they have different network

structures. To further demonstrate the effectiveness of our

defense under DNN target model, we compare ROLDEF with

defensive distillation (DD) [28]. Table III presents the results

of this comparison. We observe that our defense provides the

best prediction performance under all ADR values, solidifying

the case for the superiority of our defense.

Overhead Analysis: ROLDEF overhead is the sum of

perturbation prediction and DAE selection. Table IV shows

our method’s additional per sample overhead over the selected

ADR values compared to the SoA defense. When average

execution time is calculated over all target ML methods,

running our defense requires an additional 0.09 milliseconds

per sample compared to the SoA defense. For our data set, a

sample refers to the time interval between the last and the first

packet seen in a network traffic flow [7], where the median

traffic flow duration is 4.98 ms. Compared to the median traffic

flow duration, our method’s overhead is around 1.8%.

V. CONCLUSION

IIoT security is challenging owing to its large attack surface,

and increased inter-connectivity. Intrusion Detection Systems

(IDSs) dynamically monitor the behavior of an IIoT system to

detect malicious activity. ML-based IDS solution is popular

owing to its great prediction performance. However, ML

methods are sensitive to adversarial attacks, impacting their

prediction performance significantly. These attacks can happen

with unknown perturbations and frequencies. Hence, defense

should be adaptive against attacks. In this paper, we proposed

a robust layered defense against adversarial attacks. Our DAE-

based defense first detects if sample comes from an attack. If

attack is detected, adversarial noise is eliminated using the

best DAE. Our defense improved average model prediction

performance by 114% and 50% with respect to no defense

and the state-of-the-art adversarial training defense.

ACKNOWLEDGEMENT

This work has been funded in part by NSF, with award num-

bers #1911095, #2003277, #2003279, #2100237, #2112167,

#2112665, and in part by PRISM and CoCoSys, centers in

JUMP 2.0, an SRC program sponsored by DARPA.

REFERENCES

[1] E. Sisinni et al., “Industrial internet of things: Challenges, opportunities,
and directions,” IEEE transactions on industrial informatics, vol. 14,
no. 11, pp. 4724–4734, 2018.

[2] P. Daugherty and B. Berthon, “Winning with the industrial internet
of things: How to accelerate the journey to productivity and growth,”
Dublı́n: Accenture, 2015.

[3] K. Tange et al., “A systematic survey of industrial internet of things
security: Requirements and fog computing opportunities,” IEEE Com-
munications Surveys & Tutorials, vol. 22, no. 4, pp. 2489–2520, 2020.

[4] O. Gungor et al., “Stewart: Stacking ensemble for white-box adversar-
ial attacks towards more resilient data-driven predictive maintenance,”
Computers in Industry, vol. 140, p. 103660, 2022.

[5] E. Anthi et al., “Adversarial attacks on machine learning cybersecurity
defences in industrial control systems,” Journal of Information Security
and Applications, vol. 58, p. 102717, 2021.

[6] H. Liu and B. Lang, “Ml and dl methods for intrusion detection systems,”
applied sciences, vol. 9, no. 20, p. 4396, 2019.

[7] M. Al-Hawawreh et al., “X-iiotid: A connectivity-agnostic and device-
agnostic intrusion data set for industrial internet of things,” IEEE Internet
of Things Journal, vol. 9, no. 5, pp. 3962–3977, 2021.

[8] A. Madry et al., “Towards deep learning models resistant to adversarial
attacks,” arXiv preprint arXiv:1706.06083, 2017.

[9] O. Gungor, T. S. Rosing, and B. Aksanli, “Dowell: diversity-induced
optimally weighted ensemble learner for predictive maintenance of
industrial internet of things devices,” IEEE Internet of Things Journal,
vol. 9, no. 4, pp. 3125–3134, 2021.

[10] M. Lezzi et al., “Cybersecurity for industry 4.0 in the current literature,”
Computers in Industry, vol. 103, pp. 97–110, 2018.

[11] D. Wu et al., “Cybersecurity for digital manufacturing,” Journal of
manufacturing systems, vol. 48, pp. 3–12, 2018.

[12] J. Li, Y. Liu, T. Chen, Z. Xiao, Z. Li, and J. Wang, “Adversarial attacks
and defenses on cyber–physical systems: A survey,” IEEE Internet of
Things Journal, vol. 7, no. 6, pp. 5103–5115, 2020.
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