computational
materials

npj

ARTICLE

www.nature.com/npjcompumats

M) Check for updates

Structure-aware graph neural network based deep transfer
learning framework for enhanced predictive analytics on

diverse materials datasets
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Modern data mining methods have demonstrated effectiveness in comprehending and predicting materials properties. An
essential component in the process of materials discovery is to know which material(s) will possess desirable properties. For many
materials properties, performing experiments and density functional theory computations are costly and time-consuming. Hence, it
is challenging to build accurate predictive models for such properties using conventional data mining methods due to the small
amount of available data. Here we present a framework for materials property prediction tasks using structure information that
leverages graph neural network-based architecture along with deep-transfer-learning techniques to drastically improve the model’s
predictive ability on diverse materials (3D/2D, inorganic/organic, computational/experimental) data. We evaluated the proposed
framework in cross-property and cross-materials class scenarios using 115 datasets to find that transfer learning models outperform
the models trained from scratch in 104 cases, i.e., =90%, with additional benefits in performance for extrapolation problems. We
believe the proposed framework can be widely useful in accelerating materials discovery in materials science.
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INTRODUCTION

Accurate materials property prediction using crystal structure
occupies a primary and often critical role in materials science,
particularly when screening through a near-infinite space of
candidate materials for desirable materials performance. Upon
identification of a candidate material, one has to go through either
a series of hands-on experiments or intensive density functional
theory (DFT) calculations which can take hours to days to even
months depending on the complexity of the system. Hence, the
ability to accurately predict the properties of interest of the
material prior to synthesis can be extremely useful to prioritize
available resources for simulations and experiments, which can
significantly accelerate the process of materials exploration and
discovery. Owing to significant advances in materials theory'=3
and computational power, it has become possible to compute
several materials properties of a compound using DFT. This has led
to the creation of large DFT databases*>, which when combined
with various advanced data mining techniques have extensively
contributed to enhanced property prediction models®~'3 and
catalyzed the development of the field of materials
informatics'*2°.

Since the size of data available for training the model has a
significant impact on the quality of the predictive models?'~%3,
reliable and accurate models are still limited to a few selected
materials properties that are relatively easy to compute. Several
works have attempted to improve the performance of the model
for small datasets?*28, However, the quality of the prediction for
these studies rely on the materials property-specific feature
engineering performed prior to training the model, making it less
applicable for generalized use across various properties. Alter-
natively, transfer learning (TL), an advanced data mining
technique is often applied for scarce data problems which utilizes

the knowledge learned from a large collection of historical
data®®=°, For instance, it can use the knowledge of a model for
a given property trained on a large DFT dataset to build a model
of the same property but on a small experimental dataset.
However, the absence of a large collection of historical data for
most of the materials properties prohibits the broad application of
this same-property transfer learning, i.e., where both source and
target properties are the same. Gupta et al3638 attempt to
address this by introducing cross-property transfer learning, which
allowed training models on target properties for which corre-
sponding big source datasets may not be readily available.
However, the models were confined to only taking composition as
input. Although composition-only based predictive models can be
helpful for screening and identifying potential material candidates
without the need for structure as an input, they are by design not
capable of distinguishing between structure polymorphs of a
given composition, which would end up being duplicates in the
data, and thus would need to be removed before ML modeling.
This prevents us from applying transfer learning in cases where
the datasets contain large amounts of structure polymorphs, and
the removal of duplicate entries might result in significantly less
data available for model training. It might also prevent the
implementation of cross-materials class transfer learning, thereby
limiting the application of transfer learning to the same materials
class only. Thus composition-based models may have limited
applicability in the materials discovery process, as structure
information is critical to define the material and to perform DFT
computations and further experiments for validation. Further,
composition-only based models could potentially have substantial
errors in the predicted values as compared to ground truth, as
different structure polymorphs of a given composition can have
drastically different properties. These shortcomings of models
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Fig. 1

Outline of the proposed framework. First, a data mining model (e.g., Atomistic Line Graph Neural Network (ALIGNN)>°

comprised of

ALIGNN layers and Graph Convolutional Network (GCN) layers is trained from scratch on a big source data set (e.g., Materials Project (MP)*)
using structure files (e.g., atomic positions for the Vienna Ab initio Simulation Package (POSCAR)) to produce knowledge model. Next, the data
mining model is trained on smaller target datasets (e.g., Joint Automated Repository for Various Integrated Simulations® (JARVIS)) with
different properties by using available information contained within the knowledge model to improve the predictive ability of the model

further.

trained on composition-based inputs can be mitigated by
incorporating structure-based inputs, and hence structure-based
modeling presents bigger opportunities than composition-based
modeling to advance the discovery process in the field of
materials science.

In this work, we present a framework that combines advanced
data mining techniques with a structure-aware graph neural
network (GNN) to improve the predictive performance of the
model for materials properties with sparse data. The overall
workflow of the proposed framework is shown in Fig. 1. Here, we
first apply a structure-aware GNN-based deep learning architec-
ture to capture the underlying chemistry associated with the
existing large data containing crystal structure information. The
resulting knowledge learned is then transferred and used during
training on the sparse dataset to develop reliable and accurate
target models. For simplicity, we call the large body of available
data as the source dataset, the model trained on the source
dataset as the source model, the sparse data as the target dataset,
and the model trained on the target dataset as the target model.
The transfer of information can be performed by either fine-tuning
or feature extraction methods. Fine-tuning uses the weights from
the pre-trained model as the preliminary weight initialization for
the network, which are further refined using the target dataset.
In the feature extraction method, we treat the pre-trained model as
a feature extractor to extract robust features for the target dataset
and use them to build the target model using representation
learning. In this work, we use structure-aware GNN-based model,
ALIGNN3® as the source model architecture, as it has been shown
to significantly outperform several other contemporary models
(SchNet*®, CGCNN*', MEGNet®!, DimeNet++%) on materials
property prediction task across a wide variety of datasets (MP?,
QM9*3, JARVIS®) with upto 52 solid-state and molecular properties
of different data sizes using crystal structure information as the
model input. Interested readers can refer to the publication® for
more details. We implement fine-tuning-based TL for ALIGNN and
design a ALIGNN-based feature extractor for feature extraction-
based TL using atom, bond, and angle-based features. Therefore,
all the models developed in this work are structure-aware which
facilitates better screening and identification of the potential
material candidates, making it easier for the domain scientists to
perform follow-up DFT-computations and experiments, thereby
saving time and resources in the process of future materials
discovery. We compare models obtained using the proposed
framework with models trained from scratch (SC). Note that the
proposed framework can be easily adapted to the ever-increasing
datasets and ever-advancing data mining techniques to improve
the models further. The significant improvements gained by using
the proposed framework are expected to be useful for materials
science researchers to more gainfully utilize data mining
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techniques to help screen and identify potential material
candidates more reliably and accurately for accelerating materials
discovery.

RESULTS

Datasets

We use nine datasets of DFT-computed and experimental
properties in this work: Materials Project (MP)*, Joint Automated
Repository for Various Integrated Simulations (JARVIS) 3D with 46
properties and 2D with 32 properties®, Flla** with three properties,
Dielectric Constant (DC)** with five properties, Piezoelectric Tensor
(PT)*® with two properties, Experimental Formation Energy (EFE)*”
with one property, Kingsbury Experimental Formation Energy
(KEFE)*® with one property, Kingsbury Experimental Bandgap
(KEB)*® with one property, and Harvard Organic Photovoltaic
Dataset (HOPV)>° with 24 properties. MP dataset was downloaded
from3?, JARVIS-3D (https://figshare.com/collections/ALIGNN_data/
5429274), JARVIS-2D  (https://ndownloader.figshare.com/files/
26808917) and HOPV (https://ndownloader.figshare.com/files/
28814184) from their respective figshare links and the rest of
the datasets were obtained using Matminer”’

A model trained on the formation energy of the MP dataset®® is
used as the source model to perform fine-tuning and feature
extraction-based transfer learning as formation energy has shown
to lead to meaningful representations from large source
datasets®®, which can then be applied during the model training
on the smaller target datasets to improve their predictive
performance. The rest of the datasets are used to perform target
model training followed by materials property prediction and
evaluation. The target datasets are randomly split with a fixed
random seed into training, validation, and holdout test sets in the
ratio of 80:10:10. The data size for every materials property in each
of the datasets are shown in Supplementary Table 1, 2 and 3, and
modifications made to some of the target dataset's materials
properties to suit the model input are shown in Supplementary
Table 4. We use mean absolute error (MAE) as the primary
evaluation metric for all models. We also incorporate a ‘Base’
model, which always uses the average property value of all the
training data provided to it as the predicted property of a test
compound as a naive baseline for comparison with scratch (SC)
and transfer learning (TL) methods. Note that due to the large
number of materials properties investigated in this work and
the limited computational resources, we do not investigate the
aleatoric uncertainty caused by the random initialization of the
models.
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Fig. 2 Outline of the ALIGNN-based feature extraction method. Blue color indicates atom-based features, orange color indicates bond-

based features and green color indicates angle-based features.

ALIGNN-based Feature Extractor

We use a structure-aware GNN-based architecture, ALIGNN>® as
our base architecture for training the source models, performing
transfer learning using fine-tuning method, and extracting
structure-based features, as it has shown to significantly outper-
form other known GNN models®'4%252 for materials property
prediction across a wide variety of datasets with different data
sizes®? using crystal structure information as the model input. For
the initial set of input features used to train ALIGNN, please refer
to the publication®®. To extract structure-based features from
ALIGNN, we design a ALIGNN-based Feature Extractor, which is
shown in Fig. 2.

The structure file containing information on lattice geometry
and the ionic positions of a compound is divided into atom, bond,
and angle-based features before feeding into the ALIGNN-based
Feature Extractor where we perform feature extraction. As the
graph neural network (ALIGNN) used for extracting features
comprises of an intricate arrangement of layers, simply extracting
features from every layer would yield nearly 100 variations of
possible features without any definite meaning. If each of these
sets of features is used as model input to perform deep learning-
based model training, it will make the entire process too costly
and time-consuming. Hence, we define several analytical check-
points, mainly after the ALIGNN layer and GCN layer, each
containing two edge-gated graph convolution layers®> and one
edge-gated graph convolution layer, respectively to extract
features instead of extracting features from every layer in order
to design a more generalized mechanism for performing feature
extraction based TL, which is both meaningful as well as helps
save time and resources to carry out the model training for the
proposed framework. After performing feature extraction from the
pre-defined analytical checkpoints, we obtain 9 sets of atom-
based features, 9 sets of bond-based features and 5 sets of angle-
based features, each with a different 256-vector representation of
the compound. We also test the effect of features on the
performance of the model by combining atom-bond and atom-
bond-angle features from the same checkpoint. Moreover, as it is
known that features extracted from the last layer of a given
architecture are also helpful when performing transfer learning
(also known as TL based on the freezing method®*), we also
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Table 1. Prediction performance benchmarking for the prediction
task of ‘Atomistic Line Graph Neural Network (ALIGNN) based Feature
Extractor’ on formation energy of JARVIS-3D dataset.

Features Test MAE (eVatom™")
atom features 0.0465
bond features 0.0625
angle features 0.0754
atom-bond features 0.0410
atom-bond-angle features 0.0449
atom-bond-angle features (last) 0.0401

The table shows the test mean absolute error (MAE) of the best model for
each feature type (selected based on validation MAE) when run on features
extracted from different layers.

combine the last set of atom, bond, and angle-based features
(called atom-bond-angle features(last)) to see its effect on the
performance. Note that we do not try all possible combinations of
atom, bond and angle-based features extracted from different
checkpoints in order to facilitate further generalizability of the
workflow. Due to the nature of the source model architecture, all
the features extracted from the feature extractor are structure
aware. For a detailed explanation of the pre-processing of the
structure-based features associated with the feature extractor,
please refer to the methods section. Next, we perform model
training using the above-defined set of features as input for the
deep neural network where we use a 17-layered neural network
comprising of stacks of fully connected layers and RelLU as the
activation function inspired from?'2%°% as the base architecture
and formation energy of JARVIS-3D dataset as the materials
property for property prediction task, the results of which are
shown in Table 1. In this work, we use a very basic deep neural
network to perform model training on the extracted features to
see the potential of the extracted features to predict the materials
properties.
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Table 2. The table shows the test MAE of the SC model, proposed TL
model, and % error change for each of the target materials properties
for the prediction task of ‘JARVIS-3D Database!

Property Data Size Base MAE of  MAE of % Error
SC Proposed TL  Change
Model Model
BgOptb (eV) 55,711 0.9941 0.1341 0.1258 -6.19
Deltae 55,711 0.8728 0.0343 0.0325 -5.25
(eVatom™")
KLU (A) 55,375 17.770 9.2272 8.8756 -3.81
Ehull (eVatom™") 55,323 1.1390 0.0801 0.0916 14.36
Encut (eV) 55,240 256.56 121.38 118.83 -2.10
Magoszi (ug) 52,894 1.2574 0.2594 0.2412 -7.02
Magout (ug) 52,210 1.7184 0.3608 0.3548 -1.66
Epsx 44,490 57.446 20.238 19.410 -4.09
Epsy 44,490 57319 20.192 19.149 -5.17
Epsz 44,490 55.787 19.778 18.950 -4.19
PPF (uWm~'K=2) 23,210 689.88 442.88 425.97 -3.82
NPF 23,210 709.18 445.97 431.84 -3.17
(UWm~'K?)
NSB (uVK™") 23,150 112.57 40.901 36.841 -9.93
PSB (uVK~") 23,125 165.39 44.861 42.256 -5.81
Nem300k (mo) 21,394 0.6820 0.3197 0.3048 -4.66
Pem300k (mo) 20,213 1.3844 0.4731 0.4642 -1.88
ETC33 (GPa) 20,066 84.164 29.304 29.063 -0.82
ETC22 (GPa) 19,941 84.587 30.319 29.584 -2.42
ETC11 (GPa) 19,905 86.114 30.971 29.730 -4.01
BulkKV (GPa) 19,542 51911 11.502 11.172 -2.87
ETC13 (GPa) 19,541 41326 13.215 12.921 -2.22
ETC12 (GPa) 19,480 43.729 15.287 15.371 0.55
Poisson 19,455 0.1663 0.1830 0.1412 -22.84
ShearGV (GPa) 18,496 26.655 8.4776 7.8337 -7.60
BgMbj (eV) 18,044 1.7496 0.2460 0.2096 -14.80
ETC44 (GPa) 17,714 29.604 12957 12.093 -6.67
AvgME 17,642 0.2254 0.0857 0.0828 -3.38
(electron mass
unit)
AvgMH 17,642 0.3990 0.1234 0.1158 -6.16
(electron mass
unit)
ETC55 (GPa) 17340 28.819 10.787 9.963 -7.64
ETC66 (GPa) 17126 28.344 10.939 10.046 -8.16
Mepsx 16,807 63.642 23.997 22.683 -5.48
Mepsy 16,807 63.925 23.483 22.253 -5.24
Mepsz 16,807 60.569 23.708 22417 -5.45
MaxM (cm™") 13,876 334.07 22.528 25.223 11.96
MinM (cm™") 13,160 44.384 20.450 19.125 -6.48
MaxEFG (10%' 11,865 44463 19.271 18.507 -3.96
Vm~?)
Spillage 11,375 0.5181 0.3501 0.3384 -3.34
SLME (%) 9062 11.174 4.5695 4.2105 -7.86
MaxIrM (cm™") 4803 231.03 176.13 137.34 -22.02
PMEij (cm—2) 4784 0.2126 0.1139 0.0902 -20.81
PMDi 4636 28.223 15.759 15.292 -2.96
PMDiEl (g44) 4527 7.2964 3.7566 2.8052 -25.33
MinIrM (cm™") 4422 35.075 26.652 22,651 -15.01
PMDilo (g;1) 4344 5.8567 2.8887  2.9512 2.16
PMDij (cm™") 3327 15.774 12.530 9.608 -23.32
Exfoli 812 61.034 51.163 45.880 -10.33
(meVatom™")

The lowest MAE values in each row are highlighted in bold.
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Table 1 shows that, in general, feature representations contain-
ing structure-aware atom-based features tend to perform better as
compared to only bond or angle-based features. Moreover, the
combination containing the last set of the atom, bond, and angle-
based features, called atom-bond-angle features(last), performs
the best among the 38 sets of features used for the analysis.
Hence, for the rest of the analysis, we only atom-bond-angle
features(last) as the feature set to perform feature extraction-
based TL for generalizability. Moreover, we use the model with the
least validation error only (among fine-tuning and atom-bond-
angle features(last) based TL models) to perform model testing on
the holdout test set to have a fair comparison with the SC model,
i.e., both the TL and SC models look at the holdout test set only
once during testing.

JARVIS-3D database

Here, we demonstrate the performance of TL models on different
target materials properties in the JARVIS-3D dataset. We compare
the performance of TL models with the SC models, i.e.,, ALIGNN
trained directly on the target dataset from scratch. Table 2
presents the prediction accuracy of the best SC and best TL model
on the test set for each of the 48 target properties.

Table 2 indicates that TL models outperform the SC models in
42/46 cases, i.e., in =91% of the cases. We observe higher percent
error improvement in the TL model for materials properties with
less number of data points (below ~19,000 data points). Supple-
mentary Table 5 shows that among the TL models, fine-tuning-
based TL model performed the best for 27/42 target properties, and
feature extraction-based TL model performed the best for 15/42.
The results illustrate the benefit of using the proposed framework
even when the materials properties of the source datasets and
target datasets are different using structure-based features as model
input. We believe this is because the source model was able to learn
and extract useful and widely applicable features during the model
training on the source data.

Other DFT-based databases

In the previous section, we only used a single DFT-computed
dataset to perform the model training using the proposed
framework to improve the performance of the target model.
However, as various DFT-computed datasets are calculated using
different computational settings and can show significant
discrepancies across each other®®, these differences may affect
the performance of the target model when applying TL. Hence,
here we investigate the effect of using the same source model
trained on the formation energy of MP dataset on other small DFT-
based databases.

Table 3 indicates that TL models outperform the SC models in
10/10 cases, i.e., in 100% of the cases. Supplementary Table 6
shows that among the TL models, the fine-tuning-based TL model
performed the best for 2/10 target properties, and feature
extraction-based TL model performed the best for 8/10. It is
interesting to see that on smaller DFT databases, not only the
feature-extraction-based TL gives the more accurate model for a
large fraction of evaluated properties, but the best TL model is
also quantitatively much more accurate than the best SC model,
underscoring the power of structure-aware feature-extraction
based TL for small datasets.

JARVIS-2D database

In the previous sections, we used different DFT-computed
datasets containing 3D materials to perform the model training
using the proposed framework to improve the performance of the
target model. However, there also exist a class of materials that
exhibit plate-like 2D shapes whose physical and chemical proper-
ties may differ in nature from that of 3D materials. Hence, here we
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Table 3. The table shows the test MAE of the SC model, proposed TL model, and % error change for each of the target materials properties for
prediction task of ‘Other DFT-based Databases.
Dataset Property Data Size Base MAE of SC Model MAE of Proposed TL Model % Error Change
Flla Deltae (eV) 3936 14.3965 4.0309 3.8936 -3.41
Deltae pa (eVatom™") 3936 0.8478 0.0941 0.0274 -70.88
Ehull (eVatom™") 3927 0.0707 0.0424 0.0238 -43.87
DC Vol (A3%) 1054 70.989 34517 33.094 -4.12
Bg (eV) 1054 1.1527 0.4318 0.3657 -15.31
N 1054 0.7358 0.2872 0.2770 -3.55
Poly Elec 1054 4.9939 2.9339 2.2681 -22.69
PolyTotal 1054 8.6057 5.2415 4.7807 -8.79
PT Vol (A%) 940 65.282 29.099 27.352 -6.00
Eij (cm™?) 936 0.4610 0.3297 0.3125 -5.22
The lowest MAE values in each row are highlighted in bold.

investigate the effect of using the same source model trained on
3D materials dataset with TL to build target models on datasets
containing 2D materials. Table 4 presents the prediction accuracy
of the best SC and best TL model on the test set for each of the 34
target properties in JARVIS-2D database.

Table 4 indicates that TL models outperform the SC models in
27/32 cases, i.e., in =84% of the cases. As most of the materials
properties have a small number of data points, we observe even
larger improvement in the performance of the TL model.
Supplementary Table 7 shows that among the TL models, the
fine-tuning-based TL model performed the best for 5/27 target
properties, and feature extraction-based TL model performed the
best for 22/27. The results demonstrate that our proposed
framework is able to improve the performance of the predictive
model even when the source model trained on 3D materials is
applied to 2D materials across different materials properties.

Other materials class data

So far, we have observed the advantages of using the proposed
framework on a variety of materials properties from different DFT-
computed datasets of crystalline solids where TL models typically
outperform SC models. However, as there are different classes of
materials available, it would be interesting to see if the knowledge
learned from one class of materials can be helpful in building a
more accurate model on another class of materials. Hence, in this
section, we explore the effectiveness of our proposed framework
by applying it on datasets comprised of molecular properties.
Table 5 indicates that TL models outperform the SC models in
22/24 cases, i.e., in =92% of the cases. We also observe for some
specific materials properties, improvement in the performance is
always very little, such as scharber jsc, scharber pce, and scharber
voc. It would be interesting to see if it is possible to analyze and
quantify possible relations between materials properties from
different materials classes which can lead to possible improve-
ment in the performance of the target model for cross-property
transfer learning scenarios in future work. Supplementary Table 8
shows that among the TL models, the fine-tuning-based TL model
performed the best for 7/22 target properties, and the feature
extraction-based TL model performed the best for 15/22. It is quite
encouraging to observe that the proposed TL models outperform
the SC models even when using properties from another materials
class as the target properties for most of the cases. This shows that
the ALIGNN model is able to successfully and automatically
capture relevant atom, bond, and angle-based domain knowledge
features from source data and effectively and appropriately apply
that information for building improved predictive models for a
variety of target properties on small target datasets across
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different materials classes using the proposed structure-aware TL
framework.

Experimental data

Here, we demonstrate the performance of our proposed frame-
work on experimental datasets with formation energy and band
gap as materials properties.

Table 6 indicates that TL models outperform the SC models in 3/3
cases, i.e,, in 100% of the cases. Supplementary Table 9 shows that
among the TL models, the fine-tuning-based TL model performed
the best for 1/3 target properties, and feature extraction-based TL
model performed the best for 2/3. It is very encouraging to observe
the improvement in performance not only for computational
datasets but also for experimental datasets. This along with the
other results demonstrates that the proposed framework can
significantly and consistently help improve the prediction of the
materials properties across various domains and classes, thereby
potentially saving time and resources in the process of future
materials discovery.

DISCUSSION

In this paper, we presented a framework that combines structure-
aware GNN architecture with advanced data-mining techniques to
build a powerful source model whose information is then used to
build significantly and consistently accurate target models on
various materials properties from smaller datasets for enhanced
materials property prediction across various domains and
materials classes. To show the benefit of the proposed approach,
we built source models using a structure-aware GNN-based
architecture called ALIGNN on the MP dataset by using only
formation energy as the source materials property. This trained
model was then used to perform transfer learning on 115 different
dataset-property combinations to find that the proposed frame-
work yields highly accurate and robust models even when the
source property and target property are different, which is
expected to be especially useful in building predictive models
for properties for which big datasets are not available. We
compare the performance of the TL models with ALIGNN model
trained from scratch.

To check the robustness of the proposed framework even
further, we perform empirical and statistical analysis to examine
the performance difference between SC and TL models. First we
describe empirical analysis, where we perform training size-based
and extrapolation-based analysis using formation energy as
materials property (as it is one of the most studied property)
from JARVIS dataset. For training size-based analysis we perform
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Table 4. The table shows the test MAE of the SC model, proposed TL
model and % error change for each of the target materials properties
for prediction task of JARVIS-2D Database’

Property Data Size Base = MAE of  MAE of % Error
SC Model Proposed TL Change
Model
BgOptb (eV) 1074 0.9991 0.3537 0.3449 -2.49
Deltae 1074 0.5972 0.1264 0.0715 -43.43
(eVatom™")
KLU (A) 1073 17.673 9.6951 9.5837 -1.15
Magout (ug) 1072 1.1681 0.1951 0.2100 7.64
Encut (eV) 1070 153.22 71.511 81.200 13.55
Magoszi (ug) 1036 1.0969 0.2138 0.1564 -26.85
Epsx 885 7.7160 4.0413 2.7412 -32.17
Epsy 885 8.2292 3.8451 3.6114 -6.08
Epsz 885 22659 1.9724 0.9043 -54.15
PPF 800 406.56 297.18 288.27 -3.00
(uWm™K~?)
NPF 800 354.84 306.03 270.52 -11.60
(UWm~K?)
Exfoli 742 59.268 37.131 36.213 -2.47
(meVatom™")
NSB (uVK~") 733 82.250 54.303 48.856 -10.03
PSB (uVK~") 707 101.23 51.462 51.007 -0.88
Spillage 602 0.3039 0.1899 0.1971 3.79
Pem300k (mo) 264 0.6613 0.7691 0.1417 -81.58
Nem300k (mg) 253 0.6801 0.5672 0.3964 -30.11
Mepsz 246 3.7593 1.3816 1.8648 34.97
Mepsx 244 11.003 103305 9.4178 -8.84
SLME (%) 244 11.335 6.3130 5.1177 -18.93
Mepsy 243 12.302 6.7274 6.4251 -4.49
ETC11 (GPa) 224 39.869 37.327 35.990 -3.58
ETC22 (GPa) 223 52439 45.719 42.894 -6.18
BgMbj (eV) 217 1.6573 09177 0.7503 -18.24
ETC12 (GPa) 212 17.352 12.654 14.573 15.17
ETC44 (GPa) 206 6.1253 2.4420 2.4040 -1.56
MaxM (cm™") 184 223.29 78.586 66.534 -15.34
MinM (cm~™") 183 19.081 49.546 1.937 -96.09
ETC55 (GPa) 180 2.0985 2.9595 0.1973 -93.33
ETC66 (GPa) 180 1.7033 1.4323 0.1185 -91.73
ETC13 (GPa) 153 1.8649 1.4365 0.9880 -31.22
ETC33 (GPa) 135 6.2401 7.9269 6.0764 -23.34

The lowest MAE values in each row are highlighted in bold.

model training with different training data size using the same
test set (10% of the total data size) to create a learning curve with
prediction error as a function of the training set size. Figure 3
shows that TL model outperform SC model for all the training sizes
for formation energy prediction.

For extrapolation-based analysis, we divide the whole dataset
into different splits, where data points corresponding to the
bottom 10% of formation energy values were set aside as the
‘Extrapolation test set’, and the remaining data was divided into
training, validation, and test split (as ‘Interpolation test split’). The
lower values for formation energy indicate a more stable
compound, and it is desirable to have a model that can predict
the lower values accurately and even extrapolate. The scatter plot
of the prediction error for ‘Extrapolation test set’ and ‘Interpolation
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test set’ is shown in Fig. 4. It shows that the best TL model (in this
case, fine-tuning based TL model) performs better as compared to
the best SC model for both the test splits.

Next, we perform statistical analysis where we perform
uncertainty and statistical significance analysis using different
materials properties. For uncertainty analysis, we perform 9-fold
cross-validation (as the datasets were divided into 8:1:1 ratio) for
SC and proposed TL model with the best modeling configuration
using formation energy and bandgap (as they are widely studied
materials properties) of JARVIS 3D, JARVIS 2D, and Experimental
datasets. Supplementary Table 10 shows the distribution of
performance for the models across different train/test splits,
where we observe that TL outperforms SC in terms of MAE for all
six cases. Additionally, to see if the observed MAE is statistically
distinguishable from one another, we perform a corrected
resampled t-test®” and obtain p value <0.01 for all cases. This
shows the MAE obtained using the proposed TL model is
statistically distinguishable from the MAE obtained using the SC
model at a=0.01. For statistical significance analysis, we estimate a
one-tailed p-value to compare the test MAEs obtained on 115
target datasets (out of which TL models outperformed SC models
on 104 target datasets) in order to see if the observed
improvement in the accuracy of TL models over SC models is
significant or not. Here, as we are dealing with different properties
obtained from different datasets, whose differences in MAE may
not be directly comparable®®, we use the Signed Test>® to estimate
the one-tailed p-value. Here, the null hypothesis is ‘TL model is not
better than the SC model’ and the alternate hypothesis is ‘TL
model is better than the SC model'. After performing the statistical
testing using a sign test calculator®®, we get the p value < 0.00001,
thus rejecting the null hypothesis at a=0.01. This suggests that the
difference in test MAE between SC and TL models is unlikely to
have arisen by chance, and thus we can infer that in general the
proposed TL models perform significantly better than SC models.
Additionally, we train ALIGNN on multiple materials properties
simultaneously for both the source and target models to examine
its performance as compared to training the source and target
models with just a single property, as performed in this study. We
use the formation energy and bandgap as the materials properties
where the source model is trained on the MP dataset, and the
target model is trained on the JARVIS 3D dataset. Supplementary
Table 11 shows the test MAE of the SC model and proposed TL
model when the source and target models are trained on single
and multiple materials properties. When training the model on
single materials property, we observe that using the correspond-
ing source model as well as formation energy as the source
property helps improve the performance of the model. When
training the model on multiple materials properties, we observe a
decrease in model accuracy for formation energy and negligible
difference in accuracy for bandgap. This suggests that training
models on multiple materials properties simultaneously for both
the source and target datasets is not beneficial for improving the
accuracy of the model.

We also observe that out of 115 materials properties analyzed in
our work, the SC model performed the best for 11 properties, fine-
tuning-based TL model performed the best for 42 properties, and
feature extraction-based TL model performed best for 62 proper-
ties (Supplementary Figure 1). We observe that in general, fine-
tuning-based TL models perform better for larger target datasets,
and feature extraction-based TL models perform better for smaller
target datasets, which is consistent with a previous study on
composition-based cross-property TL3¢. Additionally, we plot the
percent error improvement of the TL model against the SC model
as a function of dataset size with a histogram in Supplementary
Figures 2 and 3 and observe larger improvement in the model
accuracy for smaller datasets as compared to larger datasets. The
mean + standard deviation, 1% quartile, median, 3 quartile,
minimum and maximum percent error improvements are
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Table 5. The table shows the test MAE of the SC model, proposed TL model and % error change for each of the target materials properties for
prediction task of ‘Other Materials Class Data’
Property Data Size Base MAE of SC Model MAE of Proposed TL Model % Error Change
b3lyp gap (eV) 4854 0.00986 0.00062 0.00055 -11.29
b3lyp homo (eV) 4854 0.00632 0.00047 0.00040 -14.89
b3lyp lumo (eV) 4854 0.00968 0.00044 0.00038 -13.64
b3lyp scharber jsc (mAcm™2) 4854 25.05731 1.18286 1.15373 -2.46
b3lyp scharber pce (%) 4854 0.84101 0.03518 0.03443 -2.13
b3lyp scharber voc (V) 4854 0.17182 0.00933 0.00928 -0.54
bp86 gap (eV) 4854 0.00825 0.00056 0.00042 -25.00
bp86 homo (eV) 4854 0.00599 0.00045 0.00034 -24.44
bp86 lumo (eV) 4854 0.00907 0.00048 0.00037 -22.92
bp86 scharber jsc (MAcm™2) 4854 54.61424 2.62765 2.61410 -0.52
bp86 scharber pce (%) 4854 1.99136 0.11712 0.11567 -1.24
bp86 scharber voc (V) 4854 0.14548 0.00846 0.00824 -2.60
mO06 gap (eV) 4854 0.01170 0.00068 0.00065 -4.41
mO06 homo (eV) 4854 0.00681 0.00048 0.00042 -12.50
mO06 lumo (eV) 4854 0.01035 0.00054 0.00045 -16.67
mO06 scharber jsc (mAcm—3) 4854 0.74746 0.03624 0.03867 6.71
mO06 scharber pce (%) 4854 0.06892 0.00379 0.00363 -4.22
mO06 scharber voc (V) 4854 0.18530 0.01045 0.01026 -1.82
pbe0 gap (eV) 4854 0.01026 0.00064 0.00058 -9.38
pbe0 homo (eV) 4854 0.00640 0.00044 0.00036 -18.18
pbe0 lumo (eV) 4854 0.00982 0.00052 0.00045 -13.46
pbe0 scharber jsc (mAcm=2) 4854 18.46749 0.88544 0.86032 -2.84
pbe0 scharber pce (%) 4854 0.82323 0.03391 0.03301 -2.65
pbe0 scharber voc (V) 4854 0.17392 0.00890 0.00904 1.57
The lowest MAE values in each row are highlighted in bold.
Table 6. The table shows the test MAE of the SC model, proposed TL model and % error change for each of the target materials properties for
prediction task of ‘Experimental Data’
Dataset Property Data Size Base MAE of SC Model MAE of Proposed TL Model % Error Change
EFE Deltae (eVatom™") 605 0.2624 0.0894 0.0782 -12.53
KEFE Deltae (eVatom™") 1557 0.9375 0.1109 0.0608 -45.18
KEB Bg (eV) 2432 1.3142 0.4085 0.3989 -2.35
The lowest MAE values in each row are highlighted in bold.

-11.95 £ 20.23, -15.16, -5.48, -2.54, -96.09 and 34.97, respectively.
Although we only used formation energy as the source material
property to train the feature extractor (source model) and a basic
deep neural network to build target models using the extracted
features, feature extraction-based TL was found to perform better
for more number of materials properties as compared to fine-
tuning based TL for small datasets. This shows the powerful ability
of the feature extractor to learn relevant, robust, and versatile sets
of features that can be leveraged even with relatively simple data
mining techniques, thereby providing flexibility and interoper-
ability. We also observe that transfer learning works not only for
classical quantities such as Deltae (5.25%) but also for electronic
properties such as bandgap (6.19%) equally well. The TL-based
improvements are also mostly isotropic, e.g., improvements in
Meps (x,y,z) components are similar. While some properties like
PMDIEl show substantial improvements, the underlying reasons
for this remain unclear. A potential future utility could involve a
GNNExplainer-like tool®' for ALIGNN architecture. Hence, the
proposed method can help improve the robustness and accuracy
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of the target model on small datasets by incorporating the rich set
of hierarchical features that can be learned using the ever-
increasing data and ever-improving data mining techniques. The
proposed framework is thus flexible and can leverage state-of-the-
art data mining techniques to improve upon the performance and
can be applied to other materials properties across various
domains and materials classes for which enough source data may
not be available. Although transfer learning is not always effective
for all kinds of materials properties with varying data sizes, we
observe that the benefit of transfer learning is more for materials
properties with smaller number of data points, transferring
knowledge from periodic (e.g., crystalline) to non-periodic (e.g.,
molecular) properties, i.e., performing cross materials class transfer
learning to increase the accuracy of the target model is possible
when using structure-based modeling (albeit with smaller
benefits), and there is larger improvement in performance for
‘extrapolation’ than ‘interpolation’ problems. Further, the pro-
posed framework is expected to be easily adaptable to other
scientific domains beyond materials science. The presented

npj Computational Materials (2024) 1



npj

V. Gupta et al.

0.20

0.15

MAE (eV/atom)

0.10

0.05

—e— SC Model
TL Model

0 20 40

60 80 100

Data Size (%)

Fig. 3 Training curve for predicting formation energy in JARVIS dataset for different training data sizes on a fixed test set.
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Fig. 4 Prediction error analysis with mean absolute error (MAE) as error metric for predicting formation energy in JARVIS dataset using best

scratch (SC) and best transfer learning (TL) model.

framework is conceptually easy to implement, understand, use,
and build upon. For future work, it would be interesting to explore
the effect on the performance of the target model when materials
properties other than formation energy are used as the source
material property and GNN architecture other than ALIGNN is
used for training the source model. Although in the current study,
we have used DFT-relaxed structures, which hold origin one way
or another in experimental crystal structures, we plan to use such
TL models for crystal generative models as well®? where property
predictions and pre-screening with TL-performance boosted
models will be useful. It would also be interesting to explore the
uncertainty associated with the materials property prediction by
incorporating neural network components that help perform
uncertainty estimation, such as dropout within the network
architecture, or by creating an ensemble model using multiple
graph neural networks and/or input from multiple checkpoints.
One can also explore different sets of features to train the neural
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network or use more sophisticated neural network architectures
for the target model in a bid to boost the performance of the
target model for a specific materials property.

METHODS

Scratch and transfer learning models

In this work, we implement a scratch (SC) model and two types of
transfer learning (TL) models. For SC models, the model training is
performed directly on the small target dataset without providing
the model with any form of knowledge from source data. We use
the graph neural network model, ALIGNN, as the model
architecture for the SC model. For TL models, we use a model
pretrained on the MP dataset with formation energy as the
materials property using ALIGNN as the model architecture. The TL
techniques comprise of traditional fine-tuning and a feature
extraction method from a graph neural network. Fine-tuning uses
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the weights from the pre-trained model as the preliminary weight
initialization for the network (which is the same architecture as
used during source model training) and is further refined using a
small dataset. In the feature extraction method, we treat the pre-
trained model as the feature extractor and extract atom, bond,
and angle-based features from a given layer, each containing a
variable number of rows depending on the number of the atom,
bond, and angle information present in the input file and 256
columns as features for each row. For example, let us consider a
hypothetical compound A,B,C. where a+ b+ c=x, number of
bonds = y and number of angles = z (generally, number of
angles > number of bonds > number of atoms) and we extract the
features from a checkpoint. Then, the dimensions of the extracted
vectors will be (x, 256) for atom-based features, (y, 256) for bond-
based features, and (z, 256) for the angle-based features. In order
to pre-process them into a form that can be given to the deep
learning (DL) model, which takes a one-dimensional vector as
input, we take the mean of all features across each column. This
creates a (1, 256) vector representation for each of the structure-
based features (atom, bond, and angle) for a given compound of
the target dataset. The extracted feature from a given layer can
then be either concatenated or used separately as an input for any
DL model. For example, if we use atom based features from a
given layer as the materials representation, each compound will
be represented as a 256-dimensional feature vector. Similarly, for
atom-+bond-based features it will be a 512-dimensional feature
vector, and for atom+bond+angle-based features it will be a 768-
dimensional feature vector representation. For our analysis, we
only use atom-+bond+angle (last) as the set of features for the
feature extraction-based TL. The ‘Base’ model used in this work
always uses the average property value of all the training data
provided to it as the predicted property of a test compound as a
naive baseline for comparison with SC and TL methods.

Network settings and model architecture

ALIGNN was implemented using Pytorch and a 17-layered neural
network (NN-17) was implemented using TensorFlow 2 (with
Keras). Detailed configurations for the network architecture is
[FC1024-Re x 4]-[FC512-Re x 3]-[FC256-Re x 3]-[FC128-Re x 3]-
[FC64-Re x 2]-[FC32-Re]-FC1 where the notation [..] represents a
stack of model components comprising a sequence (where FC:
fully connected layer, Re: ReLU activation function). The number of
layers for the neural network was decided based on the analysis
performed in>>, where they investigate the performance of deep
learning models of different depths in model architecture and
show that the error improves with the number of layers up to 17
layers, after which the accuracy stagnated. The hyperparameters
used in the ALIGNN comprise of the following: Sigmoid Linear Unit
(SiLU) as the base activation function, Adaptive Moment Estima-
tion with decoupled weight decay (AdamW) as the optimizer with
normalized weight decay of 10~°, mini-batch size of 64 (32 or 16
where the holdout test set is small or the size of the input files is
larger than the available GPU memory), and learning rate as 0.001.
We train all ALIGNN models for 300 epochs with a fixed random
seed as done in the original work®®. The hyperparameters used in
the NN-17 comprise of the following: rectified linear activation
unit (ReLU) as the base activation function after each layer (except
for the last layer), Adaptive Moment Estimation (Adam) as the
optimizer, mini-batch size as 64 with a learning rate of 0.0001. We
used early stopping with a patience of 200 to stop the model
training if the validation loss does not improve for 200 epochs to
prevent overfitting. All NN-17 model training used a fixed random
seed. Readers interested in in-depth hyperparameter settings for
ALIGNN and NN-17 models are referred to those publica-
tions?239°> for details. We use mean absolute error (MAE) as the
loss function as well as the primary evaluation metric for all
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models. We use DFT-relaxed or experimentally determined
structures as input for all the models trained in this study.

DATA AVAILABILITY

The datasets used in this paper are publicly available from the corresponding
websites- MP* from https://materialsproject.org/, JARVIS® from https://jarvis.nist.gov,
Flla*, Dielectric Constant**, Piezoelectric Tensor*6, Experimental Formation Energy?’,
Kingsbury Experimental Formation Energy“®, Kingsbury Experimental Bandgap*’
from AutoMatminer®®  (https://github.com/hackingmaterials/automatminer), and
HOPV from https://ndownloader.figshare.com/files/28814184.

CODE AVAILABILITY

The codes required to perform fine-tuning and feature extraction based TL used in
this study is available at https://github.com/GuptaVishu2002/ALIGNNTL.
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