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Figure 1: We introduce a sparse view synthesis method, which does not rely on off-the-shelf estimated camera poses. Given the

“Family” scene in the Tanks & Temples dataset, we use 6 out of 200 frames as training views and others for testing. Compared

with other pose-free methods, including COLMAP-Free 3DGS [Fu et al. 2023] (CF 3DGS) and NoPe-NeRF [Bian et al. 2023], we

achieve significant improvements in novel view synthesis both qualitatively and quantitatively. Besides, we also outperform

methods which rely on off-the-shelf estimated camera poses, including Instant-NGP [Müller et al. 2022], Gaussian Splatting

[Kerbl et al. 2023] (3DGS), and FSGS [Zhu et al. 2023]. Methods marked with a camera rely on off-the-shelf estimated camera

poses throughout the paper. The inscription under the statue is emphasized to compare high-frequency details. Image credits

by Knapitsch et al. [2017].

ABSTRACT

Novel view synthesis from a sparse set of input images is a chal-

lenging problem of great practical interest, especially when cam-

era poses are absent or inaccurate. Direct optimization of camera

poses and usage of estimated depths in neural radiance field algo-

rithms usually do not produce good results because of the coupling

between poses and depths, and inaccuracies in monocular depth

estimation. In this paper, we leverage the recent 3D Gaussian splat-

ting method to develop a novel construct-and-optimize method

for sparse view synthesis without camera poses. Specifically, we
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construct a solution progressively by using monocular depth and

projecting pixels back into the 3D world. During construction, we

optimize the solution by detecting 2D correspondences between

training views and the corresponding rendered images. We develop

a unified differentiable pipeline for camera registration and adjust-

ment of both camera poses and depths, followed by back-projection.

We also introduce a novel notion of an expected surface in Gaussian

splatting, which is critical to our optimization. These steps enable

a coarse solution, which can then be low-pass filtered and refined

using standard optimization methods. We demonstrate results on

the Tanks and Temples and Static Hikes datasets with as few as

three widely-spaced views, showing significantly better quality

than competing methods, including those with approximate cam-

era pose information. Moreover, our results improve with more

views and outperform previous InstantNGP and Gaussian Splatting

algorithms even when using half the dataset.
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1 INTRODUCTION

Neural Radiance Field (NeRF) and its several variants [Barron et al.

2023; Kerbl et al. 2023; Mildenhall et al. 2020; Müller et al. 2022]

have excelled in novel view synthesis of 3D scenes. However, these

methods require densely captured views with accurately labeled

camera poses, which is often not feasible in practical scenarios.

Often, camera poses are obtained from Structure-from-Motion (SfM)

methods like COLMAP [Schönberger and Frahm 2016; Schönberger

et al. 2016] as a pre-processing step to NeRF, which is brittle and

fails when given sparse views. Even in the cases where COLMAP

can successfully register sparse scenes, as shown in Fig. 1, sparse

view synthesis is challenging and ill-posed from ambiguity in the

3D scene due to under-sampling. This limitation raises a critical

question: Is it possible to perform novel view synthesis from sparse

input captures (as little as 3-6 images) with unknown camera poses?

The recent introduction of 3D Gaussian Splatting, denoted as

3DGS [Kerbl et al. 2023], also struggles to deal with sparse view

synthesis due to too sparse initialization from SfM. However, the

explicit representation, i.e., 3D Gaussians, of 3DGS provides new

opportunities to solve that critical question. Different from fitting a

solution for sparse view synthesis in NeRFs, we desire to construct

a solution based on a dense prior, i.e., estimated monocular depth;

however optimization is still essential, and we therefore call our

approach a construct-and-optimize method.

A naive way to construct a solution is by first estimating camera

poses and then back-projecting pixels into the scene based on their

estimated depths. However, there is a problem in handling camera

poses and depth estimation independently – in actual 3D captures,

both quantities are tightly coupled and depend upon one another

[Kopf et al. 2021] as shown in Fig. 2. Unfortunately, in the case of

sparse views, monocular depth estimation algorithms do not take

camera pose information into account. Additionally, camera pose

estimation algorithms do not leverage and align monocular depth.

As a result, back-projection for the same scene across multiple

views may be inconsistent. We therefore involve optimization in

the construction to solve these issues. Our pipeline shown in Fig. 3

is progressive, i.e. it builds the scene continuously. For the next

unregistered view, we first estimate its camera pose in a registration

stage. Afterwards, we adjust the previous registered camera poses

and align monocular depths, which we call adjustment. At last,

pixels of the next view are back-projected into world space as 3D

Gaussians. Therefore, the camera poses are not needed to be known

First View
(a) (b)

Second View

First View
(c)

Second View

Figure 2: Example of ambiguity given partial views. Given

the scene in (a), there could be different possibilities of scene

layouts as shown in (b) and (c), if only the first view or sec-

ond view is observed. (b) or (c) could be the estimated depth.

This ambiguity results in unavoidable error in monocular

depth estimation, which necessitates the alignment between

camera poses and estimated depths.
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Figure 3: Overview of our method for sparse view synthesis.

We first back-project the first view and sequentially register,

adjust and back-project the remaining views in sequence to

obtain a coarse solution. This coarse solution is then refined

by standard optimization to reproduce fine details.

in advance. Finally, we reach a coarse solution, which is then refined

using standard optimization [Kerbl et al. 2023] to reproduce details

faithfully. Before that, we also apply a low-pass filtering to avoid

high-frequency artifacts as shown in Fig. 10 (a).

To harmonize the monocular depths with the camera poses,

we unify registration and adjustment in a differentiable pipeline

for optimization, whose objective is to reproduce training views.

However, for sparse views with non-trivial camera movements,

commonly used pixel-wise supervision does not lead to effective

optimization, since it only considers short-range information. To

take long-range information into account, we instead detect 2D

correspondences [Sun et al. 2021; Tang et al. 2022] between training

views and their corresponding rendered views, and aim to match

them in screen-space coordinates as shown in Fig. 4 (a), (b). To

optimize over the detected correspondences, we have to render

screen-space coordinates of expected surface points, which requires

a definition of an expected surface in Gaussian splatting. Existing

attempts at estimating the expected surface (e.g., [Chung et al. 2023;

Keetha et al. 2023; Zhu et al. 2023]) do not fully respect the shape

of Gaussian kernels, leading to ineffective optimization for our

problem. We are therefore motivated to develop a more accurate

rendering of the expected surface for 3DGS.

Through extensive experiments and comparisons, we show that

our method achieves state-of-the-art results when dealing with
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challenging cases where only a few views (< 5% of total views) are

provided and there is non-trivial camera movement between any

pair of views, as shown in Fig. 1, 8. The performance of our method

also improves as the number of views increases as shown in Fig. 9.

In summary, the contributions of our work include:

• We propose a unified differentiable pipeline, which leverages

correspondences as supervision, for sparse view synthesis

without camera poses in Sec. 3.1, 3.2.

• We propose a differentiable approximation of the expected

surface in Gaussian splatting for effective correspondence

supervision in Sec. 3.3.

2 RELATEDWORK

Sparse view synthesis. The computer vision and graphics com-

munity has studied novel view synthesis for decades [Chai et al.

2000; Chen and Williams 1993; Gortler et al. 1996; Levoy and Han-

rahan 1996; McMillan and Bishop 1995]. A number of subsequent

advances were made in sparse view synthesis [Hedman and Kopf

2018; Kalantari et al. 2016; Mildenhall et al. 2019]. We build on the

recent development of neural radiance fields for view synthesis

[Mildenhall et al. 2020, 2022].

Sparse view synthesis in NeRFs typically assumes camera poses

to be known to simplify the problem. Some works (e.g., [Deng et al.

2022; Kim et al. 2022; Niemeyer et al. 2022; Wang et al. 2023; Yu

et al. 2021, 2022]) try to fit an efficient representation (e.g., MLPs

[Mildenhall et al. 2020], hash tables [Müller et al. 2022], etc.) with

prior knowledge, such as depth or heuristic constraints, to reduce

the ambiguity. However, the reconstructed continuous signal still

unavoidably results in blurry or noisy images for novel views.

In this paper, we show that constructing a solution for sparse

view synthesis with optimization can be easier, in contrast to fitting

the complex signal from sparse observations. However, the camera

poses and the reconstructed scene should be aligned. In SfM, this

goal is achieved by bundle adjustment [Snavely et al. 2008]. How-

ever, our representation for the scene as 3D Gaussian is different

from points. Realistic rendering and the higher degrees of freedom

afforded by 3D Gaussians enable correspondence detection between

the current reconstructed scene and training views for alignment.

This facilitates effective and stable optimization based on differ-

entiable rendering. Therefore, we call this optimization process

adjustment to distinguish it from conventional bundle adjustment.

Furthermore, registration of camera poses can also be unified in the

same optimization framework. The camera poses are therefore not

needed to be known in advance.

Optimizing camera poses in NeRFs. Accurate camera poses are

vital for realistic view synthesis in NeRFs. Given initially estimated

camera poses, which usually come from SfM [Schönberger and

Frahm 2016; Schönberger et al. 2016] or sensors, some methods

(e.g., [Heo et al. 2023; Lin et al. 2021; Park et al. 2023; Wu et al. 2023])

refine them during the optimization for better view synthesis.

When camera poses are not given, several works [Bian et al.

2023; Fu et al. 2023; Lin et al. 2021; Meuleman et al. 2023; Wang

et al. 2021] require a dense capture and gradually register frames

by pixel-wise supervision and/or additional priors, such as depth

[Birkl et al. 2023; Ranftl et al. 2022] or optical-flow [Teed and Deng

2020]. It is noteworthy that the camera pose of the next unregistered

frame is initialized as the camera pose of the last registered frame.

However, when the views are sparse and there is non-trivial camera

movement between any pair of captured frames, SfM sometimes

fails to produce accurate results and none of the previous methods

can deal with this scenario well. GNeRF [Meng et al. 2021] tries to

tackle the general camera pose querying problem by a generative

prior, which is still limited to individual objects rather than scenes.

As discussed in Xing et al. [2022], pixel-wise supervision yields

gradients that only consider short-range information. In the case

of sparse views, there could be non-trivial camera movements that

makes it desirable to have gradients that consider long-range infor-

mation. Therefore, in this work, we leverage 2D correspondences

between the reconstructed scene and training views for effective

optimization of camera poses and the reconstructed scene.

Surface rendering in Gaussian splatting. In 3DGS, recent progress

(e.g., [Chung et al. 2023; Fu et al. 2023; Keetha et al. 2023; Xiong

et al. 2023; Yan et al. 2023; Zhu et al. 2023]) has found that an

approximate surface is useful for view synthesis. However, their

approximation unavoidably assumes that the surface is a constant

point inside each Gaussian kernel, which is sub-optimal in our

case. Therefore, we propose an approximate anisotropic surface

rendering scheme that is more accurate than prior works and results

in effective optimization for our task. A variant of our approximate

surface rendering is introduced in [Lassner and Zollhöfer 2021],

but it is isotropic and does not deal with volume rendering. SuGaR

[Guédon and Lepetit 2023] proposes an ideal depth to regularize

the current rendered depth. In contrast, we better approximate the

expected surface for downstream optimization.

3 METHOD

In Sec. 3.1, we first present an overview of our algorithm for sparse

view synthesis. In Sec. 3.2, we introduce our differentiable pipeline

for registration and adjustment. Next, we introduce a more accurate

approximation of surface rendering for 3D Gaussians in Sec. 3.3,

which allows us to leverage correspondences as an effective super-

vision in the differentiable pipeline. After these steps, we have a

coarse solution, which we further refine in Sec. 3.4. We present an

outline of our pipeline in Fig. 3, and focus on registering, adjusting

and back-projecting the 𝑘 + 1th view in Fig. 4.

3.1 Algorithm Overview

Assuming we have an ordered set of consecutively captured 𝑛 RGB

images I = {𝐼1, 𝐼2, ..., 𝐼𝑛} and their corresponding estimated monoc-

ular depths D = {𝐷1, 𝐷2, ..., 𝐷𝑛}, we are interested in novel view

synthesis without camera poses, using 3D Gaussians as our repre-

sentation. As in [Bian et al. 2023], we assume the intrinsic matrix 𝐾
of the camera is given, and denote the unknown extrinsic matrices

for each view as P = {𝑃1, 𝑃2, ..., 𝑃𝑛}.
As shown in Fig. 3, we start with the first view 𝐼1 and set its

extrinsic matrix 𝑃1 to the identity matrix. Next, we back-project

each of its pixels into world space as 3D Gaussians, such that the

rendered image and depth match 𝐼1 and 𝐷1 respectively.

Specifically, given the camera pose and depth for the frame, we

can construct a particular fully opaque splat for each pixel in our

approximate surface rendering scheme (please find details in Sec.

1.1 of the supplementary).
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Figure 4:We assume the first𝑘 views have already been registered, and illustrate the registration, adjustment and back-projection

of the 𝑘 + 1th view. (a) We first initialize the camera pose of the 𝑘 + 1th view, denoted as 𝑃𝑘+1, as the 𝑘
th view’s camera pose. 2D

correspondences are detected between ground-truth image 𝐼𝑘+1 and the rendered result 𝐼render (𝑃𝑘+1) at 𝑃𝑘+1. Correspondence
points on 𝐼render (𝑃𝑘+1) are denoted as 𝜅′, while those on 𝐼𝑘+1 are denoted as 𝜅. Green points denote correct correspondences,

while red points denote wrong correspondences. We can use perspective-n-points (PnP) to solve the camera pose but it results

in an erroneous solution. (b) We then apply our optimization pipeline (Sec. 3.2) to estimate the camera pose for registration.

For now, the monocular depth 𝐷𝑘+1 of the 𝑘 + 1th view deviates significantly from the rendered depth 𝐷render (𝑃𝑘+1) at 𝑃𝑘+1.
(c) Afterwards, we apply our optimization pipeline (Sec. 3.2) to adjust all previous registered camera poses and monocular

depths along with 𝑃𝑘+1 and 𝐷𝑘+1. It can be seen that 𝐼render (𝑃𝑘+1) and 𝐷𝑘+1 are much close to 𝐼𝑘+1 and 𝐷render (𝑃𝑘+1). Finally, we

back-project pixels in the 𝑘 + 1th view into world space as 3D Gaussians based on 𝐷𝑘+1. Images credit by Knapitsch et al. [2017].

We then assume the first 𝑘 frames have already been registered

and consider the next unregistered view 𝐼𝑘+1. Its extrinsic matrix

𝑃𝑘+1 is first initialized as 𝑃𝑘 as shown in Fig. 4 (a). We optimize

𝑃𝑘+1 based on the previous reconstruction to register the new

view as shown in Fig. 4 (b). During adjustment, we optimize all

previous extrinsic matrices {𝑃1, 𝑃2, ..., 𝑃𝑘 } and monocular depths

{𝐷1, 𝐷2, ..., 𝐷𝑘 } along with 𝑃𝑘+1 and 𝐷𝑘+1 as shown in Fig. 4 (c).

After that, pixels in 𝐼𝑘+1 are back-projected based on the aligned

depth𝐷𝑘+1. After processing all 𝑛 views, we reach a coarse solution

for sparse view synthesis.

3.2 Optimization Framework

We achieve registration and adjustment through an optimization

framework. The camera pose is optimized in both registration and

adjustment, but the alignment of depth is achieved through the

adjustment only. Our optimization aims to reproduce training views,

i.e., for each view, the rendered image should match the ground-

truth image. Pure pixel-wise supervision does not lead to effective

optimization for non-trivial cameramovement between consecutive

views, since it only considers short-range information. Inspired by

but different from optimal transport [Xing et al. 2022], we leverage

correspondences, which bootstrap the method, to consider long-

range information for optimization.

Assume the view of interest is 𝐼 , and the rendered image given

its current extrinsic matrix 𝑃 , is 𝐼render (𝑃). We can leverage off-the-

shelf detectors [Sun et al. 2021; Tang et al. 2022] to detect the 2D cor-

respondences between 𝐼 and 𝐼render (𝑃) per optimization step. The

2D screen-space points on 𝐼 are 𝜅 = {𝜅 (1) , 𝜅 (2) , ..., 𝜅 (𝑀 ) }, where

𝑀 denotes the number of points. The 2D screen-space points on

𝐼render (𝑃) are 𝜅
′ = {𝜅

′ (1) , 𝜅
′ (2) , ..., 𝜅

′ (𝑀 ) }. The optimization goal is

then to match 𝜅 with 𝜅′, which is visualized in Fig. 4 (a) and (b). For

registration only, we can use perspective-n-points (PnP) [Lepetit

et al. 2009] to solve camera parameters. However, it is sensitive

to mismatches as shown in Fig. 4 (a), and it is hard to balance the

number of matches with the threshold of the RANSAC algorithm.

On the other hand, we find that our optimization framework is

robust and achieves more accurate registration. Therefore, regis-

tration and adjustment are unified under the same optimization

framework.

In order to back-propagate gradients from the matching between

𝜅 and 𝜅′ to the 3D Gaussians that form the surface, we use a dif-

ferentiable approximate surface renderer, elaborated in Sec. 3.3, to

render screen-space coordinates at 𝜅
′ (𝑖 ) , 𝑖 = 1, 2, ..., 𝑀 as 𝑞(𝑐

′
). The

resulting loss is

Lcorr =
𝑀∑
𝑖=1

| |𝑞(𝜅
′ (𝑖 ) ) − 𝜅 (𝑖 ) | |1 . (1)
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Importantly, 𝑞(𝜅
′ (𝑖 ) ) equals 𝜅

′ (𝑖 ) numerically, but it forms a graph

for back-propagating gradients to the underlying representation.

We also find that when 𝑃 is close to ground-truth, short-range

information provided by pixel-wise supervision can help stabilize

the optimization. This loss is given by

Lrgb = | |𝐼 − 𝐼render (𝑃) | |1 . (2)

Finally, in the adjustment, we adjust the monocular depth 𝐷 of

the current view during the adjustment phase, for later use during

back-projection. To align the estimated monocular depths effec-

tively, we would like to use the scale-consistency assumption [Birkl

et al. 2023; Ke et al. 2023] but it does not always hold true. To re-

lax the scale-consistency assumption, instead of learning an affine

transformation per view, we learn a separate affine transformation

per primitive [Yu et al. 2023]. By denoting the rendered depth given

the current extrinsic matrix 𝑃 as 𝐷render (𝑃), we match 𝐷 to the cur-

rent rendered depth𝐷render (𝑃) for all correspondences. Specifically,

the rendered depth at 𝜅
′
is denoted as 𝑏 (𝜅

′
) and the monocular

depth at 𝜅 is denoted as 𝑑 (𝜅 ). The loss term is defined as

Ldepth =
𝑀∑
𝑖=1

| |sg[𝑏 (𝜅
′ (𝑖 ) )] − 𝑑 (𝜅 (𝑖 ) ) | |1 . (3)

Since we only want to adjust the monocular depth 𝐷 to make

it match the rendered depth 𝐷render (𝑃), we stop the backward

propagation of gradients (sg[·]) through 𝑏.
In summary, the optimization objective is defined as

L = 𝜆1Lcorr + 𝜆2Lrgb + 𝜆3Ldepth, (4)

where 𝜆1 = 1000, 𝜆2 = 10, 𝜆3 = 1. The gradients back-propagate to

camera parameters and the reconstructed scene.

3.3 Differentiable Surface Rendering

Our goal for correspondence matching (see Sec. 3.2) is to propagate

long-range gradient information from a 2D screen-space point to

its corresponding 3D surface point. In essence, our goal is to map

perturbations of the 2D screen-space point to corresponding pertur-

bations of the 3D surface point. However, this raises an important

question – where is the 3D surface point?

Since the 3D Gaussian representation is volumetric, there are

no explicit surfaces; instead, previous works [Chung et al. 2023;

Fu et al. 2023; Keetha et al. 2023; Yan et al. 2023] compute the

depth of expected 3D surface point 𝐷 (s) corresponding to the 2D

screen-space point s as:

𝐷 (s) =
∑
𝑖

𝑑𝑖𝛼𝑖 (s)
𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗 (s)), (5)

where 𝑑𝑖 ∈ R denotes the 𝑧-axis coordinate for the transformed

Gaussian centers in the camera space, and 𝛼𝑖 ∈ R and 𝛼 𝑗 ∈ R

denote the calculated alpha-blending coefficient of the 𝑖th and 𝑗 th

Gaussian kernel. This is shown as Fig. 5 (a).

Its extension to corresponding expected 3D surface point Ψ(s)
at s is given by

Ψ(s) =
∑
𝑖

𝝁𝑖𝛼𝑖 (s)
𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗 (s)), (6)

where 𝝁𝑖 ∈ R
3 denotes the center of the 𝑖th Gaussian kernel.

d

𝜇 𝜇(s)

(a) (b) (c) (d)

𝜇

Figure 5: Illustration of surface rendering in Gaussian splat-

ting. Assume the ray is shot from screen-space coordinates

s and Ψ(s) denotes the rendered surface point. 𝜋 (·) denotes
projecting 3D points into screen space. (a) Depth rendering

of previous methods. The depth 𝑑 of a Gaussian kernel is

defined as the 𝑧-axis coordinate for the transformed center

𝝁 in the camera space. (b) Extending (a) to render the exact

3D surface point. The surface point of the Gaussian kernel

is defined as the center 𝝁. It could result in a mismatch be-

tween s and 𝜋 (Ψ(s)). (c) Approximate surface rendering of

our method. The surface point 𝝁̂ (s) of the Gaussian kernel

is defined as the intersection point between the ray and an

ellipsoid shell. Therefore, our method guarantees a match

between s and 𝜋 (Ψ(s)). (d) Surface rendering of our method

when considering all the rays passing through the center of a

spherical Gaussian kernel. The expected surface points form

a shell.

Unfortunately, their rendering model for Ψ(s) is not consistent
with s, i.e., Ψ(s) may not be projected onto 𝑠 , which is essential to

our optimization, see Fig. 5 (b).

We would like to fix this rendering model, without breaking any

of the original assumptions [Kerbl et al. 2023; Zwicker et al. 2001,

2002] in order to have efficient rendering. Our solution is to replace

𝝁𝑖 with a better approximation 𝝁̂𝑖 (s) for the expected surface point.
Different from the earlier rendering model, 𝝁̂𝑖 (s) is now dependent

on s, as illustrated in Fig. 5 (c).

We expect the relative position 𝛿 between 𝝁̂𝑖 (s) and 𝝁𝑖 to be

translation- and rotation-invariant, as shown in Fig. 6 (a). We can

therefore consider 𝝁̂𝑖 (s) in the canonical form, i.e., the Gaussian

kernel is placed canonically at the origin. For a single isotropic 3D

Gaussian, we can compute the expected surface point using its free

flight distance probability density function. The locus of expected

surface points for all rays passing through the center of the 3D

Gaussian form a shell, as shown in Fig. 5 (d). We use this shell

to approximate the surface of the 3D Gaussian. Similarly, for an

anisotropic 3D Gaussian, we use an ellipsoidal shell to approximate

the surface. Here, the semi-axes can be computed by an integral

which only depends on the anisotropic Gaussian’s scale parameters.

For efficient gradient calculation, we approximate this integral

with a linear function. Our rendering guarantees the “consistency”

property, i.e., Ψ(s) is projected to s, as shown in Fig. 5 (c).

In summary, 𝝁̂𝑖 (s) is reduced to a ray-intersection test between

the current ray and a defined ellipsoid shell of the current Gaussian

kernel, illustrated in Fig. 5 (c). Specifically, assume the origin and

corresponding direction of the current ray are o and d(s), and the

intersection distance is 𝑙 , so that 𝝁̂𝑖 (s) = o + 𝑙d(s). And we skip

Gaussian kernels whose approximate surfaces do not intersect with
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Translation & Rotation
𝜇 𝜇

(a)

(b)

Re-Parameterization

𝜇

Figure 6: (a) Illustration of the invariance of relative position

𝛿 between the surface point 𝝁̂ (s), and the center of the Gauss-

ian kernel 𝝁. 𝛿 is expected to be translation- and rotation-

invariant. (b) Illustration of re-parameterizing surface point

𝝁̂ (s) from an intersected point into a point defined on an

ellipsoid shell.

the current ray, denoted as 𝝁̂𝑖 (s) = ∅. The expected world space

coordinates of the surface point at s are therefore given by

Ψ(s) =
∑

𝑖,𝝁̂𝑖 (s)≠ ∅

𝝁̂𝑖 (s)𝛼𝑖 (s)
𝑖−1∏

𝑗=1,𝝁̂ 𝑗 (s)≠ ∅

(1 − 𝛼 𝑗 (s)) . (7)

By projecting 𝝁̂𝑖 (s) into camera space to obtain the 𝑧-axis coor-
dinate as 𝑧𝑖 (s) and into screen space to obtain the screen-space

coordinates 𝜋 (𝝁̂𝑖 (s)), we are able to render depth 𝐷 (s) and screen-

space coordinates 𝑞(s) of expected surface points, which are given

by

𝐷 (s) =
∑

𝑖,𝝁̂𝑖 (s)≠ ∅

𝑧𝑖 (s)𝛼𝑖 (s)
𝑖−1∏

𝑗=1,𝝁̂ 𝑗 (s)≠ ∅

(1 − 𝛼 𝑗 (s))

𝑞(s) =
∑

𝑖,𝝁̂𝑖 (s)≠ ∅

𝜋 (𝝁̂𝑖 (s))𝛼𝑖 (s)
𝑖−1∏

𝑗=1,𝝁̂ 𝑗 (s)≠ ∅

(1 − 𝛼 𝑗 (s)).

(8)

We follow the same framework of forward and backward passes

in the rasterizer proposed in [Kerbl et al. 2023], but replace the

rendering of color with our defined expected surface. However, the

backward pass is a bit different due to the involved ray-intersection

test. Specifically, considering the surface point 𝝁̂𝑖 (s) for the 𝑖
th

Gaussian kernel, it is defined as o + 𝑙d(s), in which 𝑙 is a function
of the center, rotation, and scaling of the 𝑖th Gaussian kernel. This

parameterization could result in gradient cancellation when camera

parameters are also optimized, illustrated in Fig. 7. Even though the

surface point 𝝁̂𝑖 (s) is defined through the origin and direction of the
current ray, it should be treated as an independent point existing on

an ellipsoid shell. Therefore, we propose to re-parameterize 𝝁̂𝑖 (s)
as a function of the center, rotation and scaling of the ellipsoid

shell solely as shown in Fig. 6 (b). The gradients are then back-

propagated to these properties of the ellipsoid shell, and finally to

the camera parameters and the Gaussian kernel.

3.4 Refinement and Implementation Details

After reaching a coarse solution using the algorithm above, we

refine the solution using standard optimization techniques [Kerbl

𝜇(s)

q
Gradient

𝜇(s)

q

𝜇(s)

qGradient Gradient

(a) (b)

Figure 7: Illustration of gradient cancellation due to the in-

tersection test. Given the surface point 𝝁 (s) and its projected

screen-space coordinates 𝑞, assume the gradients move 𝑞 to
the right. (a) In one way, since 𝝁 (s) is defined through the ray

origin and direction, the gradients are back-propagated to the

ray origin to move the viewing position right. (b) In another

way, since 𝝁 (s) is defined through the center of the Gauss-

ian kernel, the gradients are back-propagated to the center

to move it to the right. In turn, due to the transformation

from world space to camera space, the gradients are back-

propagated to the viewing position to move it left. Therefore,

these two gradients cancel each other and sum to zero occa-

sionally.

et al. 2023] and optimize the camera poses in the optimization.

Before that, we first remove error-prone high-frequency recon-

structions by applying a low-pass filter, see Fig. 10 (a). To achieve

the same effect as a low-pass filter by penalizing dense clusters of

Gaussians and promoting more uniformly distributed Gaussians,

for each detected object in each view, we only retain 10% of the total

back-projected Gaussians, by a farthest point sampling algorithm

[Ravi et al. 2020] based on the center of the Gaussians.

The optimization setup is almost the same as Kerbl et al. [2023].

On an NVIDIA RTX 3080 GPU, the time required to register and

adjust a view varies but typically takes minutes and increases as

the number of views increases. The refinement with standard 3DGS

takes ∼ 1 hour. During inference, we enjoy the same speed of [Kerbl

et al. 2023] since we still leverage 3D Gaussians as our representa-

tion. Please find more details in the supplementary.

4 RESULTS

We provide evaluation details below, and conduct comparisons to

other methods (Sec. 4.1), and an ablation study of the components

of our algorithm (Sec. 4.2). We also encourage readers to look at

the supplementary and accompanying video for more results.

Evaluation Details. To compare with methods which require

initialized camera poses, we use SfM [Schönberger and Frahm 2016;

Schönberger et al. 2016] for registration. For fairness, SfM only sees

training views for reconstruction, and registers testing views after

reconstruction, in which bundle adjustment is not included.

Datasets. We evaluate on datasets which contain non-trivial cam-

eramovements but ensure that there is overlap between consecutive

frames, as has been done by other pose-free methods [Bian et al.

2023; Fu et al. 2023; Meuleman et al. 2023] for evaluation. Following

Bian et al. [2023], we use 8 scenes of the Tanks&Temples dataset
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Table 1: Quantitative evaluation on the Tanks&Temples dataset. The best score is highlighted in bold throughout the paper. †:

FSGS requires multi-view stereo estimation from COLMAP, which fails on 50% of total scenes. We therefore report the averaged

metrics of the remaining scenes.

Methods
3 Views 6 Views 12 Views

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Instant-NGP� 15.31 0.42 0.56 17.52 0.56 0.47 20.21 0.69 0.35

3DGS � 15.21 0.46 0.43 20.17 0.71 0.24 23.60 0.81 0.17

FSGS†� 19.23 0.58 0.37 23.55 0.74 0.28 26.81 0.83 0.22

GNT� 17.80 0.57 0.29 22.52 0.77 0.18 24.56 0.82 0.14

LocalRF 16.06 0.49 0.70 16.31 0.50 0.67 18.68 0.54 0.61

NoPe-NeRF 12.05 0.35 0.76 15.64 0.45 0.65 18.12 0.49 0.60

CF 3DGS 14.91 0.43 0.43 16.71 0.50 0.41 18.62 0.59 0.36

Ours 20.37 0.66 0.26 25.18 0.81 0.16 28.65 0.88 0.10

Table 2: Quantitative evaluation on the Static Hikes dataset.

Methods
3 Views 6 Views 12 Views

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

LocalRF 15.97 0.33 0.47 18.32 0.47 0.43 20.13 0.54 0.41

NoPe-NeRF 14.85 0.25 0.67 18.59 0.34 0.57 18.19 0.34 0.59

CF 3DGS 15.45 0.28 0.60 17.02 0.35 0.52 17.65 0.39 0.46

Ours 16.35 0.38 0.37 18.96 0.50 0.31 19.70 0.53 0.29

Table 3: PSNR Score ↑ on testing views for investigating the

effects of number of training views (first row).

Methods 3 � 4 � 6 � 12 � 24 � 60�

Instant-NGP � 16.46 16.94 17.19 17.86 18.57 21.10

3DGS � 14.99 14.99 17.76 17.12 25.35 26.95

Ours 21.54 25.36 29.00 32.09 33.73 35.93

[Knapitsch et al. 2017]. Following Meuleman et al. [2023], we also

use 5 scenes of the Static Hikes dataset [Meuleman et al. 2023].

We estimate the monocular depth per frame with [Ke et al. 2023],

and we also show the sparse view synthesis results using another

monocular depth estimator [Birkl et al. 2023] in the supplementary.

For training, we select 𝑛 evenly distributed frames and use the oth-

ers for testing. For example, when 𝑛 = 3, the first, middle and last

frames are used for training.

4.1 Comparison

We compare with pose-free methods: COLMAP-Free 3DGS (CF

3DGS) [Fu et al. 2023], NoPe-NeRF [Bian et al. 2023], LocalRF

[Meuleman et al. 2023]; pose-required reconstruction methods:

Instant-NGP [Müller et al. 2022], 3DGS [Kerbl et al. 2023]; a pose-

required sparse-view synthesis method: FSGS [Zhu et al. 2023]; and

a pose-required generalizable method: GNT [Varma et al. 2023].

Quantitative Evaluation. We report the averaged evaluation re-

sults of testing views on all 8 scenes of the Tanks&Temples dataset

in Table 1. We evaluate on the case 𝑛 = 3, 6, 12 and measure the

difference between synthesized results and ground-truth images.

For the Static Hikes dataset, since SfM fails in many cases, we com-

pare with pose-free methods only in Table 2 and report the average

Table 4: PSNR Score ↑ on testing views for ablation models.

Methods Config-A Config-B Config-C Config-D Ours

PSNR↑ 16.29 17.09 19.64 17.50 23.33

results of testing views on all 5 scenes. Our method achieves the

best metrics compared to other pose-free methods in most cases,

and outperforms pose-required methods, which is also shown in

Fig. 1. Notice that the Static Hikes dataset comes with stronger am-

biguities and non-smooth camera trajectories, resulting in relatively

lower metrics of ours compared to those on the Tanks&Temples

dataset, which is analyzed in the supplementary. Even though Lo-

calRF achieves higher metrics of PSNR and SSIM in terms of 12

views in the Static Hikes dataset, our method has much lower LPIPS

metrics and performs better than it on the Tanks&Temples dataset.

We also report the effect of the number of training views on the

PSNR metric of testing views for the “Horse” scene (120 frames in

total) in Table 3.We compare with standard view synthesis methods:

Instant-NGP and 3DGS. Our method achieves a high metric with

sparse views and outperforms alternatives in all cases.

We also evaluate the performance of our method with respect to

the ordering of training images. We experiment on the 3 training

images case of Tanks & Temples dataset, and randomly shuffle the

training images before feeding them into our sparse view synthesis

pipeline. Since our pipeline relies on overlapping between two con-

secutive training images, random shuffling reduces the overlapping

compared to the original order and therefore increases the difficulty

of registration. In terms of testing views, the metrics of PSNR, SSIM,

LPIPS change from 20.37, 0.66, and 0.26 when using the original

order into 19.06, 0.59, and 0.30 when using randomly shuffled order.
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Qualitative Evaluation. We show novel views synthesized from

sparse inputs on one scene in Fig. 1 and four scenes in Fig. 8. Fitting a

solution from scratch or sparse initialization is ambiguous, resulting

in noisy and blurry backgrounds in “Forest”, “Family”, “Ignatius”,

“Francis” and “Barn”, which also lose high-frequency details such

as words under the statue in “Family” in Instant-NGP, NoPe-NeRF,

3DGS, and FSGS. Besides, NoPe-NeRF, GNT, and CF 3DGS fail to

handle sparse training views, resulting in the image mismatch in

“Francis”. In comparison, ourmethod achieves better results in terms

of both synthesis quality and pose alignment.

We investigate the effects of the number of training views in

Fig. 9. We compare with standard pose-required view synthesis

methods: Instant-NGP and 3DGS. Other methods struggle to synthe-

size high-quality novel view results, with blurry or high-frequency

artifacts. Our results are still ambiguous with only 3 views, but are

greatly improved with 4 and more views.

4.2 Ablation Study

We compare with various baselines to validate our proposed algo-

rithm for achieving a coarse solution. They are all passed through

a low-pass filter and refined using the standard method [Kerbl et al.

2023]. To validate the correspondence-based optimization, we set

𝜆1 = 0 in Eqn. 4, denoted as “Config-A”. To validate the proposed dif-

ferentiable approximate surface rendering, we replace the proposed

rendering with the one in [Chung et al. 2023] and its extension

to surface points as “Config-B”. To validate the adjustment which

aligns the monocular depth, we skip the adjustment step in the

Fig. 4 (c) as “Config-C”. Besides, we directly back-project pixels

into the scene with the original monocular depth and camera poses

estimated by SfM, and denote this as “Config-D”.

We use the “Museum” scene in Tanks&Temples and evenly select

6 frames as the training views, with the other 94 frames as testing

views for evaluation. We report metrics in Table 4. Our full model

achieves the best metrics. We show the effects of applying low-pass

filtering and refinement in Fig. 10 (a) and qualitative comparison

of the different configurations in Fig. 10 (b). The synthesis quality

benefits from refinement. Moreover, in comparison, “Config-A”,

which does not leverage correspondences, and “Config-B” cannot

register camera poses successfully, resulting in missing regions.

Note that correspondence detection does not fail, but the camera

optimization fails in “Config-B”. “Config-C” and “Config-D” cannot

ensure the alignment between camera poses and monocular depths,

resulting in sub-optimal synthesized results.

5 CONCLUSIONS, AND FUTUREWORK

Sparse view synthesis is desirable but challenging due to insuffi-

cient camera coverage. From the perspective of fitting the signal, the

problem is still very ambiguous for under-sampled views despite

introducing certain priors, such as depth. Thanks to the explicitness

of Gaussian splatting, we propose to construct a coarse solution,

where optimization is still involved, for sparse view synthesis. It

is then refined for faithful high-frequency details. To effectively

reach a coarse solution, we propose to unify registration and adjust-

ment in a fully differentiable pipeline, which leverages long-range

information to address the limitation of pixel-wise supervision. A

differentiable approximation of the expected surface in Gaussian

splatting is also proposed for optimization.

Our method is not without limitations. We can achieve reason-

able but not perfect sparse view synthesis for too few training

views. The construction of the coarse solution depends on the scale-

consistent assumption of estimated monocular depth, which does

not hold for complex scenes, such as 360◦ scenes. By assuming

overlapping between consecutive frames, our method also cannot

handle unordered collection of images well. Besides, since a Gauss-

ian kernel does not necessarily correspond to a valid surface, a more

accurate definition of the surface is welcome. In the future, it would

be interesting to explore how to adjust monocular depths more ac-

curately and incorporate novel view constraints to enhance view

synthesis quality, and extend our method to unordered collections

of images. In conclusion, our work proposes to construct a solution

with correspondence-based optimization instead of fitting one from

scratch to solve sparse view synthesis without camera poses. We

achieve significantly better results than other pose-free methods

and even outperformmethods which rely on off-the-shelf estimated

camera poses. This framework paves the way for future study on

sparse view synthesis, few-shot reconstruction, and reconstruction

without camera poses.
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Figure 8: Qualitative comparison of different methods for sparse view synthesis. From left to right, we use 3, 3, 6 and 12 frames

as training views and others for testing. The scenes are, from the left to right: Forest from Static Hikes; Francis, Ignatius, Barn

from Tanks&Temples. Some subtle differences in quality are highlighted by arrows/rectangles. Since COLMAP fails for “Forest”

(3 views) and multi-view stereo estimation fails for “Barn” (12 views), methods cannot handle these cases are denoted by “N/A”.

For Instant-NGP and GNT, we show their results on “Forest” (3 views) by giving ground-truth poses which are estimated given

both training and testing views. In “Forest”, due to its complexity (analyzed in the supplementary), our method cannot achieve

high PSNR score despite much more visually pleasing and sharp results. In “Francis”, Instant-NGP and 3DGS contain visible

artifacts, while FSGS is too smooth on the grass. NoPe-NeRF and CF 3DGS cannot process sparse views well, leading to complete

failure or misalignment. In “Ignatius”, Instant-NGP, 3DGS and GNT contain blurry artifacts pointed out by arrows, despite

slightly higher metric of GNT than ours. FSGS and NoPe-NeRF are overly smooth, while CF 3DGS cannot align the camera

pose. In “Barn”, Instant-NGP, NoPe-NeRF and CF 3DGS cannot produce sharp rendered results, with blurs around red pillars.

3DGS cannot synthesize faithful background with missing trees and the telegraph pole. GNT synthesizes blurry trees. Our

synthesized result also has certain artifacts around red pillars, but enjoys the best PSNR score. Images credit by Meuleman et al.

[2023] and Knapitsch et al. [2017].
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Figure 9: Qualitative comparison of the effects of the number of training views. For the “Horse” scene in Tanks&Temples (120

frames in total), from left to right, we use 3, 4, 6, 12, 24 and 60 frames as training views and compare the results on the same

testing view. Using only 3 views, our results are still somewhat ambiguous, but our method can synthesize faithful results

with 4 views, and they improve in accuracy with more views. In comparison, other methods struggle to synthesize faithful

results until 60 views, where the background is still not accurate. Instant-NGP features blurry artifacts, while 3DGS features

high-frequency artifacts, resulting in occasional failure as in the 12 views case and lower PSNR at very sparse views in Table 3.

Image credits by Knapitsch et al. [2017].
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Figure 10: Given the “Museum” scene in Tanks&Temples (100 frames in total), we use 6 frames as training views and others

for testing. We show the synthesized results on the same testing view for different configurations. Regions of interest are

emphasized by arrows. (a)We show the effects of applying a low-pass filter and refinement. As pointed by the arrow, even though

we manage to align the monocular depths, coarse solution still has high-frequency errors due to inaccuracy of monocular

depths. After applying a low-pass filter, error-prune high-frequency information is removed and then faithfully reproduced by

refinement. (b) We show the results of different ablation models. The ground-truth is the same with that in (a). “Config-A” and

“Config-B” cannot register the camera poses successfully. Therefore, when the testing pose deviates from training poses, there

are missing regions, pointed out by arrows. “Config-C” and “Config-D” cannot ensure the alignment between camera poses

and monocular depths, leading to artifacts in “Config-C” and wrong synthesized results in “Config-D”, pointed out by arrows.

Image credits by Knapitsch et al. [2017].


