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ARTICLE INFO ABSTRACT
Keywords: More than 60% of individuals recovering from substance use disorder relapse within one year. Some will
Drug addiction resume drug consumption even after decades of abstinence. The cognitive and psychological mechanisms that

Mood dynamics
Positive/negative activation
Relapse

Peak-end rule

lead to relapse are not completely understood, but stressful life experiences and external stimuli that are
associated with past drug-taking are known to play a primary role. Stressors and cues elicit memories of
drug-induced euphoria and the expectation of relief from current anxiety, igniting an intense craving to use
again; positive experiences and supportive environments may mitigate relapse. We present a mathematical
model of relapse in drug addiction that draws on known psychiatric concepts such as the “positive activation;
negative activation” paradigm and the “peak-end” rule to construct a relapse rate that depends on external
factors (intensity and timing of life events) and individual traits (mental responses to these events). We analyze
which combinations and ordering of stressors, cues, and positive events lead to the largest relapse probability
and propose interventions to minimize the likelihood of relapse. We find that the best protective factor is

exposure to a mild, yet continuous, source of contentment, rather than large, episodic jolts of happiness.

1. Introduction

Mlicit drug abuse remains a major problem in the United States.
Despite decades of research and the implementation of policies ranging
from harm reduction to punitive measures, drug overdose deaths have
increased dramatically over the past 40 years, surpassing 107,000 fatal-
ities in 2022 [1]. According to the 2021 National Survey on Drug Use
and Health (NSDUH) about 3.3% of the population aged 12 and above
misused opioids in 2021, the latest year for which data is available [2].

Our understanding of substance abuse has also evolved in the
past 40 years: addiction, once viewed as a lifestyle choice, is now
considered a chronic brain disease characterized by the compulsive
seeking and using of drugs despite harmful consequences. Drugs change
the neurocircuitry of the brain reward system leading to distortions
in how non-drug rewards are processed, diminished self-control, in-
creased sensitivity to stressful events, and the prioritization of drug
consumption above all. Over time, tolerance emerges so that for plea-
surable sensations to persist or for withdrawal symptoms to dampen,
one must increase dosage or intake frequency. Since drug-induced
damage to the brain is long-lasting and structural, treatment is a com-
plex process, spanning several years and necessitating behavioral and
pharmacological approaches [3]. While detoxification requires a few
weeks, remaining sober over a lifetime is challenging: according to the
National Institute of Drug Abuse (NIDA) more than 60% of those with
substance use disorder relapse within one year [4-6]. The likelihood of

relapse is highest in the first months after detoxification [7]; however,
relapse is possible even after many years of abstinence [8]. Since those
in recovery may have lost their previously built tolerance, de-novo
consumption, even in smaller amounts than during active use, may
cause overdoses.

Given the severity of the problem, it is important to understand the
psychological, behavioral and environmental factors that characterize
drug use [9-11]. Many studies have been developed over the years to
illustrate the process of addiction, utilizing psychiatric concepts, brain
imaging studies, and behavioral surveys [12-19]. Forecasting tools and
data analyses have also been presented [20-22]. There is however
no explicit quantitative framework to describe the cognitive processes
behind relapsing, although the presence of emotional stressors and
sensory cues are known to be major influences [23-28].

Among the most vivid memories of addicts (and former addicts)
is the pleasure associated with the first time drugs were consumed,
often the most euphoric part of the drug-taking experience. “Chasing
the first high” is a common refrain, regardless of how far in the past
the first high occurred. This aligns with the so-called “peak-end” rule
according to which the memory of a past experience is biased by
its most emotionally intense period (the high in this case), and its
ending [29]. Other less intense periods, or even the entire duration
of the experience, do not carry as much mnemonic weight [30]. Re-
lapses may be triggered by stressful events that lead to the retrieval
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of euphoric drug-related memories, such as the first high, and to the
anticipation of future euphoria if drugs are consumed again [31]. Drugs
are viewed as a way to alleviate the negative affects induced by current
stressors and to increase short term wellbeing [32]. External cues such
as persons, objects, locations, situations connected to past drug use may
also evoke memories associated with prior drug consumption and plea-
sure [33,34]. When stressors and/or cues are present, the associations
between drug use and pleasure (or mitigation of pain) may lead to
intense cravings and relapse [35]. The goal of this work is to create a
mathematical framework whereby the relapse likelihood is described as
a function of quantities that represent life stressors occurring at various
times and with varying intensity, cues and memories related to the
previous drug addiction experience, and changes to the neurocircuitry
of the former user.

In the next section, we introduce our mathematical model in which
the relapse rate is framed in terms of the mental state of the user,
drug availability and the presence of cues. Known psychological and
behavioral processes associated with addiction, such as reward col-
lection, tolerance, adaptation, and decision-making [17-19,36-38] are
integrated into a probabilistic model of relapse events. Most critical of
these components is a “mental state” that is driven by positive life
experiences, stressors and cues. Predictions of our model, subject to
different sequences of positive events, stressors, and cues are shown in
Section 3. We end with further discussion and conclusions in Section 4.

2. Dynamical systems model for relapse
2.1. Relapse rates and probabilities

We begin by assuming that drug consumption has ceased and that
the individual started recovery at time ¢ = 0. At any time ¢ > 0 of the
recovery phase, the probability per unit time of relapse, defined as the
instant the individual breaks sobriety by drug intake, is assumed to be
driven by the user’s mental state M(r), which can be either positive
or negative, the influence C(¢) of any external cues that remind the
user of past drug taking euphoria, and the current availability of drugs,
1(t). Positive values of the mental state M(r) indicate well-being and
optimism, and negative values represent discontent and malaise. Drug
availability can be described by a continuous variable that represents
the ease with which drugs are acquired and consumed. For simplicity,
we binarize I(r) so that I(r) = 1 indicates that drugs are readily
available and I(r) = 0 that they cannot be procured. Finally, cues are
assumed to amplify the relapse rate via a non-negative motivation term
C(1) > 0. Together, we let M (t), C(r) and I(¢) shape the rate of relapse
R() via

R = I(t)ROeC(t)e—M(r). N

In this model, R(#)dt can be interpreted as the probability that the
relapse event (first use of drugs after 1 = 0) occurred between ¢ and ¢+dr.
Even though the instantaneous relapse rate does not explicitly depend
on history or memory, it depends on C(¢) and M (r) which dynamically
evolve, implicitly imparting event histories into the current relapse
rate. Eq. (1) indicates that if the drug supply is unrestricted (I1(r) = 1),
no cues are present (C(¢) = 0), and an individual is under a “neutral”
mental state (M (1) = 0) the rate of relapse is given by a reference
baseline R(r) = R,. Negative values of the mental state M(r) < 0
increase the relapse rate, conversely R(r) vanishes in the case of a
strongly positive mental state M (r) > 1. An alternative model for R(r)
may include a maximal saturated value R,,,,, representing the fastest
possible rate of acquiring and consuming drugs and that is attained
when C(t)— M (¢) surpasses a positive threshold. Finally, the probability
of relapsing by time T, P(T), can be written in terms of the survival
(against relapse) probability up to time T, S(T') given by

STy = el RO p(ry = 1 = S(T). )

Next, we describe an event-based model for the dynamics of the mental
state M (¢).
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2.2. The PA/NA mental state model

The so-called “Positive Activation, Negative Activation” (PA/NA)
model posits that affects arising from positive and negative experi-
ences are not coupled [39-41] and might be processed on different
neural substrates [42,43]. Thus a realistic representation of the mental
state M(r) is as a sum of two contributions, M () = M,(t) + My(?),
where positive events affect M,(r), negative ones affect M (¢), and the
two evolve independently. Negative events, or stressors, are known
to impact one’s mental state more than positive ones, a neurological
phenomenon known as the “negativity bias” [44]; recent studies also
show that stressors tend to affect drug users more than the general
population [45,46], and that drug abuse produces hypersensitivity to
negative emotional distress [25,47,48]. Note that the exponential term
e~M® in Eq. (1) weights negative mental states more than positive ones,
in accordance with negativity bias [44]. We model the dynamics of M,
and M, using different processing rates «,(¢) and () as

dm,
5= KOM, + Y Ab -1, (3a)
i,IZI:.‘
dm,
Tb =—K(OM, = Y Bs(t —12). (3b)
j,rzr}‘

In Eq. (3a) A; > 0 is the intensity of positive life event i, as
experienced by the individual in recovery, occurring at time 7 and
k,(f) > 0 is the processing rate that returns M,(r) to steady state.
Similarly for —B; < 0, t? and «,(r) in Eq. (3b). Since M, and M, are
decoupled and «,(t) # ,(7), Egs. (3a) and (3b) are our mathematical
representation of the PA/NA model. We solve them assuming that there
are no initial affects, M,(r = 0) = Mt = 0) = 0 and that «,(r) = «,
and k(1) = k;, are time-independent. Non-zero initial affects can be
incorporated by setting A; = M,(t =0) at fi_ =0 or B; = —~M,(t = 0)
at t‘.’=l = 0 in the sequence of positive or negative life events. Time-
dependent «,(7), k,(7) are discussed in the Appendix. We solve Egs. (3a)
and (3b) under the above approximations to find

a e (1D
M= Y A= M= Y B, @

: a . b
Lt JJETJ-

The mental state integrated up to time T after n, positive and n,
i i a a b b
Tlegatlve.hfe events, such that . <TZ< tna+1 and L <TZ< t"bH,
is thus given by
T T
/ M@b)dt = / (M, (1) + My(1))dt
0 0

n, ny,
1 ke (T—1 1 —i, (T—12)
-1 A-(l—e"ﬂ( ’ﬂ)—— B-(l—e b /).

Kﬁ; l ij;() !

The effects of a sequence of n, events defined by {47} on the
integrated mental state in Eq. (5) can be reproduced by a single event
of amplitude Z, at specific time 7,

ny Z’.’a A~€K“t;i
Z,=Y A t,=~n [—] .
i=1 Ka Z;:l Ai

Similarly, a sequence of n, events {—Bj,t'/?} generates an integrated
mood that can be reproduced by single event

)

(6)

ny, an B erq,t]
1 j=0 "J
Z,=) B, t,=—1 )
,; Kb 2B

Thus far, we have modeled the dynamics of positive and negative men-
tal state variables. Included in the relapse rate R(r) is also a dependence
on random cues that trigger the memory of drug-induced euphoria. The
model for cues shares many features of the negative mood variable and
is described below.
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Table 1
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Relevant quantities and parameter ranges for the relapse models presented in Egs. (1), (3a), (3b) (distinct mental state

neurocircuitry for few positive and negative events, no cues); Egs. (1), (19), (common mental state neurocircuitry for
random, Gaussian distributed positive and negative events, no cues); Egs. (1), (9), (36), (37) (distinct mental state
neurocircuitry for uniform, positive events, subject to Poisson distributed drug-related cues) and time-dependent forms

for the processing rates.

Symbol Quantity Range

M, positive activity of the mental state ~10

M, negative activity of the mental state ~—10

c mental response to cues ~1

Ky Kp equilibration values of the mental state processing rates ~1/day

Ka0s Kbo onset values of the mental state processing rates 0.6 ~ 0.8, [49]
Yar Yo recovery rates for k,(r) and k(1) 0.002 ~0.02/day [49]
K, processing rates of drug-related cues and memories ~10/day

R, rate of relapse in the neutral mental state (without inputs) ~1073/day

A; intensity of positive life event i ~1

B; intensity of negative life event j ~1

Wieak intensity of most pleasurable drug-taking reward response ~1

[ time of occurrence of positive life event i ~day

t}’ time of occurrence of negative life event j ~day

ti time of occurrence of cue ¢ ~day

Aq Poisson process rate for the occurrence of cues ~1/day

Y continuous input to the mental state

K mental state processing rate for x, = k,

A Gaussian noise intensity in the OU process for the mental state

2.3. External cues

Here we discuss representations for C(f) > 0. External cues can
trigger memories of the pleasurable feelings associated with drug tak-
ing [50,51]. We model these memories as impulses occurring at times
t; whose effects decay with rate k.. Thus, the dynamics of C(r), the
overall motivation from cues, is given by

dc c
5= R(OC+ Y Gt —15). (®)

>
f,f_tt

The amplitude C, represents the mnemonic strength of a given cue.
By the peak-end rule, we assume that the most intense memory is
proportional to wy., > 0, the largest reward response during addiction,
and set C, = wyey for all £. We also assume the decay rate x(f)
associated with the permanence of the cue in one’s memory is a
constant, k.(f) = k., and that there are no initial cues, C(t = 0) = 0,
which leads to

c = Wheak Z e—KC(f—l;)' 9)

> C
f,r_tt,

3. Results

We now study how external stimuli and intrinsic traits affect the
relapse probability P(T). External factors include specific realizations of
the {4,,7'} and {-B;, t?} sequences, cue occurrence times {#;,} and drug
availability profile I(s). The intrinsic characteristics of an individual
include how his or her mental state is affected by stressors, joyous
events, and cues, the processing rates for positive and negative events,
k, and «;,, for cues, k., and the intensity of the first high wy,. Relevant
parameter ranges are listed in Table 1. Specifically, we measure time
in units of days and fix R, = 1073/day consistent with known relapse
rates of roughly 40 to 60 percent among opioid abuse disorder patients
one year after treatment [52]. We assume drugs are always available
and set I(r) = 1 throughout the remainder of this work. Relapse is not
possible if drugs are not available.

3.1. Dynamics without cues

We begin by studying the case of no cues and an unimpeded drug
supply so that C(r) = 0 and I(r) = 1. We first analyze the simple case

of a single life event and later consider sequences of multiple negative
and positive ones. Our goal is to identify which combination of events
(intensity and timing) leads to the smallest relapse likelihood.

3.1.1. Longer-lasting stressors increase the relapse probability; longer-lasting
positive events decrease it

We consider a single stressor that is processed at three different rates
k. Fig. 1 shows that the longer the stressor affects one’s mental state
(i.e. the lower k), the larger the relapse probability P(T). Correspond-
ing results are shown for a positive experience processed at various
rates «,: lower values of k, result in smaller relapse likelihoods, as the
effects of the positive event are retained for a longer time. Due to the
exponential term in the relapse rate, stressors result in higher relapse
likelihoods compared to positive ones of the same amplitude.

3.1.2. Clustered stressors increase the relapse probability more than disperse
ones

We now include multiple life events and study how their timing
affects the likelihood of relapse. Let us start with two negative events,
{-By,} and {-B,, 5}, that define the time interval 4, = 15 — > > 0.
We then define the effective time U(T') given by

T
_InS(T) _ / Mg,
RO 0

4y T-1® WA\ -
—kps 1 (B +B,eb4b ) KbS
=t]1’+/ eBie ds+/ A ) ds.
0 A

If B;,B, = 0 (as in the “neutral” case or baseline) Eq. (10) gives
U(T) = T; finite values of B,,B, lead to U(T) > T, increasing the
relapse probability P(T) = 1 — S(T) above that of the baseline.

We now consider the family of paired events where the amplitudes
B,, B, are fixed and where °,/ are chosen such that for T > 1 the
two events yield the same integrated mood as the single event {Z,, 7}
defined in Eq. (7). This implies that Ble'(b’lf + Bze""’tg = H, must be a
constant, leaving one degree of freedom, which we choose to be 4,.
The above constraints also impose that the integrated mental state,
fOT M (s)ds is invariant for all paired events within the family defined by
B,, B,, H,. We may now ask: within this family of paired events, where

U(T)
(10)
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Fig. 1. Mental state at time #,M(¢), and the probability of relapse before time T, P(T), upon exposure to a single stressor (—B,,t?] or to a single positive event {A,,#]} for three
processing rates k, or k, = 2,1,0.5/day with B, = A, =4, t‘l’,t;‘ =7 days, R, = 1073/day, M, = 0. The relapse probability decreases with «, so that the longer a stressor impacts
one’s mental state, the larger the likelihood of relapse. The opposite is true for positive events, for which the longer memory of a positive event is retained, the less likely relapse
is. Note the more pronounced effect of the negative mental state B,, compared to the positive one A, under the same processing rate despite their amplitudes being the same.
The mental state M(t) = M,(t) + M, (1) is given by Egs. (4); the relapse probability P(T) by Eqgs. (1) and (2).
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Fig. 2. Top row: Mental state M(r) and relapse probability P(T) upon exposure to two stressors [—B,,t*l’} and (—Bz,t‘z’] separated by lag times 4, = t‘z’ — r‘; =0,1,2,4 days and
obtained using Egs. (1), (2), (4), and (12). Parameters are x, = 1/day, B, = B, =4, R, =10"/day, M, = 0. All stressor pairs define the same integrated mental state defined in
Eq. (5) and are equivalent to the single event {—Z,,1,} shown in the red curve. For each 4,, the corresponding 1” is derived from the constraint Hy, = B, 4 B,eM (4 where
H, = Z,e"", Z, = (B, +B,), and 1, =7 days. Notice that P(T") decreases with 4, implying that stressors should be as spaced apart as possible to decrease the likelihood of relapse
in accordance with our analytical findings. Bottom row: Corresponding plots for two positive events, {A;,7}} and {A,,#;} separated by lag times 4, =15 —#] = 0,1,2,4 days with
A, = A, =4 and all other parameters the same as above. The constraint can be obtained by setting a — b in the two-stressor constraint expression, with ¢, = 7 days. Here, P(T)
decreases with 4,, implying that the best protection against relapse is by experiencing well-spaced positive events rather than large clustered ones. Small, repeated joys and small,
repeated unpleasant events are better than large a jolt of happiness or catastrophe.

the integrated mental state is fixed, which choice of 4, minimizes the and make the dependence of U(T) on 4, explicit so that U(T) —
relapse probability at any time 7 > tg? We first express tll’ in terms of U(T: 4,) and
H,

H, and 4, Ky U(T; Ay) = ]n(—b)

° ° bU(T:4y) B, + Byefod

b_ 1 H, + Ei(B)) — Ei(Bje %) 12)
=—Inl —— ), 11 . _ . _

L n(Bl +Bzer<bAh> an + Ei(Bje™% + B,) — Ei( Hpe ™),
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Fig. 3. Top row: Mental state M(r) and relapse probability P(T) upon exposure to n, = 1,2,4 negative events [—B,,t}’} and a continuum of stressors. All curves are obtained using
Egs. (1), (2), (4), and (12). Sequences define the same integrated mental state defined in Eq. (5) and are equivalent to the single event {—Z,1 } shown in the red curve, where
Z, =8 and r, =7 days. Within each sequence, events carry the same amplitude B; and are separated by the same time interval 4, = 3.5 days (n, =2, black curve), 2 days (n, =4,

blue curve), and 0.1 days (continuum, green curve). Other parameters are k, = 1/day,

R, = 1073/day, M, = 0. Bottom row: Corresponding plots for sequences of equivalent

positive events with Z, =8 and ¢, = 7 days with x, = 1/day and 4, = 3.5 days (»n, = 2, black curve), 2 days (n, = 4, blue curve), and 0.1 days (continuum, green curve). Notice
that for both positive and negative events the relapse probability is lowest for small events of limited magnitude.

where the exponential integral Ei(x) = [~ _r'e'dr. Since By, B,, Hy, are

fixed, the extrema of U(T’; 4,,) with respect to 4, at any time T are given
by the zeros of
AU(T; A X By oBie ™04 _
oy LA _ (g pmeots BB T 1 (13)
aAb 1+ ﬂe—KbAb
B,

Regardless of B,, B, k;, the left hand side of Eq. (13) is a negative
function of 4, implying that U(T’; 4;) has a maximum at 4, — 0. Since
P(T)=1-S(T)=1-eRUT:4) we conclude that the largest relapse
probability also occurs at 4, — 0; that is, the relapse likelihood is
largest when the two negative events occur simultaneously. In the top
row of Fig. 2 we show the relapse probability P(T) upon exposure to
pairs of stressors that belong to the same family of events with fixed
B,, B,, Hy, and different timings 4,. The relapse probability is indeed
largest when the time lag between the two stressors is smallest, 4, — 0.
We can apply the same arguments to more than two events and show
that as the number of stressors increases, so does the likelihood of
relapse. Given a negative integrated mental state generated by a set
of n, negative events occurring within time T, the relapse likelihood
is largest when stressors are coincident, and is reduced when stressors
are spread out. Fig. 3 shows the relapse probability for n, = 1,2,4 and
a continuum of negative events. In our model, relapse after a single
catastrophic event is more likely than after a series of smaller stressors
which cumulatively yield the same integrated negative mental state as
the single catastrophic stressor.

3.1.3. Dispersed positive events decrease the relapse probability more than
clustered ones

We can derive similar expressions to Eq. (10) for two positive life
events for which the corresponding U(T) is obtained by substituting

B, —» —Aj,, and t'l’,Ab,xb — 11, 4,,k,, respectively. Using the same
methods as for pairs of negative events, we can show that the occur-
rence of two positive events decreases the likelihood of relapse the most
when the two events are well spaced out. Results are shown in the bot-
tom row of Fig. 2 for pairs of positive events with fixed A, A,, H, and
different timings. The smallest likelihood of relapse occurs when the
time lag between positive events 4, is large, conversely, the likelihood
of relapse is most pronounced for 4, — 0. In the case of multiple,
positive life events, as with the findings described for negative life
events, the likelihood of relapse decreases the most when an individual
experiences many distributed but moderately happy events, compared
to a much larger but isolated positive episode that carries the same
overall impact as the distributed ones. Results for sequences of multiple
events belonging to the same family are shown in the bottom row
of Fig. 3 for n, = 1,2,4 where events are equally spaced and for
a continuum of episodes. As expected, the lowest relapse probability
occurs for a uniform distribution of positive events. A modest but
continuous source of support is more protective against relapse than
a very intense yet short-lived positive experience.

3.1.4. Relapse is least likely if a positive experience occurs immediately after
a stressor

We now examine the case of a stressor {—Bl,t'l’} followed by a
positive event {A,,7}, where 15> tt]’. We label the positive event A,
rather than A, so that it is clear that the positive event occurs after the
negative one. Given an integrated mental state fOT M (¢')dt' and values
for B, A,, the goal is to establish the lag time between the two events
that minimizes the likelihood of relapse. The general case of different
processing rates k, # k;, does not allow for easy generalization, so we
set k, = ky, = k to simplify our analysis. We write U(T) = —InS(T)/R,
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Fig. 4. Top row: Mental state M (1) and relapse probability P(T) upon exposure to a stressor {—B,,1°} followed by a positive event {A,,73}. The two events are separated by lag
times 4,, = t“z‘ - tll’ =0,0.2,0.4,0.6 hours. All curves are obtained using Egs. (1), (2), (4), and (14). Parameters are k, = k, = k = 1/day, B, =4, A, =2, Ry = 1073 /day, M, =0 and
by setting H = 2¢’. All event pairs define the same integrated mental state defined in Eq. (5) for T > 7}. Notice that P(T) increases with 4y,, implying that given a stressor, the
likelihood of relapse is lowest the earlier a counteracting positive event occurs, in accordance with our analytical findings. Bottom row: Corresponding plots for a positive event
{A,.1}} followed by a stressor {—Bz,t‘z’} with lag times 4,, =1} —#1 =0,1,2,4 days with A; =2, B, =4 and all other parameters are the same as above. Here, P(T) also increases

with 4, and is smallest for 4,, — 0.

in terms of 4, =1} - t']’ and make the dependence on 4,, explicit in the
expression for U(T’; 4;,) as follows

H
kU(T; 4p) =In| —
(7 ) (Bl — Ajer )

+ Ei(B)) — Ei(B,e ")
+ Ei(Bje ™% — Ay) — Ei(He™T),

(14)

b a
where H = B,e*I — A,e*"1 is a constant that ensures /OT M({')dr' is
independent of A;,. We can thus write

oU(T; A —x. ) —Bje ™ _ x4y
T4 _ AyeBreT (1 ¢ 4+ ¢ ) 15)
04, A, Bie ¥4 — A,

The left hand side of Eq. (15) is a positive function of 4,, regardless
of A, B,,k; as a consequence, for T > 15, U(T; 4y,) is an increasing
function of Ay, and attains its lowest value at 4,, = 0. Thus, the
relapse probability is also the lowest for 4,, = 0. Once a negative
life event occurs, the way to minimize the occurrence of relapses is
for the individual to experience a healing, positive experience as soon
as possible. Similar results hold in the case of a positive event {A;,}}
followed by a negative event {B,, tg}; the relapse probability is lowest
when the time lag between the two events is shortest.

In Fig. 4 we show the relapse probability for equivalent pairs of
events {~By,10} and { 4,7} that define a fixed H = Ble""ll) — A, for
k, = kp, = k. For large enough T, P(T) decreases with 4,,, confirming
our analytic predictions. The same finding arises for equivalent pairs of
events {A,,1*} and {-B,,1}} that define a fixed H = — A, + Bye™ for
K, = ky = k. To derive the mathematical results presented for pairs of
events of amplitude (A4,, A,), (B,, B,), (B}, A,) and (4,, B,) we assumed

that no other prior events occurred; however, it is possible to show that
our findings remain valid in the presence of earlier events. For example,
given the events {A,, 1}, {—B,, 15}, {~Bs, 15} with 1§ > 15 > 2 processed
at the same rate k, = k;, = k one can show that the relapse probability
is still maximized upon clustering the two negative events (B,, B;) and
setting 4, =15 — 15 — 0.

We now consider the general case x, # k. In Fig. 5 we show
results for pairs of events {A,,7}} and {—Bz,tg} where A, = B, and
Ay = tg - t‘]‘, and for pairs of events {—Bl,tll’} and {Az,t;} where
B) = A, and 4, =15 - t‘l’. The long-term relapse probability P(T) is
largely insensitive to the absolute timing of the pair of events, as long
as T — t;’b > Kl Ky I: however, it strongly depends on the event order
and the magnitude of the time lag 4,, or 4,,. For a fixed 4, = 4,,,
P(T) may depend significantly on the order of events. In general, the
larger x,4,, and x4y, the less sensitive the relapse probability is to the
order of events as shown by comparing the cases 4,, = 4,, = 4 days
with 4,, = 4, = 1 day in Fig. 5. Note that since x, # k, it is impossible
for the pairs of events in Fig. 5 to define the same integrated mental
state fOT M(t')dt' for any given T.

Finally, given a stressor {—Bl,t'f} which is processed at a rate i, we
determine which later event {A,,}} processed at rate x, will yield the
same relapse probability as the baseline case, where no events occur.
To do this, we note that under the baseline, U(T) = T and that since
it is not possible to define a single event as in Eq. (14) for «, # k,, we
must write U(T’; 4,,) in its general form

b Apa B, e~ kbl T_[tlj B —rpt’ A —Ka (' —Apy)
U(T; 4y,) = 1 +/ ebie dt+/ ebre 7 —/Age dr’, (16)
0 Apy
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Fig. 5. Top row: Mental state M(r) and relapse probability P(T') upon exposure to two events of opposite sign {4,,7!} and {—Bj,tj’} for k, = 2/day and &, = 1/day where i =1,j =2
or j =1,i =2. All curves are obtained using Egs. (1), (2), (4), and (14). Events carry the amplitudes A, = B, =4 the other parameters are set at M, = 0, R, = 1073, Lag times
are evaluated by setting t;’ =7 days where j =1 for lag times 4, = 5 - t? and j = 2 for lag times 4, = r‘; - f}. For large enough 4,, = 4,, = 4 days the relapse probability is
independent of the order of events; however, for smaller lag times 4, = 4,, = 1 day, the order of events matters and the relapse probability is lower when the positive event
{A,.1}} occurs prior to the stressor {—B,,#,}. If the two events are concurrent and 4,, = 4,, = 0 the total input to the mental state is negative since &;, < x, and the effects of the
stressor are retained for a longer time than those of the positive event. Bottom row: Corresponding plots for x, = 1/day and x, = 2/day with all other parameters and events the
same as those of the top row, and where the ordering of positive and negative events is reversed. Here, the order of events plays an even more crucial role when the time lag
4, = 4y, = 1 as the relapse probability is much lower when the positive event {A;,#}} occurs prior to the stressor {—B,,7;}. Since &, # «, it is not possible for the pairs of events

to define the same mental state for all values of 7.
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Fig. 6. Long-term percentage changes in the relapse probability after one negative and one positive event relative to the neutral scenario of no events occurring. For
4 = A, =1 —15 > 0, the stressor {—B,,10} is followed by a positive event {A4,,7}} where B, = 2, 1> = 12 days and A = A, is determined from Eq. (17) at T = 30 days.
The color shading represents the percentage change of P(T = 30) assuming the two events have occurred relative to the neutral case. The black curve represents the amplitude of
A, that yields the same relapse probability as the neutral case effectively neutralizing the effects of the stressor. For 4 = —4,, =1} — t‘z’ < 0 the positive event {A,,{} is followed
by a stressor {732,@’} where B, =2, tg = 12 days. Here, the black curve tracks the amplitude of a preemptive positive event A, that would neutralize the future B, =2 stressor
at T =30 days as determined from Eq. (17). In panel (a) we set k, = 2/day, k, = 1/day; in panel (b) we set x, = x, = 1/day; and in panel (c) we set «, = 1/day, k, = 2/day. The
asymmetry between the positive and negative values of 4 underlines the importance of event order. For a given 4 = 4,, > 0, the value of A, necessary to balance B, =2 is larger
than the value of A, necessary to balance B, =2 when 4 = -4,, = —|4,,] < 0. Upon comparing the black lines in the three panels for fixed 4 = 4,, > 0 the value of A, necessary
to neutralize the B, stressor is larger when «, is larger or «, is lower, ie. under fast processing of positive events or longer-lasting stressors. Similar considerations apply when

A= 4, <0.
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where 4y, =15 - t’l’. To find the value of A, that balances U(T’; 4;,) with
the baseline U(T) = T, we must solve

U(T: &) =10 + Ki [Ei(B)) — Ei (Bje 0% )]
b

+L [Ei(—Az) - Ei(—Aze—wT-f‘?—Aba))] a7
K.

a

=UT)=T.

Under the assumption «,4,,, k,4,, > 1, and using the identity lim,_,
Ei(x) = In|x| + y, where y is the Euler-Mascheroni constant, Eq. (17)
can be simplified to

Ei(=A;) — 7 = In(4) = =* [In(B)) + 7 — Ei(B)). 18)
b

Eq. (18) yields the value of A, that neutralizes the effects of a stressor
of amplitude B, so that at long times the relapse rate is the same
as if neither event occurred. It is straightforward to show that upon
substituting B, — —A; and A, - —B; Eq. (18) still holds when
the order of events is reversed and the positive event occurs prior
to the negative one. The black curves in Fig. 6 trace the values of
A = A, that balance a stressor of amplitude B, given a lag time
A = Ay, > 0 for various choices of x, and k. These results correspond
to positive values of A. Vice-versa, the amplitude of a protective event
A = A, that can balance a later stressor of amplitude B, are shown
for negative values of A = —4,; < 0. The asymmetry between positive
and negative values of 4 for all choices of x, and «;, implies that a
modest amplitude of the positive event is required to balance a fixed
stressor, regardless of whether the positive event occurs before or after
the stressor. The other color-coded regions in Fig. 6 show the percent
increase (or decrease) of the relapse probability P(T) compared to the
neutral case of no negative or positive life event, for specific values of
Ay, Ay, By, By, B2, 10, 8,15, T, k., i
3.1.5. A constant source of positivity can offset the random lows of life

We now study the scenario in which there is a constant input
Y to the mental state which may represent a continuous stressor or
source of support. We also assume that positive and negative life events
occur randomly and are processed at rates x, = k, = k. Under these
assumptions we describe the dynamics for M = M, + M,, as
dM
ar
where &£(¢) is a Gaussian white noise term that represents the random,
positive and negative, life events. We set the general initial mental state
value M(t = 0) = M, and write the mean and correlation function of
&(t) as

€my= 0,
(EME)) = 228t = 1).
Eq. (20) defines an Ornstein—Uhlenbeck stochastic process, a classic
paradigm in statistical mechanics [53-56]. The relapse rate of the

neutral case, where there are no life events or continuous inputs to
perturb an individual’s mental state and Y = &(r) = 0, is given by

=—-kM +Y +£(), (19)

(20)

Ry() = Rge Moe™, (21)

If Y # 0 and &(r) # 0, Eq. (19) can be solved as

t
Mm=%m+/fmﬂwwﬂ
0 (22)

Y Y\ _
H=—+ M——) Kt
Hm(®) K ( 07 % €

Associated with Egs. (19) and (20) is a Fokker-Planck equation govern-
ing the dynamics of the probability density function P, (M,t) [54,55]

0P, (M,1) 9 0P,
OmM.D) —((KM - Y)Pm) ri k.

23
ot oM (23)
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The solution to Eq. (23) and the initial condition P(M,t =0) = 6(M —
M,) is

(M—pupg ()2
1 _ Moy )7

P(M,h=————¢ 20
\/2mo (1)

In the limit t+ — oo, Eq. (24) defines a steady state Gaussian distribu-
tion centered at Y /x with variance 1/x. The expected time-dependent
relapse rate is given by

NOE %(1 — o7 2kty. 24)

(R@®)) = Ry(e™MDy = R, / OZ—M P(M, 1)dM, (25)

—0o0
which is explicitly expressed as

(R()) = Ryexp [—ym(t) + %o‘fﬂ(l)], (26a)

w0y

(Rt — ) = R, exp[ (26b)

The relapse rate in Eq. (26b) can be compared with the equivalent
expression obtained in the absence of noise, i.e. for Y # 0 and &(r) =
A=0

(R(t — o)) YR
R(t — o0;&(1) = 0)
Since the above A-independent ratio is always larger than one, Eq. (27)
implies that unbiased noise, where positive and negative life events are
equally likely in frequency and magnitude, results in a larger relapse
rate than the noise-free case, regardless of the sign of Y. Mathemat-
ically, this result stems from the asymmetry in Rye ™® where the
increase due to a stressor is much larger than the decrease following
a positive fluctuation of similar amplitude, consistent with the brain’s
negativity bias [44]. We can also compare the general case Y # 0 and
&(t) # 0 with the neutral case Y = &(r) = 0 yielding

(R(t - o0)) —ex [(/I—ZY)]
Rt —oo) P T2 [

> 1. 27)

(28)

The values of Y, 4 in Eq. (28) can be tuned so that the driving term and
the noise balance each other. Specifically, for the long term expected
relapse rate in the presence of noise to be less than the relapse rate
in the absence of any external input, the constant input Y must obey
Y > A/2. Given the form for P(T) in Eq. (2), we can write the expected
relapse probability as

T
(P(T)) = 1 -<exp[-R0 / e-M“)er (29)
0

and approximate it in the x7 > 1 limit by

T
<P(T))z1—exp[—R0 /0 <e-M(’>>dz] 0

a2y
~1- exp[—e 2 ROT].

In the Appendix we discuss Eq. (29) and cases where the approximation
in Eq. (30) fails, namely in the k¥ — 0 limit. Fig. 7 shows the expected
relapse rate (R(?)) as «,Y, A are varied. Results derived from 100,000
simulations of the stochastic process in Eq. (19) are compared with pre-
dictions from the analytical result (Eq. (26a)). We also show the relapse
rate for the baseline given by Ry;(r) = R,. The expected relapse rate
increases with the noise amplitude A and decreases with the magnitude
of the positive experience Y and with the processing rate x. Lower «
values imply longer processing times for all events; however, since the
asymmetry in R() assigns more weight to negative occurrences, a larger
likelihood of relapse is observed as k — 0. The corresponding values of
the expected relapse probability ( P(T)) obtained from simulations and
from the analytical approximation in Eq. (30) are shown in Fig. 8.
Finally, we evaluate the first passage statistics to a given mental
state M,;, < 0. Although the threshold level value can be arbitrary, we
set it to be negative to represent a critically unhappy mental state. The
dynamics of the mean first passage time 7,,(M) to reach M, starting
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Fig. 7. Dynamics of (R(r)) averaged over 100,000 realizations of the Ornstein—
Uhlenbeck described by Eq. (19) and the analytical expression for (R(r)) in Eq. (26a).
Parameters are M, = 0, R, = 1073/day. Values in the legend are in units of /day. For
A =2Y the 1 - oo relapse rate in Eq. (26b) (R(t — o)) = R, matches the neutral case
of no exposure to any positive or negative life event.

from a given mental state M > M, can be derived from the backward
Kolmogorov equation associated with Eq. (23)

T dT,
A—E (kM -Y)—2 =—1 1
e~ )am G1

along with absorbing boundary conditions T (M) = 0 and T}, (M —
o) = 0. Eq. (31) can be solved using standard methods to yield

NG E(M=-Y /K)

T .(M)= Y-

m( ) K \/g (M, =Y /x)
where erfc(x) is the complementary error function erfc(x) = 1 — erf(x).
Since the argument of the integrand is a positive, decreasing function
of z, Eq. (32) implies that T,,(M) is increasing in Y, M and decreasing
in 4, M,;,. This is to be expected, given that large values of Y, M tend to
shift the mental state away from the lower negative threshold M,;, and
given that large 4 values lead to larger fluctuations that are more likely
to reach the negative M,,. However, T, (M) is non-monotonic with «
as shown in the top row of Fig. 9. Here we plot T,,(M = 0) as derived
from Eq. (32) and denote it as T,,(M = 0 - M = M,,) for clarity.
Note that 7,,(M = 0) decreases with increasing « at low values of x
and increases with « at large «. To understand this non-monotonicity,
note that the mental state M will be restored towards Y/« within a
time frame x~! after any random fluctuation. As x — oo, this implies
that after each random event, M — 0 very quickly and that cumulative
effects of multiple past random events will be very limited. As a result,
increasing k when « is already large will make reaching M, less likely
and thus, the mean first passage time will increase.

On the other hand, when x ~ 0, M will grow approximately linearly
away from M, driven by the Y input while being subject to noise.
Whatever the initial value of M, for large enough values of Y and
A, M will most likely become positive before one, or a sequence of,
negative random events will lead it close to M,;. Increasing « > 0 will
now lessen any positive values of M, and thus accelerate reaching the
M, threshold. Any negative values of M will instead increase as « is
increased, and this will cause a delay in hitting M,,. However, given
the negative value of the threshold, excursions in the M > 0 space
will be much longer than those in the 0 < M < M,, space, so that
acceleration in reaching M, will dominate. As a result, increasing «
when « is small will lead to a shorter mean first passage time. This
effect will be more pronounced for large values of Y, 4 as the excursion
to, and permanence in, the M > 0 space will be more sustained in

& erfc(z)dz, (32)
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these cases. When Y, 4 are small and especially if the initial M value
is negative, decreases in T,,(M) as « is increased for small values of x
will be much less evident, as excursions to the M > 0 plane will be
rare. An alternate representation of Eq. (32) is given by expanding the
integrand via a Taylor series and evaluating the integral, leading to

2
Z.
To(M) = Zerfi(zy) - szz(l,l;%,z;zfn)

2 33)
b4 . Zeg 3 )
_ gerﬁ(zeg) + Tze(l’ 1; 5,2; zeg),
where , F, is the generalized hypergeometric function and
K Y K Y
=5 (M= 1) 2= 55 (M- ) 39

Egs. (32) and (33) are the mean time 7,,(M) for an initial mental
state M to first reach the threshold M,,; one may similarly determine
the mean first time to relapse T}, using Eq. (2)

2Y-4

Tre1=/w<S<T)>de e (35)
0 Ry

The last relationship arises from Eq. (30) and is valid for x7 > 1.
We show T, as a function of x in the bottom row of Fig. 9, using the
same parameters chosen for T,,(M). The mean first time to relapse is
an increasing function of Y and a decreasing function of 4, indicating
that positive continuous inputs and exposure to relatively small noise
amplitudes can act as protective factors. These trends are consistent
with those observed for T,,,(M).

3.2. The presence of cues

In this section, we study how cues affect the mental state and
the likelihood of relapse. According to Egs. (1) and (9) sensory cues
are mathematically represented as a stressor of fixed amplitude wpey
occurring at times . This description is consistent with psychiatric
studies that have identified overlaps in the neural circuits that process
stress and drug-related cues and that have found that both lead to
cravings and heightened susceptibility to relapse [50,57]. As mentioned
earlier, we assume that cues always bring back memories of the first
high so that the amplitude wy,, is fixed. As a result, findings illustrated
in Sections 3.1.1 and 3.1.4 still hold upon substituting B; — w), for all
i and k, — k.. In particular, relapse is less likely if a positive experience
occurs immediately after being exposed to a drug-related cue and one
can still utilize the results shown in Fig. 6 to determine the magnitude
and timing of the positive experience necessary to balance exposure to
a cue. Values of k. will be chosen such that . > k, as we expect the
time to process a drug-related cue to be less than the time to overcome
a stressor.

Consider the case in which an individual is randomly exposed,
through a Poisson process with rate 4., to cues that elicit the memory
of the first high. The individual thus experiences, with probability
P,(n.,1) = (At)e”*'/n,\, n, cues within a time interval 7. The mean
time between successive cues is 1/4.. Given the equivalence between
cues and stressors, these results may also be interpreted as the response
to an identical stressor presented at random, Poisson-distributed times.
The dynamics of the cue-induced motivation is thus

e
dc
I = ~eC + Whea > B =1, (36)
f:l;tzr;

where n_ are the Poisson-distributed number of events that have oc-
curred until time 7. We also assume that there is a counteracting source
of support Y > 0 to the mental state so that

M) = My(t) = L (1 - &), 37)

Ka

We solve Eq. (36) with the initial condition C(r = 0) = 0. The resulting
expression for C(¢) can be used to write the relapse rate R(¢) in Eq. (1)
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Fig. 8. Expected relapse probability (P(T)) as derived from averaging over 5000 realizations of the Ornstein-Uhlenbeck process in Eq. (19) and the analytical approximation in
Eq. (30) for the baseline Y = 2 = 0 with R, = 1073,k = 1/day. Values of A,Y displayed along the curves are in units of /day. In panel (a) we set Y = 1/day; as 4 is increased
(P(T)) also increases. For 1 = 2Y results from the baseline are recovered. Small values of 4 < 2Y decease (P(T)) below the baseline, whereas large fluctuations 4 > 2Y increase
(P(T)) beyond the baseline. In panel (b) we set A =2/day and allow Y to be negative, representing constant negative experiences that increase (P(T)). These results indicate that
sustained, large enough positive experiences may neutralize a series of random, potentially large stressors.
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Fig. 9. Top row: Mean first passage time 7,(M =0 — M = M,,) for an initial mental state M =0 to reach the negative threshold M,, = -2 as a function of the decay rate «.
Results follow from the random process in Eq. (19) and the analytical form in Eq. (32). For large x, each random fluctuation dissipates quickly so that the effects of multiple
inputs to the mental state do not accumulate appreciably, hence T, (M) increases with «. Increasing x for small values of x will reduce the likelihood of positive values of the
mental state thus shortening the time to reach M, as discussed in the text. These two trends lead to the observed non-monotonic behavior, which is most pronounced for large
Y, A In (a) we set A =2/day and vary the constant input Y; in (b) we set Y =0 and vary the noise amplitude A. Bottom row: Mean first passage time T,, to relapse computed
from the approximation in Eq. (35) and shown as a function of the decay rate «. In panel (c) we set A =2/day and vary the constant input Y; in panel (d) we set Y =0 and vary

the noise amplitude A.
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Fig. 10. Relapse probability P(T = 100) following exposure to a single, randomly drawn sequence of sensory cues occurring at times generated according to a Poisson process of
rate .. The corresponding relapse rate is evaluated through Eq. (38) and the relapse probability at 7' = 100 days, P(T = 100), is evaluated using Egs. (2). The red curves depict
the analytical approximation obtained for (P(T = 100)) = 0.5 calculated using Eqs. (40) and (41). We do not include any positive, continuous form of support so that ¥ = 0 and
results are independent of the processing rate «,. In panel (a) we fix w, = 4; in panel (b) we fix k. = 5/day; in panel (c) we fix 4. = 2/day. Collectively, the panels show that

the likelihood of relapse increases with increases in the amplitude w,, the frequency of cue occurrences A, or the typical cue processing time 1/x.

using the mental state M (r) = M,(r) given in Eq. (37) and under the 4. Conclusions
assumption that drugs are fully available I(r) = 1. We find

R() v N e () We presented a mathematical model for the probability of relapse

—_— —e ks —Ke\1—
R=¢ g (=) H e'peak® “. (38) in drug addiction. Our model incorporates dynamics that reflect psy-
0 £=lr215, chiatric concepts such as the positive activation, negative activation

(PA/NA) model and the peak-end rule.

Addiction research, like other studies that focus on learning, mem-
ory, rewards and synaptic plasticity, relies on neuroimaging methods to
understand how the brain and its neurocircuitry adapt to short- or long-

Using well known properties of the Poisson process shown in the
Appendix we estimate the expected value of the relapse rate for any
number of events occurring within time 7 as

<R(t)> = exp (_ - 1(1 _ e’”ﬂ’)) term drug use and ensuing behavioral changes. It is well documented
Ry ¢ K (39) that drug users and former users display dysregulation in their brain
! —xe(1-1") reward system, heightened reactivity to drug-related cues and stressors,

X exp[A e'Vpeak® dt’]. s . .
¢ Jo less inhibitory self-control, and a tendency to engage in compulsive

behaviors. It is also well established that the process of physical detox-

In the k,t, k.t > 1 limit Eq. (39) can be approximated by e - -
ification is a relatively short one, but cravings and relapse can occur

ln<%> ~— KK + %(Ei(wpeak) ~ I(Wpea) = 7): (40) even long after cessation of drug use. Relapse is often triggered by
0 a ¢ exposure to stressors or drug-related cues that the former user is unable
where y is the Euler-Mascheroni constant. We use the approximation to manage. Among the biggest limitations of neuroimaging studies and
in Eq. (40) to evaluate the relapse rate R(¢) in Eq. (2), leading to an clinical trials are the need to control for individual predispositions and
approximate expression for (P(T)), valid for «,T, k. T > 1 external circumstances, high costs, difficulties in recruiting volunteers
. with substance use disorder especially in longitudinal studies.
(P(T)) =1 = (e~ Jo ROy | — g=RoTe% (41) Given the complexities of addiction and the practical limitations in
where obtaining comprehensive data, simple and analytically tractable math-
ematical models may be helpful to understand how the brain responds
Q.= _Y + &(Ei(wpeak)_ln(wpeak)_y)' (42) to drugs and their absence. Decision-making and many psychiatric
Kao K disorders, including addiction, have been described using quantitative
In Fig. 10, we evaluate the probability of relapse at given values mathematical models in recent years [58-63]. In our work, we con-
Ke» Acs Wpeak- We do this by first drawing a sequence of cues that occur sidered the response of the brain to a series of inputs representing
according to a Poisson process of rate A.. Then, using this specific positive and negative events, and how their amplitude, timing and
sequence of cues, we compute the relapse rate given in Eq. (38). Finally, ordering affect the likelihood that a person in recovery will use again.
we determine the survival probability and the relapse probability at a By construction, and mirroring the PA/NA model, negative events
fixed time T = 100 days using Eq. (2). The results in Fig. 10 are obtained increase the likelihood of relapse more than positive ones of the same
under the assumption of no positive input, Y = 0. For comparison we magnitude. We find that clustering positive or negative events is gen-
use the analytical approximation given in Egs. (40) and (41) to find the erally detrimental. For a fixed, mental state activity integrated over a
parameter curve corresponding to (P(T = 100)) = 0.5. fixed time frame and imparted by an arbitrary number of negative (or
In the baseline case, where there are no cues or external stimuli, positive) events, the best way of distributing these events is through
R() = Ry, hence the positive support ¥ will balance or alleviate the a continuum of moderate negativity (or positivity), rather than as a
cue-induced drive to take drugs only if it satisfies large jolt of catastrophe (or happiness) occurring at all once. On the
other hand, once an individual is exposed to a stressor, a positive event
Y > )”;Ka (Ei(wpeak) — In(Wpey) — y), (43) occurring immediately afterward can act as a protective factor. We also
c found that a constant source of positive input can balance the negativity
Thus, to be effective, the counterbalancing source of support ¥ must arising from a series of random events that may include large stressors.
increase with the intensity of the memory of the first high wy,, the Since the mathematical representation of sensory cues in our work is
rate of exposure to the cues 4., the duration of the cue 1/, and the akin to that of stressors, the above considerations remain valid for
processing rate of the positive events «,. exposure to drug-related cues.

11
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The effect of different environments and user profiles may be stud-
ied by tuning relevant parameters. By changing x,, &y, k. and wpe, we
can represent users who respond differently to life experiences and
whose memories of the “first high” vary in intensity. Similarly, the
amplitudes A;, B;, the Gaussian noise A and the Poisson parameter
A. can represent different risk levels in the social environment of the
recovering addict. Finally, although developed in the context of relapse,
our model can be used to also study the driving and protective factors
that lead a non-user to try drugs for the first time. In this case, C(r) = 0
as there are no sensory cues related to past use, but M(¢) can represent
external stimuli that induce an individual to use drugs for the first time.

How do we translate these findings into practice? How to experience
continuous positivity? Certainly, it is important to seek out positive,
fulfilling experiences, embodied by the A; events discussed in this work.
However, the continuous sources of positivity we introduced, such as
the green curves in Fig. 3 and the Y term in Eq. (19), represent inputs to
the mental state. One may interpret these inputs as arising not just from
actual events, but also as imparted from a positive attitude towards
life, for example through support from family and friends, finding
satisfaction in one’s work, hobbies and social life. A positive attitude
can also be developed through cognitive behavioral therapy, individual
or group counseling or psychotherapy which are known to be effective
in helping manage life’s challenges without recourse to drugs.
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Appendix A. Time-dependent processing rates k,(t) and k,(¢)

Time-dependent processing rates «,(¢), k() are included in our
mathematical representations of the PA/NA model in Egs. (3a) and
(3b) to allow for neuroadaptive changes after cessation of drug use.
Assuming that at the beginning of the recovery phase at ¢ = 0 there are
no negative or positive affects so that M, (r = 0) = Mt = 0) = 0, the
general solution is

- Ja ka(sHds'
M=y Ae Sy a2 (A.1a)
i,rzri‘
= [b Kp(s)ds”
My(@) = — Z Bje (A.1b)
j,rzz}?

Drug addiction is known to attenuate the pleasure stemming from
positive stimuli, leading to anhedonia [27]. It is thus reasonable to
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assume that after cessation of drug use, positive experiences will return
to being more pleasurable. This is supported by experimental evidence
that dopamine transporter loss in former methamphetamine users can
recover after a sufficiently long period of abstinence [49]. Plausible
forms for «,(¢) include monotonically decreasing functions that start at
k,(t = 0) = K, and that descend towards the standard value at full
recovery k,(t — ) = k} < k,(. Within this scenario, positive events
occurring well into the recovery phase elevate one’s mental state for
a longer period compared to positive events occurring at the onset of
the recovery phase. Similarly, since drug abuse is known to exacerbate
negative emotional distress [25,47,48,64], we can assume that &, (¢) is
a monotonically increasing function with x(t = 0) = x,,, that increases
towards k,(f — o) = k; > Ky, In this case, negative affects linger less
in the minds of former users as recovery continues. We mathematically
represent the processing rates «,(7), k,(¢) during abstinence as

Ka() = ke T + k(1 — €77, (A.2a)

Kp() = Kppe " + K (1 — 7700, (A.2b)

where yﬂ“,yb‘ ! are typical time scales associated with neuroadaptive

changes to the processing rates and where «, > «; and ko < &, The
positive affect M,(¢) in Eq. (A.1a) can thus be written as

% (K: - KaO) a
M) =Y Ae D exp [— (ﬂa’: —e-fuf)]. (A.3)
iz Ya
For My(¢) in Eq. (A.1b) instead we find
_ (b (K = Kpo) / _, b
M, () = - Z Bje 5 'J)exp [b—b’o <e ! —e_}'b’):| . (A.4)
I

S iogb
>t
izt

If the restoring, neuroadaptive changes to k,(f) occur over short time
scales such that y,#2 > 1, then k,(t) can be approximated by its
equilibration value «;. Conversely, for longer lived changes scales such
that y,#? < 1, then «,(#) can be approximated by its initial condition «, .
In either of these two limits, «,(r) can be approximated by a constant,
K, Similar considerations hold for «,(7) that in the same limits can be
modeled as a constant k,. We can thus write

a o
M, (1) = Z A0 M) = — z Bje K=

>t
i

(A.5)

o
>0
St

where k, = k,( or k) depending on the proper limit (and similarly for
k) and use the results for the constant «,, k;, cases discussed in Eq. (4).

Instead of considering a sequence of positive or negative events,
for simplicity, we now assume there is a constant negative input ¥ =
—0.5/day and that there are no random events. In this scenario, the
ideal case of an individual who has never used drugs is represented by
the negative mental state M(¢) = M, () given by

M) = %(1 e, (A.6)

b
and obtained using the standard processing rate x;. We identify the
scenario of a recovering addict processing events with the same rates
as if drugs were never used, as a proxy for full recovery. A patient still in
recovery on the other hand processes events at the time-dependent rate
Kk, (1) given by Eq. (A.2b). For this individual, the same circumstances
yield the following negative mental state

M(t) = Ye Jo ! / o et gy (A7)
0

Eq. (A.7) reduces to Eq. (A.6) under no recovery, when y, = 0 in

Eq. (A.7), provided «; is replaced by «, in Eq. (A.6).

In Fig. A.11 we consider a dynamically varying «,(r) and plot the
mental state M (r) and relapse probability P(¢) for an initial processing
rate xp, = 1/day and the recovered, standard processing rate x; =
2/day. The initially large value of k,, implies that right after cessation
of drug use the neurocircuitry of the individual is still compromised,
and any life event is processed quickly. We also set y, = 0.002/day,
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Fig. A.11. Dynamics of M(¢) and (P(T)) under a continuous negative input Y = —0.5/day, an initial processing rate k;, = 1/day, a fully recovered processing rate «; = 2/day, and

Ry =

1073, Recovery rates are given by y, = 0.002,0.005,0.01/day. The black dashed curve is the ideal case of the individual never having used drugs, or having fully recovered

(Eq. (A.6)), and the dotted curve is the no recovery case (y, =0 in Eq. (A.7)). Intermediate curves show patients in recovery who tend to approach the ideal case of never having

drugs after a long enough recovery time.

7, = 0.005/day and y, = 0.01/day, corresponding to recovery times
from kg, to k, ranging from three months to one and half years,
approximately.

The mental states M(f) in each of these scenarios are shown in
Fig. A.11(a). In Fig. A.11(b) we show the corresponding expected
relapse probability, (P(T)). Here, the state of no exposure to drugs
(Eq. (A.6)) is represented by the lower-bounded curve and the state
of no recovery from drugs (Eq. (A.7) with y, = 0) is represented
by the upper-bounded one. All other curves correspond to Eq. (A.7)
with finite, non-zero values of the recovery rate y,. As can be seen,
the latter are all initially closer to the upper bound, as the recovery
effects are minimal at the onset. However, as the recovery process
continues, the curves start approaching the lower curve corresponding
to the ideal case of the individual never having used drugs in the first
place. Finally, faster recovery processes (larger values of y,) yield lower
relapse probabilities.

Appendix B. Estimating the relapse probability

Here, we consider approximations to the expected relapse probabil-
ity (P(T)) as given by Eq. (29)

T
(P(T)=1-(ST)=1—- <exp [—RO/ e’M(’/)dt’] > (B.1)
0
We first expand the exponential in Eq. (B.1) in a Taylor series
< Ro T ) )
(smy=Yy —(—1)"/ / (MWD L = ME gD gr) (B.2)
n=0 n! 0 0

and note that upon neglecting correlations we can approximate the
expectation of the products of e=M® in Eq. (B.2) as products of expec-
tations so that

T T o " T n
/ / (eeMUD L o= Mg (DL g [/ (e‘M(’))dI] , (B.3)
0 0 0
leading to
T
(P(T))y ~ 1 —exp [—RO/ (e_M('))dt]. (B.4)
0

We now evaluate the integral for the » = 1 summand in Eq. (B.2), for
which Eq. (B.3) is exact. We find

[s+]
(e~ M®) =/ eMp (M,t)dM
—o (B.5)
—2Y ) exp [— (MO - Z) e K — ie’z’”].
K K 2K
We now consider the n = 2 summand in Eq. (B.2) to determine
the conditions under which the approximation in Eq. (B.3) fails and

(A
= exp
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correlations must be taken into account. Our goal is thus to evaluate
(M) g=M®)y = ;=M e=M@")) To do this, we must consider the
joint probability density P,(M,, M,,t,1") of finding the mental state
M, at time ¢ and of finding the mental state M, at time ¢/ > 7,
conditioned on the previous value M, at time ¢ This is given by

P (M, My, 11"y = P ,(My, 1" M, )P (M, 1), (B.6)

where P, (M,,1") is the probability density of finding M, at ¢, with the
given initial conditions, and where P,(M,,t'|M,,1’) is the probability
density of finding M, at r”, conditioned on having M, at . The two
quantities evolve according to the Fokker-Planck equation shown in
Eq. (23) and lead to

<e—M(1’)e—M(t”)>

(o] [e+]
= “Mie=M2p (M, M,,!,¢")dM,dM.
e e 25 sy 1 2
/_w /_oo " ! (B.7)

[s<] (s
= / / eMie=Map (M, 1" \M,,{')P (Mt )dM,dM,,
where
Po(My,1") ~N (@), 62(1)) .5
Po(My, 1" | M, 1) ~N (a0 = 1), 2" —1)), ’

and N (u, 0) is the normal distribution of mean y and variance . The
values y,, uy, o are given by

m@= Lot (M- L),
K K
w (' =1 = r, (M] - Z) et~ (B.9)
K K
2 4 —2kt
o°(t)= —(1—e ).
K
We now evaluate Eq. (B.7) to find
<e_M(t/)e_M(tu)> _ (e_M(I/)xe_M(IH))e%e_kw sinh(”’), (B.10)

where (=M} is given in Eq. (B.5). Given that 1" > ¢, the exponential
term in Eq. (B.10) will tend towards unity as x — oo, implying
correlations can be neglected. The k — oo limit corresponds to a
relatively short processing time, consistent with the notion that the
decay of random events is fast and do not allow for strong correlations.
Conversely, if k — 0 we find

lim exp (2—197’”” sinh(Kt’)) = 24 (B.11)
k—0 K

which can be quite large for even moderate values of 4 at large times.
Finally, note that if we set 24 = ax where « is a proportionality
constant, then

lim exp (ae”“// sinh(xt')) =1, (B.12)

K=
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Fig. B.12. Expected relapse probability (P(T)) as determined from 5000 trajectories of the Ornstein-Uhlenbeck process with M, = 0 and various parameters Y, A,x and the
analytical estimate given by Eqgs. (30) and (26a). The ratio A =2Y is kept for all parameter combinations, leading to the expectation (P(T)) ~ 1 —exp(R,T), according to Eq. (30).
In panel (a) we fix Y = 1/day and A = 2/day. Results from the numerical simulations match the analytical estimate only for large values of x as illustrated in the text, when
correlations can be neglected. In panel (b) we fix 24 = akx, with « =8 to show that under this assumption correlations play a less prominent role in the limit x — 0.

suggesting that an alternative way of neglecting correlations in the
small x limit, when the processing time is large, is to instead modulate
the amplitude of the noise 1 to be comparable to «. The evaluation of
higher order correlations n > 2 in Eq. (B.2) is a more tedious calcula-
tion, but we expect that in the x — oo limit the same considerations
will apply and that correlations can also be neglected. In Fig. B.12 we
plot the expected relapse probability ( P(T')) obtained by averaging over
5,000 runs of the Ornstein—Uhlenbeck process for several values of «
and other parameters. We show that the analytical approximation in
Eq. (30) holds only for sufficiently large values of «.

Appendix C. Deriving the average relapse rate for Poisson dis-
tributed cues

We now derive Eq. (39) assuming cues affect the mental state M
through events of amplitude w), that are Poisson distributed with rate
A.. According to Eq. (38), assuming that within time 7 there have been
n. Poisson distributed cues, the relapse rate is given by

—exp [_1 (1- e’”ﬂ’)] H exp [wpeake-Kc('-fé)] .

Ka s=Lrx16
For a general function f(y) one can show that given n, events within
time ¢ that are Poisson distributed, the following holds

<H f(z;>>
=1

We will show the validity of this expression below. For now, assuming
Eq. (C.2) holds, we write

RO\l _ o[- X ey [L [ ) ar|
<R0> —exp[ - (l e )] [I/Oexp[wpeake ]dt .

(C.3)
We can now average over the likelihood of having n, events within ¢
by weighting Eq. (C.3) by the Poisson distribution to obtain

&t) = _z _ e Kal
(& =eel =)
[e3] (ﬂcl)nce_)”ct 1 t (1!
Sy

Upon evaluating the integral above we write

t —e(1— !
<—R(t)> = exp [—Act Y (1—e™") + AC/ eWpeak® ¢ !)dt’] ,
Ry Ky 0

(CD

(C.2)

t ne
= [%/0 f(y)dy] , n, ~ Poisson(4,, 1).
ne

e

e (C.4)

(C.5)
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which, for k,t, k.t > 1 can be simplified to

. R(1) Y A
limin{ == Y=—-Z 4 Z¢
im n< > +

-0 0 K‘a KC

(Bi(Wpear) = In(wpeqc) = 7) » (C.6)
where y is the Euler-Mascheroni constant. To show the validity of
Eq. (C.2) we take a general Poisson process of rate n and for which
p(ty,....t,| N = n) is the probability density of n events occurring within
time ¢ ordered such that 1, < ¢, < --- < 1,. In a Poisson process, the
possibility of an event occurring in [z, + df] is always #dz, which does
not correlate with time, so we can divide the time period ¢ equally into
M segments of length dr with M > 1 so that r = Md:. We label them
{[T\, T, +d1],[T,, T, +dt), ..., [Ty, Tpy +dt]}. Since each event 1, <1, <1,
will fall into one of the above segments we can write

plty,....1,|N = n)(dD)"
=P(T, <t; <T; +dt,...,. T, <t,<T,+dp)
=P{[T,,T| + dt], ...,[T,, T, + dt]}),

(c.7)

where the last equality implies that one can simply pick the n € M
segments corresponding to the 7, <7, <1, events. Since these intervals
are equiprobable, and

M\

n

Using M = t/dt, this becomes p(t,,...,7,|N = n) = "—n' An alternative
way to obtain this is result is to use the explicit form for the Poisson
distribution

n(M —=n! _ pl

—_ n _
t,IN = n)(dt)" = v ohvik

iy,

pty,....,t,, N =n)
P(N =n)
e MT=1) - pe=tna1=t) .. pe=nt1=12) . po—ihi

p(tys ..., t,|N =n)=

Ty e
n!

(C.8)

rlne—nT n!
@rye™ T
n!
Finally, for a generic function f() and for a series of n Poisson-

distributed events occurring at times 0 < ¢, < -+ < t, < t we can

write
<]'[f<t,)> / [Hf(z,)pm,...,rnlN:n)] dty - dt,
Jj=1 Jj=1
n! . n! “
= L]:[1 f(t,-)] dry e dr, = [Jl:[lf(rpdr,] :

where the multidimensional time integrals are constrained by 0 < 7; <
- < t, < t. We now eliminate the ordering of the sequence ¢, ...,?

n

ns
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and divide the integral by the number of permutations to obtain

- 1
jl:[lfa,») ==

IT / £
=1 J0<t;<t

n Jj
L[/ "
—[/ f(y)dy] ,
t 1Jo

ﬁ[/tf(t)dt’]—
jer Lo T L

which is Eq. (C.2).

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Farida Bhuiya Ahmad, Jodi A. Cisewski, Lauren M. Rossen, Paul Sutton,
Provisional Drug Overdose Death Counts, National Center for Health Statistics,
2022.

U.S. Department of Health and Human Services, Substance Abuse and Mental
Health Services Administration, Center for Behavioral Health Statistics and
Quality, NSDUH-2021-DS0001, National Survey on Drug Use and Health 2021,
2021, https://datafiles.samhsa.gov.

Nora D. Volkow, Marisela Morales, The brain on drugs: From reward to
addiction, Cell 162 (4) (2015) 712-725.

National Institute on Drug Abuse, Treatment and recovery, 2022, https:
//nida.nih.gov/publications/drugs-brains-behavior-science-addiction/treatment-
recovery.

A. Thomas McLellan, David C. Lewis, Charles P. O’ Brien, Herbert D. Kleber, Drug
dependence, a chronic medical illness: Implications for treatment, insurance, and
outcomes evaluation, JAMA 284 (2000) 1689-1695.

Rajita Sinha, New findings on biological factors predicting addiction relapse
vulnerability, Curr. Psychiatry Rep. 13 (2011) 398-405.

Mary L. Brecht, Diane Herbeck, Time to relapse following treatment for metham-
phetamine use: A long-term perspective on patterns and predictors, Drug Alcohol
Depend. 139 (2014) 18-25.

Bobby P. Smyth, Joseph Barry, Eamon Keenan, Kevin Ducray, Lapse and relapse
following inpatient treatment of opiate dependence, Irish Med. J. 103 (2010)
176-179.

Alan David Kaye, Richard D. Urman, Elyse M. Cornett Cornett, Amber Edi-
noff, Substance Use and Addiction Research: Methodology, Mechanisms, and
Therapeutics, Academic Press, London, UK, 2023.

Maria R. D’Orsogna, Lucas Béttcher, Tom Chou, Fentanyl-driven acceleration of
racial, gender and geographical disparities in drug overdose deaths in the United
States, PLOS Glob. Public Health 3 (2023) e0000769.

Daniele Caprioli, Michele Celentano, Giovanna Paolone, Aldo Baldiani, Modeling
the role of environment in addiction, Progress Neuro-Psychopharmacol. Biol.
Psychiatry 31 (2007) 1639-1653.

Nora D. Volkow, Joanna S. Fowler, Gene-Jack Wang, The addicted human brain:
Insights from imaging studies, J. Clin. Investig. 111 (2003) 1444-1451.

George F. Koob, Nora D. Volkow, Neurocircuitry of addiction, Neuropsy-
chopharmacol.: Official Publ. Am. College Neuropsychopharmacol. 35 (1) (2010)
217-238.

Rita Z. Goldstein, Nora D. Volkow, Dysfunction of the prefrontal cortex in
addiction: neuroimaging findings and clinical implications, Nat. Rev. Neurosci.
12 (11) (2011) 652-669.

George F. Koob, Nora D. Volkow, Neurobiology of addiction: A neurocircuitry
analysis, Lancet. Psychiatry 3 (2016) 760-773.

Jessica A. Mollick, Hedy Kober, Computational models of drug use and addiction:
A review, J. Abnormal Psychol. 129 (2020) 544-555.

Tom Chou, Maria R. D’Orsogna, A mathematical model of reward-mediated
learning in drug addiction, Chaos 32 (2022) 021102.

Boris S. Gutkin, Stanislas Dehaene, Jean P. Changeux, A neurocomputational
hypothesis for nicotine addiction, Proc. Natl. Acad. Sci. 103 (2006) 1106-1111.
Abraham Peper, Intermittent adaptation: A mathematical model of drug toler-
ance, dependence and addiction, in: Boris S. Gutkin, Serge H. Ahmed (Eds.),
Computational Neuroscience of Drug Addiction, in: Springer Series in Computa-
tional Neuroscience, vol. 10, Springer, New York, NY, 2012, pp. 19-56, chapter
2.

Hawre Jalal, Jeanine M. Buchanich, Mark S. Roberts, Lauren C. Balmert Balmert,
Kun Zhang Zhang, Donald S. Burke, Changing dynamics of the drug overdose
epidemic in the United States from 1979 through 2016, Science 361 (2018)
6408.

Lucas Bottcher, Tom Chou, Maria R. D’Orsogna, Modeling and forecasting age-
specific overdose mortality in the United States, Eur. Phys. J. Spec. Top. 232
(2023) 1743-1752.

Lucas Bottcher, Tom Chou, Maria R. D’Orsogna, Forecasting drug-overdose
mortality by age in the United States at the national and county levels, PNAS
Nexus 3 (2024) pgae050.

Rajita Sinha, How does stress increase risk of drug abuse and relapse? Psy-
chopharmacology 158 (2001) 343-359.

Christopher J. Evans, Catherine M. Cahill, Neurobiology of opioid dependence
in creating addiction vulnerability, F1000Research 5 (2016) 1748.

15

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Mathematical Biosciences 372 (2024) 109184

George F. Koob, Neurobiology of opioid addiction: Opponent process,
hyperkatifeia, and negative reinforcement, Biol. Psychiat. 87 (2020) 44-53.

Lili Nie, Dara G. Ghahremani, Mark A. Mandelkern, Andy C. Dean, Wei Luo,
Anlian Ren, Jing Li, Edythe D. London, The relationship between duration of
abstinence and gray-matter brain structure in chronic methamphetamine users,
Am. J. Drug Alcohol Abuse 47 (2021) 65-73.

George F. Koob, Anhedonia, hyperkatifeia, and negative reinforcement in sub-
stance use disorders, in: Diego A. Pizzagalli (Ed.), Anhedonia: Preclinical,
Translational, and Clinical Integration, Springer, Cham, Switzerland, 2022.
Nilofar Vafaie, Hedy Kober, Association of drug cues and craving with drug use
and relapse; A systematic review and meta-analysis, JAMA Psychiatry 79 (2022)
641-650.

Daniel L. Kahneman, Evaluation by moments, past and future, in: Choices, Values
and Frames, Cambridge University Press, 2000, pp. 693-708.

Barbara L. Fredrickson, Daniel L. Kahneman, Duration neglect in retrospective
evaluations of affective episodes, J. Personal. Soc. Psychol. 65 (1993) 45-55.
Aaron M. Bornstein, Hanna Pickard, “Chasing the first high”: Memory sampling
in drug choice, Neuropsychopharmacology 45 (2020) 907-915.

Sean E. McCabe, James A. Cranford, Carol J. Boyd, Stressful events and other
predictors of remission from drug dependence in the United States: Longitudinal
results from a national survey, J. Subst. Abuse Treat. 71 (2016) 41-47.
Christina J. Perry, Isabel Zbukvic, Jee H. Kim, Andrew J. Lawrence, Role of
cues and contexts on drug-seeking behaviour, Br. J. Pharmacol. 171 (2014)
4636-4672.

Rajtarun Madangopal, Brendan J. Tunstall, Lauren E. Komer, Sophia J. Weber,
Jennifer K. Hoots, Veronica A. Lennon, Jennifer M. Bossert, David H. Epstein,
Yavin Shaham, Bruce T. Hope, Discriminative stimuli are sufficient for incubation
of cocaine craving, eLife 8 (2019) e44427.

Freidbert Weiss, Roberto Ciccocioppo, Loren H. Parsons, Simon Katner, Xiu Liu,
Eric P. Zorrilla, Glenn R. Valdez, Osnat Ben-Shahar, Stefania Angeletti, Regina R.
Richter, Compulsive drug-seeking behavior and relapse. Neuroadaptation, stress,
and conditioning factors, Ann. New York Acad. Sci. 937 (2001) 1-26.

George F. Koob, Michel Le Moal, Neurobiological mechanisms for opponent
motivational processes in addiction, Philos. Trans. R. Soc. B 363 (1507) (2008)
3113-3123.

Mehdi Keramati, Boris S. Gutkin, Homeostatic reinforcement learning for
integrating reward collection and physiological stability, eLife 3 (2014) e04811.
Theodora Duka, Hans S. Crombag, David N. Stephens, Experimental medicine in
drug addiction: Towards behavioral, cognitive and neurobiological biomarkers,
J. Psychopharmacol. 25 (2011) 1235-1255.

David Watson, David Wiese, Jatin Vaidya, Auke Tellegen, The two general
activation systems of affect: Structural findings, evolutionary considerations, and
psychobiological evidence, J. Personal. Soc. Psychol. 76 (1999) 820-838.
James J. Gross, Robert W. Levenson, Emotion elicitation using films, Cognit.
Emotion 9 (1995) 87-108.

Tiffany A. Ito, John T. Cacioppo, Peter J. Lang, Eliciting affect using the
international affective picture system: Trajectories through evaluative space, Pers.
Soc. Psychol. Bull. 24 (1998) 855-879.

John T. Cacioppo, W.L. Gardner, G.G. Berntson, The affect system has parallel
and integrative processing components: Form follows function, J. Personal. Soc.
Psychol. 76 (1999) 839-855.

Peter J. Lang, The emotion probe. Studies of motivation and attention, Am.
Psychol. 50 (1995) 372-385.

Tiffany A. Ito, Jeff T. Larsen, N. Kyle Smith, John T. Cacioppo, Negative
information weighs more heavily on the brain: The negativity bias in evaluative
categorizations, J. Personal. Soc. Psychol. 75 (1998) 887-900.

Noam Zilberman, Gal Yadid, Yaniv Efrati, Yuri Rassovsky, Negative and positive
life events and their relation to substance and behavioral addictions, Drug
Alcohol Depend. 204 (2019) 107562.

Noam Zilberman, Gal Yadid, Yaniv Efrati, Yuri Rassovsky, Who becomes addicted
and to what? Psychosocial predictors of substance and behavioral addictive
disorders, Psychiatry Res. 291 (2020) 113221.

George F. Koob, Patricia Powell, Aaron White, Addiction as a coping response:
Hyperkatifeia, deaths of despair, and COVID-19, Am. J. Psychiatry 177 (2020)
1031-1037.

George F. Koob, Drug addiction: Hyperkatifeia/Negative reinforcement as a
framework for medications development, Pharmacol. Rev. 73 (2021) 163-201.
Nora D. Volkow, Linda Chang, Gene-Jack Wang, Joanna S. Fowler, Dinko
Franceschi, Mark Sedler, Samuel J. Gatley, Eric Miller, Robert Hitzemann, Yu-
Shin Ding, et al., Loss of dopamine transporters in methamphetamine abusers
recovers with protracted abstinence, J. Neurosci. 21 (23) (2001) 9414-9418.
Rajita Sinha, Chaing-Shan Ray Li, Imaging stress- and cue-induced drug and
alcohol craving: Association with relapse and clinical implications, Drug Alcohol
Rev. 26 (2007) 25-31.

Helen C. Fox, Keri L. Bergquist, Kwang I. Hong, Rajita Sinha, Stress-induced and
alcohol cue-induced craving in recently abstinent alcohol dependent individuals,
Alcohol Clin. Exp. Res. 31 (2007) 395-403.

Kyle Kampman, Margaret Jarvis, National practice guideline for the use of
medications in the treatment of addiction involving opioid use, J. Addiction
Med. 9 (2015) 358-367.


http://refhub.elsevier.com/S0025-5564(24)00044-0/sb1
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb1
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb1
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb1
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb1
https://datafiles.samhsa.gov
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb3
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb3
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb3
https://nida.nih.gov/publications/drugs-brains-behavior-science-addiction/treatment-recovery
https://nida.nih.gov/publications/drugs-brains-behavior-science-addiction/treatment-recovery
https://nida.nih.gov/publications/drugs-brains-behavior-science-addiction/treatment-recovery
https://nida.nih.gov/publications/drugs-brains-behavior-science-addiction/treatment-recovery
https://nida.nih.gov/publications/drugs-brains-behavior-science-addiction/treatment-recovery
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb5
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb5
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb5
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb5
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb5
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb6
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb6
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb6
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb7
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb7
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb7
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb7
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb7
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb8
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb8
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb8
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb8
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb8
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb9
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb9
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb9
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb9
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb9
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb10
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb10
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb10
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb10
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb10
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb11
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb11
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb11
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb11
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb11
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb12
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb12
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb12
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb13
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb13
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb13
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb13
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb13
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb14
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb14
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb14
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb14
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb14
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb15
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb15
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb15
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb16
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb16
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb16
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb17
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb17
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb17
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb18
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb18
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb18
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb19
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb19
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb19
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb19
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb19
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb19
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb19
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb19
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb19
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb20
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb20
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb20
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb20
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb20
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb20
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb20
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb21
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb21
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb21
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb21
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb21
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb22
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb22
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb22
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb22
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb22
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb23
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb23
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb23
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb24
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb24
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb24
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb25
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb25
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb25
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb26
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb26
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb26
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb26
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb26
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb26
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb26
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb27
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb27
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb27
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb27
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb27
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb28
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb28
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb28
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb28
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb28
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb29
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb29
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb29
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb30
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb30
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb30
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb31
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb31
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb31
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb32
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb32
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb32
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb32
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb32
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb33
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb33
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb33
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb33
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb33
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb34
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb34
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb34
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb34
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb34
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb34
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb34
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb35
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb35
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb35
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb35
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb35
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb35
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb35
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb36
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb36
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb36
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb36
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb36
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb37
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb37
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb37
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb38
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb38
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb38
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb38
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb38
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb39
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb39
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb39
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb39
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb39
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb40
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb40
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb40
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb41
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb41
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb41
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb41
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb41
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb42
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb42
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb42
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb42
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb42
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb43
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb43
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb43
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb44
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb44
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb44
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb44
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb44
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb45
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb45
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb45
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb45
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb45
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb46
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb46
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb46
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb46
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb46
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb47
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb47
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb47
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb47
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb47
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb48
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb48
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb48
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb49
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb49
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb49
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb49
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb49
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb49
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb49
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb50
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb50
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb50
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb50
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb50
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb51
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb51
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb51
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb51
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb51
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb52
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb52
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb52
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb52
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb52

S. Mao et al.

[53]

[54]

[55]

[56]

[57]

[58]

George E. Uhlenbeck, Leonard S. Ornstein, On the theory of Brownian motion,
Phys. Rev. 36 (1930) 823-841.

Crispin W. Gardiner, Handbook of Stochastic Methods, fourth ed., Springer-
Verlag, Berlin, 2009.

Hannes Risken, The Fokker—Planck Equation:
Applications, Springer-Verlag, New York, 1989.
Caibin Zeng, Mean exit time and escape probability for the Ornstein-Uhlenbeck
process, Chaos 30 (9) (2020) 093127.

Helen C. Fox, Makram Talih, Robert Malison, George M. Anderson, Mary J.
Kreek, Rajita Sinha, Frequency of recent cocaine and alcohol use affects
drug craving and associated responses to stress and drug-related cues,
Psychoneuroendocrinology 30 (2005) 880-891.

Christophe Gauld, Damien Depannemaecker, Dynamical systems in compu-
tational psychiatry: A toy-model to apprehend the dynamics of psychiatric
symptoms, Front. Psychol. 14 (2023) 1099257.

Methods of Solution and

16

[59]

[60]

[61]

[62]

[63]

[64]

Mathematical Biosciences 372 (2024) 109184

Olena Trofymchuk, Eduardo Liz, Sergei Trofimchuk, The peak-end rule and its
dynamic realization through differential equations with maxima, Nonlinearity 36
(2023) 507-536.

Xiaoou Cheng, Maria R. D’Orsogna, Tom Chou, Mathematical modeling of
depressive disorders: Circadian driving, bistability and dynamical transitions,
Comput. Struct. Biotechnol. J. 19 (2020) 664-690.

Tobias U. Hauser, Vasilisa Skvortsova, Munmun De Choudhury, Nikolaos Kout-
souleris, The promise of a model-based psychiatry: Building computational
models of mental ill health, Lancet Digit. Health 4 (2022) e816-e828.

Lae U. Kim, Maria R. D’Orsogna, Tom Chou, Onset, timing, and exposure therapy
of stress disorders: Mechanistic insight from a mathematical model of oscillating
neuroendocrine dynamics, Biol. Direct 11 (2016) 13.

Rosemary Harris, Random walkers with extreme value memory: Modeling the
peak-end rule, New J. Phys. 17 (2015) 053049.

Ali Cheetham, Nicholas B. Allen, Murat Yucel, Dan I. Lubman, The role of
affective dysregulation in drug addiction, Clin. Psychol. Rev. 30 (2010) 621-634.


http://refhub.elsevier.com/S0025-5564(24)00044-0/sb53
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb53
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb53
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb54
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb54
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb54
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb55
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb55
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb55
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb56
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb56
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb56
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb57
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb57
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb57
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb57
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb57
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb57
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb57
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb58
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb58
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb58
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb58
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb58
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb59
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb59
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb59
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb59
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb59
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb60
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb60
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb60
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb60
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb60
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb61
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb61
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb61
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb61
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb61
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb62
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb62
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb62
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb62
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb62
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb63
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb63
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb63
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb64
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb64
http://refhub.elsevier.com/S0025-5564(24)00044-0/sb64

	A probabilistic model of relapse in drug addiction
	Introduction
	Dynamical systems model for relapse
	Relapse rates and probabilities
	The PA/NA mental state model
	External cues

	Results
	Dynamics without cues
	Longer-lasting stressors increase the relapse probability; longer-lasting positive events decrease it
	Clustered stressors increase the relapse probability more than disperse ones
	Dispersed positive events decrease the relapse probability more than clustered ones
	Relapse is least likely if a positive experience occurs immediately after a stressor
	A constant source of positivity can offset the random lows of life

	The presence of cues

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgment
	Appendix A. Time-dependent processing rates κa(t) and κb(t)
	Appendix B. Estimating the relapse probability
	Appendix C. Deriving the average relapse rate for Poisson distributed cues
	References


