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Abstract—A process simulator provides valuable insights into
the evolution of microstructures under various elementary pro-
cesses, employing the Orientation Distribution Function (ODF)
as a representation of the microstructure’s texture. However,
such simulations often involve complex physical computations,
making them time-consuming. To address this, our study intro-
duces an artificial intelligence (AI)-based framework to predict
the microstructural texture of polycrystalline materials using
a specified deformation process. As a case study, we apply
our framework to copper. The dataset includes 3,125 unique
processing parameter combinations and their corresponding
ODF vectors generated using a process simulator. The resulting
predictions enable the calculation of homogenized properties. As
opposed to traditional material processing simulations, our AI-
driven framework offers faster results with minimal error rates
(less than 0.5%). This indicates that our approach is a promising
tool for rapidly predicting processing-specific microstructures
and properties, thereby offering significant improvements over
conventional simulation techniques.

Index Terms—seq2seq, LSTM, time-series prediction

I. INTRODUCTION

Polycrystalline materials play a vital role in a wide range
of industrial applications due to their versatile properties
and cost-effectiveness. These materials exhibit complex mi-
crostructures, which significantly impact their mechanical and
physical properties. Understanding the relationship between
processing, structure, property and performance (PSPP) in
polycrystalline materials is crucial for the development of
advanced materials with tailored properties, enabling better
performance in various applications such as aerospace, auto-
motive, and electronics industries [1]–[3].

However, traditional experimental approaches that explore
the optimum processing routes for a specific texture are often
laborious, time-consuming, and expensive, as they rely heavily
on trial and error. In recent years, computational methods have
emerged as a promising alternative to replace experimental
approaches, expediting the design of microstructures with
desired textures. The fast and accurate prediction of texture
evolution during processing holds the key to bridging the
gap between material design and manufacturing efforts for
polycrystalline materials [4], [5].

A process simulator of microstructure evolution can be
employed to learn the evolution of microstructures under each
elementary process, utilizing the ODF as a means to represent

microstructure texture. The ODF describes the volume den-
sity of crystals of different orientations in a microstructure,
allowing for a comprehensive representation of the material’s
texture. Given an arbitrary initial texture (ODF) and a set
of processing parameters, the future sequential ODFs can be
predicted using the process simulator. However, the simulation
is very time-consuming because of complex physical calcula-
tions.

In recent years, AI and ML techniques have emerged as
promising tools for accelerating the understanding of material
behavior and guiding the development of new materials with
desired properties. These techniques have demonstrated suc-
cess in various material science applications, such as predict-
ing crystal structures, estimating mechanical properties, and
simulating deformation processes. Several machine-learning
approaches have been employed to model the microstructural
evolution in different materials, such as metals, alloys, and
composites [6], [7].

In this study, our objective is to predict the ODF, and subse-
quently, property prediction is executed by utilizing processing
parameters along with the initial ODFs. If successful, the
resulting model has the potential to replace the process simula-
tor, thereby significantly diminishing running time. However,
there are some challenges: 1. The dimensions of ODF vectors
exhibit non-linearity with respect to time steps. 2. Certain
dimensions of the ODF vectors initially show linearity but
deviate towards non-linearity in future steps. 3. Our objective
is to minimize the number of historical ODFs used to achieve
reduction in running time. However, this approach may pose
challenges in obtaining accurate predictions.

To address these challenges, we propose an artificial
intelligence-based framework that employs an encoder-
decoder model comprising Long Short-Term Memory (LSTM)
layers. The model is specifically designed to predict alter-
ations in the ODF of polycrystalline materials during a given
deformation process. The ODF is a statistical representation
of the crystallographic orientations within a polycrystalline
material, which directly affects its overall properties. Our study
specifically uses copper as the subject material due to its
excellent electrical and thermal conductivity, high ductility,
and resistance to corrosion. Its robust mechanical properties
also make it a suitable choice for various applications across
industries such as electronics, telecommunications, power gen-



eration, and building construction [8]. The dataset used for
this study is generated from material processing simulations,
comprising 3,125 unique combinations of processing parame-
ters. Each combination yields a sequence of ten ODF vectors
as the output of the processing. Our proposed framework
employs the initial ODF and processing parameters as input
data, and predicts the evolution of texture in terms of ODFs
for the given deformation process. Subsequently, homogenized
properties are calculated using the predicted ODFs, providing
a comprehensive prediction of the material’s behavior under
these processing conditions.

The proposed AI-driven framework provides a fast, cost-
effective, and accurate method for predicting texture evolution
in polycrystalline materials, ultimately paving the way for op-
timized microstructures with tailored properties, outperform-
ing the material processing simulation with only a minimal
compromise in accuracy.

II. DEFORMATION PROCESS MODELING WITH ODF
APPROACH

Polycrystalline materials are composed of multiple crystals
with various crystallographic orientations, which determine
the microstructural texture. This texture is mathematically
described by the ODF, which allows for efficient deforma-
tion process modeling compared to computationally expen-
sive finite element solvers. The ODF, represented by A(r, t),
indicates the volume density of the crystals in the orientation
space, r, at a specific time t.

The Taylor approximation [9] may be used to calculate
the volume-averaged (homogenized) properties of polycrys-
talline materials utilizing their single crystal properties and
microstructural orientation information. The following equa-
tion can be used to calculate the volume-averaged elastic
characteristics Cavg of polycrystalline metals.

Cavg =< C > (1)

Here, C is the stiffness tensor of each crystal and < . >
is the symbol of averaging. Similarly, if any property of a
single crystal χ(r) is dependent on the crystal orientation,
then the homogenized polycrystal property < χ > can be
determined by performing the averaging over the ODF, that
could be written as equation 2:

< χ >=

∫
Ω

χ(r)A(r) dv (2)

Here χ(r) represents the single-crystal material properties.
After the crystallographic symmetries (hexagonal, cubic) are
enforced, the integration is conducted in the fundamental
region, Ω, of the orientation space.

During the deformation process, the ODFs change due to the
reorientation of the grains. They evolve from the initial ODFs
(at time t = 0) to the final deformed ODFs (at time t = tfinal).
Each deformation process, such as tension/compression and
shear, generates a particular ODF as output after applying a
load for a specific amount of time.

Fig. 1. Encoder-decoder LSTM architecture.

III. METHODS

A. Model Architecture

The encoder-decoder model is a type of neural network
architecture that has been widely used in various fields,
including natural language processing and computer vision.
It is a sequence-to-sequence model that consists of two main
components: an encoder and a decoder. The encoder takes an
input sequence and maps it to a fixed-length vector represen-
tation, which captures the most relevant information from the
input sequence. This vector representation is then passed to
the decoder, which generates an output sequence based on the
encoded information.

One type of neural network layer commonly used for time
series data in the encoder-decoder model is LSTM layer.
LSTMs are a type of recurrent neural network (RNN) that is
designed to handle sequential data by allowing information to
persist over time. The proposed model is an encoder-decoder
architecture that uses LSTM layers for both encoding and
decoding. Figure 1 shows the architecture of the proposed
encoder-decoder LSTM model. The encoder takes H ODF
vectors and processing parameters as input. The processing
parameters are embedded using a linear layer, and the resulting
feature vector is concatenated to the ODF vectors. The hidden
layer of the encoder is fed into the decoder, which generates a
sequence of future ODF vectors. The decoder takes the initial
H ODF vectors and processing parameters combination as
input.

Teacher-forcing is a technique used in sequence-to-sequence
models, such as the encoder-decoder model, during training
to improve the accuracy of the generated output sequence. In
this work, teacher-forcing is used to provide the correct output
from the previous time step as input with probability P. During
testing, the decoder generates its own output at each step based
on the previous output and processing parameters.

IV. RESULTS

A. Experimental settings

The model was trained using the Adam optimizer and a
mean squared error (MSE) loss function. The learning rate



was set to 0.001, and the batch size was set to 32. We
divide the training set into the training set and a validation
set with proportions of 70% and 30%, respectively. We select
the best model in the validation set as the model to predict
the results of the test set. The performance of the model was
evaluated on the test set. We compared the performance of
our proposed model with that of several baselines, including
a linear regression model, a ridge model, and a feedforward
neural network.

B. Dataset

We generated a dataset for this study using a strain-rate
independent crystal plasticity simulation. The deformation
simulation can be performed for tension/compression and
shear forces in XY, YZ, and XZ planes. The strain rate is
varied for each deformation process. In order to cover a wider
range of real data distribution, we generate process data by
taking the strain rate values from a list of (0, 0.25, 0.5, 0.75, 1)
for each process, resulting in 55 = 3, 125 (five options for each
parameter, and a total of five parameters) unique combinations.
For every combination of processing parameters, the simulator
provides the final deformed ODF with nine intermediate steps
of ODF evolution. Therefore, we obtain a sequence of ten
ODF vectors (ODF1, ODF2, ODF3, ......, ODF10) as output,
all starting from the same initial ODF vector. Each ODF is rep-
resented by a 76-dimensional vector. We divided the dataset,
consisting of ODF vectors and their corresponding processing
parameters, into training and test sets, with proportions of 70%
and 30%, respectively. This division ensured that our model
was trained and tested on independent and representative data
samples.

C. Evaluation metrics

We employed the ODF ave ave mape metric to compare
predicted ODFs. First, we calculated the mean absolute
percentage error (mape) for each predicted ODF of each
processing combination. Then, we computed the average
mape value of F future ODFs as the ave mape of each
processing combination. Finally, we determined the average
ave mape of all testing processing combinations to obtain the
ODF ave ave mape, as shown in Eq. (3). P is the number
of processing combinations in the test set. F is the number
of predicted ODFs for each processing combination. N is
the number of dimensions for each ODF vector. This metric
allowed us to compare the ODF prediction performance of
different models, as demonstrated in the “ODF mape” column
in Tables I and II.

ODF ave ave mape =
1

P

P∑
process i

1

F

F∑
step j=1

1

N

N∑
k=1∣∣∣∣∣ODF actualprocess i

step j,k −ODF predictedprocess i
step j,k

ODF actualprocess i
step j,k

∣∣∣∣∣× 100%

(3)

After obtaining the predicted ODFs, we derived property
matrices C and S using homogenization. We designated these
as predicted C and predicted S. As these matrices were
not predicted directly by the models but were calculated
using homogenization, they had fewer errors compared with
predicting property directly. We adopted a similar method to
evaluate the performance of predicted properties. For instance,
for each processing combination, we calculated the mape of
every element of F predicted C matrices. Subsequently, we
computed the average mape of all processing combinations.
In this manner, we obtained a 6 × 6 matrix representing the
average mape of every element of predicted C. These results
are shown in the ”Property mape” column in Tables I and
II. We determined the average mape of predicted S matrices
using the same method.

Meanwhile, we utilize the selected property to assess the
predicted C matrix using a single value. The selected property
is computed from the chosen elements (which comprise
C11, C22, C33, C44, C55, C66, C21, C31, C32, resulting in a to-
tal of nine elements). For each predicted C matrix correspond-
ing to a specific processing combination, we can determine
the mean absolute percentage error (mape) of the selected
elements as a representation of the error in that predicted C
matrix. Subsequently, we calculate the average mape value for
F predicted C matrices as the average mape for that particular
processing combination. Lastly, we compute the average of the
average mape values for all testing processing combinations
to obtain the C ave ave mape of the predicted C matrices,
which can be expressed as Eq. (4).

C ave ave mape =
1

P

P∑
process i

1

F

F∑
step j=1

1

N

N∑
k=1∣∣∣∣∣C actualprocess i

step j,k − C predictedprocess i
step j,k

C actualprocess i
step j,k

∣∣∣∣∣× 100%

(4)

We can derive the S ave ave mape using an analogous
method. Both C ave ave mape and S ave ave mape assist in
comparing the performance of different models in predicting
property matrices. These values can be found under the
”Selected property mape” column in tables I and II.

D. Evaluation on ten predicted ODFs using only initial ODF
(F = 10)

We employed the Linear Regression model, Ridge model,
and neural networks to predict ten ODFs using only the initial
ODF and corresponding processing parameters. Consequently,
the input feature dimension is 81 (76+5). During both the
training and testing phases, we normalized the input features
to ensure a unit norm. The results can be found in Table I. Bold
numbers in the Property mape column have been selected as
selected property for calculating the Selected property mape.
It is evident that the neural network (NN) model outperforms
the others in terms of ODF mape and Selected property
MAPE for both C and S matrices, with an ODF MAPE of
8.22%. Therefore, we utilize the NN model as a baseline for



TABLE I
RESULTS OF DIFFERENT MODELS WHEN H = 1

TABLE II
RESULTS OF DIFFERENT MODELS WHEN H = 2

comparison with the proposed seq2seq model in subsequent
experiments.

E. Evaluation on nine predicted ODFs using two initial ODFs
(F = 9)

In Table II, we compare the results of the neural network
(NN) model and seq2seq model using H = 2 and the
processing parameters as inputs. As a result, the input feature
dimension is 157 (76×2+5). We can observe that the seq2seq
model achieves a significantly lower ODF mape than the
NN model (3.82% vs. 8.01%) and a lower Selected property
mape for both C and S matrices ((0.46% vs. 0.48%)). This
demonstrates that the proposed seq2seq model can achieve
better results by learning the time-series relationship, capturing
not only the values of future ODFs but also the trend of every
dimension in the sequence of ODFs.

V. DISCUSSION

In this study, we have presented a novel approach for pre-
dicting the sequence of deformed ODFs and their correspond-
ing property matrices (C and S) after load application based
on the seq2seq model with LSTM. Our results demonstrate
the effectiveness of the proposed seq2seq model in capturing
complex trends and predicting accurate values. The results
of our experiments show that the seq2seq model consistently
outperforms traditional machine learning models and the NN
model in predicting ODFs and property matrices. This superior
performance is attributed to the ability of the LSTM seq2seq
model to learn and capture the time-series relationship in the
input data. These findings have important implications for
materials science and engineering, where accurate predictions
of microstructure and properties are crucial for material design
and optimization.

Despite the promising results, our study has several lim-
itations. Firstly, our study focused on a specific set of ma-
terials and processing conditions. The generalizability of our
approach to other materials and processing conditions needs
to be further investigated. Moreover, the performance of the
seq2seq model with different types of input features, such as
crystallographic information or process parameters, could be
explored to enhance prediction accuracy.
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