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AbstractÐCity-scale 3D reconstruction of drone images has
many benefits in creating dynamic digital twin models for geospa-
tial and remote sensing applications. We experiment with Neural
Radiance Fields (NeRF) to generate novel orthorectified views,
point clouds, and 3D meshes using our city-scale image dataset
captured from drones and crewed aircraft flights in a circular
orbit. We report on the impact of using different parameters
related to the NeRF network architecture, ray sampling density,
and input image view sampling on the quality of the results. We
compare these results with traditional Structure from Motion
(SfM) techniques and lidar point clouds. NeRFs can generate
highly competitive top-down novel views of city environments
compared to traditional SfM techniques, but the underlying 3D
structure tends to be less accurate with large-scale scenes. NeRFs
can also capture more detail, such as side walls of the buildings,
compared to lidar data collections. Finally, we propose a patch-
based region of interest training approach to generate high-
quality novel top-down views of the large city environments more
efficiently for georegistration purposes.

Index TermsÐneural radiance fields, NeRF, 3D reconstruction,
Gaussian splatting, geospatial, georegistration, aerial images

I. INTRODUCTION

NeRFs have shown great success in generating synthetic

novel views, but questions remain regarding the accuracy of

the underlying 3D structure, especially for large-scale scenes.

Most studies on NeRF focus on smaller-scale settings. We

reconstruct 3D point clouds and meshes to assess the accuracy

of the 3D structure with aerial images ranging in altitude from

120 meters, where a drone flies in a circular track above

a building, to 2 kilometers, where crewed aircraft capture

urban environments by flying in a circular track above a

city. We use the Transparent Sky [1] dataset for our city-

scale 3D reconstruction experiments, which includes multiple

cities such as Albuquerque, Berkeley, Columbia, Ferguson,

Los Angeles, St. Louis, San Francisco, Syracuse, and more.

We also leverage the high-quality synthetic novel view ren-

dering advancements for georegistration purposes. Our images

are captured using an oblique angle. These oblique images

need to be orthorectified to improve matching performance

with satellite images. Using an orthographic camera and nadir

view to render 3D radiance field reconstructions can be a good

alternative approach for the orthorectification process as the

capabilities of novel view synthesis continue to advance. This

paper explores the orthographic nadir view rendering approach

with NeRF and Gaussian splatting methods. In addition, we

developed a PatchNeRF extension for our NeRF reconstruction

pipeline to optimize the georegistration process.

The next section will focus on related work. Section III

will detail our pipeline and approach. Section IV will explain

our evaluation process. Finally, Section V will present our

experiments and results.

II. RELATED WORK

NeRFs train a neural network to create a volumetric repre-

sentation of a scene using images and corresponding camera

poses as input. This volumetric representation allows rendering

novel views of the scene with traditional volume rendering

techniques [2]. The original NeRF model [3] sends rays

through pixels of the input images, samples points along

these rays, and uses multilayer perceptrons (MLP) for map-

ping these spatial coordinates to color and density values.

Many researchers used grid-based representations of a scene

to improve the speed of the training process [4]±[7]. Mip-

NeRF [8] and Mip-NeRF 360 [9] trace conical frustums

instead of rays to solve the aliasing problem that exists in the

original approach. Zip-NeRF [10] and PyNeRF [11] combine

these acceleration and anti-aliasing efforts to provide the best

quality with high performance. The 3D Gaussian splatting [12]

method uses 3D Gaussians for the scene representation and

eliminates neural networks in the pipeline with differentiable

rendering methods. They achieve better novel view synthesis

quality compared to NeRF, and results can be rendered effi-

ciently in real time.

Urban Radiance Fields [13] uses lidar information to im-

prove RGB novel view synthesis and 3D surface reconstruction

quality. Transient NeRF [14] uses lidar scans to render novel

views of transient images. DS-NeRF [15] and Roessle [16]

use sparse point clouds generated from structure from motion979-8-3503-5952-7/23/$31.00 ©2023 IEEE



(SfM) methods to achieve a similar or better novel view ren-

dering quality with less number of input images. ReconFusion

[17] also focuses on reducing required number of input images

by using a diffusion prior to render novel views.

NeRF models require accurate camera poses as input.

Camera pose estimation can be an additional time-consuming

step in the workflow. NoPe-NeRF [18], NeRF± [19], and

COLMAP-Free 3D Gaussian Splatting [20] do not require

known camera parameters as an input by jointly optimizing

the scene reconstruction and camera parameters.

NeRFMeshing [21] and Neuralangelo [22] optimize the

NeRF pipeline to reconstruct accurate 3D meshes.

While most methods primarily focus on smaller-scale envi-

ronments, some tackle the city-scale reconstruction problem.

BungeeNeRF [23] addresses the challenge of modeling city-

scale scenes at varying scales by progressively growing the

NeRF model and training set, allowing it to adapt to different

levels of detail from satellite to ground-level views. Mega-

NeRF [24] and Block-NeRF [25] divide city environments into

submodels and train these small NeRF models in parallel. Li

et al. [26] generate a city-scale synthetic dataset using Unreal

Engine [27] and test the novel view synthesis performance of

multiple NeRF models.

III. APPROACH

Fig. 1: Our NeRF reconstruction pipeline overview. The

pipeline is used to reconstruct 3D point clouds to observe

the accuracy of the underlying 3D structure. The pipeline

also includes our PatchNeRF extension, which offers specific

optimizations for georegistration applications.

NeRF can generate impressive-looking synthetic novel

views, which could be useful for georegistration algorithms.

We were also interested in whether their reconstruction was

physically accurate in the 3D space. Therefore, we conducted

3D reconstruction experiments by using the Nerfstudio frame-

work [28] and its Nerfacto network architecture with our

aerial images. Nerfstudio is a modular Python framework that

allows modifying each module throughout the NeRF training

pipeline according to specific needs. Nerfacto is their custom

pipeline that combines the recent advancements in NeRF

research, which include ideas from NeRF± [19], Instant-NGP

[5], NeRF-W [29], and Ref-NeRF [30].

NeRFs require accurate camera positions and associated

images as input. Currently, the usual practice for estimating

camera positions and bundle adjustment is using COLMAP

[31]. Unfortunately, COLMAP can take several hours to pro-

cess on a high-end computer. COLMAP also failed to estimate

a sufficient amount of camera positions in our Columbia, MO

city-scale aerial images from the Transparent Sky dataset.

Instead, we obtaiend optimized camera intrinsic and extrinsic

(KRt) data for the images in the Transparent Sky dataset using

our bundle adjustment software BA4S [32]. This allowed us to

have accurate camera positions without the performance cost

or failure of COLMAP.

After training NeRFs using our aerial images, we rendered

novel orthographic images with nadir views, which could

be used for georegistration by matching these orthographic

views with satellite images. We also compared the novel

view synthesis performance with the recent Gaussian splatting

method. We used the original code published by the authors

outside of the Nerfstudio environment for our Gaussian splat-

ting experiments. We imported these reconstruction results into

Unreal Engine by using a plugin developed by Luma AI [33].

We used the orthographic camera featured in Unreal Engine

to render nadir view orthographic images.

Then, we extracted 3D point clouds for our scenes from

Nerfstudio to examine the accuracy of the 3D structure. Addi-

tionally, we used the Neuralangelo [22] method to reconstruct

3D meshes outside of the Nerfstudio framework. Neuralangelo

is a state-of-the-art surface reconstruction technique that uses

a modified NeRF model.

Fig. 2: A binary mask overlayed on an input image for

visualization. The mask is generated by an intersection test

with rays cast from each pixel and a bounding box. Rays that

do not intersect with the bounding box are excluded, allowing

a focused and shorter training process.

We developed a PatchNeRF extension that reconstructs only

selected regions of interest instead of the whole scene. We do

not need to reconstruct the whole scene for georegistration

as it would be mostly sufficient to use features from specific

landmarks in the scene. Therefore, we can just focus the

reconstruction on selected 3D patches in the scene to lower

the performance cost by reducing the size of the task. After we

get the optimized camera poses, we choose a specific location

in the 3D scene and place a 3D bounding box. Then, we

send rays through pixels of the input images to check if they

intersect with the bounding box. We generate a binary mask for

each image according to the results from this intersection test.

Fig. 2 shows an example input image with the binary mask



overlayed for visualization. Finally, we exclude the rays that

do not intersect with this bounding box from the training, so

the network only reconstructs the region inside the bounding

box.

IV. EVALUATION

(a) CloudCompare lidar visualization (b) Omniverse VR view

Fig. 3: CloudCompare and Omniverse platforms are used for

visualization.

We used CloudCompare [34] to visualize, register, and

compare the 3D reconstruction results. Fig. 3a shows the

visualization of lidar data for the Jesse Hall building located on

the University of Missouri campus. It shows that vertical side

walls are missed during the data collection flight. We also used

NVIDIA’s Omniverse [35] software within the virtual reality

environment to visually compare the NeRF 3D reconstruc-

tion results with our VB3D2 [36] reconstruction algorithm

results, which uses traditional Multi-view Stereo (MVS) based

computer vision techniques. Visualizing the reconstruction

results side-by-side using a virtual reality headset with intuitive

controls and 3D perception significantly helps in giving a

better idea about the quality of the reconstructed models.

For the quantitative analysis, we followed the approach in

the Tanks and Temples [37] dataset. We tested the limits of

the NeRF point cloud reconstruction by gradually reducing

the number of input images and reported the effect on the

reconstructed point clouds.

Let G represent the ground truth point cloud and R denote

the reconstructed point cloud, with r being a point in R and

g a point in G. For each point in a point cloud, the minimum

distance to any point in the other point cloud is calculated.

er→G = min
g∈G

∥r − g∥ (1)

eg→R = min
r∈R

∥g − r∥ (2)

These distances are aggregated to compute precision (P )

and recall (R) metrics by choosing a threshold distance d.

P (d) =
100

|R|

∑

r∈R

[er→G < d] (3)

R(d) =
100

|G|

∑

g∈G

[eg→R < d] (4)

(a) RGB input image (b) RGB point cloud result

Fig. 4: Jesse Hall Nerfstudio point cloud reconstruction result.

3D structure accuracy is mostly preserved in these smaller-

scale examples.

(a) IR input image (b) IR point cloud result

Fig. 5: Jesse Hall Nerfstudio point cloud reconstruction result

using IR input images. IR image reconstruction perform sim-

ilar to RGB image reconstruction except it missed flat ground

surfaces.

V. EXPERIMENTS

A. Point Cloud and Mesh Reconstruction

We started the 3D NeRF reconstruction experiments using

our drone data collections from the Jesse Hall building, which

was captured at around 120 meters of altitude following a

circular track with 180 images. (Fig. 4a). Fig. 4 and 5 shows

RGB and IR point cloud reconstructions using the Nerfacto

model. The 3D structure detail is mostly preserved in this

smaller-scale example with varying density of points across

the scene. The IR point cloud reconstruction also performed

similar, except it failed to reconstruct the flat ground surface.

(a) RGB input image (b) RGB point cloud result

Fig. 6: Albuquerque Nerfstudio point cloud reconstruction

result. The reconstruction result got significantly sparse and

less detailed with this larger-scale scene.



(a) Nerfstudio point cloud result (b) VB3D2 point cloud result

Fig. 7: Zoomed in point cloud images to compare the point

cloud reconstruction results. VB3D2 highlights the significant

difference in accuracy and density compared to Nerfstudio

result.

After that, we continued with our Albuquerque city-scale

images. These images are captured at around 2 kilometers

of altitude in a circular orbit with 215 images. It covers a

much larger city environment than our Jesse Hall images

(Fig. 6a). Unfortunately, the point cloud reconstruction quality

has significantly dropped with this larger-scale environment.

Fig. 7a shows the sparse result with inaccuracies by zooming

into the point cloud. Fig. 7b shows the VB3D2 point cloud

result, highlighting the inaccuracies in the Nerfstudio result by

comparison.

BA4S Poses 10x Ray Sampling 2x Hidden Dimensions

Modified Center COLMAP Poses Cropped Image

TABLE I: Nerfstudio point cloud reconstruction experiments

with different parameters to improve the Albuquerque point

cloud reconstruction performance. The experiments did not

have a significant effect on the accuracy of the results.

We conducted further experiments with Albuquerque im-

ages to improve the point cloud reconstruction accuracy of

our Nerfstudio pipeline. We sampled ten times more points

along the rays and doubled the size of hidden dimensions in

separate experiments. We configured the centering method that

was setting the scene center in the middle of a cube bounding

box, which was higher above the city. We obtained optimized

camera poses both from COLMAP and our BA4S algorithm to

compare the reconstruction performance. Finally, we cropped

the input images from the center, stabilized the image, adjusted

camera parameters accordingly, and trained the network with

these smaller-size images. As a result, using higher sampling

rates on the rays and increasing the hidden dimensions of the

network produced denser results. However, they still contain a

significant amount of inaccuracies, thus we would not consider

using it as an alternative to VB3D2 method.

Number of Input Images Precision Recall
172 0.998 0.997
129 0.998 0.997
86 0.997 0.997
43 0.846 0.816

TABLE II: Precision and Recall values for 3D point cloud

reconstruction experiments using fewer number of images,

compared with the original model using 215 images. 0.7

meters is chosen as a threshold distance. The current quality

of the reconstruction is mostly maintained until reducing the

input images down to 43

Then, we progressively decreased the number of input

images used in training to observe the corresponding effects

on the reconstruction quality. To do this, we divided the

original set of 215 images into subsets, each containing five

images. From each subset, we incrementally removed a spe-

cific number of the first images in subsequent experiments. The

reconstruction quality did not significantly diminish until only

43 images were used, which achieved 85% and 82% precision

and recall scores. Our pipeline failed to reconstruct a model

resembling a city environment when 21 images were used.

Table II presents the precision and recall scores, comparing

the results obtained from a reduced number of input images

to the original reconstruction, which utilized 215 images. This

experiment indicates that the number of images may not be

the bottleneck for this model’s reconstruction performance.

(a) Jesse Hall 3D mesh result (b) Albuquerque 3D mesh result

Fig. 8: Jesse Hall and Albuquerque mesh reconstruction results

using Neuralangelo. The quality significantly diminishes as the

scale of the scene increases.

We conducted 3D mesh reconstruction experiments with

the Neuralangelo model outside of the Nerfstudio pipeline.

In these experiments, Neuralangelo successfully reconstructed

a detailed 3D mesh of Jesse Hall. However, when applied to

the larger-scale Albuquerque images, the quality noticeably

declined. Although the Albuquerque reconstruction quality by

Neuralangelo was more acceptable than our Nerfstudio point

cloud reconstruction, it lacked many details evident in the

Jesse Hall result and offered a much simpler representation of

the city-scale environment. Additionally, Neuralangelo comes

with a significant performance cost. It requires 20 days of



training on an NVIDIA A100 GPU for 180 images at a

resolution of 8000x6000.

These experiments suggest that the quality of the underlying

3D structure significantly deteriorates in NeRFs as the scale

of the scene increases, resulting in a performance that is

inferior compared to traditional methods. The results from

Neuralangelo, a state-of-the-art NeRF architecture specifically

optimized for surface extraction, show the difficulty and room

for improvement in city-scale 3D point cloud and mesh

reconstruction performance.

B. Orthographic Novel View Rendering

(a) Nerfstudio novel view render-
ing result

(b) Gaussian splatting novel view
rendering result

Fig. 9: Comparison of novel view synthesis performance be-

tween our Nerfstudio pipeline and Gaussian splatting method.

Gaussian splatting greatly increases the novel view synthesis

quality.

NeRFs are mostly used for their great synthetic novel

view generation performance. Recently, the Gaussian splatting

method further improved the novel view synthesis performance

using differentiable rendering techniques without any neural

networks. We tried these recent advancements on our aerial

datasets for nadir view generation. Our data collections are

captured with around 45 degrees of camera pitch angle. So,

the input images provided to these algorithms do not include

any images with a nadir view. Fig. 9 showcases the difference

between the results from our Nerfstudio pipeline and the

Gaussian splatting method. These images are rendered using a

perspective camera with a nadir view. The Gaussian splatting

method provides a much more crisp image with fewer artifacts.

The training time is around an hour for both of these methods

on an NVIDIA A100 GPU. However, the Gaussian splatting

method requires a much larger VRAM capacity.

Next, we imported Gaussian splatting reconstruction results

into Unreal Engine using the Luma AI plugin. We used the

orthographic camera in Unreal Engine to render orthographic

images with a nadir view, which produced very good results.

Fig. 10 and 11 shows the perspective and orthographic nadir

view rendering results from Unreal Engine. Currently, the

orthographic images we render using Unreal Engine are lower

(a) Perspective camera (b) Orthographic camera

Fig. 10: Jesse Hall novel nadir view rendering examples using

perspective and orthographic camera.

(a) Perspective camera (b) Orthographic camera

Fig. 11: Albuquerque novel nadir view rendering examples

using perspective and orthographic camera.

resolution because of the incompatibilities of Gaussian splat-

ting rendering in Unreal Engine. So, we plan to implement our

orthographic camera into one of the Gaussian splatting view-

ers. Additionally, we plan to test orthorectification algorithms

with these images and match them with satellite images.

Our PatchNeRF extension is a first step towards building a

pipeline specifically optimized for georegistration. By focusing

on selected 3D patches rather than the entire scene, we

achieved comparable results with training 7,500 iterations

compared to 30,000 iterations using the whole scene. These

experiments took 10 minutes and 46 minutes, respectively.

Fig. 12 shows the results by zooming into the side of the

Jesse Hall building, which is our region of interest. Fig. 12a

is the result of reconstructing the whole scene, whereas Fig.

12b reconstructed only this region of the scene. The total

number of rays used in training is the same in both cases. That

means our region of interest received all the rays in the patch-



(a) Default approach novel nadir
view rendering result achieved in
46 minutes

(b) PatchNeRF approach novel
nadir view rendering result
achieved in 10 minutes

Fig. 12: Comparing the full scene reconstruction (a) with

targeted 3D patch reconstruction (b) by zooming into the

selected region of interest. Achieved similar novel nadir view

synthesis results for our region of interest with a significantly

reduced performance cost.

based approach, whereas these rays were distributed across

the scene in the default method. This allows us to achieve the

same reconstruction quality for the region of interest with a

much lower performance cost. We would like to extend this

approach for Neuralangelo and Gaussian splatting methods,

where the performance cost is much higher. The next step is

developing a georegistration pipeline where we automatically

select multiple regions of interest, render orthographic nadir

views, and match with the satellite images.

CONCLUSION

In this paper, we shared our experiments with NeRF and

Gaussian splatting methods using our aerial images that in-

clude large city-scale environments. We showcased that even

though NeRFs are able to generate high-quality synthetic novel

views, the underlying 3D structure is greatly impacted as the

scale of the scene increases. We conclude that the city-scale

point cloud and mesh reconstruction quality using NeRFs are

not ideal for our research purposes, as they do not meet the

necessary standards of accuracy and detail required for our

specific applications and fall short compared to traditional

methods.

Furthermore, we rendered orthographic nadir view images

and developed a PatchNeRF approach to specifically optimize

the georegistration process. We believe there is significant

potential in developing an end-to-end georegistration pipeline

utilizing NeRF and Gaussian splatting techniques.
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