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Abstract—City-scale 3D reconstruction of drone images has
many benefits in creating dynamic digital twin models for geospa-
tial and remote sensing applications. We experiment with Neural
Radiance Fields (NeRF) to generate novel orthorectified views,
point clouds, and 3D meshes using our city-scale image dataset
captured from drones and crewed aircraft flights in a circular
orbit. We report on the impact of using different parameters
related to the NeRF network architecture, ray sampling density,
and input image view sampling on the quality of the results. We
compare these results with traditional Structure from Motion
(SfM) techniques and lidar point clouds. NeRFs can generate
highly competitive top-down novel views of city environments
compared to traditional SfM techniques, but the underlying 3D
structure tends to be less accurate with large-scale scenes. NeRFs
can also capture more detail, such as side walls of the buildings,
compared to lidar data collections. Finally, we propose a patch-
based region of interest training approach to generate high-
quality novel top-down views of the large city environments more
efficiently for georegistration purposes.

Index Terms—neural radiance fields, NeRF, 3D reconstruction,
Gaussian splatting, geospatial, georegistration, aerial images

I. INTRODUCTION

NeRFs have shown great success in generating synthetic
novel views, but questions remain regarding the accuracy of
the underlying 3D structure, especially for large-scale scenes.
Most studies on NeRF focus on smaller-scale settings. We
reconstruct 3D point clouds and meshes to assess the accuracy
of the 3D structure with aerial images ranging in altitude from
120 meters, where a drone flies in a circular track above
a building, to 2 kilometers, where crewed aircraft capture
urban environments by flying in a circular track above a
city. We use the Transparent Sky [1] dataset for our city-
scale 3D reconstruction experiments, which includes multiple
cities such as Albuquerque, Berkeley, Columbia, Ferguson,
Los Angeles, St. Louis, San Francisco, Syracuse, and more.

We also leverage the high-quality synthetic novel view ren-
dering advancements for georegistration purposes. Our images
are captured using an oblique angle. These oblique images
need to be orthorectified to improve matching performance
with satellite images. Using an orthographic camera and nadir
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view to render 3D radiance field reconstructions can be a good
alternative approach for the orthorectification process as the
capabilities of novel view synthesis continue to advance. This
paper explores the orthographic nadir view rendering approach
with NeRF and Gaussian splatting methods. In addition, we
developed a PatchNeRF extension for our NeRF reconstruction
pipeline to optimize the georegistration process.

The next section will focus on related work. Section III
will detail our pipeline and approach. Section IV will explain
our evaluation process. Finally, Section V will present our
experiments and results.

II. RELATED WORK

NeRFs train a neural network to create a volumetric repre-
sentation of a scene using images and corresponding camera
poses as input. This volumetric representation allows rendering
novel views of the scene with traditional volume rendering
techniques [2]. The original NeRF model [3] sends rays
through pixels of the input images, samples points along
these rays, and uses multilayer perceptrons (MLP) for map-
ping these spatial coordinates to color and density values.
Many researchers used grid-based representations of a scene
to improve the speed of the training process [4]-[7]. Mip-
NeRF [8] and Mip-NeRF 360 [9] trace conical frustums
instead of rays to solve the aliasing problem that exists in the
original approach. Zip-NeRF [10] and PyNeRF [11] combine
these acceleration and anti-aliasing efforts to provide the best
quality with high performance. The 3D Gaussian splatting [12]
method uses 3D Gaussians for the scene representation and
eliminates neural networks in the pipeline with differentiable
rendering methods. They achieve better novel view synthesis
quality compared to NeRF, and results can be rendered effi-
ciently in real time.

Urban Radiance Fields [13] uses lidar information to im-
prove RGB novel view synthesis and 3D surface reconstruction
quality. Transient NeRF [14] uses lidar scans to render novel
views of transient images. DS-NeRF [15] and Roessle [16]
use sparse point clouds generated from structure from motion



(SfM) methods to achieve a similar or better novel view ren-
dering quality with less number of input images. ReconFusion
[17] also focuses on reducing required number of input images
by using a diffusion prior to render novel views.

NeRF models require accurate camera poses as input.
Camera pose estimation can be an additional time-consuming
step in the workflow. NoPe-NeRF [18], NeRF- [19], and
COLMAP-Free 3D Gaussian Splatting [20] do not require
known camera parameters as an input by jointly optimizing
the scene reconstruction and camera parameters.

NeRFMeshing [21] and Neuralangelo [22] optimize the
NeRF pipeline to reconstruct accurate 3D meshes.

While most methods primarily focus on smaller-scale envi-
ronments, some tackle the city-scale reconstruction problem.
BungeeNeRF [23] addresses the challenge of modeling city-
scale scenes at varying scales by progressively growing the
NeRF model and training set, allowing it to adapt to different
levels of detail from satellite to ground-level views. Mega-
NeRF [24] and Block-NeRF [25] divide city environments into
submodels and train these small NeRF models in parallel. Li
et al. [26] generate a city-scale synthetic dataset using Unreal
Engine [27] and test the novel view synthesis performance of
multiple NeRF models.

III. APPROACH
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Fig. 1: Our NeRF reconstruction pipeline overview. The
pipeline is used to reconstruct 3D point clouds to observe
the accuracy of the underlying 3D structure. The pipeline
also includes our PatchNeRF extension, which offers specific
optimizations for georegistration applications.

NeRF can generate impressive-looking synthetic novel
views, which could be useful for georegistration algorithms.
We were also interested in whether their reconstruction was
physically accurate in the 3D space. Therefore, we conducted
3D reconstruction experiments by using the Nerfstudio frame-
work [28] and its Nerfacto network architecture with our
aerial images. Nerfstudio is a modular Python framework that
allows modifying each module throughout the NeRF training
pipeline according to specific needs. Nerfacto is their custom
pipeline that combines the recent advancements in NeRF
research, which include ideas from NeRF- [19], Instant-NGP
[5], NeRF-W [29], and Ref-NeRF [30].

NeRFs require accurate camera positions and associated
images as input. Currently, the usual practice for estimating
camera positions and bundle adjustment is using COLMAP

[31]. Unfortunately, COLMAP can take several hours to pro-
cess on a high-end computer. COLMAP also failed to estimate
a sufficient amount of camera positions in our Columbia, MO
city-scale aerial images from the Transparent Sky dataset.
Instead, we obtaiend optimized camera intrinsic and extrinsic
(KRt) data for the images in the Transparent Sky dataset using
our bundle adjustment software BA4S [32]. This allowed us to
have accurate camera positions without the performance cost
or failure of COLMAP.

After training NeRFs using our aerial images, we rendered
novel orthographic images with nadir views, which could
be used for georegistration by matching these orthographic
views with satellite images. We also compared the novel
view synthesis performance with the recent Gaussian splatting
method. We used the original code published by the authors
outside of the Nerfstudio environment for our Gaussian splat-
ting experiments. We imported these reconstruction results into
Unreal Engine by using a plugin developed by Luma AI [33].
We used the orthographic camera featured in Unreal Engine
to render nadir view orthographic images.

Then, we extracted 3D point clouds for our scenes from
Nerfstudio to examine the accuracy of the 3D structure. Addi-
tionally, we used the Neuralangelo [22] method to reconstruct
3D meshes outside of the Nerfstudio framework. Neuralangelo
is a state-of-the-art surface reconstruction technique that uses
a modified NeRF model.

Fig. 2: A binary mask overlayed on an input image for
visualization. The mask is generated by an intersection test
with rays cast from each pixel and a bounding box. Rays that
do not intersect with the bounding box are excluded, allowing
a focused and shorter training process.

We developed a PatchNeRF extension that reconstructs only
selected regions of interest instead of the whole scene. We do
not need to reconstruct the whole scene for georegistration
as it would be mostly sufficient to use features from specific
landmarks in the scene. Therefore, we can just focus the
reconstruction on selected 3D patches in the scene to lower
the performance cost by reducing the size of the task. After we
get the optimized camera poses, we choose a specific location
in the 3D scene and place a 3D bounding box. Then, we
send rays through pixels of the input images to check if they
intersect with the bounding box. We generate a binary mask for
each image according to the results from this intersection test.
Fig. 2 shows an example input image with the binary mask



overlayed for visualization. Finally, we exclude the rays that
do not intersect with this bounding box from the training, so
the network only reconstructs the region inside the bounding
box.

IV. EVALUATION

(b) Omniverse VR view

(a) CloudCompare lidar visualization

Fig. 3: CloudCompare and Omniverse platforms are used for
visualization.

We used CloudCompare [34] to visualize, register, and
compare the 3D reconstruction results. Fig. 3a shows the
visualization of lidar data for the Jesse Hall building located on
the University of Missouri campus. It shows that vertical side
walls are missed during the data collection flight. We also used
NVIDIA’s Omniverse [35] software within the virtual reality
environment to visually compare the NeRF 3D reconstruc-
tion results with our VB3D2 [36] reconstruction algorithm
results, which uses traditional Multi-view Stereo (MVS) based
computer vision techniques. Visualizing the reconstruction
results side-by-side using a virtual reality headset with intuitive
controls and 3D perception significantly helps in giving a
better idea about the quality of the reconstructed models.

For the quantitative analysis, we followed the approach in
the Tanks and Temples [37] dataset. We tested the limits of
the NeRF point cloud reconstruction by gradually reducing
the number of input images and reported the effect on the
reconstructed point clouds.

Let G represent the ground truth point cloud and R denote
the reconstructed point cloud, with r being a point in R and
¢ a point in G. For each point in a point cloud, the minimum
distance to any point in the other point cloud is calculated.
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These distances are aggregated to compute precision (P)
and recall (R) metrics by choosing a threshold distance d.

100

= Ta] Llerse < d] (3)
reER

100

=T > legor < d] (4)

geG

(b) RGB point cloud result

(a) RGB input image

Fig. 4: Jesse Hall Nerfstudio point cloud reconstruction result.
3D structure accuracy is mostly preserved in these smaller-
scale examples.
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(a) IR input image

(b) IR point cloud result

Fig. 5: Jesse Hall Nerfstudio point cloud reconstruction result
using IR input images. IR image reconstruction perform sim-
ilar to RGB image reconstruction except it missed flat ground
surfaces.

V. EXPERIMENTS

A. Point Cloud and Mesh Reconstruction

We started the 3D NeRF reconstruction experiments using
our drone data collections from the Jesse Hall building, which
was captured at around 120 meters of altitude following a
circular track with 180 images. (Fig. 4a). Fig. 4 and 5 shows
RGB and IR point cloud reconstructions using the Nerfacto
model. The 3D structure detail is mostly preserved in this
smaller-scale example with varying density of points across
the scene. The IR point cloud reconstruction also performed
similar, except it failed to reconstruct the flat ground surface.

(a) RGB input image

(b) RGB point cloud result

Fig. 6: Albuquerque Nerfstudio point cloud reconstruction
result. The reconstruction result got significantly sparse and
less detailed with this larger-scale scene.



(a) Nerfstudio point cloud result

(b) VB3D2 point cloud result

Fig. 7: Zoomed in point cloud images to compare the point
cloud reconstruction results. VB3D2 highlights the significant
difference in accuracy and density compared to Nerfstudio
result.

After that, we continued with our Albuquerque city-scale
images. These images are captured at around 2 kilometers
of altitude in a circular orbit with 215 images. It covers a
much larger city environment than our Jesse Hall images
(Fig. 6a). Unfortunately, the point cloud reconstruction quality
has significantly dropped with this larger-scale environment.
Fig. 7a shows the sparse result with inaccuracies by zooming
into the point cloud. Fig. 7b shows the VB3D2 point cloud
result, highlighting the inaccuracies in the Nerfstudio result by
comparison.
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TABLE I: Nerfstudio point cloud reconstruction experiments
with different parameters to improve the Albuquerque point
cloud reconstruction performance. The experiments did not
have a significant effect on the accuracy of the results.

We conducted further experiments with Albuquerque im-
ages to improve the point cloud reconstruction accuracy of
our Nerfstudio pipeline. We sampled ten times more points
along the rays and doubled the size of hidden dimensions in
separate experiments. We configured the centering method that
was setting the scene center in the middle of a cube bounding
box, which was higher above the city. We obtained optimized
camera poses both from COLMAP and our BA4S algorithm to
compare the reconstruction performance. Finally, we cropped
the input images from the center, stabilized the image, adjusted
camera parameters accordingly, and trained the network with
these smaller-size images. As a result, using higher sampling
rates on the rays and increasing the hidden dimensions of the

network produced denser results. However, they still contain a
significant amount of inaccuracies, thus we would not consider
using it as an alternative to VB3D2 method.

Number of Input Images | Precision | Recall
172 0.998 0.997
129 0.998 0.997
86 0.997 0.997
43 0.846 0.816

TABLE II: Precision and Recall values for 3D point cloud
reconstruction experiments using fewer number of images,
compared with the original model using 215 images. 0.7
meters is chosen as a threshold distance. The current quality
of the reconstruction is mostly maintained until reducing the
input images down to 43

Then, we progressively decreased the number of input
images used in training to observe the corresponding effects
on the reconstruction quality. To do this, we divided the
original set of 215 images into subsets, each containing five
images. From each subset, we incrementally removed a spe-
cific number of the first images in subsequent experiments. The
reconstruction quality did not significantly diminish until only
43 images were used, which achieved 85% and 82% precision
and recall scores. Our pipeline failed to reconstruct a model
resembling a city environment when 21 images were used.
Table II presents the precision and recall scores, comparing
the results obtained from a reduced number of input images
to the original reconstruction, which utilized 215 images. This
experiment indicates that the number of images may not be
the bottleneck for this model’s reconstruction performance.

(a) Jesse Hall 3D mesh result

(b) Albuquerque 3D mesh result

Fig. 8: Jesse Hall and Albuquerque mesh reconstruction results
using Neuralangelo. The quality significantly diminishes as the
scale of the scene increases.

We conducted 3D mesh reconstruction experiments with
the Neuralangelo model outside of the Nerfstudio pipeline.
In these experiments, Neuralangelo successfully reconstructed
a detailed 3D mesh of Jesse Hall. However, when applied to
the larger-scale Albuquerque images, the quality noticeably
declined. Although the Albuquerque reconstruction quality by
Neuralangelo was more acceptable than our Nerfstudio point
cloud reconstruction, it lacked many details evident in the
Jesse Hall result and offered a much simpler representation of
the city-scale environment. Additionally, Neuralangelo comes
with a significant performance cost. It requires 20 days of



training on an NVIDIA A100 GPU for 180 images at a
resolution of 8000x6000.

These experiments suggest that the quality of the underlying
3D structure significantly deteriorates in NeRFs as the scale
of the scene increases, resulting in a performance that is
inferior compared to traditional methods. The results from
Neuralangelo, a state-of-the-art NeRF architecture specifically
optimized for surface extraction, show the difficulty and room
for improvement in city-scale 3D point cloud and mesh
reconstruction performance.

B. Orthographic Novel View Rendering

ESasass

(a) Nerfstudio novel view render- (b) Gaussian splatting novel view
ing result rendering result

Fig. 9: Comparison of novel view synthesis performance be-
tween our Nerfstudio pipeline and Gaussian splatting method.
Gaussian splatting greatly increases the novel view synthesis
quality.

NeRFs are mostly used for their great synthetic novel
view generation performance. Recently, the Gaussian splatting
method further improved the novel view synthesis performance
using differentiable rendering techniques without any neural
networks. We tried these recent advancements on our aerial
datasets for nadir view generation. Our data collections are
captured with around 45 degrees of camera pitch angle. So,
the input images provided to these algorithms do not include
any images with a nadir view. Fig. 9 showcases the difference
between the results from our Nerfstudio pipeline and the
Gaussian splatting method. These images are rendered using a
perspective camera with a nadir view. The Gaussian splatting
method provides a much more crisp image with fewer artifacts.
The training time is around an hour for both of these methods
on an NVIDIA A100 GPU. However, the Gaussian splatting
method requires a much larger VRAM capacity.

Next, we imported Gaussian splatting reconstruction results
into Unreal Engine using the Luma AI plugin. We used the
orthographic camera in Unreal Engine to render orthographic
images with a nadir view, which produced very good results.
Fig. 10 and 11 shows the perspective and orthographic nadir
view rendering results from Unreal Engine. Currently, the
orthographic images we render using Unreal Engine are lower
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(a) Perspective camera (b) Orthographic camera

Fig. 10: Jesse Hall novel nadir view rendering examples using
perspective and orthographic camera.

(a) Perspective camera

(b) Orthographic camera

Fig. 11: Albuquerque novel nadir view rendering examples
using perspective and orthographic camera.

resolution because of the incompatibilities of Gaussian splat-
ting rendering in Unreal Engine. So, we plan to implement our
orthographic camera into one of the Gaussian splatting view-
ers. Additionally, we plan to test orthorectification algorithms
with these images and match them with satellite images.

Our PatchNeRF extension is a first step towards building a
pipeline specifically optimized for georegistration. By focusing
on selected 3D patches rather than the entire scene, we
achieved comparable results with training 7,500 iterations
compared to 30,000 iterations using the whole scene. These
experiments took 10 minutes and 46 minutes, respectively.
Fig. 12 shows the results by zooming into the side of the
Jesse Hall building, which is our region of interest. Fig. 12a
is the result of reconstructing the whole scene, whereas Fig.
12b reconstructed only this region of the scene. The total
number of rays used in training is the same in both cases. That
means our region of interest received all the rays in the patch-



(a) Default approach novel nadir (b) PatchNeRF approach novel
view rendering result achieved in nadir view rendering result
46 minutes achieved in 10 minutes

Fig. 12: Comparing the full scene reconstruction (a) with
targeted 3D patch reconstruction (b) by zooming into the
selected region of interest. Achieved similar novel nadir view
synthesis results for our region of interest with a significantly
reduced performance cost.

based approach, whereas these rays were distributed across
the scene in the default method. This allows us to achieve the
same reconstruction quality for the region of interest with a
much lower performance cost. We would like to extend this
approach for Neuralangelo and Gaussian splatting methods,
where the performance cost is much higher. The next step is
developing a georegistration pipeline where we automatically
select multiple regions of interest, render orthographic nadir
views, and match with the satellite images.

CONCLUSION

In this paper, we shared our experiments with NeRF and
Gaussian splatting methods using our aerial images that in-
clude large city-scale environments. We showcased that even
though NeRFs are able to generate high-quality synthetic novel
views, the underlying 3D structure is greatly impacted as the
scale of the scene increases. We conclude that the city-scale
point cloud and mesh reconstruction quality using NeRFs are
not ideal for our research purposes, as they do not meet the
necessary standards of accuracy and detail required for our
specific applications and fall short compared to traditional
methods.

Furthermore, we rendered orthographic nadir view images
and developed a PatchNeRF approach to specifically optimize
the georegistration process. We believe there is significant
potential in developing an end-to-end georegistration pipeline
utilizing NeRF and Gaussian splatting techniques.
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