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Abstract

The drug-overdose crisis in the United States continues to intensify. Fatalities have increased 5-fold since 1999 reaching a record high of 108,000
deaths in 2021. The epidemic has unfolded through distinct waves of different drug types, uniquely impacting various age, gender, race, and
ethnic groups in specific geographical areas. One major challenge in designing interventions and efficiently delivering treatment is forecasting
age-specific overdose patterns at the local level. To address this need, we develop a forecasting method that assimilates observational data
obtained from the CDC WONDER database with an age-structured model of addiction and overdose mortality. We apply our method
nationwide and to three select areas: Los Angeles County, Cook County, and the five boroughs of New York City, providing forecasts of
drug-overdose mortality and estimates of relevant epidemiological quantities, such as mortality and age-specific addiction rates.

Significance Statement

The drug-overdose epidemic in the United States continues to escalate, with fatalities increasing 5-fold since 1999 and reaching a re-
cord high of 108,000 individuals in 2021. The crisis is characterized by distinct waves of drug types, disproportionately affecting vari-
ous demographic groups in specific geographical regions. One major component of designing effective interventions is forecasting
age-specific overdose patterns in order to facilitate targeted prevention and preparedness efforts. To this end, we propose a forecast-
ing approach that integrates observational data with an age-structured model of addiction and overdose mortality. Applying this
method nationwide and in areas that are highly impacted by the overdose crisis, we provide robust drug-overdose mortality forecasts

offering vital insights for effective interventions.

Introduction

The United States is currently experiencing one of its worst
drug crises, with alarming increases in fatal overdose rates.
According to data from the Center for Disease Control (CDC),
over 108,000 persons died from drug overdose in 2021, the highest
number ever recorded in a single year and a 17 % increase over the
previous record high of 2020 (1). Most recent overdose deaths in-
volve synthetic opioids such as fentanyl, psychostimulants such
as methamphetamines and, to a lesser degree, prescription
opioids such as oxycodone, and heroin (2). Many factors may
have contributed to this surge, including the overall increased
supply of synthetic, low-cost drugs (3, 4), the ease with which il-
legal substances may be purchased online (5-7), the uncontrolled
mixing of drugs of different potency (8, 9), and societal changes
leading to “deaths of despair” (10, 11). Although these elements
have fueled high-risk drug use for quite some time, most of
them have been exacerbated by the COVID-19 pandemic (12, 13).

Both the CDC and the National Center for Health Statistics have
been systematically collecting information on overdose mortality

since 1999, and, according to slightly different classifications,
since 1979. The relevant data are publicly accessible through the
CDC Wide-ranging Online Data for Epidemiologic Research
(WONDER) portal which is updated at the end of each calendar
year with final data associated to the prior year, resulting in a
1-year lag. Many groups have dissected these data by stratifying
overdoses according to drug type, year, age, gender, race, and
geography. These studies have revealed several spatiotemporal
“overdose waves” across the United States, the emergence of
new trends, demographic and geographical shifts, and social dis-
parities (13-16).

While providing up-to-date snapshots and following the course
of past overdose deaths helps shed light on the evolution of the
drug epidemic (17), forecasting future overdose patterns, even in
the short term, would allow for targeted preventive interventions
and ensure the preparedness of public health agencies (14, 18, 19).
Due to demographic, political and legislative heterogeneities
across the United States, predictions on the national scale would
be much less effective than those made at the more local level
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(20). Analysis at a more “granular” scale allows one to retain spe-
cific drug-market, socioeconomic, cultural, and geo-historical at-
tributes that distinctly affect the drug-overdose trajectories. By
not lumping these factors together, more realistic forecasts and
tailored interventions (21, 22) can be developed. For instance,
while drug overdoses may be decreasing at the regional level, cer-
tain counties, urban centers, or even zip codes within the same re-
gion may be experiencing surges among given subpopulations due
to the introduction of new drugs to a circumscribed market.

As data collecting and manipulation capabilities have ex-
panded, predicting overdose mortality (at any scale), while still
in its infancy, has become a rapidly growing field. Given the
many aspects of the drug addiction crisis, current studies rely
on a variety of information including data on past overdoses, hos-
pitalization, arrest, internet searches, painkiller prescription, and
drug-seizure rates. Quantitative tools used in these endeavors in-
clude statistical regression, geospatial analyses, mathematical
modeling, and machine learning (23-30).

In this paper, we advance the state of the art in drug-overdose
forecasting by combining a mechanistic model describing age-strati-
fied drug-overdose fatalities with recorded mortalities using data-
assimilation techniques (31-33). The latter were first developed
within the geological and atmospheric sciences to merge high-
dimensional dynamical systems with large datasets to produce
weather and climate forecasts. After decades of continuous im-
provement to both algorithms and computing infrastructure, mod-
ern operational weather forecasting centers are able to process
about 107 observations per day (34). In addition to applications in cli-
mate dynamics, data assimilation has been used to estimate param-
eters in systems biology (35), to provide risk-dependent individual
contact interventions during outbreaks (36), to identify patients
with antibiotic-resistant bacteria in hospital wards (37), and to
quantify the proportion of undocumented COVID-19 cases (38).
One reason for the successful integration of mechanistic models
with data-assimilation methods across different fields is that the al-
gorithms are computationally efficient and provide good forecasts
even when training data are sparse (39). Furthermore, since they
are coupled to mechanistic models, data-assimilation methods al-
low one to estimate parameters that carry a physical or biological
meaning and to follow their evolution over time. This interpretabil-
ity, both of the parameters and of their dynamics, is very valuable
for decision-making and formulating intervention policies.
Finally, contrary to other techniques, data-assimilation methods
produce interval estimates and not just point estimates. One can
thus quantify confidence intervals (CIs) and accurately assess un-
certainties and risks.

The mechanistic model that we use in this work is based on
Kermack-McKendrick theory (40-44) and describes an age-struc-
tured, drug-using population. This group includes those who suf-
fer from substance use disorder (SUD) as well as occasional or
first-time users. Our model includes population aging, the age-
dependent initiation of high-risk substance use, and drug-induced
mortality. Using data assimilation to combine our drug-overdose
model with data from CDC WONDER, we develop a forecasting
tool for age-stratified drug-overdose mortality in the United
States. In the next section, we illustrate the basic principles of
our method by generating nationwide drug-overdose mortality
forecasts and by extracting the time evolution of epidemiological
quantities such as rates of initiation of drug use and mortality.
We compare our predictions with overdose data for select past
years and offer short-term projections for drug-overdose mortal-
ity. Similarly, we generate drug-overdose forecasts for select coun-
ties or metropolitan areas that display a large number of overdose

fatalities: Los Angeles County, CA; Cook County, IL; and the five
boroughs of New York City. Our forecasts show that
age-structured population models combined with data-
assimilation methods can produce reliable predictions of
drug-overdose deaths both at the national and county levels. Our
approach and its results can inform early warning systems, help
tailor interventions, and prioritize resources distribution to areas
most impacted by the current drug epidemic.

Results

Forecasting overdose fatalities in the
United States

The Kermack-McKendrick model (40-43) is commonly used in
mathematical epidemiology to describe the evolution of an
age-structured population with age-dependent infection and re-
covery rates. Related structured population models have found
utility in describing cell populations (45), demographics and birth
control policies (46), the progression of infectious diseases (44)
such as measles (47), tuberculosis (48), HIV (49), and COVID-19
(50) and more recently in the social sciences (51) and in studies
of drug addiction (52-57). In this work, we combine an
age-stratified model of overdose fatalities with corresponding ob-
servational data from the CDC WONDER database, using an en-
semble Kalman filter (EnKF) (58) as data assimilation method
(see Materials and methods for further information on the
age-structured model, EnKF, and overdose data).

We model both the evolution of the population of those who
use high-risk drugs and the number of fatal drug overdoses across
different age classes in yearly increments. To estimate age-specif-
ic influx rates of high-risk drug consumers and age-specific mor-
tality rates, we use the age-structured population data and fatal
overdose data tallied by the CDC WONDER database as inputs to
our EnKF. Since we consider the entire population of those who
use high-risk drugs, overdose deaths may arise among those
who suffer from SUD as well as intermittent or first-time users
who accidentally overdose on contaminated doses or due to inex-
perience (59, 60). Figure 1a,b shows the evolution of the US popu-
lation and overdose fatalities from 1999 (light blue) to 2021 (dark
blue). Within this timeframe, the population between 0 and 85 years
rose from 275 to 326 million individuals. Figure 1a shows that the
largest increases occurred between 20 and 40 years and that the
age-structured population distribution is marked by two charac-
teristic peaks: one arising between 20 and 30 years and the other
between 40 and 60 years. The age-structured fatal overdose distri-
bution in Fig. 1b reveals that between 1999 and 2014, the largest
proportion of overdose deaths occurred between 40 and 50 years.
During a second phase, spanning from 2015 to 2019, overdoses
peaked within the 35-40 year age group. A sudden surge in over-
dose fatalities is observed beginning in 2020; the onset of this third
phase is concurrent with the advent of COVID-19. These three
phases do not define rigid classifications; rather, they provide refer-
ence points to facilitate data interpretation and guide our analysis.

We use these qualitative observations to guide the develop-
ment of our age-structured Kermack-McKendrick model. First,
to allow for possible population shifts or shifts in the onset of high-
risk substance use, we include two age-stratified influx rates in
the shape of gamma distributions peaked at ages a"®* and a)®*
with amplitudes r; and r,, respectively. The two distributions
may represent, for example, initiation of high-risk substance use
among young adults and among middle-aged persons seeking re-
lief from pain through prescription opioids. Large values of r;
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Fig. 1. Forecasting nationwide overdose fatalities. a and b) United States population and overdose deaths as a function of age (0-100 years) and

time (1999-2021). c-e) Forecasts of overdose deaths as a function of age. Solid red curves and red-shaded areas indicate mean predictions and 3¢
(i.e. 3-standard deviation) intervals, respectively. Observed fatalities are indicated by dashed black curves. Ages are binned in 5-year intervals and
prediction values are displayed at the center of each bin interval. f) Evolution of the estimated drug-caused mortality rate 2y and the corresponding 3¢
intervals. g) Evolution of the estimated ages for which the onset of high-risk drug use is largest and corresponding 3¢ intervals. To account for potential

population shifts, we utilize two age-stratified influxes peaked at a"®*, 47"**. The thickness of the curves is proportional to their respective magnitudes 71
and 7. As can be visually inferred, the influx peaked at the younger age 4" begins to carry more weight than its counterpart peaked at *** around 2015,
indicating a shift toward a preponderance of younger persons using high-risk drugs. We set a lower limit of 19 years for aj"®* to prevent unrealistically low
ages of drug-use initiation. Filter updates occur in the beginning of each year.

compared to r; imply that the influx of new users occurs mostly
through the distribution that is peaked at a]** and vice versa.
Second, to take into account nonoverdose deaths among those
who use high-risk drugs, we write the mortality rate of this popu-
lation as an age-stratified baseline given by the Gompertz—
Makeham-Siler approximation (61-65) to which an excess
drug-induced mortality pg4 is added.

As typicalin data assimilation, at each forecasting step, we use
new overdose fatality data to update the system state and esti-
mates of model quantities (such as the drug-induced mortality
rate fi3, the ages at which the influx rates of the population that
uses high-risk drugs are maximal, al®*, a7®*, and the amplitudes
of the influx distributions ?1, ) and use these values for subse-
quent forecasts. Since final CDC WONDER data are available
from 1999 to 2021, a forecast for drug-overdose fatalities in year
Y is based on assimilated observational data between 1999 and

Y - 1. Figure 1c-e displays age-stratified overdose forecasts (solid
red curves) and corresponding observational data (dashed black
curves) for the years 2001, 2011, and 2021. These are representa-
tive years selected from the three phases outlined above. In all
panels, red-shaded regions indicate 3o (i.e. 3-standard deviation)
intervals and ages are binned in 5-year intervals. The shown na-
tionwide forecasts exhibit a remarkable similarity to the actual ob-
servations; despite a significant and unexpected rise in overdose
fatalities in the pandemic year 2020 compared to 2019, the EnKF
forecast of age-stratified overdose deaths for the year 2021 remains
in close agreement with the reported number of fatalities. In the
Materials and methods section, we compare our EnKF forecasts
with those generated by two heuristics, which are based on the as-
sumption that present trends persist in the future.

In addition to forecasting fatalities in each age group, we also
used our EnKF to estimate the trajectories of a4, a7, a®*, fy,
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and 7, over the 1999-2021 interval. The EnKF was initialized with
fig =0.2% per year, consistent with 1999 data (66); we also set the
initial values a"®* =30 years, a®* =45 years, and 71 =7, =2%
per year. Figure 1f shows that fi4 increased 6-fold in the past 20
years, rising from about 0.2% per year to 1.2% per year. This find-
ing is largely independent of the initial value of fi4; the final esti-
mate, 3 =1.2% overdose deaths per year is larger than the
baseline Gompertz-Makeham-Siler approximation for all ages
under 60 years old.

The trajectory of the quantities aj"®*, a5*** presented in Fig. 1g
shows that between 1999 and 2009 these values remain within the
30-35 and 45-50 range, respectively. In later years however, while
a?* decreases only mildly, there is a strong descent of a"®* toward
lower values, even below 20 years, indicating a substantial inflow of
younger users. Figure 1g also shows that f; increases within the pe-
riod of observation and thatin 2015 it surpasses f,, so that the influx
of the population that uses high-risk drugs is dominated by the dis-
tribution peaked at the younger age a"**. The shift of the onset of
druguse toward younger ages thatis observed startingin 2015is con-
sistent with the concurrent emergence of high mortality rates within
the 25-35 age group as seen in Fig. 1b.

Assessing the mortality rate of the population that uses high-
risk drugs is challenging since a large number of subjects must
be recruited and followed to evaluate frequency of rare events
like death. Studies are typically conducted among formerly incar-
cerated persons, SUD patients enrolled in treatment clinical trials
or who have been hospitalized and monitored postdischarge (59,
60). These studies reveal that people who use high-risk drugs ex-
hibit elevated mortality compared to the general population pri-
marily due to fatal overdoses, but also due to viral infections,
cardiovascular disease, and cancer (67, 68). Overdose-specific
mortality rates among persons who use high-risk drugs vary be-
tween 0.2 and 1 % depending on gender, drug of choice, treatment
type (68-71); other metastudies reveal that the mortality rate for
persons who use high-risk opioids is about 0.7 % (72). Our esti-
mates for 24 from Fig. 1f are in agreement with these values; in
addition, our work enables the tracking of longitudinal changes
in overdose mortality rates throughout the entire 1999-2021 peri-
od, uncovering a significant and alarming surge in mortality rates
among persons who use high-risk drugs. Particularly noteworthy
is the pronounced increase observed during the pandemic years
2020 and 2021. To summarize, our findings reveal a staggering
6-fold increase in mortality rates among people at high risk of
overdose, a generational shift toward drug use at younger ages,
and alarming numbers of overdose deaths among individuals up
to 30 years old. These results emphasize the necessity for more fo-
cused approaches in intervention and prevention strategies.

Forecasts for future years

In Fig. 2, we show nationwide forecasts for the years 2022, 2023,
and 2024. The 2022 forecast is based on the 2021 values of
Ag, G7%, 4% f1, #,. Since the final data for 2022 are not available
at the time of writing, we incorporate provisional 2022 data in our
data-assimilation cycle to determine forecasts for 2023 and 2024.
The unfolding of the drug crisis over the past few years has been
strongly influenced by the COVID-19 pandemic and the extraor-
dinary rise of overdose deaths recorded in 2020 and 2021. This re-
sulted in anomalies in the forecasts for 2020 and 2022, when the
pandemic began receding. Our EnKF, however, was able to adjust
quite efficiently to the sudden changes imparted by the pandemic.
For example, while our 2020 forecast (not shown) was an under-
shoot compared to actual 2020 data, feeding the 2020 data into

the EnKF led to good agreement between forecasts and observa-
tions for 2021 as can be seen in Fig. le. Similarly, implementing
2020 and 2021 data in the EnKF results in overshoots for the
2022 forecast compared to provisional 2022 data, as the effects
of the pandemic began waning. However, once the 2022 provision-
al data were included, our EnKF forecasts for 2023 and 2024 ad-
justed to overdose counts that are closer to those recorded in 2021.

Our EnKF forecasts suggest that fatalities will remain largest
among those younger than 30 and that drug-overdose counts
will remain elevated for all relevant age groups.

County-level variation

Although the overall number of drug-overdose fatalities in the
United States is rising, it varies significantly across jurisdictions.
Previous analyses at the state level examined the impact of vari-
ous factors on overdose deaths, including the availability of car-
fentanil (73), and demographic variables such as gender and
race (13). County-level analyses have been conducted in various
states, including California (74, 75), New York (76, 77), Ohio (78),
and Michigan (79, 80). Furthermore, differences in overdose dy-
namics between urban and rural areas have been documented
throughout the United States over the past two decades (81-83).
Collectively, these studies highlight the need for region-specific
interventions. Building upon the aforementioned works, we now
overview quantitative variations in overdose mortality in the
United States at the county level from 1999 to 2021.

Figure 3a shows the distribution of county-stratified drug-
overdose fatalities for select years between 2000 and 2020. Only
counties with statistically significant fatalities of at least 10 indi-
viduals per year are shown. The number of counties that reached
this significance threshold increased from 61 counties (out of
3,147) in 1999 to 742 (out of 3,142) in 2021, as reported in the CDC
WONDER database. Between 1999 and 2021, numerous counties re-
ported annual numbers of overdose fatalities below 100. However,
during the same period, the number of counties experiencing be-
tween 100 and 1,000 annual overdose fatalities steadily increased.
In 2020 (blue disks), a few counties even recorded close to 1,000 over-
dose deaths. Crude rates, defined as the number of deaths per
100,000 persons, also increased significantly over time, as seen in
Fig. 3b: in the year 2000, the mean crude rate among all counties
for which data were available was 4.3 cases per 100,000, in 2020 it
was 31.5 cases per 100,000. This 7-fold increase is consistent with
the similar rise in gy as inferred by our EnKF on the national level.
The distributions in Fig. 3b also show that the crude rates exhibit
a high degree of variability across counties.

Figure 3d shows that in 2000, only counties with populations lar-
ger than 100,000 residents experienced statistically significant
numbers of drug-overdose fatalities. In the years since, crude rates
substantially increased for these counties, especially between 2010
and 2020, while smaller counties with population sizes of about
10,000 also started reporting significant numbers of fatal overdo-
ses, as shown in Fig. 3e. This indicates that the drug-overdose epi-
demic has permeated all jurisdictions, regardless of population.

The heat maps in Fig. 3c and f confirm the increase in the num-
ber of counties affected by the drug epidemic between 2000 and
2020. Notice that the scales of the two color bars differ by a factor
of 10. Figure 3c shows that in 2000, the most affected areas were
population centers in the Western United States: that year, the
largest overdose fatality counts occurred in Maricopa County,
AZ; Los Angeles County, CA; and Clark County, NV (Fig. 3g) and
the largest crude rates were reported in Bernalillo County, NM;
Washoe County, NV; and Salt Lake County, UT (Fig. 3h). In 2020,

$20Z 1snbny | uo Jasn abpLUYLON NSO Ad ¥65/265/2/0508ebd/z/c/e10nie/snxauseud/woo dno-olwapeoe//:sdiy Woll papeojumoc]



Bottcheretal. | 5

a b c
20 - 20 - 20 -
”S ] == obs. 20 ] ]
n 4 — forecast ] 3
= - E i
= ] ] N
o 10 10 10 H
S N N N
2 . .
"8 5 7 5 - 5
5 N N N
g ] . ]

0 T I T I T I T I T 0 0
0 20 40 60 80 100 0 0
age age age

Fig. 2. Forecasting nationwide overdose fatalities for 2022-2024. a) Forecasts of overdose deaths in the United States as a function of age (0-100 years)

for the year 2022. The forecast (solid red curve) is higher than 2020 and 2021 observations (dash-dotted curve gray and dashed black curve) due to the EnKF
following the trend set by the pandemic years 2020 and 2021, both marked by large increases in overdose deaths. Provisional data for 2022 (not shown)
suggests that overdose deaths in each age group are comparable to the 2021 counts. Light red-shaded regions show values within the 3¢ range. b and c)
Forecasts of overdose deaths in the United States as a function of age (0-100 years) for the years 2023 and 2024, using 2022 provisional data in the EnKF.
The predicted number of overdose deaths will remain near the record highs of 2021. Due to the lack of observation data in 2023, the CIs increase in 2024 due to
the larger uncertainty as time progresses. Ages are binned in 5-year intervals and prediction values are displayed at the center of each bin interval.

many regions in the Central and Eastern United States also be-
came heavily impacted by the drug epidemic, including many
smaller population counties (Fig. 3f). The largest 2020 fatality
county were reported in Los Angeles County, CA; Cook County,
IL; and Maricopa County, AZ (Fig. 3g). The largest 2020 crude rates
were registered in Wyoming County, WV; McDowell County, WV;
and Floyd County, KY (Fig. 3h).

In 2000, Los Angeles County, the most populous in the United
States, accounted for approximately 12% of the total population
of the 59 counties with statistically significant overdose fatalities.
Its proportion of overdose fatalities was about 10%. However, due
to more counties reporting large numbers of overdose deaths, by
2020, Los Angeles County’s population represented only 4% of
the total population of the 640 counties with statistically signifi-
cant overdose deaths. That same year, Los Angeles County con-
tributed to approximately 3% of the registered overdose deaths
at the county level. Furthermore, in 2020, despite the 10 most
populous counties in the United States being home to roughly
16% of the population (out of the 258 million associated with the
640 counties with statistically significant overdose fatalities),
they recorded less than 13% of the number of overdose fatalities
among these 640 counties. Conversely, the 50 least populous
counties, with less than 1% of the total population among the
640 affected counties, accounted for more than 2% of the number
of overdose deaths. These statistics highlight the shifting patterns
of overdose fatalities, with a notable rise of overdose deaths in less
populated counties. To better understand how the drug deaths are
shared across counties, we consider the Gini coefficient (84, 85), a
measure of inequality among a set of N. values of a distribution; in
our case, Nc is the number of counties that have reported statistic-
ally significant numbers of overdose deaths. We compute the Gini
index by plotting the proportion of the total number of overdose
fatalities accumulated across counties against the cumulative
population fraction across counties. The lower bound for the
Gini index is 0 (perfect equality, indicating that overdose deaths
and county populations are proportional), and the upper bound
is 1 —1/N¢ (perfect inequality, indicating that all overdose deaths
occurred within a single county). We find that the Gini coefficient
dropped from a value of about 0.2 in the year 2000 (N. =59), to
about 0.07 in the year 2021 (N, = 640), which is consistent with in-
creases in the number of counties affected by the drug-overdose
epidemic.

In the next section, we employ the modeling and forecasting
techniques established in the previous section to examine the pro-
gression of age-specific overdose fatality counts in three specific
regions: Los Angeles County, CA; Cook County, IL; and the com-
bined area of New York City’s five boroughs (The Bronx,
Brooklyn, Manhattan, Queens, and Staten Island).

Forecasting overdose fatalities in three counties

The dynamics of overdose fatalities in Los Angeles County, Cook
County, and the five boroughs of New York City have unfolded
in substantially different ways over the past two decades. In
1999, Cook County reported a total of 14 overdose fatalities,
New York City recorded 52, and Los Angeles County 384. By
2021, these numbers had risen to 1,688 overdose deaths for
Cook County, 2,091 for Los Angeles County, and 2,124 for
New York City. Cook County experienced the most striking rise
in overdose fatalities between 1999 and 2021: an unprecedented
120-fold increase. In comparison, New York City experienced a
40-fold increase and Los Angeles County a 5-fold increase. These
numbers are even more striking given Cook County’s smaller
population (5.1 million in 2021), compared to the population of
Los Angeles County (9.7 million in 2021) and New York City (8.3
million in 2021). In the Materials and methods section, we provide
further details on the trends in population, overdose mortality,
and drug types across these three regions.

As in our nationwide forecasts, we use an EnKF in conjunction
with an age-structured overdose mortality model that accounts
for the underlying age variation in the county populations.
Because of the relatively small overdose fatality counts in Cook
County and New York City in the early 2000s, we do not report
forecasts for 2001 as done nationwide and for Los Angeles
County, but we use years from 2013 onwards for which enough
data are available across all age groups. Specifically, in Cook
County, the total number of reported age-stratified drug-overdose
fatalities remained below 100 for most years prior to 2013. This
points to a delayed emergence of the overdose death crisis in
this county which became extraordinarily acute in just a few
years. A finer analysis reveals that the largest increases in
drug-overdose mortality in Cook County are due to heroin (a
10-fold rise between 2012 and 2013) and to fentanyl (a 5-fold rise
between 2015 and 2016).
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Fig. 3. Drug-overdose fatalities in the United States at the county level. a) Histogram of county-stratified drug-overdose fatalities for different years
(blue disks: 2020, orange crosses: 2015, green diamonds: 2010, red inverted triangles: 2005, purple triangles: 2000). b) Histogram of county-stratified
crude rate data for different years. d) County-stratified drug-overdose fatalities as a function of the corresponding county populations. e)
County-stratified crude rates as a function of the corresponding county populations. c), f) Crude rates across different counties in 2020 and 2000.
The scales of the two color bars differ by a factor of 10. In the gray regions, either no data or a statistically not significant number of cases were reported.
In all panels, we did not include data for which at least one database entry (e.g. fatalities and crude rate) was marked unreliable. The minimum number
of deaths in the remaining data is 20. Hence, the crude rate data in e) lies above of the minimum crude rate given by 2 x 10°/Population. g) The three
counties with the largest overdose death tollsin 2020, 2010, and 2000. h) The three counties with the largest overdose crude rates in 2020, 2010, and 2000.
i) The Gini index across different years. A Gini index of 0 means that the crude rate is the same across all counties. If all overdose fatalities were
concentrated in one out of N counties, the Giniindex would be 1 — 1/N.. The number of counties with statistically significant fatality counts (>10 deaths

in a given year) and crude rates are Nc =61 in 1999 and N. = 742 in 2021.

We show our results in Fig. 4. The first three historical forecasts
for each region are compared to the corresponding observational
data (dashed black curves). Since the observational data for 2023
are not available at the time of writing, we display the 2020 data
(dash-dotted gray curve) and the 2021 data (dashed black curve)
in the 2023 forecast. As done for the nationwide forecasts, we in-
corporate provisional 2022 data in our data-assimilation cycle tode-
termine the 2023 forecasts at the county level. For Los Angeles
County, we initialized the EnKF with jig = 0.25% per year and 71 =
7, = 2% per year. The simulations for Cook County and New York
City startin 2013, and we initially set g = 0.5% peryearand i, =7, =

6% per year. The estimated drug-induced mortality rate for Cook
County and New York City in 2021 are, respectively, i3 = 1.9% per
year and fig = 1.1% per year, substantially larger than the 2021 esti-
mates for Los Angeles County (ig = 0.5% per year). This is also con-
sistent with the much larger increase in overdose fatalities in Cook
County and New York City compared to Los Angeles County.

Discussion

Escalating drug-induced deaths have been a major public-health
challenge in the United States for more than a century. The
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Fig. 4. Forecasting overdose fatalities in select United States jurisdictions. a-d) Forecasts of overdose deaths in Los Angeles County as a function of
age (0100 years) for 2001, 2011, 2021, and 2023. Solid red curves and shaded regions indicate mean predictions and 3sintervals, respectively. Observed
fatalities are indicated by dashed black curves. Because observational data for 2023 are not available at the time of writing, we show 2020 data
(dash-dotted gray curve) and 2021 data (dashed black curve) in panels d, h, and 1). e-h) Forecasts for Cook County using the same graphic
representations as in panels a-d and for the years 2015, 2018, 2021, 2023. i-1) Forecasts for the five boroughs that comprise New York City (The Bronx,
Brooklyn, Manhattan, Queens, and Staten Island) using the same graphic representations as in panels a-d and for the years 2007, 2014, 2021, 2023.
Although the numerical escalation in drug-overdose deaths in Cook County (2015-2021) and New York City (2007-2021) is similar to what is observed
for Los Angeles County, the timelines are much accelerated. In 2021, the population of Los Angeles County was 9.7 million, in Cook County 5.1 million,
and in New York City 8.3 million, indicating a more acute crisis in Cook County. Ages are binned in 10-year intervals and prediction values are

displayed at the center of each bin interval.

overprescription of morphine and opium led to an epidemic that
affected almost 5 in 1,000 Americans in the 1890s (86). This wide-
spread crisis spurred a number of acts and regulations in the early
20th century that succeeded in lowering opiate use and mortality
rates (87, 88). The current epidemic involves a significantly higher
prevalence of high-risk drug use and has unfolded via distinct
spatiotemporal mortality waves driven by different drug types
and localized subepidemics. Being able to forecast the complex
evolution of fatal drug overdoses at the national, regional, or
county levels, would represent major advancements in helping
curb high-risk drug use. In this work, we developed a forecasting
method that combines an age-structured model of addiction
and overdose mortality with observational data derived from
the CDC WONDER database through a data-assimilation ap-
proach. By applying our method to nationwide data as well as to

three representative areas (Los Angeles County, Cook County,
and the five boroughs of New York City), we showed its ability to
provide near-term forecasts, to extract epidemiological parame-
ters, and to capture the heterogeneity in overdose mortality
across different counties. Since the demographics and geography
of high-risk drug use are in constant flux, we believe our data-
assimilation approach holds promise for informing targeted pre-
vention and preparedness interventions aimed at curbing
drug-overdose deaths.

The nationwide drug-induced mortality rate has risen almost
6-fold in the past two decades, surpassing 1.1% per year among
persons using high-risk drugs. This rate exceeds the baseline
Gompertz-Makeham-Siler mortality rate for all groups under 60
years old. Our county-level analysis reveals significant variations
in overdose fatality trends. For example, although at the onset of
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1999-2021 period, Los Angeles County had a higher drug-induced
mortality rate than Cook County and New York City, in 2021 it
had the lowest, at 0.5% per year, compared to Cook County at
1.9% per year and New York City at 1.1 % per year. Furthermore,
the annual number of overdose deaths in Cook County and
New York City grew much faster than in Los Angeles County in re-
centyears. This points to a delayed, yet severe growth of drug over-
doses in New York City and especially in Cook County. For past
years, our predictions are in good agreement with tallied data.
Fortheyear 2023, we predict relatively stable levels of drug overdo-
ses compared to the pandemic year 2021, both nationwide and in
Los Angeles County and Cook County, based on provisional 2022
data. For New York City, our forecasts indicate a further increase
of overdose deaths. Specifically, we expect drug-overdose deaths
to slightly increase nationwide by 1 % compared to the values re-
corded in 2021, by 12% in Los Angeles County, by 26% in
New York City but only by 7% in Cook County. Prior work (14, 73)
has shown that the number of overdose deaths in the United
States has closely followed an exponential growth pattern over
the past four decades. The substantial increase in overdose deaths
between 2019 and 2021 is likely linked to the COVID-19 pandemic.
Provisional data indicate that, as the pandemic began receding,
the total number of overdose deaths in 2022 is mostly comparable
to the 2021 counts, albeit slightly larger.

We also find that the overdose epidemic has spread to more
counties over time. In the year 1999, 61 counties out of 3,147 had
statistically significant overdose fatalities, whereas this number
rose to 742 outof 3,1421in 2021. Not only has the number of affected
counties grown, but their relative contributions to the overall over-
dose fatality count have become more evenly distributed over the
years. This finding implies that managing the overdose epidemic
cannot be simply accomplished by targeting a few specific coun-
ties, rather each jurisdiction must develop specific plans tailored
to their unique sociodemographic and economic profiles.

Several limitations of this study are noteworthy. Our findings
are based on four drug categories with the highest crude rates
available in the CDC WONDER database: fentanyl (T40.4), pre-
scription opioids (T40.2), heroin (T40.1), and methamphetamines
(T43.6). We did not include other categories such as T40.3 (metha-
done) or T40.5 (cocaine) in our analysis due to their lower mortal-
ity rates. The dynamics of fatalities associated with these drug
categories may differ from the fatality trends observed in our ana-
lysis. Furthermore, in certain jurisdictions, fatality data are un-
available as the CDC WONDER portal suppresses entries where
the number of deaths is less than 10. Additionally, some overdose
cases may involve multiple drugs. In such instances, deaths are
counted in all relevant categories, resulting in multiple counts.
Finally, comparisons of opioid-related overdose death rates at
the national, state, and county levels may be influenced by signifi-
cant variations in the reporting of specific drugs involved in over-
dose deaths. Changes in drug reporting specificity over time and
across different states and counties can lead to potentially mis-
leading conclusions regarding actual drug-specific death rates
(89).

There are several potential avenues for future work. Although
we only analyzed three large urban areas, our method can be
applied to other jurisdictions and/or to forecast regional drug-
overdose mortality by gender, race or drug type; the resulting
projections may help to guide more targeted intervention efforts.
In less populated areas, the number of fatalities may not be suffi-
ciently large for a meaningful age-stratified analysis; similarly for
specific gender, race or drug-type categories. In these cases, pool-
ing data from several neighboring jurisdictions with similar

socioeconomic characteristics, using larger age-binning or consid-
ering biannual forecasts may yield more meaningful results.
Alternatively, for small-number cases, a stochastic version of
the Kermack-McKendrick model may be used as to evolve the
state variables probabilistically (90). Large deviations of observed
data from our projections would signal fundamental changes to
the illicit drug landscape in the form of effective prevention and
treatment programs, or in the consumption of more addictive or
lethal substances. On the mathematical modeling side, our
Kermack-McKendrick model may be expanded to include shifts
among drug types, or to distinguish whether overdoses occur
among those with SUD or first time, occasional users. On the
data side, another potential opportunity for future work is inte-
grating our forecasting method into an ensemble model to lever-
age different strengths for improved forecasting accuracy.
Finally, one may also study the numerical stability and forecast-
ing accuracy of alternative ensemble-based Kalman filters, such
as ensemble adjustment Kalman filters (91), or incorporate back-
ward passes and smoothing techniques into our method to poten-
tially enhance earlier parameter estimates (92).

Materials and methods
Age-structured overdose model

The mathematical model we use to describe the age-stratified
evolution of the population that uses high-risk drugs is given by

[% + %]n(a, 0 = —u(a, 9n(a, O + 1@ ON@, ) —n(a, 9], (1)

where n(a, t)da is the drug-using population with age between a
and a + da at time t. The associated mortality is u(a, t) and r(a, t)
is the influx rate of new users from N(a, t) — n(a, t), the pool of indi-
viduals not engaged in high-risk substance use. Finally, N(a, t) is
the general population with age between a and a + da at time t.
We set the initial age and time ap =ty = 0. The initial distribution
of SUD cases is given by n(a, t = 0) = p(a). We also setn(a=0,t)=0
such that no population of age a =0 exists at any time. We solve
Eqg. 1 using the method of characteristics and distinguish the two
cases a >t and a<t. For a > t, the characteristic begins at t=0
and n(a, t) will remain constant along a =t, yielding

na, t)=pla— t)efflo;z(s+a—t,s)+r(s+a—t,s) ds

+15r(s+a—t, SN(s +a — t, s)elu@ra-tawizra-tadz 4s (g > 1),
¥

Fora < t, the characteristic will begin ata = 0 and n(a, t) will remain
constant along t =a so that

n(a, t) =0or(s, s — a+ ON(s, s — a + tekulezariirzzardz g (g <),

3)
We write the mortality rateu(a, t) as the sum of a baseline mortality
rate, uy(a, t), and a drug-caused excess mortality rate, u4(a, t), so
that u(a, t) = uo(a, t) + ug(a, t). In principle, uy(a, t) could be derived
from records of yearly mortality data. However, this approach
would make our numerical computations very time-consuming,
so instead we use the Gompertz-Makeham-Siler mortality model
for human death (61-65) as an approximation and assume
uo(a, t)y =po(a) to be time-independent. Finally, the quantity
ug(a, t) = puq is assumed to be age-independent and inferred from
data, so that we effectively neglect any time dependence over a
data-assimilation cycle of 1 year. Within a data-assimilation win-
dow of 1 year, we thus set
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Fig. 5. Age-structured overdose crude rates in the United States. Age-structured overdose crude rates in the United States, distinguished by gender:

a) males and b) females.

(a-M)

(@, 1) = o (@) + g = 7187 + 7, + e (r1.2: 41,2, M>0),

)
where y; =0.00258/year, y,=0.00037/year, A;=5.09657/year,
2 =0.09040/year, and M =83.22956 year in accordance with
Ref. (65). Since the majority of drug-overdose fatalities occur among
males (13, 93) as seen in Fig. 5, we explicitly used parameters pertain-
ing tomalesin the United States. The parameters in Eq. 4 vary slightly
from year to year, so we selected the ones for 2010. It is worth noting
that we conducted a sensitivity analysis through additional simula-
tions using variations on the above choices fory,, y,, 41, 42, Minclud-
ing values specific to females in the United States. We find that the
choice of these parameters does not substantially affect our results.

We allow the parameter py to change from one year to the
next. This choice is dictated by the CDC WONDER database
providing yearly lists of overdose deaths, although monthly up-
dates could also be implemented. To describe an age-dependent
influx into the pool of persons who use high-risk drugs, we set
r(a, ) = 1(a) = [11f(@; a1, B1) + 1of (@; @2, £2)]/2,  where  f(a; o, f) =
f%/T(e) a* e is the gamma distribution with shape and rate pa-
rameters « and g. The maximum of a gamma function is given at
the age a™® = (a — 1)/8. The evolution of n(a, t) in data-assimilation
cycles requires us to evaluate the derivative of Eq. 2 with respect to
(w.r.t) t. We will use a superscript ’ to denote differentiation of a
function w.r.t. its first or only argument and a subscript ' to denote
differentiation w.r.t. to a functions second argument. For a > t, the
rate of change of n(q, t) can thus be written as

+Hq

on(a, t)
ot

= _<p’<a ) +p(a—t)[re0 0 4y, + 2620 M 4y 4 r(a - t)])
N €719 (1—e41") /21 —e#2 (M) (1—e~2) — (y, +4)t e—fov(s-#a—t) ds + Y(G)N(Q, t)
[} gne e 20 (1 )=l t-9) g irlora-t) dz
xN(s+a—t,8)r(s+a—t) ([yle‘“ (400 4y, 4 Ayt (S+a=t=M)
+ﬂd+r(s+a—t)]+r/(s+a—t)) ds
_ [[ erae (101 9) 212 1)) t-5) girevat oz

xN'(s+a-t,s)r(s+a—t)ds.

For a < t, we obtain

angat, R =[or(s)N, (s, s —a+1) ©

s 71 (1T =e7H1%) [y e 2 M (@21 20) (b)) o[22 g g

The integrals [\ r(z+a—t)dz, [ (s + a —t)ds, and [° r(z) dz can be
evaluated using the identity

t ﬂ“ o—1 —p(z+a—t _ 1
IS@(z+a—t) TeHl >dz_m[r(a,(a—t+s)ﬁ)—r(a,aﬁ)], 7)

where I'(s, x)= [y t'e~'dt denotes the upper incomplete gamma

function. We evaluate the remaining integrals Ig (-) ds numerically.
Finally, the initial condition used to solve Eq. 1 and to obtain the
simulation results in Figs. 1, 2, and 4 is

p(a) = 0.015Nof (a; ao, fo). (8)

To obtain the curves shown in Figs. 1 and 2, we set Ny = 274,886,150,
the population of the United States between ages 0 and 85 in 1999.
We also selectf(a; ao, Bp) to be a gamma distribution with shape and
rate parameters ap and f,, chosen as ap =12 and B, =1/(3 year)
such that the maximum of the distribution is at amax = 33 years.
The prefactor of 0.015 is chosen such that initially 1.5% of the popu-
lation are using high-risk drugs consistent with corresponding sur-
vey data (66, 94). To obtain the curves in the county-level analysis,
we initially set Np to match the respective population sizes between
ages 0 and 85 for the years 1999 (Los Angeles County) and 2013
(Cook County and New York City). Specifically, No was set to
9,437,290 for Los Angeles County, 8,405,837 for New York City,
and 5,240,700 for Cook County. We also set a=17 (Los Angeles
County) and a=12 (Cook County and New York City) and used
the same value of g as in the national analysis.

Interpolating population data

We infer the age-structured population function N(a, t) from na-
tionwide population data that are available from the CDC
WONDER database. In Fig. 6a, we show an interpolated and differ-
entiable population function N(a, t). In all simulations, we use in-
terpolations that are based on bivariate splines of degree 2. In
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Fig. 6. Age-structured United States population data. a) Interpolated age-structured population data. The interpolation is based on bivariate splines
of degree 2. b) The overall United States population increases almost linearly between 1999 and 2021.

Fig. 6b, we show the almostlinear increase of the population of the
United States between ages 0 and 85 from 1999 to 2021.

Ensemble Kalman filter

To combine the age-structured drug-overdose model (1) with corre-
sponding observational data, we use an EnKF (58) asimplemented in
Refs. (33, 96). Figure 7 shows a schematic of the main EnKF steps.

In accordance with Refs. (31, 97), the evolution of any system
state x(t) (e.g. number of SUD cases, mortality and addiction rates)
and observed state z(t) (e.g. number of overdose fatalities) are de-
scribed by the stochastic differential equations

x=f(x ) +w(t) w(t)~N(0, Q)

z=h(x, t) +v(t) v(t) ~N(0,R(t)), ©)

where Q(t) and R(t) denote the covariance matrices associated
with the Gaussian process noise N'(0, Q(t)) and Gaussian measure-
ment noise N'(0, R(t)) at time t, respectively. We assume the quan-
tities Q(t) and R(t) to be given. The function f(-) describes the
dynamics of the system state x(t), while h(-) maps x(t) to a meas-
urable quantity. Both functions can be nonlinear.

For the specific case of our age-structured model defined in
Eg. 1, element x;(t) of the state vector x(t) corresponds to n(a;, t) =
n(ao + ( — 1)Aa, t) (j € {1, ..., Na}), the density of individuals whose
age lies within the [ao + (j — 1)Aq, do + jAa) interval at time t. Here,
N, and Aa denote the number of discretizations of the age interval
and the corresponding age discretization step, respectively. Thus,
we write

x(t) = [n(as, 1), n(az, 1), ...]". (10)

For the numerical solution of Eq. 9, we also discretize the simula-
tion time interval [0, T] into N equidistant intervals of duration
At =T/N;. In all of our simulations, we fixed At =0.1. To combine

the mechanisticmodelin Eq. 1 with empirical data on overdose fa-
talities, we augment the system state (10) by

Dlaj, t) = foug®n(a, At (€L, ..., Na}), (11)

where D(g;, t) is the cumulative number of overdose deaths in the
ageinterval[a;_;, a;) up to time t. To avoid dealing with large differ-
ences between predicted and observed fatalities in our numerical

calculations, we normalize both quantities by dividing them by
1,000, thereby measuring overdose deaths per 1,000 individuals
in the system state. Since we wish to estimate model parameters
such as w4 and r1, 12, a1, By, a2, B, wWe also augment the system
state (10) by the log-transforms j4=1og(ug), 71 =1og(r1),
72 =log(ry), & =log (o), py =10g (B);, @ =log («>), and B, =1log (p,).
Therefore, the final augmented system state is

x(t)=[n(as, 1), ...,n(an,, 1), D(a1, 1), ..., Dlan, ., t), fig, 71, ?2"31’51"7‘2'ﬁ2]T~
(12)

Prior to each prediction step, we apply an exponential transform to
render the parameters ug and ry, 12, a1, B4, 02, B, positive and avoid
sign changes. To accurately solve the evolution of n(a, t) numeric-
ally, we must use a sufficiently large number of age windows N, in
our simulations. However, since the age windows in our simula-
tions are more granular than those available from overdose fatal-
ity data, we apply a coarse-graining procedure. The nationwide
CDC WONDER data we utilized have 22 age groups with aj =
0,a5,,=120 and Aa)=1,Ad,=4, Aa;=5, ..., Ady; =5, Aay, =20
years. To differentiate between the age discretization in the obser-
vational data and the age discretization in the underlying model,
we employ a superscript ' notation. In the county-level forecasts,
we employed 10-year age groups, effectively reducing the number
of age groups from 22 to 11. The following discussion of the EnKF
parameterization and implementation will be based on 22 age
groups, but the same considerations also apply to the county-level
analysis with fewer age groups.

To reduce granularity and combine the modeled quantities
D(a)-, t) with corresponding observational data, we numerically in-
tegrate D(a;, t) over the age windows [a;_;, ;) (¢ € {1, ..., 22]) toob-
tain the cumulative number of deaths D(a;, t) in this age interval at
time t. Here, a, = a) + Y.\, Aan, for £ > 1. Based on the described
mapping of D(a}-, t) to D(a,, t), the measurement function becomes

h(x(t)) = [D(a}, 1), D(@), 1), ...]". (13)

In our simulations, we set the initial values n(a;, 0) = D(aj, 0)=0.In
the nationwide analysis, we initially set uy=2x1073/year,
r=r,=2x10"%/year, a;=10, p;=1/(3year), a;=15 and
B, =1/(3 year). We have chosen theinitial values of r1, r; in accord-
ance with corresponding empirical data on the number of
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Fig. 7. EnKF schematic. We use an EnKF to combine a mechanistic model of drug-overdose fatalities with corresponding observational data.
Blue boxes show the main steps (i.e. projection and update) in an EnKF cycle. Green boxes represent the initial sample generation process and
perturbations that are added during the projection and update steps. The schematic is adapted from Ref. (95).

substance initiates (66, 94) The initial maximum values of the
gamma distributions f(a; a1, 1), f(a; a2, B,) are attained at ages
a?®* = (a1 — 1)/p, =27 years and a¥** = (ay — 1)/, =42 years, re-
spectively. All initial covariances are set to 107*, except for the di-
agonal elements associated with the log-transforms of ug4, 11, 12
and e, B;, 02, B,, which are set to 1, respectively. Process and obser-
vation noise covariances are assumed to be time-independent and
given by Q=10"%,y,47 and R=diag(2x 1073, ..., 2x1073), re-
spectively. Here, ], denotes the n x n matrix of ones. Our simula-
tions run from the beginning of 1999 until the end of 2024. The
age discretization is Aa = 1.2 years with ap = 0 and ay, = 120 years.
Population data are available for ages between 0 and 85. However,
since overdose fatalities in groups below 10 years and above 70
years are statistically insignificant, we truncated the system state
accordingly. To align model parameters with initial observational
data, we performed two full data-assimilation cycles for the first
year (1999) before starting the main forecasting algorithm that
produces forecasts for all years from 1999 to 2024. The number
of EnKF ensemble members is M = 10°.

We used different initial values for the county-level forecasts. For
Los Angeles County, the initial values were set as follows:
g =2.5x1073/year, 1, =r,=2x10"%/year, and a; =ay =17. For
Cook County, the values were set as uq=>5x1073/year,
11 =T, =6x107%/year, oy = 8, and a, = 15. Lastly, for New York City,
the values were set as uq=5x 1073/year, 11 =1, =6 x 1072 /year,
ap =8, and a, = 17. The initial values of ; and g, are as in the nation-
wide analysis. To account for the smaller number of overdose fatal-
ities at the county level, we adjust the process and observational
noise matrix elements to have values of the order 108~ 10~7. The
number of EnKF ensemble members is M = 102 for all counties.

At every time point t, we use the EnKF to determine the state
posterior distribution given all prior observations. Before starting
the data-assimilation procedure, we generate an initial ensemble

b{él), o ng)] that consists of M ensemble members lg) ~ N (o, Po)
(1e{1, ..., M}). The quantities %o and Py denote the given initial
state and covariance estimates, respectively.

To perform forecast and update iterations using a Kalman fil-
ter, one uses state estimates l;@ at time t, to calculate predicted
state estimates xgﬁ at time ty,1. These predicted state estimates
are then combined with observational data to obtain an updated
state lgll. We use the superscript “-” in X;(;: to distinguish be-
tween predicted (i.e. prior) state estimates and updated (i.e. pos-
terior) state estimates. In the remainder of this section, we
describe the two main EnKF steps: (i) forecasting the evolution
of the system state and (ii) updating the predicted state estimates
using observational data. We use the shorthand notation y, = y(t)

to refer to a quantity y at time t, = kAt (k € {0, ..., N¢}).

(i) Forecast step: For each ensemble member, the predicted state
estimate xgz:l at time ty, is given by
Ao =1+ atf n) + (14)

where (g) ~ N(0, Q) models Gaussian process noise. Using
the predicted state estimates X ,, we compute the corre-
sponding ensemble mean, Xi,;, and covariance matrix,
(Pz2)x4+1, @ccording to

o _ 1 M (i)- 15
Kp1 = M 2 :Xle+1’ ( )
1=1

1 oo . N T
(Pag)is = mZ[)ﬁgl - X?ﬂ} [X]S)Jrl - X;+1j| - (16)
i=1

Although the covariance matrix (Pz),,, is notrequired in the
EnKF iteration, it is useful to estimate Cls of X, ;.
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Fig. 8. Population, overdose, and drug-type trends in Los Angeles County, Cook County, and New York City. a-c) The population distribution across age
groups (0-100 years) and time (1999-2021) in Los Angeles County, Cook County, and the five boroughs of New York City, with ages grouped in 10-year
intervals. d-f) Overdose deaths in the same regions as a function of age (0-100 years) and time (1999-2021). g-i) Crude rates associated with fentanyl
(T40.4), methamphetamines (T43.6), prescription opioids (T40.2), and heroin (T40.1) in Los Angeles County, Cook County, and the five boroughs of
New York City from 1999 to 2021.

(ii) Update step: We first compute the ensemble mean of the pre-

dicted observation
M () 1 M
Z =3 Z R+l = MZ (Zk+1 (17)
i=1 i=1

as well as the corresponding covariances

_ 1 &
(Paa)ers = M—-1 Z[h(llm) - Zk+1} [h(xk+1) - zk+1] + Res
i=1
_ 1 _ T
(Pra)ks1 :mZ[Xill Xk+1} |:h(lk+1) zk+1] .
i=1
(18)
The Kalman gain is
Kis1 = (Przisr (Pais- (19)

For a given observation z,s, the state update of ensemble
member iis

() ()-

Xiex1 =Xpp1 T Kii1 |:zk+1 + ”k+1 h(lkH)] (20)

where "1(31 ~N(0, Ry;1) models Gaussian measurement
noise. Finally, the updated state estimate and the corre-
sponding covariance matrix are

I )
lek-ﬂ’
i=1

(Pia)esrs = Pradess — Kiw1 (Paz)es 1 Kiya-

Rpp1 =
+1 (21>

During each update step, we assign the entry in each ensemble
member that corresponds to the logarithm of the drug-caused
mortality rate, jiy =log (1), to be equal to the logarithm of the ratio
of observed overdose fatalities and the ensemble mean of the
population, while also accounting for the underlying noise.
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Fig. 9. Comparison of EnKF forecasts with forecasting heuristics. a) Nationwide overdose deaths in the United States as obtained from the CDC WONDER
database (black disks) and corresponding forecasts (blue squares: recency heuristic I; orange inverted triangles: recency heuristic II; green triangles:
EnKF) for the period 1999-2021. In recency heuristic I, the projected number of total overdose deaths in a specific age group in year Y is given by the
number of overdose deaths in the same age group in year Y — 1. In recency heuristic II, the projected number of overdose deaths in a specific age group in
year Y is calculated as the sum of the number of overdose deaths in that age group in year Y — 1 and the difference between the number of overdose
deathsin the same age groupinyearsY — 1and Y — 2. For each year, we calculate the total number of deaths by summing across all age groups. Error bars
represent EnKF 3¢ intervals. b) Absolute errors associated with both forecasting heuristics and the EnKF forecast.

Overdose mortality data

Overdose fatalities extracted from the CDC WONDER database
were identified using the International Classification of Diseases,
Tenth Revision (ICD-10) cause-of-death codes X40-44 (uninten-
tional), X60-64 (suicide), X85 (homicide), Y10-14 (undetermined
intent), and all other drug-induced causes. National-level and
county-level data were extracted for the 1999-2020 period. The
drug categories examined are poisoning by narcotics and psycho-
dysleptics (hallucinogens) (T40) and by psychostimulants with
abuse potential (T43.6). Specific subcategories analyzed within
T40 are heroin (T40.1), natural and semisynthetic opioids
(T40.2), and synthetic opioids other than methadone (T40.4).
Deaths involving more than one drug type were included in
each applicable category. Entries with an insufficient number of
deaths were excluded.

Trends in population, overdose mortality, and
drug types across three regions

As outlined in the main text, the evolution of overdose fatalities in
Los Angeles County, Cook County, and the five boroughs of
New York City exhibit distinct patterns over the past two decades.
In Fig. 8, we provide additional insights into population, overdose
mortality, and drug-type trends across these regions. Figure 8a-c
shows the age-stratified population distribution in the three juris-
dictions from 1999 to 2021. We observe that New York City exhib-
its a more pronounced peak of residents of ages between 20 and 30
years compared to the other two counties. Overdose deaths
counts in Los Angeles County, shown in Fig. 8d, are characterized
by a peakin the 20 to 40 age group that emerged over the past few
years, aligning with the national trends shown in Fig. 1b.
Conversely, Cook County and the five boroughs of New York
City show the highest number of overdose deaths among older
age groups as can be seen in Fig. 8e,f.

We also observe variations in the drug types that cause over-
dose deaths in the three regions. Figure 8g-i shows that crude
rates for prescription opioids (T40.2) and heroin (T40.1) have re-
mained relatively stable in Los Angeles County over the past two
decades. However, significant increases in crude rates associated
with overdoses due to synthetic opioids (T40.4, mainly fentanyl),
and psychostimulants (T43.6, mainly methamphetamines) are
observed over the last 5 years, indicating that these two drug

classes have become the primary drivers of overdose mortality
in this region. Fentanyl also emerges as a key driver of recent over-
dose mortality in Cook County and the five boroughs of New York
City; contrary to Los Angeles County however, crude rates associ-
ated with heroin surpass those of both methamphetamines and
prescription opioids.

In Los Angeles County, the crude rate for methamphetamines is
large compared to that of the other regions throughout the two dec-
ades under investigation. This observation aligns with the fact that
the first manufacturers and distributors of illegal methamphet-
amines in the United States were California-based biker gangs, par-
ticularly Hell’s Angels, (98) whose activities began in the 1960s and
remained mostly confined to the state for several decades. Also no-
tice the temporary spike in fentanyl-driven overdoses in Cook
County for 2005 and 2006. Indeed, Chicago was used as the first
test market for fentanylin the United States under the street names
Drop Dead and Lethal Injection. Its 2005 introduction caused a tem-
porary outbreak of deaths. Although authorities were able to stop
distribution from the Mexico-based clandestine laboratory that pro-
duced the fentanyl responsible for these deaths in 2006, other or-
ganized criminal groups were able to resume the large-scale
distribution of fentanyl across the country in later years (99, 100).

Comparison with baselines

We compare our EnKF forecasts with two baseline projections
that are obtained by assuming a continuation of present trends.
Such baseline projections have been shown to perform well espe-
cially over short forecasting time horizons (101, 102). We refer to
these two baselines as “recency heuristics” (101, 103). In the first
baseline (i.e. recency heuristic 1), the forecast for the number of
overdose deaths in a specific age group in year Y is assumed to
be the same as the number of overdose deaths in the same age
group in year Y — 1. This heuristic is effective when overdose dy-
namics remain stable. In the second baseline (i.e. recency heuris-
tic II), the forecast for the number of overdose deaths in a specific
age groupin year Yis calculated as the sum of the number of over-
dose deaths in that age group in year Y — 1 and the difference be-
tween the number of overdose deaths in the same age group in
years Y — 1 and Y — 2. This heuristic will perform better than re-
cency heuristic I if the trend from the previous year persists and
overdose dynamics are not stable.
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Figure 9 shows the forecasts of nationwide overdose deaths
upon combining all age groups for the different methods used
and the corresponding forecasting errors. The years for which re-
cency heuristic I performs better than the other two approaches
(recency heuristics II and the EnKF) are those for which overdose
counts do not change appreciably (e.g. 2018) compared to the pre-
vious year. Recency heuristic Il is an effective forecasting method.
However, it may exhibit a higher degree of overshooting compared
to the EnKF forecast, as observed in 2021.

Since they rely on the most recent available observational data,
model-free recency-type heuristics, such as recency heuristic I
and II usually perform well when forecasting over short time ho-
rizons. Previous studies have demonstrated that recency heuristic
I can provide more accurate forecasts than Google Flu Trends
(101), and that recency heuristic II can compete favorably with
CDC and ECDC COVID-19 ensemble forecasting models (102,
104). However, simple data-driven heuristics do not typically yield
reliable long-term forecasts, as they lack the ability to account for
underlying population-level dynamics. Unlike data-assimilation
methods as the one used in our work, the described recency heu-
ristics only offer point estimates without Cls. Additionally, as they
are not based on an underlying mechanistic model, these heuris-
tics are not suitable for inferring crucial epidemiological parame-
ters like mortality and addiction rates.
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